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A B S T R A C T   

Intersectional multilevel analysis of individual heterogeneity and discriminatory accuracy (I-MAIHDA) is an 
innovative approach for investigating inequalities, including intersectional inequalities in health, disease, psy-
chosocial, socioeconomic, and other outcomes. I-MAIHDA and related MAIHDA approaches have conceptual and 
methodological advantages over conventional single-level regression analysis. By enabling the study of in-
equalities produced by numerous interlocking systems of marginalization and oppression, and by addressing 
many of the limitations of studying interactions in conventional analyses, intersectional MAIHDA provides a 
valuable analytical tool in social epidemiology, health psychology, precision medicine and public health, envi-
ronmental justice, and beyond. The approach allows for estimation of average differences between intersectional 
strata (stratum inequalities), in-depth exploration of interaction effects, as well as decomposition of the total 
individual variation (heterogeneity) in individual outcomes within and between strata. 

Specific advice for conducting and interpreting MAIHDA models has been scattered across a burgeoning 
literature. We consolidate this knowledge into an accessible conceptual and applied tutorial for studying both 
continuous and binary individual outcomes. We emphasize I-MAIHDA in our illustration, however this tutorial is 
also informative for understanding related approaches, such as multicategorical MAIHDA, which has been pro-
posed for use in clinical research and beyond. The tutorial will support readers who wish to perform their own 
analyses and those interested in expanding their understanding of the approach. To demonstrate the method-
ology, we provide step-by-step analytical advice and present an illustrative health application using simulated 
data. We provide the data and syntax to replicate all our analyses.   

1. Introduction 

Intersectional multilevel analysis of individual heterogeneity and 
discriminatory accuracy, also called intersectional MAIHDA or I- 
MAIHDA, is an innovative approach for investigating inequalities in 
health, disease, psychosocial, socioeconomic, and other outcomes 
(Evans, 2015; Evans, Williams, Onnela, & Subramanian, 2018). 
I-MAIHDA is an application of the broader MAIHDA approach for 
quantifying inequalities within an intersectional framework. While in-
terest in quantitative intersectionality has been growing in population 
health and other fields, widespread adoption has been hampered by 

limitations of conventional modeling approaches. I-MAIHDA and 
related approaches, such as multicategorical MAIHDA (Evans, 2024; 
Jones, Johnston, & Manley, 2016) and geographical MAIHDA (Merlo, 
2014; Merlo, Wagner, and Leckie 2019), address many of these limita-
tions, and as such they have the potential to make quantitative inter-
sectional and multicategorical analyses more accessible, including in 
health and education inequalities research, precision medicine and 
public health, environmental justice scholarship, and across the social 
sciences. 

MAIHDA has conceptual, methodological, and theory-oriented ad-
vantages over conventional single-level regression analysis (Bell, 
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Holman, & Jones, 2019; Evans, 2019a; Evans et al., 2018; Evans, Leckie, 
and Merlo 2020) and over other quantitative approaches for investi-
gating intersectional effects (Mahendran, Lizotte, & Bauer, 2022a; 
2022b). Intersectional MAIHDA provides an ideal analytical instrument 
in precision public health (Olstad & McIntyre, 2019; Persmark, Wemrell, 
Zettermark, et al., 2019), and answers calls for innovative approaches 
that consider both differences between group averages and variation 
within these groups around their average values (Merlo, 2014; Merlo & 
Wagner, 2013). Due to its practical-methodological and theory-oriented 
advantages over conventional methods, I-MAIHDA has been hailed as 
“the new gold standard for investigating health disparities in (social) 
epidemiology” (Merlo, 2018), clinical and biomedical research (Evans, 
2024), and beyond. 

The term “MAIHDA” predates the specific statistical approach (I- 
MAIHDA) it is now widely associated with (and which is the focus of this 
tutorial) (Merlo, 2014). Originally, MAIHDA referred to a reorganiza-
tion of existing multilevel modelling concepts, in order to systematically 
consider both differences between group averages and individual het-
erogeneity around those averages. While historically, “MAIHDA” 

involved fitting multilevel models of individuals nested hierarchically in 
schools, neighbourhoods, workplaces, or similar concrete contexts, with 
particular emphasis on geographic inequalities in health (Merlo, 2014; 
Merlo, Wagner, & Leckie, 2019), the new statistical approach associated 
with the term broadens this conceptualization of ‘context.’ 

First proposed in 2015 by Evans (Evans, 2015) (later published as: 
Evans et al. (2018)), and soon after explored by Jones et al. (2016), and 
Bell et al. (2019), MAIHDA now refers to the use of multilevel models to 
examine patterns of inequalities across social strata, constructed 
through high-dimensional, multicategorical cross-tabulation of identi-
ties, conditions, or other factors. When applied in an intersectional 
framework, the approach is more specifically called I-MAIHDA, and it is 
used to examine inequalities by factors such as gender, race/ethnicity, 
and socioeconomic status. A more general application, multicategorical 
MAIHDA, has also been proposed, with applications in fields such as 
clinical/biomedical research (Evans, 2024; Rodriguez-Lopez, Leckie, 
Kaufman, & Merlo, 2023). Specifically, Evans (2024) has argued that 
MAIHDA should guide study design across the clinical and health sci-
ences for examining high-dimensional effect measure modification, in-
teractions, and subgroup comparisons. Though we focus here on 
I-MAIHDA, this tutorial can be used to inform and guide more general 
MAIDHA research, including multicategorical MAIHDA. 

Following Evans et al. (2018), we prefer the term “social strata” 

when referring to analytic subgroups, such as at particular intersections 
of gender/race/class, because it evokes the provisional adoption of labels 
for stratified analyses, while remaining skeptical of the term ‘group’ 

(Brubaker, 2002) and avoiding conceptualizing labels as monolithic, 
unchanging, or inflexible. In MAIHDA, stratum inequalities are not only 
evaluated in terms of differences between stratum averages, but by 
informing on the share of the total heterogeneity in the outcome that is 
at the stratum level. In this way MAIHDA enhances the focus on popu-
lation health rather than on individual biomedical susceptibilities, as 
may be the case in precision medicine. It also avoids the well-known 
“tyranny of the averages” problem (Merlo, 2014; Merlo & Wagner, 
2013), where group averages are over-emphasized and consideration of 
variance or heterogeneity is under-attended to. 

The new I-MAIHDA approach has already been applied to examine a 
variety of health inequalities, including body mass index (Evans et al., 
2018; Hernández-Yumar et al., 2018), COPD risk (Axelsson Fisk et al., 
2018), depression (Evans & Erickson, 2019), prescription opioid (mis) 
use (Persmark, Wemrell, Evans, et al., 2019; Persmark, Wemrell, Zet-
termark, et al., 2019), biomarkers of healthy aging (Holman, Salway, & 
Bell, 2020), use of hormonal contraception and risk of depression 
(Zettermark et al., 2021), and HPV vaccination (Zubizarreta et al., 
2022). To date, MAIHDA (and especially I-MAIHDA) have primarily 
been developed and used to study health inequalities. However, 
depending on the specific outcomes and strata definitions chosen by 

researchers, MAIHDA has broad uses and appeal across the social sci-
ences, as well as in medicine and related fields. MAIHDA’s recent use in 
related social science disciplines, such as sociology of sexualities (Silva 
& Evans, 2020), environmental justice (Alvarez, Calasanti, Evans, & 
Ard, 2022; Alvarez & Evans, 2021), and education (Keller, Oliver, Pre-
ckel, & Brunner, 2023; Prior, Evans, Merlo, & Leckie, 2022; Prior and 
Leckie 2023), hint at its larger, cross-disciplinary potential. 

Specific advice for conducting and interpreting intersectional and 
multicategorical MAIHDA models has been scattered across a burgeon-
ing literature (Axelsson Fisk et al., 2018; Bell et al., 2019; Evans, 2015, 
2019c, 2019a, 2024; Evans et al., 2018, 2023, 2020; Green, Evans, & 
Subramanian, 2017; Keller et al., 2023; Merlo, 2018; Wemrell, Mulinari, 
& Merlo, 2017). Consequently, researchers interested in applying this 
approach may be seeking a resource with detailed practical advice as 
well as general conceptual information. Addressing this need, we pro-
vide a conceptual and applied tutorial for conducting intersectional 
analyses for both continuous and binary individual outcomes using 
MAIHDA. 

We provide detailed annotated code for analysis in both Stata and R, 
using maximum likelihood estimation (MLE), and a simulated practice 
data set. Additional code resources, such as syntax for estimation using 
other approaches and software (e.g., Markov Chain Monte Carlo 
(MCMC) estimation in Stata and MLwiN) will be made available in an 
online repository: https://doi.org/10.17605/OSF.IO/DTVC3. All inter-
sectional MAIHDA models in this tutorial are two-level random-inter-
cept models, and readers will be able to fit them using most statistical 
analysis software. Interested users can follow along with this tutorial 
and learn how to apply MAIHDA in their own research. This tutorial is 
also intended for readers who wish to expand their general under-
standing of the intersectionality framework and MAIHDA methodology. 

1.1. The meaning of “interaction” in intersectionality versus regression 
analysis 

From the outset it is important to distinguish between “interaction” 

within intersectionality as a theoretical framework and “interaction” in 
regression analysis. Intersectionality is a theoretical framework which 
emerged from critical, Black feminist scholarship (Cho, Crenshaw, and 
McCall 2013; Collins, 1990, 2009; Crenshaw, 1989). As a critical theory, 
intersectionality draws attention to the ways in which systems of 
oppression such as sexism, racism, and socioeconomic inequality are 
interlocking, inseparable, and mutually constituted. Furthermore, it 
demands reform and transformation of these systems. 

Theorized in quantitative terms, individuals can be understood to 
occupy different positions in intersecting social hierarchies based on 
their social identities and socioeconomic conditions/class. Though often 
treated (and measured) as individual-level variables, these identities 
only take on full meaning in combination and social context, and so we 
consider social strata and identities as being contextual in nature. Some 
intersectional contextual identity-positions will experience advantages 
or disadvantages that are entirely unique to their particular intersec-
tional location (e.g., a type of discrimination targeted specifically at 
Black women). In other cases, occupying a particular intersectional 
position will increase or decrease the chances of advantageous (or 
disadvantageous) exposures, opportunities, or outcomes. 

Both of these situations differ in important ways from the concept of 
interaction effects in regression analysis. In regression models, an inter-
action effect captures the extent to which two (or more) unique social 
exposures combine to create patterns of inequality in an outcome that 
would not be adequately described using additive effects alone (i.e., 
main effects). Some scholars distinguish between “interaction” (the joint 
casual contributions of multiple factors) and “effect measure modifica-
tion” (where the association between possible cause X and outcome Y 
will differ across levels of another variable M) (Vanderweele, 2009). For 
simplicity, we henceforth use the term “interaction” to refer to both. 

Translating theory into methods, jointly considering the “double 
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jeopardy” of two marginalized positionalities (Black and woman, for 
instance) would imply use of additive main effects to describe in-
equalities. However, this additive treatment would not capture what 
King called the multiplicative “multiple jeopardy” of being both Black 
and a woman (King, 1988). For instance, assessing risk of a health 
outcome additively based on race and gender (e.g., “Black” plus 
“woman” additive main effects) may not be enough to describe the 
prevalence of a particular health outcome among those who are Black 
and women, necessitating an additional multiplicative interaction term 
(Black × woman). 

Put simply, intersectionality is a framework that enables us to 
theorize about, and critique, social experiences (exposures) at particular 
intersections and the systems of oppression that create those experi-
ences, while regression analyses that include interactions capture the 
effects of these experiences on particular outcomes. Thus, the effect of 
exposures may or may not result in statistically significant interaction 
effects. Failure to find statistically significant interaction effects says 
nothing about the validity of intersectionality—it neither proves nor 
disproves the existence of intersectional experiences. In this sense, 
intersectionality may be better thought of as a framework for analysis (e. 
g., how we structure our questions), rather than a testable theory. 

1.2. Theory in intersectional analysis 

Our purpose is to provide a tutorial for researchers interested in 
understanding and applying intersectional MAIHDA. We will therefore 
focus on practical methodological issues. However, it is also imperative 
to engage with theory when using the approach. MAIHDA is a 
theoretically-oriented and theoretically-driven descriptive approach. 
While future researchers may investigate extensions for MAIHDA, at 
present it has not been developed or applied for “analytic intersection-
ality” research, investigating mediation in the production of health in-
equalities (Bauer & Scheim, 2019). As a related aside, we will henceforth 
use both the terms inequality (differences in outcomes between pop-
ulations) and inequity (differences that are unnecessary or avoidable) 
throughout this tutorial; We typically theorize differences as inequities, 
but sometimes refer to inequalities when making more general state-
ments of difference, or to mirror published findings in the literature. 

What does it mean for MAIHDA to be a theoretically-oriented and 
driven descriptive approach? Stated most generally, it is essential to 
remain clear about what is theorized to drive observed inequities. For 
instance, in social epidemiology there are numerous theories of popu-
lation health inequality that speak to the multiplicative nature of dis-
advantages originating in social determinants, such as fundamental 
cause theory (Link and Phelan 1995) and ecosocial theory (Krieger, 
2011). Researchers should employ theories similar to these, as appro-
priate to their disciplines, in conjunction with intersectionality to aid in 
theorizing and interpreting results from MAIHDA. A researcher who 
provides estimates of inequalities between strata but leaves open the 
interpretation of what caused them may enable (or invite) a misunder-
standing of inequalities as originating in genetic (essentialist) views of 
race/gender and could unintentionally embolden biological determinist 
arguments. This is anathema to intersectional and social epidemiologic 
scholarship in general, both of which have long battled such claims. 

While future adaptations and applications of the general MAIHDA 
approach in other, very different fields with different substantive 
questions may not require such a focus (e.g., if strata were defined not by 
race/class/gender but by wholly different variables (Evans, 2024; 
Rodriguez-Lopez et al., 2023)), we caution scholars working in social 
epidemiology and related disciplines to strive to situate their in-
terpretations and (often implicit) causal theoretical frameworks explic-
itly within theories of social determinants and an understanding of 
power structures. Stated differently, health inequalities are produced by 
complex, multifaceted, overlapping and interacting social processes of 
embodiment, including material deprivation, psychosocial pathways, 
and adverse exposures (Krieger, 2011). Explicit attribution of health 

inequities to unequal power structures and systems of oppression will 
also help to overcome another issue with some descriptive intersectional 
scholarship—namely, that atheoretical exercises risk flattening inter-
sectionality from a rich theoretical framework to an analytic approach 
which is “merely” about the estimation of interaction effects (Evans, 
2019b; May, 2015). 

2. Illustrative example 

2.1. Simulated data 

We demonstrate how to conduct an intersectional MAIHDA (I- 
MAIHDA) analysis of simulated continuous HbA1c data (linear regression 
MAIHDAs) and binary diabetic status (logistic regression MAIHDA) using 
maximum likelihood estimation (MLE) in Stata and R. In order to 
construct a realistic example for this tutorial, we created a fictitious, 
simulated practice data set (available in the online Supplementary ma-
terials). The simulated data structure is based loosely on Wave 2 of the 
National Epidemiologic Survey on Alcohol and Related Conditions 
(NESARC) (Grant and Kaplan 2005), to attain an illustrative example with 
realistic-looking sample sizes, sociodemographic survey items, and sample 
distribution across intersectional strata (see Table 1). The original 
NESARC was a longitudinal study begun in 2001 by the U.S. National 
Institute on Alcohol Abuse and Alcoholism, and it was designed to survey 
a representative sample of the U.S. non-incarcerated civilian population, 
including citizens and non-citizens, aged 18 years and older who were 
currently residing in the U.S. Wave 2 data was collected between 2004 and 
2005. Following the construction of strata used by Evans et al. (2018), we 
defined 384 possible intersectional strata (=2 sex/gender categories × 3 
race/ethnicity categories × 4 education categories × 4 income categories 
× 4 age categories) with a total of N = 33,000 individuals. For realism, we 

Table 1 
Descriptive statistics of individual observations (N = 33,000) and intersectional 
strata (n = 384) in the simulated data.  

Sample Statistics N % 
Total 33,000 100 
Sex 

Male 13,931 42.2 
Female 19,069 57.8 

Race/Ethnicity 
White Non-Hispanic 20,075 60.8 
Black Non-Hispanic 6572 19.9 
Hispanic/Latino 6353 19.3 

Education 
Less than high school 5272 16.0 
Completed high school 9097 27.6 
Some college no degree 7080 21.5 
College degree or more 11,551 35.0 

Income (% Poverty Threshold) 
Low income (<100%) 7712 23.4 
Low-middle income 
(100%–199%) 

9198 27.9 

High-middle income 
(200%–399%) 

9605 29.1 

High income (400% or 
more) 

6485 19.7 

Age 
18–29 years 4657 14.1 
30–44 years 10,048 30.5 
45–59 years 9213 27.9 
60+ years 9082 27.5 

HbA1c N Mean Median SD Min Max 
Individual values 33,000 40.2 39.8 9.9 10.3 101.2 
Observed stratum means 384 40.8 40.3 3.9 23.5 53.8 
Predicted stratum means 384 40.8 40.5 2.7 34.2 48.1 

Notes: The mean of the 33,000 individual observations of HbA1c is the “sample 
mean.” The mean of the 384 observed stratum means is the “grand mean.” The 
mean of the 384 predicted stratum means from the MAIHDA model is the 
“precision-weighted grand mean.” 
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simulated some strata to be very small (e.g., N < 10) while others are 
substantially larger. 

The simulated outcome, HbA1c, is a recreation of the biomarker 
commonly used in public health and medical research as an indicator of 
blood glucose control and diabetes (Gillery, 2013). HbA1c is measured 
continuously in mmol/mol and a value is provided for each simulated 
individual. Simulated values were generated to produce realistic fea-
tures of empirical data, such as meaningful between-stratum inequities, 
large within-stratum-between-individual variance, and realistic distri-
butions of individuals across the strata and the variables use to construct 
them (Holman et al., 2020). HbA1c was dichotomized to create the 
variable diabetic (1 = yes, 0 = no), with values ≥ 48 mmol/mol indic-
ative of a ‘diabetic range’ (Kaiafa et al., 2021). Throughout this tutorial 
we use both the term ‘diabetic’ (identity-first language) and ‘individuals 
with diabetes’ (person-first language), due to mixed views within the 
diabetes community and disability justice community on whether one is 
preferred over the other. 

Additional code resources, such as example syntax in Stata using 
Bayesian MCMC estimation (with the bayes prefix), and for fitting 
models in MLwiN from Stata is also provided at: https://doi.org/10 
.17605/OSF.IO/DTVC3. As updates and code expansions to other pro-
grams become available, they will also be posted. While our focus in this 
tutorial is on intersectional MAIHDA, the methods and code illustrated 
here are equally applicable to the more expansive multicategorical 
MAIHDA. 

2.2. Assessing variables and constructing strata for intersectional 
MAIHDA 

2.2.1. Assessment of variables 
The simulated data file resembles what might exist in an empirical 

data set. Each row corresponds to one respondent, and each column is a 
separate variable, with one for each of the five studied social identities/ 
positions. As in the original analysis, ‘sex’ is used in place of ‘gender’ 

because this was how the data was recorded in the survey. ‘Race’ here 
refers to self-identified race and ethnicity, but the variable name was 
simplified; for brevity, we refer to racialized categories as white, Black, 
and Hispanic. The five variables are coded as follows:  

⁃ Sex: 1 = Male; 2 = Female.  
⁃ Race: 1 = white non-Hispanic; 2 = Black non-Hispanic; 3 = Hispanic 

or Latinx.  
⁃ Education: 1 = Less than high school; 2 = Completed high school or 

equivalent; 3 = Some college but no degree; 4 = College degree or 
more.  

⁃ Income: 1 = Low income (below 100% of the Federal Poverty Level, 
FPL, in 2000); 2 = Low-middle income (100%–199% FPL), 3 = High- 
middle income (200%–399% FPL); 4 = High income (400% or more 
of the FPL).  

⁃ Age: 1 = age 18–29 years; 2 = age 30–44 years; 3 = age 45–59 years; 
4 = age 60+ years. 

For additional details on how these variables were coded, see Evans 
et al. (2018). 

2.2.2. Constructing the strata ID 
Selecting which axes of marginalization or inequality to examine in 

an intersectional analysis (e.g., age, gender, race/ethnicity, income, 
sexual orientation, disability) should be based on both theoretical and 
practical considerations. Theoretical considerations include: What are 
the major axes of marginalization and/or inequality experienced by this 
population, and in particular, what may be relevant to the outcome of in-
terest? What has prior research shown to be important? Practical consid-
erations include: What axes of marginalization/inequality were actually 
measured in this data set? What is the quality of those measures? How were 
responses coded? How large is the sample and how is the sample distributed 

across possible strata definitions? 
There are many choices to be made when preparing the variables. 

For instance, income, education, and age may be provided either 
continuously or with far more categorical levels than presented here. 
Decisions about what cutoff values to use or which levels to (re)combine 
should be supported by theory. However, there is a balance between the 
ideal set up and practical modeling and data limitations. For instance, 
using eighteen categories for income would create many small strata 
after intersecting income with race/ethnicity. While MAIHDA can 
manage small strata better than some other approaches, it does not 
entirely avoid the small N problem. In this case, including eighteen in-
come levels would be more granular than is desirable (or needed). As 
discussed by Evans et al. (2018), the categorizations defined above 
balance issues of substantive interest with practical data limitations to 
arrive at a reasonable sample size for most strata. 

After provisionally selecting the axes and categories to be included, it 
is important to consider how well the data available is distributed across all 
of the possible intersectional strata. For example, unless a survey inten-
tionally oversamples from some minoritized populations (e.g., trans-
gender or non-binary individuals), there may be too few respondents in 
these categories and this situation will render many strata small or 
empty after combining with other axes, such as race/ethnicity or class. 
While it is always desirous to include minoritized populations, data 
limitations may restrict the axes or categories that are able to be 
analyzed. When using large population databases with millions of re-
spondents, as in Persmark et al.’s analysis of the Swedish registries 
(Persmark, Wemrell, Zettermark, et al., 2019), small strata may be less 
frequent but the available measures of minoritized identities may be 
more limited. These factors should be considered in the selection of data 
to work with and in the final specification of strata definitions. 

One useful way to determine whether the sample size is adequate in 
most intersections is to examine the number of respondents in each 
stratum using frequency tabulations. While important to consider, these 
tabulations can also be difficult to assess overall when many strata are 
evaluated (e.g., 384 strata). In that case, it can be helpful to determine: 
What percent of the strata have X or more respondents? Where X = 10, 20, 
30, 50 and 100+ respondents (see tutorial code). Table 2 contains these 
summary statistics for the instructional dataset. In this case, 81% of the 
strata have twenty or more respondents and 70% have thirty or more, 
indicating that most strata seem to have sufficient sample size to obtain 
reliable estimates. Recent simulation studies have investigated linear 
and logistic MAIHDA under select parameter conditions with sample 
size as low as N = 10.4 observations on average per stratum and re-
ported robust estimate accuracy (Mahendran et al., 2022a; Mahendran 
et al., 2022b), suggesting MAIHDA may enable researchers to disag-
gregate groups more than alternative methods. However, the general-
izability of this finding has yet to be thoroughly investigated. If desired, 
statistical power calculations can be done (using simulations, such as 
those conducted by (Bell et al., 2019; Mahendran et al., 2022a, 
Mahendran et al., 2022b) to assist in making choices about strata defi-
nitions, though ultimately options may be limited in secondary data 
(Snijders, 2005). 

Also, worth considering is the extent to which some strata may be 
systematically smaller than others. For instance, do all of the “very 
small” strata belong to a single minoritized racial/ethnic or gender 

Table 2 
Sample Size of Simulated Intersectional Social Strata, defined by respondent sex, 
race/ethnicity, education, income, and age (n = 384).  

Sample Size Per Stratum Number of Strata % of Strata 
100 or More 107 27.9 
50 or More 202 52.6 
30 or More 267 69.5 
20 or More 311 81.0 
10 or More 347 90.4 
Less than 10 37 9.6  
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classification? If this is the case, then the model will still provide esti-
mates for these strata but due to shrinkage of estimates for small strata 
(which we discuss later), these estimates will tend to be more conser-
vative (i.e., closer to the average predicted by any fixed effects in the 
model) than estimates for other strata. This may or may not affect the 
decision to retain this classification in the analysis, but awareness of this 
issue is important. 

Conducting an intersectional MAIHDA analysis requires us to 
construct a stratum identifier or ID variable. This variable takes a unique 
value for each stratum. The data are then viewed as having a two-level 
structure whereby respondents (level 1) are said to be nested within 
social strata (level 2). Treating intersectional strata as the second level 
means that we are conceptualizing strata as “contexts,” or literal social 
positions within a landscape of intersecting hierarchies (as opposed to 
properties of individuals operating independently), and that we are 
analyzing them as such in a multilevel framework (Evans, Leckie, & 
Merlo, 2020). 

One way to construct the stratum ID would be to assign values 
ranging from 1 to J, where J = N, the total number of strata to analyze 
(N = 384, in this case). However, it may be prudent to attach a mean-
ingful value label to each ID value to facilitate later interpretation and 
plotting of predicted stratum effects. For example, we might attach the 
value label “Female, Hispanic, Some college, High income, 30 to 44” for 
those in that stratum. A disadvantage of this is that the value labels are 
rather long. Alternatively, we might construct a multi-digit ID code, 
where each digit position corresponds to one of the axes of marginali-
zation being analyzed. This is the approach we have chosen to illustrate. 
In the current example, where five axes are analyzed, we create a five- 
digit ID code. We opted to assign the digit positions as follows: posi-
tion 1 = sex, position 2 = race/ethnicity, position 3 = education, posi-
tion 4 = income, and position 5 = age. For the example stratum 
mentioned above (“Female, Hispanic, Some college, High income, 
30–44 years”), this would result in the five-digit ID code: 23342. 

2.3. Software and estimation approaches 

As noted above, annotated Stata and R code and a simulated 
instructional data set are provided in the online Supplementary mate-
rials. In Stata, standard ‘mixed’ (for linear) and ‘melogit’ (for logistic) 
commands are used to fit all models using maximum likelihood esti-
mation (MLE). In R we use the lme4 package (functions lmer and glmer) 
for MLE. There are important pros and cons of using MLE versus 
Bayesian MCMC approaches for intersectional MAIHDA. MLE, a fre-
quentist approach, is undoubtably more common and therefore more 
familiar to most researchers. MLE also tends to be faster and to require 
fewer pre- and post-estimation steps in specifying the model, declaring 
estimation options, and preparing the results. In our experience with 
empirical data, MLE also tends to give similar results to MCMC for 
typical intersectional MAIHDA analyses. 

However, MCMC offers an important advantage for intersectional 
MAIHDA. Namely, using MLE it is not so easy to obtain 95% Confidence 
Intervals (CI) for many of the key predicted quantities of interest, such as 
for the interaction effect (on the predicted probability scale) in the lo-
gistic model and for the total predicted values in each stratum (in both 
linear and logistic models, which requires estimating a 95% CI around 
the sum of fixed and random effects). To obtain approximate 95% CI in 
our MLE demonstration, we have to make certain assumptions, such as 
there being no sampling covariability between the fixed and random 
effects, and apply a simulation-based approach. MCMC methods, on the 
other hand, estimate 95% Credible Intervals for all of the statistics 
without such assumptions. Therefore, while we illustrate how to obtain 
approximate 95% CIs using MLE, we encourage researchers to also 
explore the alternative demonstrations we provide that estimate 
MAIHDA models using MCMC. 

We present additional syntax available for fitting models with MCMC 
in Stata (using the bayes prefix) and in MLwiN (Browne, 2023; Charlton 

et al., 2024; Rasbash et al., 2023) (from Stata, using the runmlwin 
command (Leckie & Charlton, 2013)), from: https://doi.org/10.17605/ 
OSF.IO/DTVC3. In the future, additional resources will be made avail-
able there as well. 

2.4. Analysis – linear MAIHDA models 

2.4.1. Sample means, grand means, and precision weighted grand means 
Before delving into the specifics of model specification, it can be 

helpful to clarify conceptually the differences between sample means, 
grand means, and precision weighted grand means, as these are funda-
mental concepts in multilevel modeling (Raudenbush & Bryk, 2002). 

Consider the simulated data structure: we have N = 33,000 indi-
vidual observations (level 1) nested in 384 strata (level 2). Each simu-
lated individual has a continuous HbA1c score. The sample distribution 
of these scores is shown in Fig. 1A. The sample mean is simply the mean 
value of these 33,000 HbA1c scores, which in this case is 40.2 mmol/ 
mol. If we fit a single-level regression with no explanatory variables (i.e., 
a “null” or empty model with only an intercept), the intercept would 
estimate this sample mean. Obviously, this would be a complicated way 
to calculate this statistic, but we note it because it illustrates that this 
mean makes no reference to stratum groupings or stratum sizes. 

If we now calculate the mean HbA1c value in each stratum and plot 
the distribution of these observed sample means, we obtain the distri-
bution in Fig. 1B. The average of these averages is the grand mean, which 
in this case is 40.8 mmol/mol. As can be seen in this distribution, some 
strata have very small or large mean values (Min = 23.5 mmol/mol; 
Max = 53.8 mmol/mol). This could be due to actual underlying dis-
parities in average scores between strata. However, it is likely that some 
of these extreme values may be reflecting the small sample sizes 
observed in some strata, and thus these average values will in general be 
unreliable estimates of their population-statistic counterparts. This in 
turn will affect the reliability of the grand mean. 

In a multilevel linear regression with no explanatory variables the 
intercept is a precision weighted grand mean (PWGM). Similar to the grand 
mean, the PWGM is an “average of averages,” however, it is now a 
weighted average of the observed stratum means where the weights are 
the precision (inverse variance) of the observed stratum means. The 
predicted stratum means from this model are then reliability adjusted 
versions of the observed stratum means. Specifically, the observed 
stratum means are adjusted towards the PWGM as function of their 
reliability. This produces a “shrunken” distribution (Fig. 1C), whereby 
the values for smaller strata are shrunk more than the values for larger 
strata, reflecting their lower reliability. In this model, as discussed 
elsewhere (Evans et al., 2020), values of the PWGM will lie between the 
sample mean and grand mean. In this simulated case, the PWGM closely 
resembles the grand mean, with a value of 40.8 mmol/mol. However, as 
we see from this distribution, the range of the min/max predicted values 
are significantly drawn inward after adjustment for strata sample size. 

Further descriptive statistics for all three distributions are provided 
in Table 1. We proceed now to a more formal introduction to the linear 
MAIHDA models. 

2.4.2. Linear models - the simple intersectional model (Model 1A) 
Let yij denote the HbA1c for individual i (i = 1,…,nj) in stratum j (j =

1, .., J). The simplest intersectional MAIHDA model is the null model. 
The model, expressed using level-specific equations, can be written as: 

Level 1: yij = β0j + eij. 
Level 2: β0j = β0 + uj. 

or equally as a combined equation, where we have substituted the level 
2 equation into the level 1 equation, as: 
yij = β0 + uj + eij 
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where uj ∼ N(0, σ2u) and eij ∼ N(0,σ2e ). 
In this model, β0j is the mean value specific to stratum j, and is 

decomposed into an overall mean β0 (the PWGM) and a stratum random 
effect uj. The latter measures how different the mean in stratum j is from 
the overall mean. The uj are assumed to be normally distributed with 
mean of 0 and variance σ2u . The residual eij measures the deviation of the 
observed outcome for individual i in stratum j from their stratum mean 
β0j and is also assumed normally distributed with mean 0 and variance 
σ2e . 

As discussed above, the observed sample means for small strata will 
be less reliable estimates of their population counterparts than is the 
case for large strata. Let ̄y.j denote the observed sample mean in stratum 
j. The predicted PWGM across all strata β̂0 is a precision weighted 
average of all 384 values of ȳ.j: 

β̂0 =

∑J

j=1

wjȳ.j

∑J

j=1

wj

,wj =
1

σ̂
2

u +
σ̂2

e

nj  

where wj is the precision (inverse sampling variance) of ȳ.j. 
The predicted mean in each stratum ̃β0j is then a reliability weighted 

average of the observed sample mean and the PWGM: 

β̃0j = R̂jȳ.j +
(
1 − R̂j

)
β̂0, R̂j =

σ̂
2

u

σ̂
2

u +
σ̂2

e

nj  

where R̂j is the reliability of ȳ.j as an estimator of β0j. When nj (the 
sample size in stratum j) is large, R̂j approaches 1 and β̃0j tends to the 
observed stratum mean ȳ.j. However, when nj is small, R̂j tends to the 

VPC (defined below), and β̃0j tends towards a VPC weighted average of 
ȳ.j and β̂0 with the result that ̃β0j lies much closer to the PWGM β̂0. Thus, 
the distribution of β̃0j will tend to be shrunk inwards relative to the 
distribution of ‾y.j towards the PWGM, as shown in Fig. 1C. This means 
that intersectional MAIDHA will tend to produce more reliable estimates 
of stratum means when stratum sizes are small than single-level 
regression approaches that enter a separate fixed effect dummy vari-
able for each stratum (Bell et al., 2019; Evans 2019a; Evans et al., 2018; 
2020; Mahendran et al., 2022a). 

2.4.2.1. Between-stratum variance and the Variance Partition Coefficient. 
The null model is an important one in intersectional MAIHDA because of 
the key statistics it provides summarizing overall inequity in the sample. 
In addition to generating stratum-specific predictions, it summarizes the 
degree of outcome heterogeneity within and between strata. The 
stratum-level variance σ2u is a measure that captures the between- 
stratum inequity, unadjusted for any other factor. The actual practical 
significance of this value depends partially on how much overall vari-
ation there is in the outcome in the sample across individuals. The 
Variance Partition Coefficient (VPC) provides a measure that takes total 
individual variation into account. Specifically, the VPC is defined as the 
proportion of total individual variance in yij (given here by σ2u + σ2e ) that 
lies between-strata. 

VPC=
σ2

u

σ2
u + σ2

e 

The statistic ranges from 0 to 1 and higher values indicate greater 
practical significance. The VPC is often re-expressed as a percentage by 
multiplying the initial value by 100. The VPC expresses the contextual 
influence of the strata for understanding individual inequalities. It also 
quantifies the intra-stratum correlation or clustering of individual 
HbA1c within the strata. That is, the correlation in the HbA1c value 
between two individuals randomly taken from the same stratum. A high 
VPC would indicate the HbA1c values of individuals from the same 
stratum are very similar and, simultaneously, very different from the 
HbA1c of the individuals in other strata. Hypothetically, if the VPC were 
100%, then knowing the stratum HbA1c average would tell us the 
HbA1c of every individual in the stratum. Conversely, if the VPC were 
0%, all strata would appear similar to one another and so stratum 
membership would tell us nothing about the HbA1c of each individual. 
That is, there is no General Contextual Effect (GCE) of the studied 
intersectional strata (Merlo, Wagner, Austin, Subramanian, & Leckie, 
2018). 

2.4.3. Linear models – the additive main effects model (Model 1B) 
Sometimes researchers may be interested in estimating interaction 

effects for strata, or in quantifying the extent to which observed in-
equities between strata are described by additive versus interaction ef-
fects. For this, we fit an additive main effects model (Model 1B) where 
we enter the set of categorical variables that define the strata as fixed 
level 2 explanatory variables: 
yij = β0 + β1x1j + ⋯ + βpxpj + uj + eij  

uj ∼ N
(
0, σ2

u

)

eij ∼ N
(
0, σ2

e

)

where x1j,…, xpj denote the p dummy variables and β1,…, βp are their 
associated regression coefficients needed to specify the categorical 
variables (in this case, sex, race/ethnicity, education, income and age). 
In our example, this means entering the five explanatory variables as 12 
dummy variables at level 2, for a total of 13 beta regression coefficients 
including the intercept. Note that, contrary to how these variables may 
typically be treated in single-level models, here they operate as level 2 Fig. 1. Visualizing distributions – sample mean, grand mean, and precision 

weighted grand mean. 
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variables (and thus are indexed by j, not ij). All other terms are defined 
as before. The summation β0 + β1x1j + ⋯ + βpxpj gives the predicted 
HbA1c score for stratum j based on the additive main effects alone. 

Importantly, this model includes no fixed interaction parameters (e. 
g., we include dummy variables at level 2 for ‘woman’ and ‘Black’ but 
not for ‘woman × Black’). Instead, the entirety of the interaction effect 
for stratum j is captured by the stratum random effect uj. This term 
measures the deviation of the stratum means from the values implied by 
the additive main effects alone. As in Model 1A, the uj are assumed 
normally distributed with mean 0 and between-stratum variance σ2u . 
However, the latter now measures the variance that remains between 
strata after adjustment for the additive main effects. The residual eij has 
the same interpretation as in Model 1A: it is the difference between the 
observed HbA1c value for individual i in stratum j and what is predicted 
for stratum j. The residual eij continues to be assumed normally 
distributed with mean 0 and within-stratum-between-individual vari-
ance σ2e . 

2.4.3.1. An improved way to quantify interactions. The MAIHDA 
approach has a number of important advantages over conventional 
single-level regression that include regular interaction effects. The 
single-level model would take the general form: 
yi = β0 + β1x1i + ⋯ + βpxpi + γ1x1ix2i + ei  

ei ∼ N
(
0, σ2

e

)

where x1ix2i is a two-way interaction between two of the existing 
dummy variables in the model. Further two- or higher-way interactions 
may be added as necessary to fully specify all category combinations. 
Notably, most researchers pay attention only to the predicted value of yi 
and the estimated regression coefficients, neglecting consideration of 
variance in favor of comparing averages. 

MAIHDA’s advantages over this single-level model can be broadly 
categorized into theoretical and methodological/practical consider-
ations. From a theoretical perspective, the first advantage comes from 
differences in model setups: “interaction effects” are predicted for all 
social strata in MAIHDA, whereas they are only estimated for particular 
pre-specified combinations of sociodemographic characteristics in the 
single-level approach. 

Second, it is often the multiply privileged strata (such as high-income 
white men) that are treated as the reference category in analyses in order 
to investigate interactions for multiply marginalized strata (such as low- 
income Black women). This has been critiqued as potentially reinforcing 
the social primacy of multiply advantaged populations by constantly 
treating them as the default (Choo & Ferree, 2010; Evans et al., 2018). 
While MAIHDA still specifies references among the fixed parameters, it 
matters less which categories are used as reference in the fixed part of 
the model because they are treated collectively (by calculating β0 +
β1x1j + ⋯+ βpxpj) as additive reference levels for all strata. 

Third, the single-level approach encourages consideration of indi-
vidual regression coefficients β1,…, βp rather than the collective addi-
tive effect (β0 + β1x1j + ⋯+ βpxpj). In practice, this seems to result in 
reversion to single-axis thinking about inequity (e.g., asking whether the 
effect of race(ism) is more important than income inequality) when 
interpreting model results, which is counter to the stated purpose of 
intersectional comparisons. 

There are also important methodological and practical advantages to 
MAIHDA. First, as additional categories of inequality, marginalization, 
or identity are added to intersectional analyses, the number of regres-
sion coefficients in single-level models grows geometrically, while the 
number in MAIHDA models grows linearly. For instance, in this simu-
lated example, we could fit a single-level model by including all of the 
additive main effects and all first-, second-, third-, and higher-order 
interactions between them, for a total of 384 regression coefficients. 

Meanwhile, MAIHDA only includes 13 regression coefficients in β0 +
β1x1j + ⋯ + βpxpj and a random effect variance σ2u to summarize the 
distribution of 384 stratum interaction effects. This makes MAIHDA 
models more parsimonious, and therefore more scalable for handling 
high-dimensional interactions. 

Second, the relative parsimony of MAIHDA means that it is easier to 
interpret results. There are far fewer regression coefficients, and the 
interpretations of each of these is more intuitive. The additional vari-
ance parameter at level 2 in MAIHDA is also a useful statistic for 
quantifying between-stratum inequities, and there is no comparative 
statistic obtained in the single-level model. 

Finally, as discussed previously, MAIHDA’s precision weighting fa-
cilitates more reliable prediction for strata with smaller sample sizes. 
Knowing this, a researcher using a data set with a given sample size may 
have more leeway to include additional categories (e.g., sexuality, 
disability) in their analysis with reduced (though not entirely elimi-
nated) concern for small sample problems. While multiple testing 
problems are always of potential concern, with MAIHDA these concerns 
are partially overcome, compared with single-level approaches, thanks 
to the shrinkage of the stratum random effects in the model (Bell et al., 
2019). 

2.4.3.2. The between-stratum variance attributable to interaction effects. 
Because of the shifted definition of the between-stratum variance σ2u in 
Model 1B, the interpretation of the VPC in this model is also slightly 
different. The VPC now represents the proportion of the total variance 
that remains (after adjustment for additive effects) that is attributable to 
interaction effects. By ’attributable to interaction effects’ we mean that 
some portion of the between-stratum variance (or inequalities) are not 
adequately described with consisent, additive patterns. Generally, we 
will expect a considerable percent of the between-stratum variance 
observed in Model 1A to be explained by inclusion of additive effects, 
and thus the between-stratum variance and VPC will both be consider-
ably reduced in Model 1B. 

To quantify the extent to which the between-stratum variance re-
duces between Models 1A and 1B, we can calculate the Proportional 
Change in Variance (PCV): 

PCV =
σ2

u(Model A) − σ2
u(Model B)

σ2
u(Model A)

The PCV is interpreted as the proportion of the total between-stratum 
variance (in the simple intersectional model) that is explained by 
adjustment for the additive main effects (in the intersectional main ef-
fect and interactions model). The complement of this value 1 − PCV 
quantifies the between-stratum variance that is unexplained by adjust-
ment for additive effects and therefore attributable to interaction effects. 
The PCV is often multiplied by 100 to express it as a percentage. When 
the PCV value is meaningfully less than 100%, this indicates interaction 
effects are necessary to accurately characterize observed inequities be-
tween strata. 

2.5. Analysis – logistic MAIHDA models 

2.5.1. Predicted probabilities 
Fitting logistic regression versions of MAIHDA models is similar to 

the linear case, but with some important differences. In this section, we 
focus on those differences. To begin with, the outcome yij is now a binary 
measure (diabetic: 1 = yes, 0 = no) constructed by dichotomizing in-
dividuals’ continuous HbA1c scores, where ≥ 48 mmol/mol is indica-
tive of a ‘diabetic range.’ Thus, rather than modelling the mean value of 
HbA1c in each stratum, we estimate the probability of being in the 
diabetic range in each stratum. For simplicity, we will often say the 
probability of being diabetic (or the probability of having diabetes). 

The simple null MAIDHA model (Model 2A) for this binary outcome 
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is written as the following multilevel logistic regression model: 
yij ∼ Bernoulli

(
πj

)

logit
(
πj

)
≡ log

(
πj

1 − πj

)
= β0 + uj  

uj ∼ N
(
0, σ2

u

)

where yij ∼ Bernoulli(πj) states that yij is modelled as following the 
Bernoulli distribution with probability πj, logit( • ) denotes the logit link 
function which maps these probabilities onto the logit scale, and so 
logit(πj) denote the logit of the probability of diabetes, log

(
πj

1−πj

)
denotes 

the log-odds of diabetes, and πj
1−πj denotes the odds of diabetes. Note that 

on the right hand side of the equation there is no individual-level re-
sidual. This is because the model equation is expressed in terms of the 
expected outcome πj rather than the observed outcome yij. 

The additive main effects version of the logistic MAIHDA model is 
the same as the null version, except that we now include the additive 
main effects in the fixed part of the model, just as we did for the linear 
Model 1B. Thus, Model 2B is: 
yij ∼ Bernoulli

(
πj

)

logit
(
πj

)
≡ log

(
πj

1 − πj

)
= β0 + β1x1j +⋯+ βpxpj + uj  

uj ∼ N
(
0, σ2

u

)

Importantly, while in linear models the additive main effects and 
interaction effects are estimated directly on the outcome scale, in logistic 
models they are not. The logit link function means that these terms are 
estimated on the logit or log-odds scale, while it is the probability or risk 
scale which is typically preferred for interpretability reasons, particu-
larly by clinicians (Grimes & Schulz, 2008; Sackett, Deeks, & Altman, 
1996). This makes it more complex to interpret the results without first 
converting these back to the probability scale. For instance, we can no 
longer directly interpret uj as the change in mean outcomes (i.e., shift in 
probabilities) attributable to interaction effects. 

While it is interesting to examine the odds ratios (ORs, exponentiated 
regression coefficients) associated with the dummy variables, we will 
generally be more interested in our intersectional analysis in calculating 
three things: (1) the total predicted probability in each stratum, calculated 
by πj = logit−1(β0 +β1x1j +⋯+βpxpj +uj) where logit−1( • ) denotes the 
inverse of the logit function. (2) What the predicted probability would 
be if we only considered additive main effects, calculated by πAj =

logit−1(β0 + β1x1j + ⋯ + βpxpj). And (3), the difference in the predicted 
probability between the total probability and that based only on additive 
main effects πB

j = πj − πA
j . The latter is interpreted as that part of the 

predicted probability attributable to interaction effects. 

2.5.2. The VPC, AUC and PCV in logistic models 
In logistic regression models, we do not estimate the individual-level 

variance term σ2e that is needed to calculate the VPC. Various methods 
have been proposed for calculating the VPC in such models (Goldstein, 
Browne, & Rasbash, 2002), the most widely applied of which is the 
latent response approach. This involves setting σ2e equal to the variance 
of the standard logistic distribution π2

3 ≈ 3.29 where π here denotes the 
mathematical constant 3.142. The equation for VPC is then the same as 
before, except with σ2e = 3.29. 

The interpretation of the VPC is substantively similar as in the case of 
the linear Model 1A. However, in logistic regression we can also use the 
predicted probability to calculate area under the receiver operating 
characteristic curve (AUC) statistic. 

The AUC is another measure of discriminatory accuracy, and as such 
it measures the accuracy of knowing the intersectional stratum of an 
individual for discriminating individuals with diabetes from individuals 
without diabetes. Formally, the AUC can be defined as the probability 
that a randomly selected individual with diabetes will have a higher 
predicted probability than a randomly selected individual without dia-
betes. The AUC takes a value between 0.5 and 1.0 (or 50% and 100%) 
where 0.5 corresponds to the intersectional strata having no discrimi-
natory accuracy and 1.0 corresponds to perfect discriminatory accuracy. 
In our study, the predicted probability is only dependent on the inter-
sectional stratum and so the AUC is simply the probability that a 
randomly selected individual with diabetes belongs to an intersectional 
stratum with a higher prevalence of diabetes than does a randomly 
selected individual without diabetes. Given this, we would not expect to 
find particularly high AUC scores, as we wouldn’t expect our model to be 
particularly good at diagnosing diabetes at an individual level. As such 
we avoid quantifying AUC values according to traditional “good/bad” 

thresholds of predictive accuracy, as this is not the intended use of this 
statistic in this analysis. In the null model, when the VPC equals 0% the 
AUC equals 50%, while when the VPC equals 100% the AUC also equals 
100% (Merlo, Wagner, & Leckie, 2019). 

The PCV is calculated in the same way for logistic models as for linear 
models, as the proportional reduction in the between-stratum variance 
(on the logit or log-odds scale) as we move from Model 2A to Model 2B. 

2.5.3. A computationally more efficient approach 
It can be computationally slow to estimate the above logistic 

regression models when data are large, particularly if Bayesian MCMC 
methods are used. Given that the only explanatory variables are defined 
at the stratum level, an alternative and computationally more efficient 
approach is to collapse the data down to one record per stratum and to fit 
equivalent models to binomial counts of the number of individuals with 
diabetes in each stratum. In our application, the data would reduce from 
33,000 records, one for each individual, to 384 records, one for each 
stratum, with no loss of information. The response distribution becomes 
y+j ∼ Binomial(nj, πj) where y+j denotes the number of individuals with 
diabetes in stratum j. This approach leads to equivalent models, with 
identical parameter estimates and model predictions as we move from 
the binary to binomial case. However, the binomial version is far faster 
to estimate due to the smaller dataset size. In the MCMC versions of the 
code available online, we estimate logistic models using only the bino-
mial version of the outcome. 

3. Presenting results from intersectional MAIHDA 

3.1. Presenting and interpreting tables of results 

We have already discussed the descriptive statistics presented in 
Tables 1 and 2, and we encourage such information to be included in 
MAIHDA publications. Notably, it can be useful to provide information 
on the sample size and its distribution across individual characteristics 
(e.g., gender, race/ethnicity) as well as across the strata (e.g., how many 
and what percent of strata are of a given sample size or larger). We 
suggest including, if possible, a Supplemental Table online that lists all 
analyzed strata, their sample sizes, and key results (e.g., the observed 
and predicted stratum means and the decomposition of the later into the 
parts attributed to additive main effects vs. interactions). Also included 
in our Table 1, are descriptive statistics showing the differences between 
the sample mean, grand mean, and precision-weighted grand mean. 
Such information may not be necessary in most publications, but it is 
advisable to include standard descriptive statistics related to the 
dependent variable or other key variables. 

Including the results of models, such as those shown in Table 3, is 
essential. Here, we present the null (Models 1A and 2A) and additive 
main effects (Models 1B and 2B) results for our continuous and binary 
outcome models obtained using MLE in Stata. (Unless otherwise noted, 
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all figures and tables in the manuscript were created from Stata results, 
however the equivalent syntax is available in the provided R code.) 
Regression coefficients are presented where appropriate, and within- 
and between-stratum variances are included. We also present the VPC 
and PCV, and the AUC in logistic models. 

The intercept in the null linear Model 1A is interpreted as the 
precision-weighted grand mean (that is, overall average value) of HbA1c 
in the simulated sample. In this model, we see a VPC = 9.4%, which 
indicates a relatively large amount of clustering at the stratum-level. A 
similar result, as expected, is observed in the logistic version of the 
model (VPC = 10.7%). As a point of reference, most studies using 
multilevel models to examine individuals (level 1) nested in neighbor-
hoods, schools, or workplaces (level 2) will often see VPCs less than 5%, 
and they rarely exceed 10% (Subramanian, & James O’Malley, 2010). 
Another way to interpret this VPC is that there are considerable in-
equities in HbA1c scores across intersectional strata. It is important to 
keep in mind, however, that the VPC is a reflection of both inequity 
between strata and also individual level variance. Thus, if there is 
considerable person-to-person variation in an outcome, then even 
meaningful inequities between strata can be obscured in the VPC. It is 
therefore also important to examine the actual range of predicted values 
across strata and to present visualizations of these inequities (see below) 
when characterizing inequity. 

When describing results such as those in linear Model 1B, readers 
may benefit from a reminder that the fixed effect values presented for 
variables like gender and race/ethnicity are merely the additive—that 
is, overall—pattern predicted by the model. For instance, in these data, 
the average female stratum has an HbA1c score that is 0.52 mmol/mol 
lower than the average male stratum, holding all other variables 

constant. Black and Hispanic/Latino strata typically have higher HbA1c 
scores by 4.45 mmol/mol and 1.04 mmol/mol, respectively. However, 
these additive patterns can obscure key results that are seen best when 
examining the intersections (total predicted value for each stratum and 
how this decomposes into that part due to additive main effects and that 
part due to interactions). 

There are many ways to inspect patterns of results that are inclusive 
of interaction effects. One simple method is to generate lists of the strata 
with the highest and lowest predicted values (as in Table 4). In these 
results, for instance, it is generally the case that women have lower 
probabilities of HbA1c scores in the diabetic range, however the stratum 
with the highest predicted percentage with diabetes (stratum 22124, 
40.5% diabetic) is Black women with less than high school education, 
low-middle income, and age 60+ years. Another method is to plot the 
final predicted values for all strata, perhaps organized by low-to-high 
rank or a qualitative grouping of interest (we address results visualiza-
tion in the following sections). 

As expected, the VPC in both of the additive main effects models has 
decreased from the null model values, from 9.4% to 0.9% in the linear 
case and from 10.7% to 0.9% in the logistic case. These non-zero values 
indicate that some stratum inequity is left unexplained by additive main 
effects. A different way to measure this is the PCV. The PCV in both cases 
is >90%, indicating that this percent of the total variance between strata 
is accounted for by the contributions of additive main effects—with the 
rest attributable to interactions effects. 

Finally, we calculate the AUC for the logistic models: 0.68 and 0.67 
for Models 2A and 2B respectively. Whilst this suggests the model is not 
particularly good at predicting whether an individual is diabetic, that is 
not surprising; in a model that only contains variables relating to 

Table 3 
Parameter estimates for linear models of HbA1c (mmol/mol) and logistic models of diabetes (HbA1c ≥ 48 mmol/mol).   

Linear Model 1A Linear Model 1B Logistic Model 2A Logistic Model 2B 
Estimate [95% CI] Estimate [95% CI] OR [95% CI] OR [95% CI] 

Fixed Effects: Regression Coefficients 
Intercept 40.79 [40.44, 41.13] 38.03 [37.45, 38.62] 0.16 [0.15, 0.17] 0.09 [0.07, 0.10] 
Sex 

Male (Ref)   –    –  

Female   −0.52 [-0.83, −0.21]   0.90 [0.83, 0.98] 
Race/Ethnicity 

White Non-Hispanic (Ref)   –    –  

Black Non-Hispanic   4.45 [4.08, 4.82]   2.36 [2.15, 2.59] 
Hispanic/Latino   1.04 [0.66, 1.42]   1.19 [1.07, 1.32] 

Education 
Less than high school (Ref)   –    –  

Completed high school   −0.54 [-1.01, −0.07]   0.94 [0.83, 1.06] 
Some college no degree   −0.55 [-1.03, −0.06]   0.89 [0.79, 1.02] 
College degree or more   −1.13 [-1.61, −0.65]   0.81 [0.71, 0.92] 

Income (% Poverty Threshold) 
Low (<100%) (Ref)   –    –  

Low-middle (100%–199%)   0.18 [-0.23, 0.60]   1.09 [0.98, 1.22] 
High-middle (200%–399%)   −0.30 [-0.73, 0.12]   0.96 [0.86, 1.08] 
High (400% or more)   −1.33 [-1.82, −0.83]   0.79 [0.69, 0.91] 

Age 
18–29 years (Ref)   –    –  

30–44 years   1.10 [0.65, 1.56]   1.35 [1.18, 1.55] 
45–59 years   1.81 [1.35, 2.27]   1.55 [1.35, 1.77] 
60+ years   5.50 [5.03, 5.98]   3.06 [2.68, 3.49] 

Random Effects: Variances 
Stratum-Level 9.33 [7.82, 11.14] 0.80 [0.55, 1.15] 0.39 [0.32, 0.49] 0.03 [0.02, 0.06] 
Individual-Level 90.26 [88.89, 91.66] 90.27 [88.89, 91.66] –    

Summary Statistics 
Variance Partition Coefficient (VPC) 9.4%  0.9%  10.7%  0.9%  
Proportional Change in Variance (PCV)  91.4%    92.2%  
Area Under Receiver Operating Characteristic Curve (AUC)     0.68  0.67  

Notes: MLE estimation used for all models shown. All values are derived from simulated data and are for demonstration purposes only. 95% CIs shown in parentheses. 
VPC for logistic models are calculated using the latent response approach (σ2e is set equal to the variance of the standard logistic distribution π

2

3 ≈ 3.29 where π here 
denotes the mathematical constant 3.14159).  
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individuals’ broad identity characteristics, we would not expect to find a 
higher level of discriminatory accuracy. That the AUC statistics are 
effectively the same for Models 2A and 2B is also not surprising as 
moving from one model to the next we only added the stratum defini-
tional characteristics to the model which already had stratum random 
effects and so this will make little difference to the predicted stratum 
means and therefore the accuracy of the model to predict individual 
outcomes. 

Given the large number of estimates generated by MAIHDA, and the 
many possible analysis permutations the approach opens up, it can be 
easy to lose focus on the key research questions of interest. We recom-
mend, while planning a set of analyses, periodically reminding oneself of 
the research questions and aims. For instance, common questions might 
include ‘what is the degree of inequality across strata on an outcome?’ 

Focusing on the magnitude and distribution of predicted stratum values 
and on the VPC from the null model (with reference to the within and 
between variances), are typical ways to approach this question. Re-
searchers may wish to highlight results for particular strata of interest, 
or to make specific between-group comparisons, in which case the 
general results (such as VPC and PCV) can be provided in tables but 
emphasized less in the manuscript text. 

3.2. Visualizing results – ranked predicted values 

While tables of predictions for each stratum can be presented in the 
manuscript body or online supplements, as desired, we encourage the 
use of visualizations for these results, such as those provided in Fig. 2. 
Such figures often illustrate the range, spread, and pattern of inequities 
between strata better than the numeric values. In Fig. 2 we opted to 
present the predicted values for the 384 strata ranked from low to high, 
without attempting to label each marker with a stratum ID, as this would 
have made the figure nearly illegible. For analyses with fewer strata, 
labeling with strata ID may be desirable, and we will show such an 
example shortly. 

An alternative way to present such a figure, not show here, would be 
to organize the plots so stratum predictions are grouped by labels, such 
as man/woman, white/Black/Hispanic (Holman et al., 2020; Silva & 
Evans, 2020). This can be a useful way to detect important patterns. In 
analyses where there are many strata, however, this labeling and orga-
nization can become cumbersome. Alternatives might involve plotting 
only a subset of strata in a single figure, or reversing the axes (so 

Table 4 
Inspection of five highest and lowest ranked strata for predicted mean HbA1c (Model 1B) and percentage diabetic (model 2B).  

Predicted Mean HbA1c (Model 1B) 
Rank Stratum Sex Race Education Income Age n Predicted 

Mean HbA1c 
Approximate 
95% CI 

5 Lowest 
1 11441 Male White College plus High 18–29 111 34.7 [33.4, 36.1] 
2 21341 Female White Some college High 18–29 43 35.0 [33.4, 36.6] 
3 21331 Female White Some college Mid-high 18–29 136 35.1 [33.8, 36.4] 
4 21241 Female White High school High 18–29 15 35.4 [33.7, 37.2] 
5 21441 Female White College plus High 18–29 114 35.7 [34.3, 37.0] 
5 Highest 
380 12324 Male Black Some college Low-mid 60+ 33 47.6 [46.0, 49.3] 
381 12134 Male Black < High school Mid-high 60+ 29 47.7 [46.0, 49.3] 
382 22214 Female Black High school Low 60+ 157 47.8 [46.5, 49.0] 
383 22124 Female Black < High school Low-mid 60+ 114 48.1 [46.8, 49.5] 
384 12114 Male Black < High school Low 60+ 112 48.4 [47.0, 49.7]  
Predicted Percentage Diabetic (Model 2B) 
Rank Stratum Sex Race Education Income Age n Predicted 

% Diabetic 
Approximate 
95% CI 

5 Lowest 
1 21441 Female White College plus High 18–29 114 4.9 [3.4, 6.8] 
2 11441 Male White College plus High 18–29 111 4.9 [3.5, 6.9] 
3 21341 Female White Some college High 18–29 43 5.1 [3.6, 7.3] 
4 21241 Female White High school High 18–29 15 5.4 [3.8, 7.7] 
5 21442 Female White College plus High 30–44 445 5.6 [4.3, 7.4] 
5 Highest 
380 12224 Male Black High school Low-mid 60+ 44 37.5 [30.2, 45.4] 
381 12134 Male Black < High school Mid-high 60+ 29 37.7 [30.0, 46.1] 
382 12324 Male Black Some college Low-mid 60+ 33 37.8 [30.2, 46.0] 
383 12114 Male Black < High school Low 60+ 112 38.9 [32.3, 46.0] 
384 22124 Female Black < High school Low-mid 60+ 114 40.5 [33.8, 47.5] 

Notes: 95% CI are approximate only because the model assumes no sampling covariability between the regression coefficients and the stratum random effects. 

Fig. 2. Predicted values by stratum for all 384 strata, ranked low to high. Notes: 
All values are derived from simulated data and are for demonstration purposes 
only. Markers indicate predicted value for each stratum. Spikes indicate 
approximate 95% CIs. 
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predicted values of the outcome are plotted on the X-axis and strata 
labels are given on the Y-axis). 

3.3. Visualizing results – ranked residuals 

Another useful visualization involves plotting predicted stratum 
random effects: the uj from Model 1B in the linear case (Fig. 3A), or the 
difference in the predicted probability between the total predicted 
probability in stratum j and the probability based on additive main ef-
fects πBj = πj − πAj in the logistic case (Fig. 3C). An alternative version of 
the plot is given in Fig. 3B, which is the same as Fig. 3A but only shows 
markers for where the 95% confidence interval around the estimate of uj 
does not encompass 0, a rough measure of statistical significance 
(though we give the usual caveats for the use of significance testing, and 
also (re)emphasize that these are only approximate 95% CI). Here 
stratum ID codes are shown to facilitate interpretation. An important 
reminder, as we examine and interpret these values, is that a large re-
sidual interaction effect does not necessarily mean that the stratum will 
be more advantaged/disadvantaged in absolute terms (inclusive of ad-
ditive and interaction effects), but rather it means the final predicted 
value for the stratum deviates meaningfully from what is predicted 
based only on the additive effects. 

4. Discussion 

In this section, we address remaining big-picture issues in quantita-
tive intersectional analysis using MAIHDA: (1) What are the funda-
mental goals for quantitative intersectional approaches and how does 
MAIHDA address these goals?; (2) How should researchers interpret 
situations where inequalities are found to be well described by additive 
(as opposed to additive + interaction) parameters?; and finally, (3) 
What are extensions and future directions for the MAIHDA approach? 

4.1. Fundamental analytic goals for quantitative intersectional 
approaches 

Evans, Leckie and Merlo (2020) identify three fundamental analytic 
goals for quantitative intersectional analyses: (1) mapping averages to 
identify inequities across strata; (2) quantifying heterogeneity of out-
comes within and between strata, both to understand varia-
bility/inequality and to gauge the discriminatory accuracy of the strata 
categorizations used; and (3) to estimate interaction effects. 

4.1.1. Fundamental goal #1: mapping inequity in terms of average 
differences 

Mapping predicted means (or probabilities) of outcomes across 
intersectional strata is, at its heart, a descriptive exercise intended to 
quantify the magnitude of inequities and to identify strata that are 
particularly high (or low) risk. When considered alongside information 
from the other fundamental goals, this can inform public policy to 
address underlying drivers of the inequity. 

It is important to note that if MAIHDA is being used to predict the 
mean outcome in each stratum, then this can be accomplished using 
either the null or additive main effects models. In theory, the value of 
β0 + uj from the null model should be equal to the value of β0 + β1x1j +
⋯ + βpxpj + uj from the main effects model. However, in practice, one 
typically sees some minor differences in the final predictions for smaller 
strata between the two approaches, due to the different way shrinkage 
plays out. Though it may be marginally easier to compute final pre-
dictions for strata using the null model, it is preferable to produce pre-
dictions using the main effects model (though rigorous testing of this 
remains to be done in future simulation studies). The reason is that 
predictions (particularly for small strata) will, in the null model, be 
shrunk toward a single value that is the same for all strata (the PWGM, 
given by the intercept). In contrast, in the main effects model, the pre-
dictions will be shrunk toward stratum-specific additive combinations of 
the relevant main effects regression coefficients (β0 + β1x1j + ⋯+ βpxpj). 
These strata-specific predictions from the main effects model will likely 
be closer to the true stratum means of interest than the single common 
prediction from the null model. It is therefore more appropriate to shrink 
towards these strata-specific predictions. 

In principle, conventional single-level regression with interaction 
effects are also capable of making stratum-specific predictions. How-
ever, as we have discussed, MAIHDA has a number of key advantages 
that make it a stronger choice in many situations, including: (1) 
providing precision-weighted stratum means and thus more reliable 
predictions when sample sizes are small, (2) allowing more scalability to 
include additional axes of marginalization without significant loss of 
model parsimony, and (3) ease of interpretation. 

In addition to the methodological and theoretical advantages pre-
viously mentioned, MAIHDA approaches the modeling of intersections 
by treating them as contexts within which individuals are nested, anal-
ogous to physical environments such as schools or neighborhoods in 
multilevel models. This is ultimately a more satisfying representation of 
intersections: axes of marginalization come together to form unique 
positions in a social landscape, the axes are disentangleable, and they 
cannot be understood in isolation. 

Predicting stratum means (or probabilities) is a useful starting point 

Fig. 3. Predicted stratum interaction effects, ranked low to high. Notes: All 
values are derived from simulated data and are for demonstration purposes 
only. Markers indicate predicted value for each stratum. Spikes indicate 
approximate 95% CIs. Fig. 3B: Five-digit stratum ID numbers reflect coding as 
follows: 
Digit 1 = sex [1 = Male; 2 = Female]. 
Digit 2 = race/ethnicity [1 = white non-Hispanic; 2 = Black non-Hispanic; 3 =
Hispanic or Latinx]. 
Digit 3 = education [1 = Less than high school; 2 = Completed high school; 3 =
Some college no degree; 4 = College degree or more]. 
Digit 4 = income[1 = Low income; 2 = Low-middle income, 3 = High-middle 
income; 4 = High income]. 
Digit 5 = age[1 = age 18–29 years; 2 = age 30–44 years; 3 = age 45–59 years; 4 
= age 60+ years]. 
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for quantifying inequities and identifying disproportionately affected 
groups. However, an exclusive focus on the analysis of differences be-
tween group averages can be misleading (see literature on the “tyranny 
of the averages” (Merlo, 2014, 2018; Merlo & Wagner, 2013)). The first 
goal alone is therefore insufficient because it ignores within- and 
between-stratum heterogeneity. Goals 2 and 3 are needed to fully 
characterize inequities from an intersectional perspective. It is necessary 
to interpret the specific differences between strata averages values 
together with the size of the VPC and the discriminatory accuracy of the 
strata. 

4.1.2. Fundamental goal #2: mapping inequity in terms of variances and 
heterogeneity 

Beyond the theoretical and practical advantages of MAIHDA, it is in 
the second goal of quantitative intersectional analysis where the major 
differences between single-level and MAIHDA approaches becomes 
apparent. Single-level approaches do not typically focus on measures of 
heterogeneity and discriminatory accuracy. In intersectional MAIHDA 
there are a variety of statistics available to describe variation within and 
between strata, including individual-level and stratum-level variance 
parameters σ2e and σ2u , the VPC, and the PCV. 

In addition to quantifying the magnitude of inequities between strata 
relative to total variation in the sample, the VPC also serves as a measure 
of discriminatory accuracy. Discriminatory accuracy refers to the pre-
dictive ability of a characteristic to sort cases from non-cases (e.g., to tell 
who will have HbA1c in the diabetic range) or to tell how correlated 
outcomes are expected to be. For logistic models, the AUC serves a 
similar function. Today, few social, medical, and public health scientists 
would argue that knowing someone’s gender, race, or socioeconomic 
status alone would be sufficient to predict the outcome for that indi-
vidual with any degree of accuracy, as for most outcomes there is 
considerable heterogeneity of outcomes between individuals even with 
the same characteristics. Still, there is a tacit attitude promoting the idea 
that observed stratum inequities are always meaningful, at least if they 
are statistically “significant.” 

Since sociodemographic characteristics are at best a rough proxy for 
a wide range of social experiences that may cluster at the group level and 
which, in turn, are implicated in complex causal pathways that lead to 
health outcomes, we do not generally expect the VPC (or the AUC) to be 
exceptionally large or to have very strong discriminatory accuracy. This 
is not indicative of a problem, per se. Rather, thinking in terms of 
discriminatory accuracy provides a valuable check against over- 
interpreting between-stratum differences or making assumptions that 
stratum labels determine individual outcomes. For example, past 
research that has noted racial/ethnic inequities in health have led to 
over-interpretation and labeling of racial minorities as “high risk”—this 
can obscure the fact that many non-minorities also suffer from adverse 
health outcomes and vice versa and it can run the risk of stigmatizing the 
labeled populations. Furthermore, the attachment of a “high risk” label 
can lead to misattribution of causation where it is group membership 
itself that is blamed for poor outcomes, rather than the discrimination, 
marginalization, or other social experiences associated with group 
membership. 

A low VPC should not be interpreted (in isolation and separate from 
considering group average differences) as indicating low levels of 
inequity. Consider a recent substantive example where an intersectional 
MAIHDA study of birthweight found typical, modest VPCs (VPC = 2.9% 
among singletons and 3.1% among twins) (Evans, Nieves, Erickson, & 
Borrell, 2023). However, it would be misleading to interpret this as 
indicating low levels of inequity between strata. There are many reasons 
why birthweight varies and this is reflected in a high individual-level 
variance σ2e , reducing the VPC score. The significance of the 
between-stratum variance was apparent when examining the average 
scores: the difference in predicted mean birthweights for the highest and 
lowest scoring strata was 388 g for singletons and 435 g for twins, which 

is a clinically meaningful difference. 
MAIHDA fits well with the concept of proportionate universalism, 

discussed by Marmot, regarding resource allocation in public health 
(Marmot, 2014). That is, policy responses to health inequities should be 
inclusive across the health gradient, but with a scale and intensity that is 
proportionate to the level of disadvantage that caused the health in-
equities. Considering both between- and within-stratum variability 
alongside average differences provides a more complete picture of in-
equities, which can better inform resource allocation and public policy 
decisions. 

4.1.3. Fundamental goal #3: measuring inequities in terms of interaction 
effects 

The third fundamental goal of quantitative intersectional analysis is 
to estimate interaction effects between axes of marginalization for all 
points of intersection. Broadly, the purpose of including interaction ef-
fects in conventional and MAIHDA models is to allow predicted out-
comes to be unique in each stratum, or stated differently, for the 
association between one axis (gender) and the outcome to be different 
for different race/ethnicities (e.g., Black verses white). In conventional 
models, these interactions are regression coefficients and are evaluated 
for statistical significance. However, this setup means that only some 
combinations of sociodemographic characteristics have interaction ef-
fects associated with them. 

In MAIHDA, in the main effects model, every stratum analyzed has 
an interaction effect given by uj which captures the extent to which the 
final predicted value for stratum j (given by β0 + β1x1j + ⋯+ βpxpj + uj) 
differs from what would be expected based purely on additive main 
effects (β0 + β1x1j + ⋯+ βpxpj). This can help in the identification of 
unusual breaks with additive inequity patterns, challenging dominant 
narratives or understandings of health issues, and bringing attention to 
the needs of often-invisibilized populations. However, as with the other 
goals, estimating interactions alone is insufficient for a complete un-
derstanding of inequities. Only together do these three goals provide a 
comprehensive quantitative intersectional analysis. 

4.2. What if inequities are mostly additive? 

Of curiosity to many researchers is the following situation: the VPC 
and between-stratum variance σ2u in the null model suggest inequities 
exist (e.g., VPC = 10%), but in the additive main effects model (Model 
1B or 2B) the VPC has shrunk to nearly 0% and the PCV is close to 100%. 
It might be tempting to conclude that inequities between strata are 
entirely accounted for by additive effects, and there are no interactions. 
This may well be the case, however, there are a few caveats to consider. 

First, the VPC and PCV are summary measures characterizing pat-
terns in the sample of strata as a whole. Imagine, for instance, we 
analyze 384 strata and all but one are well explained by additive main 
effects. The remaining stratum, on the other hand, has a significant 
interaction effect. This important interaction would be watered down 
and obscured by only looking at the summary measures of VPC and PCV. 
Such standout interactions will be better spotted by looking for indi-
vidual strata with significant interaction effects (e.g., Fig. 3B). 

Second, MAIHDA is expected to provide more conservative, 
shrunken estimates than conventional approaches. It is possible that 
meaningful interactions do exist in the population, but they may not be 
visible in the sample due to insufficient sample size to detect small ef-
fects. In other words, MAIHDA helps to protect against Type I (false- 
positive) errors by using shrinkage to pull effects toward null/zero, and 
this is generally a valued property of the approach, however it also 
means that even true interaction effects may not be detected if strata are 
too small. 

Finally, what happens if there is truly no interaction? That is, the 
between-stratum variance σ2u is not significant in the additive main ef-
fects model. Has this “disproved intersectionality”? The answer is 
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no—this is not a problem, nor is it disproving intersectionality. It is also 
still worth conducting assessments of inequity using an intersectional 
framework. The reason for this is fairly simple to understand if we recall 
the distinction between experiences within interlocking systems of 
oppression (exposures) and interaction effects (outcomes) (Evans, 2019a; 
Evans & Erickson, 2019). 

Employed in quantitative analysis, we are using the intersectional 
framework to inform our decisions for what to study (e.g., gender/ 
sexism, race(ism), ableism), what comparisons to make and what in-
equities to search for, and how to interpret our results. Finding statis-
tically significant interaction effects simply means that those 
experiences left an imprint on a particular outcome in a particular sample 
at a particular point in time that required interactions as well as additive 
effects to characterize them. 

Finding no evidence of interaction effects, on the other hand, does 
not mean systems of oppression are not interlocking, nor that they are 
unimportant, nor that they don’t form unique social experiences at 
different intersections. The use of the intersectional framework for 
inequity estimation remains theoretically sound, allows for the possi-
bility of particular populations to be especially harmed above and 
beyond expectations, and ultimately the totality of those inequities is the 
main point of the analysis. It comes back to being critical of the systems 
that gave rise to those total inequities. Given the opportunity to estimate 
interaction effects, it is easy to become overly focused on significance 
testing and lose track of intersectionality’s original critical insights and 
transformative aims. Conclusions of such a study should not be “there is 
very little intersectionality” but rather that there are meaningful in-
equities, they were assessed within an intersectional framework, the 
studied axes of marginalization were collectively important in capturing 
inequity patterns, and we should be addressing the needs of populations 
proportional to the harm they experience and challenging systems of 
oppression that give rise to inequities. 

4.3. Extending the MAIHDA framework 

Thus far, we have focused this tutorial on the essential elements for 
how to conduct and interpret results from an intersectional MAIHDA 
analysis of continuous or binary outcomes. There are many possible 
extensions to the MAIHDA approach, and some have been outlined in 
the growing literature. Future extensions of MAIHDA should, for 
instance, consider adaptations of ordinal and Poisson regression, and 
survival analysis. In this section, we briefly identify a few key extensions 
that have already been proposed. 

4.3.1. Eco-Intersectional Multilevel (EIM) models 
Activism and research on “environmental racism” and “environ-

mental classism” have encouraged some environmental justice scholars 
to take up consideration of how these social processes operate inter-
sectionally at the community-level (Ard, 2015; Downey & Hawkins, 
2008; Liévanos, 2015; Malin & Ryder, 2018; Zwickl, Ash, & Boyce, 
2014). Eco-Intersectional Multilevel (EIM) analysis is an extension of the 
MAIHDA approach developed in the environmental justice and envi-
ronmental sociology literatures to examine geospatial and social in-
equities in environmental hazards at the community-level (Alvarez 
et al., 2022; Alvarez & Evans, 2021). The core differences between 
MAIHDA and EIM are: (1) The level 1 units are different. While MAIHDA 
nests individuals at level 1, EIM nests census tracts, block groups, or 
other area-level descriptors such as neighborhoods at level 1. (2) The 
shift to different level 1 units results in some differences in theoretical 
models and interpretations of results. Otherwise, the approaches are 
similar from a modeling perspective. With growing interest in 
community-level inequities and critical environmental justice, the EIM 
approach has opened up new avenues for research and 
research-informed policy and activism. 

4.3.2. Incorporating contexts into MAIHDA 
Contexts—broadly construed—have long been recognized as critical 

to understanding the production and determinants of health inequity 
(Kawachi & Berkman, 2003; Krieger, 2011). Despite this, most quanti-
tative intersectional research has tended to examine health inequities 
using individual-level data without considering the separate and 
potentially interacting effects between those experiences and the con-
texts of the individuals in the data set (Evans, 2019c). In other words, 
though it is not intended based on theory, this scholarship sometimes 
runs the risk of de-contextualizing those same intersectional position-
alities, experiences, and outcomes. This inattention to contexts is not 
typically shared by other types of intersectional scholarship, such as 
qualitative or mixed-methods intracategorical research that focuses on 
the lived experiences of particular social groups, grounded in specific 
locations and time periods (McCall, 2005; Schulz and Mullings 2006). 
Built into the theoretical framework is an understanding that the same 
social identity may be performed (or experienced, with different im-
plications for risk exposure) differently in different contexts (Trahan, 
2011). 

Evans (2019c) proposed several ways to integrate consideration of 
contexts into intersectional MAIHDA. First, researchers can limit a study 
to samples from a particular social, geographic, and/or temporal 
context, describe the environment as part of the descriptive exercise, 
and then interpret quantitative results narrowly within that context. 
While this can produce valuable insights, it is also somewhat limited in 
scale, producing results that are not intended for generalizability. This 
approach is compatible with MAIHDA, so long as needed choices are 
made relating to data selection and interpretation. 

Second, consideration of contexts can be incorporated into MAIHDA 
models by allowing for interactions (e.g., effect modification) between 
strata IDs and specific context variables. This could be accomplished by 
including key context descriptors (e.g., school and neighborhood 
poverty status) alongside gender, race/ethnicity, and other variables in 
the construction of strata IDs (Evans, 2019c). It could also be accom-
plished using a random slope or random coefficient term (see below). 

Finally, researchers could envision a cross-classified multilevel 
model (CCMM) where individuals (level 1) are nested in both intersec-
tional strata (level 2) and a context such as schools (level 2), which are 
cross-classified with each other. This might be done simply to test the 
robustness of “core” MAIHDA results when context is adjusted for 
(Evans, 2019a), or it might be to evaluate the relative importance of 
stratum and contexts (Holman, Bell, Green, & Salway, 2022; Khalaf 
et al., 2020; Prior and Leckie 2023). The latter, though intriguing, is 
more challenging to interpret. What does it mean, for instance, to say 
that the contributions of schools to the variance in the outcome operate 
semi-independently from strata positionalities, rather than being 
inseparable because they are a key social environment where the 
meaning of the strata identity is social constructed? We encourage 
future applications of CCMM with MAIHDA to consider and address 
these interpretational questions in their analyses. 

4.3.3. Random slopes and MAIHDA 
More advanced and complex modeling structures established in 

multilevel methods are potentially integrable with the MAIHDA 
framework—including use of random slope effects where the slope co-
efficient on a predictor variable xij is allowed to vary in its estimated 
magnitude across the level 2 units: β1j = β1 + u1j. Most simply, this 
additional predictor variable might not be used in the definition of the 
strata but could be included as a random effect. See Evans et al. (2023) 
for a detailed demonstration of this approach, examining how 
twin-vs-singleton birthweight gaps differ across intersectional strata, 
and for an expanded discussion of the methodological possibilities. This 
opens up a variety of model types to address many research ques-
tions—including in longitudinal data allowing strata to have different 
trajectories over time (Bell, Evans, Holman, & Leckie, 2023), and the 
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mean outcomes of different strata to be differentially impacted by 
different contexts, policies, or treatments. 

A further alternative is to calculate absolute risk differences (ARD) 
between similar strata that only differ on the exposition of interest. For 
instance, using MAIHDA, Zettermark et al. (2021) observed that the 
known association between use of hormonal contraceptives and 
increased risk of antidepressants use varied between intersectional 
strata, being more pronounced in more oppressed intersectional 
contexts. 

5. Conclusion 

This tutorial aimed to familiarize researchers with intersectional 
(and multicategorical) MAIHDA for both continuous and binary indi-
vidual outcomes and to equip them to apply MAIHDA to a variety of 
substantive empirical questions across the social and health sciences. 
MAIHDA is a flexible and powerful tool for integrating an intersectional 
framework into quantitative study designs, and it has numerous ad-
vantages over conventional modeling approaches. We hope this method 
will be used in alignment with the foundational aims of inter-
sectionality—to reveal hidden realities, expose power structures pro-
ducing inequity and injustice, and critique and transform systems of 
oppression. 
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