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Shapley value-based approaches to explain the

quality of predictions by classifiers
Guilherme Dean Pelegrina, Sajid Siraj

Abstract—The use of algorithm-agnostic approaches for ex-
plainable machine learning models is an emerging area of
research. When explaining the contribution of individual features
towards the predicted outcome, traditionally, the focus remains
on explaining the prediction itself, however a little has been
done on explaining the quality of prediction of these models,
where the quality can be assessed as robustness in predictions
when changing the thresholds for classification. In this paper, we
propose the use of Shapley values to explain the contribution
of each feature towards this robustness, measured in terms of
Receiver-operating Characteristics (ROC) curve and the Area
under the ROC curve (AUC). With the help of an illustrative
example, we demonstrate the proposed idea of explaining the
ROC curve, and visualising the uncertainties in these curves.
For imbalanced datasets, the use of Precision-Recall Curve (PRC)
is considered more appropriate, therefore we also demonstrate
how to explain the PRCs with the help of Shapley values. The
explanation of robustness can help analysts in a number of
ways, for example, it can help in feature selection by identifying
the irrelevant features that can be removed to reduce the
computational complexity. It can also help in identifying the
features having critical contributions or negative contributions
towards the quality of predictions.

Impact Statement—Works in machine learning explainability
generally focus on feature attribution methods towards local
interpretability or performance measures, such as accuracy.
Moreover, in these scenarios, the interpretations are based on
a single decision threshold. In this paper, we extend the of
use of Shapley value-based approach for machine learning
interpretability to explain the contribution of features towards
the robustness of predictions measure by means of the Receiver-
operating Characteristics (ROC) curve and the Area under the
ROC curve (AUC). We highlight that our proposal can be useful
in feature selection tasks. We also provide all codes supporting
this paper in order to ensure reproducibility.

Index Terms—explainable artificial intelligence; machine learn-
ing; business analytics.

I. INTRODUCTION

THE fields of machine intelligence and decision support

tools have grown by leaps and bounds in last two

decades [1]–[3]. This growth can be attributed to a signifi-

cant improvement in the performance of various prediction

algorithms (in terms of their accuracy, precision, recall, etc.).
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However, when considering the practicality of using these

prediction algorithms, the majority of them tends to be quite

complex. A key contribution in this domain is the recent

introduction of algorithm-agnostic explanation approaches to

explain the contribution of each feature towards the overall

prediction [4]–[7]. It is certainly an important achievement

in predictive analytics as most of the models (specially those

based on random forests [8], deep neural networks [9], [10]

and extreme gradient boosting [11], [12]) were previously

treated as black box models and were questioned due to

their complex nature. Indeed, besides the performance, aspects

such as fairness and explainability (among others) are also

important when deciding which machine learning (ML) model

to adopt [13]–[16].

One of the widely-used algorithm-agnostic approaches to

explain ML models is based on the cooperative game-theoretic

concept called the Shapley value [17]. The Shapley value

approach is considered as a fair way to divide the payoff in

a game among its players. In ML context, it can be used as

a feature attribution method, i.e. a measure that indicates how

much each feature is contributing in the ML task. Therefore,

the main idea is to see the ML problem (classification,

prediction, etc.) as a cooperative game such that the features

cooperate in order to achieve a specific goal. This goal depends

on what one would like to explain, for example, [18] used the

Shapley values to explain the coefficient of determination in

regression models. As the Shapley value calculation considers

all coalitions of regressors, the obtained results were consis-

tent even in scenarios with multicollinearity. [19] associated

payoffs in game theory to fairness measures and applied the

Shapley values to explain the impact of features when there are

disparate results regarding different groups of people (women

and men, blacks and whites, etc.). Moreover, in the famous

SHAP method proposed by [20], the Shapley values were used

to indicate the contribution of each feature in local predictions.

In the field of ML, improving the performance of prediction

algorithms has remained the main focus for decades. The

performance metrics of accuracy, precision and F-measure are

considered almost mandatory when evaluating any prediction

algorithm. Although there are recent proposals to estimate the

contribution of each feature towards prediction, there is still

a need to explain their contributions towards the robustness

of these models [21]–[23]. The robustness here refers to the

impact on models’ performance by changes in the classifica-

tion threshold. To assess the robustness in prediction models,

the Receiver Operating Characteristic (ROC) curve and the

area under the ROC curve (AUC) have been widely used in

ML [24], which has traditionally been used in the field of



2

operational research and signal processing for long time [25].

We contend that the Shapley-values can also be used to explain

robustness of the ML models, for example, by explaining

the contribution of each feature towards the AUC. Imagine a

situation where we achieve a model with the AUC of 0.90. It

tells us how robust the prediction model is, however, it does

not explain how much each feature has contributed towards

this robustness. Also, one may wish to investigate whether the

contribution of each feature varies for different specificity, or

does it remain consistent regardless of the specificity values.

Considering this gap, we first propose the ShapAUC

method, a Shapley-based approach to explain the AUC for any

ML model. For this, we assume that features join in coalitions

and cooperate to achieve the AUC as a common goal. Based

on the AUC calculated for all coalitions of features, we

calculate the Shapley values, which indicate the marginal

contribution of each feature in the overall model performance.

As a second contribution, namely ShapROC, we propose a

way that explains the contribution of each feature towards

the ROC curve. Shapley value is calculated to provide the

marginal contribution of each feature at each point inside the

ROC curve. As the use of Precision-Recall Curves (PRCs) is

preferred for imbalanced datasets, we also propose to extend

the use of Shapley values to decompose PRCs as well as to

calculate the contributions towards the area under the PRC

(AUPRC). Based on numerical experiments in a real dataset,

we show the usefulness of our proposals in explaining the

contribution of each feature towards the robustness of a model.

One of the benefits of the proposed approach is to use it

in feature selection. As we provide the marginal contributions

of features towards robustness, it is possible to identify in-

significant features, or more importantly, identifying features

having negative contribution. By removing a feature with

negative contribution, we may improve the model robustness,

and by removing insignificant features, we can reduce the

computational complexity of the classifier.

The rest of this paper is organised as follows. Section II

discusses the background of our proposals, which lies in the

robustness of prediction models and the use of Shapley values

as a feature attribution method. In Section III, we present the

proposed approaches. Section IV illustrates the use of our

proposals in a real dataset. Finally, in Section V, we show

our conclusions and future perspectives.

II. BACKGROUND

This section presents the theoretical background used in our

proposals. Firstly, we discuss the key elements when assessing

the prediction model robustness based on ROC curve and PRC.

Thereafter, we discuss the use of Shapley values as a feature

attribution method in ML explainability.

A. Measuring the performance of classifiers

The performance of classifiers can be measured in different

ways. A common way of assessing performance is to calculate

the accuracy of prediction, which is essentially a ratio of the

correct predictions made out of the overall predictions carried

out. In practise, this metric might not be very useful in situa-

tions where predicting positive outcomes are more important

than predicting negative outcomes, or vice versa. Therefore,

classification performance usually involves construction of a

confusion matrix that shows the number of true positives

(TPs), true negatives (TNs), false positives (FPs), and false

negatives (FNs). This is illustrated in Figure 1.
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Fig. 1. Confusion matrix showing definitions for performance metrics.

From this confusion matrix, a number of different perfor-

mance measures can be obtained, for example, the ratio of

true positives to actual positives is known as the true positive

rate (TPR), also known as Recall or Sensitivity. Similarly,

the ratio of true negatives to actual negatives is known as

the true negative rate or Specificity. The complementary value

of Specificity is known as false positive rate (FPR). Another

way of assessing classifier is its ability to detect true positive

cases out of the cases that were detected as positives. This

is known as the Precision of the classifier. All these metrics

capture different aspect of model’s performance and are useful,

however, for testing robustness of model, the construction of

confusion matrix itself has to be investigated and analysed.

In ML literature, it is common practise to repeat training

and testing several times, and testing the consistency in these

performance scores. Another common practise is to assess

model’s performance by varying different parameters like

classification thresholds. We discuss this below in more detail.

1) ROC curve and AUC: Receiver Operating Characteristic

(ROC) curve has been widely used in machine learning [24]

to assess the robustness in prediction models. In a binary

classification problem, the outcome is considered positive

when the prediction probability is obtained above a certain

threshold. For example, in a fingerprint authentication system,

a fingerprint image is scanned and a ML algorithm calculates

the probability for it to be a valid fingerprint. If the predicted

probability happens to be 0.40, it can be declared unauthorised

considering that any value lower than 0.50 is closer to 0

(false) than 1 (true). However, we can relax this requirement

by lowering the threshold value from 0.50 to 0.30, in which

case, the predicted probability of 0.40 will be declared true

(i.e. authorised). This means that lower threshold will have

higher risk of authorising the unauthorised fingerprints (false

positive), while on the other hand, raising the threshold will
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have higher risk of rejecting the authorised fingerprints (false

negatives). Ideally, a system should be robust enough to detect

all true positives regardless of the threshold values. This

robustness can be investigated and quantified using ROC curve

which is, simply put, a line plot between FPR and TPR values

calculated by varying the threshold values for classifying

predicted probability. The overall robustness of the algorithm

is summarised by calculating the area under this ROC curve

(AUC) which is a value between 0 and 1. A value of 1 implies

that the algorithm is robust in detecting all true positives no

matter what the threshold value is.

B. Precision-recall curve and AUPRC

Although both ROC and AUC have been widely used,

their usefulness has been debated for imbalanced classification

problems [26], [27]. For example, email spam detection is

a classical ML problem where the two classes are highly

imbalanced [28]. In this case, people prefer to minimise false

positives, and therefore, only interested in the left side of the

ROC curve (where FPR is close to 0), however, the calculation

of AUC does not prioritise one side over other. For imbalanced

classes, the use of Precision-Recall Curve (PRC) is considered

more appropriate than the use of ROC and AUC [26], [27]. As

the names suggests, the PRC explains the relationship between

precision and recall for all threshold values.

C. Explanation in ML models

As the use of ML is getting common, there is an increasing

demand (and pressure) for the explainability of these ML

models. For example, a bank’s customer might ask for reasons

why his/her application for credit got refused. Since the

introduction of SHapley Additive exPlanations (SHAP) by

[20], the use of explainable AI has been introduced in many

practical applications like managing financial risk [29], [30],

healthcare management [31], [32], studying pandemics [33],

and many more. However, so far, explainability has mostly

focused on how to explain the contribution of each predictor

towards attaining the predicted outcomes. While explaining

the predicted outcome is an important area to investigate, it

is also important to explain the robustness in predicting these

values. For example, if a model is shown to have robustness of

0.85, it is important to explain how different predictors have

contributed towards achieving this level of robustness. In this

context, the use of Shapley values can give promising results,

as it has already been demonstrated to be useful in practical

applications involving ML.

D. Shapley values as a feature attribution method

Before defining the Shapley value, let us first introduce the

notion of cooperative games [34]. In a cooperative game, there

exists a cooperative behaviour among a set of players aiming

at achieving a predetermined goal. Several practical situations

can be modelled as a cooperative game problem [35]–[37].

For instance, [38]–[40] showed applications in power system

expansion planning. In this case, different companies can

cooperate in order to reduce power losses or investment cost

allocation in power transmission systems. Another example

includes modelling supply chain management tasks as a co-

operative game problem [41]–[44]. A common goal shared

by managers can be the fixed cost paid by shipment orders.

Therefore, if they form a coalition and order simultaneously,

they could save more money than if they act separately.

Suppose a set N = {1, 2, . . . , n} of n players. Mathemati-

cally, one may define a coalition game on N by a characteristic

function υ : P(N) → R, where P(N) is the power set

of N , that maps all possible coalitions of players to real

numbers, such that1 υ(∅) = 0. One frequently refers to υ(A),
where A ⊆ N , as the payoff (or the benefit) achieved by the

coalition A when cooperating in the game. For example, in

the supply chain task mentioned earlier, υ(A) could represent

the savings obtained by the coalition of managers A when

ordering simultaneously. However, a question that arises in

a cooperative game is how to divide the gains obtained by

a coalition of players. One of the well-known solutions for

such a sharing is called Shapley value [17]. For each player

i ∈ N , the associated Shapley value represents the marginal

contribution of the player in the game payoff when considering

all possible coalitions of players. It can be defined as follows:

φi =
∑

A⊆N\{i}

(n− |A| − 1)! |A|!

n!
∆iυ(A), (1)

where ∆iυ(A) = υ(A ∪ {i}) − υ(A) and |A| indicates the

cardinality of subset A.

An interesting aspect of Shapley value is that it satisfies

several desired properties when allocating benefits among

players. In this paper, three of them are important (see [45]

for another property):

Property 1. Efficiency: The sum of the Shapley values of all

players is equal to the payoff of the grand coalition N
discounted by the payoff of the empty coalition. As by

the definition of a game υ(∅) = 0, the gain υ(N) is

distributed among the players:

n
∑

i=1

φi = υ(N)− υ(∅) = υ(N). (2)

Property 2. Null player: If, for all subset A ⊆ N ,

υ (A ∪ {i}) = υ (A) , (3)

then φi = 0. It means that, if there is no gain when player

i joins any coalition (he/she does not contribute in any

payoff), he/she will not receive benefits.

Property 3. Symmetry: If two players i and i′ are such that

υ (A ∪ {i}) = υ (A ∪ {i′}) , (4)

for all A ⊂ N which contains neither i nor i′, then

φi = φi′ . Therefore, if two players contribute equally

when joining all coalitions, they should receive the same

amount.

1In cooperative game theory, one assumes υ(∅) = 0 as there is no gain
when there is no player in the coalition. However, when using the Shapley
value in machine learning explainability, one may assume a different value
for υ(∅). We will further discuss this issue in this paper.
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Given these properties, the Shapley value approach is con-

sidered to be a fair strategy to divide gains, and the use of such

a solution brought attention in the explainable ML research

community [18]–[20], [46], [47]. As mentioned in Section I,

the main idea is to use it as a feature attribution method.

Given a goal that one would like to explain (accuracy, local

prediction, fairness measures, etc.), the Shapley values will

indicate the contribution of each feature towards this goal.

For this purpose, there are some key aspects that must be

considered carefully when bringing Eq. (1) to the field of ML:

1) Firstly, one should define υ(·) according to what one

would like to explain. For instance, if one aims at

analysing the contribution of each feature towards the

model’s overall accuracy, one has to define υ(·) as the

accuracy of the trained model based on the TPs and FPs

in the test data.

2) One should be aware of what υ(∅) represents. For ex-

ample, in the shipment orders example, it is clear that

there will be no savings when there is no coalition, so

υ(∅) should be zero. However, in a ML scenario, the

payoff of the empty set can be a non-zero value, and

therefore, calculating υ(∅) might be more complicated in

those cases.

3) Finally, another important aspect is the computational

complexity of the Shapley values, as it involves retraining

the model for all possible coalitions A, and calculating

υ(A). This may pose a computational constraint when

dealing with a high-dimensional data, as the number

of payoffs exponentially increases with the number of

features. In order to reduce this effort, one may consider

approximation strategies that estimate the Shapley values

with less computations [48]–[50].

In the next sections, we explain how to define the aforemen-

tioned aspects and how to use the Shapley values to explain

the robustness of ML classifiers.

III. EXPLAINING THE ROBUSTNESS THROUGH SHAPLEY

VALUES

As discussed earlier, explaining the predicted outcome is an

important area of research but it is also important to explain

the robustness in predicting these values. Although there can

be different ways to measure robustness, the use of ROC and

PR curves are preferred as they span a range of threshold

values to classify the predicted outcomes. This makes them

independent of threshold values unlike the other measures

like accuracy and F-score. Therefore, the ROC and PR curves

are also considered preferred approaches for explaining the

robustness of ML models. The proposed process for explaining

these curves is discussed below.

A. ShapAUC: Explaining the area under the ROC curve

Assume a ROC curve obtained after training a ML model.

The proposed ShapAUC method provides the contribution of

each feature towards the area under this ROC curve. We

can safely assume that the random classifier is the baseline

for the AUC, which can be achieved even when no feature

contributes towards the classifier training. In the case of a

random classifier, TPRs are obviously equal to FPRs and

therefore, by definition, the AUC will be 0.50. If one includes

features in training, the difference between the obtained AUC

and the random classifier is then explained by the contribution

of such features. For example, if one achieves an AUC of 0.95,

the features are contributing to improve the AUC from 0.50

(which could be obtained by a random classifier) to the actual

0.95. In other words, the marginal contribution of all features

should sum up to 0.45. Based on this reasoning, we define the

payoffs of ShapAUC as follows:

υAUC(A) = AUCA − 0.50, (5)

where AUCA represents the area under the ROC curve when

only the features in A are used in the training step. Note that,

if A = ∅ then AUC∅ = 0.50 (the random classifier), and

therefore υAUC(∅) = AUC∅ − 0.50 = 0.

Moreover, according to the efficiency property (see Eq. (2)),
∑n

i=1
φi = υAUC(N) − υAUC(∅) = AUCN − 0.50, that is,

the sum of the marginal contributions of all features is equal

to the difference between the AUC of the grand coalition and

the AUC of the random classifier.

After retraining the ML model and calculating the payoffs

for all subset of features, we interpret robustness based on the

Shapley values calculated by

φAUC
i =

∑

A⊆N\{i}

(n− |A| − 1)! |A|!

n!
∆iυ

AUC(A), (6)

where ∆iυ
AUC(A) = υAUC(A ∪ {i})− υAUC(A).

The process of ShapAUC is summarised in Figure 2. The

procedure involves choosing a subset of features and then

calculating the ROC curve for this subset, along with the AUC

value. This process is then repeated for all possible subsets

of features available in the ML dataset. The contribution of

each feature is then estimated with the help of Eq. 6. These

contributions can be visualised in a waterfall plot, as shown on

the bottom right of Figure 2. The contribution of each feature

is provided in a decreasing order (given the absolute values)

that cooperates to increase the AUC from the random classifier

to the actual value.

B. ShapROC: Explaining the ROC curve

In the previous subsection, we propose to explain the area

under the ROC curve. It is also possible to explain the curve

itself by explaining each point on the curve. The ROC curve

is essentially TPR values plotted against the FPR values, so

it is possible to formulate each point on the TPR curve as

a coalition game. The purpose of ShapROC is to use the

Shapley value as a feature attribution method to explain the

TPR values in the ROC curve. We explain the process of

obtaining ShapROC into three steps, as explained below.

1) Defining the payoffs: Recall that in the case of a random

classifier, the TPRs are equal to FPRs. By assuming that the

random classifier is the baseline for the TPRs, the difference

between a TPR and the associated FPR can be explained by

the cooperation of features when they join in a coalition. For

example, considering a TPR of 0.85 for a FPR of 0.25, the
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Fig. 2. An overview of the proposed ShapAUC method to evaluate the contribution of each feature towards AUC.

contribution of features is 0.85− 0.25 = 0.60. This idea leads

to the following definition of payoff:

υROC
fpr (A) = tprfpr,A − fpr, (7)

where 0 ≤ fpr ≤ 1 and tprfpr,A is the TPR associated to a

given fpr and a coalition A of features.

Note that, for a random classifier, A = ∅ implies that

tprfpr,∅ = fpr and, therefore, υfpr(∅) = tprfpr,∅ − fpr =
fpr − fpr = 0. In addition, based on the efficiency prop-

erty,
∑n

i=1
φi = υROC

fpr (N) − υROC
fpr (∅) = tprfpr,N − fpr.

Therefore, by summing up the marginal contribution of each

feature, we can explain the net increase in value from fpr to

the obtained tprfpr,N .

In Eq. (7), the payoffs υROC
fpr (A) for different coalitions

A depend on the fpr values. However, as these values are

recalculated for different classification thresholds, different

coalitions might end up in generating totally different

sets of FPR values, and therefore, making these coalitions

incomparable to each other. To address this issue, we have to

introduce an additional step for estimating TPR values in the

ShapAUC method. We discuss it in the next section.

2) Estimating the TPR values: We estimate the TPRs based

on the standard ROC curve (calculated by using all features
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together). Consider that (fROC
k , tROC

k )k=1,··· ,l represents the

set of FPR and TPR values used to build the standard

ROC curve. Moreover, assume that we intend to explain a

specific tpr′fpr′,N for a fixed fpr′ (e.g. tpr′
0.25,N = 0.85

for a fixed fpr′ = 0.25). For each A, as a first step,

we find the nearest available FPR values on either side i.e.

fROC
a , fROC

b ∈
{

fROC
1

, . . . , fROC
l

}

from fpr′ such that

fROC
a ≤ fpr′ ≤ fROC

b .

We consider three strategies to estimate the TPR values un-

der analysis, namely optimistic, pessimistic and interpolation

strategies. The three strategies are defined below:

• Optimistic strategy: tprfpr′,A = max (tROC
a , tROC

b ).
• Pessimistic strategy: tprfpr′,A = min (tROC

a , tROC
b ).

• Interpolation strategy: tprfpr′,A = (tROC
b −

tROC
a )(fpr′ − fROC

a )/
(

fROC
b − fROC

a

)

+ tROC
a .

In case of interpolation, if fROC
a = fROC

b , then we

can simply take an average of two values as an estimate:

tprfpr′,A =
(

tROC
a + tROC

b

)

/2.

The use of optimistic strategy will provide higher values of

TPRs to calculate payoffs, and therefore, it can be considered

as an upper approximation of the contributions. Similarly,

the pessimistic strategy will provide the lower approximation

of the contributions. The interpolation strategy, on the other

hand, might be considered more balanced in a way that

it tends to provide a value between the upper and lower

approximations. Here, the aim is not to compare these

strategies or finding the most appropriate strategy, rather

the aim of introducing these strategies is to demonstrate the

possibility of estimating the TPR curves in order to compare

results from different coalitions.

3) Calculating the Shapley values and visualising the fea-

tures contribution: After estimating the TPR values, the Shap-

ley values for each slice of the curve can be calculated as

follows:

φROC,fpr′

i =
∑

A⊆N\{i}

(n− |A| − 1)! |A|!

n!
∆iυ

ROC
fpr′ (A), (8)

where ∆iυ
ROC
fpr′ (A) = υROC

fpr′ (A ∪ {i})− υROC
fpr′ (A).

We can repeat the Shapley value calculations for each FPR

in the ROC plot, and therefore, generating a set of curves

representing contribution of each feature throughout the curve.

This idea can be quite useful for ML analysts to assess the

impact of each feature for different FPR values.

Figure 3 illustrates the proposed ShapROC method and the

features contribution visualisation towards the TPRs. In the

waterfall plot, we can see how features contribute to increase

the TPR from the random classifier (e.g. TPR when fpr =
0.20) to the actual value (e.g. ¯tprfpr = 0.91). In the figure at

the bottom right, the contributions of each feature are visible

for the whole range of FPR values (varying from 0 to 1).

C. Relation between ShapAUC and ShapROC

The AUC can be approximated by the Riemann integral, that

is, by the sum of very small rectangular areas calculated from

the TPR and FPR values in the ROC curve. Consider a set

of TPR and FPR values (fROC
k , tROC

k )k=1,··· ,l such that 0 =
fROC
0

< . . . < fROC
k−1

< fROC
k < . . . < fROC

l = 1 and the

difference between any fROC
k and fROC

k−1
is very small. Based

on the proposed ShapROC and in the efficiency property, we

have that

AUC ≈
l
∑

k=2

(

tROC
k + tROC

k−1

) (

fROC
k − fROC

k−1

)

2

=

l
∑

k=2

(

tROC
k + tROC

k−1

) (

fROC
k − fROC

k−1

)

2
−

(

l
∑

k=2

(

fROC
k + fROC

k−1

) (

fROC
k − fROC

k−1

)

2
− 0.50

)

= 0.50 +

l
∑

k=2

(

tROC
k − fROC

k + tROC
k−1

− fROC
k−1

) (

fROC
k − fROC

k−1

)

2

= 0.50 +

l
∑

k=2

(

(

∑n

i=1
φ
ROC,fROC

k

i

)

+

(

∑n

i=1
φ
ROC,fROC

k−1

i

))

(

fROC
k − fROC

k−1

)

2

= 0.50 +

l
∑

k=2

(

(

∑n

i=1
φ
ROC,fROC

k

i

(

fROC
k − fROC

k−1

)

)

+

(

∑n

i=1
φ
ROC,fROC

k−1

i

(

fROC
k − fROC

k−1

)

))

2

= 0.50 +
n
∑

i=1

(

(

∑l

k=2
φ
ROC,fROC

k

i

(

fROC
k − fROC

k−1

)

)

+

(

∑l

k=2
φ
ROC,fROC

k−1

i

(

fROC
k − fROC

k−1

)

))

2

= 0.50 +

n
∑

i=1

(

∑l

k=2

(

φ
ROC,fROC

k

i

(

fROC
k − fROC

k−1

)

+ φ
ROC,fROC

k−1

i

(

fROC
k − fROC

k−1

)

))

2

= 0.50 +

n
∑

i=1

l
∑

k=2

(

φ
ROC,fROC

k

i − φ
ROC,fROC

k−1

i

)

(

fROC
k − fROC

k−1

)

2
.

(9)
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Calculate 𝜙𝑖𝑅𝑂𝐶,𝑓𝑝𝑟
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All 𝜐𝑓𝑝𝑟𝑅𝑂𝐶 𝐴
calculated?
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Select another𝐴 ∈ 𝒫 𝑁 \{∅}
that has not 

been taken yet

𝜐𝑓𝑝𝑟𝑅𝑂𝐶 𝐴 for all𝐴 ∈ 𝒫 𝑁
Yes

Interpret

the 𝑡𝑝𝑟𝑓𝑝𝑟

Define 𝑡𝑝𝑟0, … , 𝑡𝑝𝑟𝑠 such that0 = 𝑡𝑝𝑟0 ≤ ⋯ ≤ 𝑡𝑝𝑟𝑓𝑝𝑟 ≤ ⋯ ≤ 𝑡𝑝𝑟𝑠 = 1
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Estimate 𝑡𝑝𝑟𝑓𝑝𝑟
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set of 𝑡𝑝𝑟𝑓𝑝𝑟
along with the 

ROC curve

Fig. 3. An overview of the proposed ShapROC method to evaluate the contribution of each feature towards TPR values in the ROC curve.

As we proposed in Section III-A, the achieved AUC can be

represented as the sum of the random classifier (50%) and the

marginal contributions of features. Mathematically, we have

that

AUC = 0.50 +

n
∑

i=1

φAUC
i . (10)

In other words, we can say that we may decompose the AUC

by the random classifier and the Shapley values φAUC
i , i =

1, . . . , n. Therefore, each φAUC
i represents a “piece of area”

from the AUC. By making a parallel between Eq. (9) and

Eq. (10), the relation between the proposed ShapAUC and

ShapROC approaches is given by the following equation:

φAUC
i ≈

l
∑

k=2

(

φ
ROC,fROC

k

i − φ
ROC,fROC

k−1

i

)

(

fROC
k − fROC

k−1

)

2
.

(11)

Note that the approximation in Eq. (11) is also a sum of

small areas. Indeed, as can be visualised in Figure 3 when

interpreting the TPR values along with the ROC curve, the area

under the contribution of each feature i is an approximation
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for its contribution in the AUC. If we sum all these areas, we

achieve an approximation for the AUC.

D. ShapPRC and ShapAUPRC: Explaining the Precision-

recall curve and the area under this curve

As highlighted in Section II-B, the use of Precision-Recall

Curve is considered more appropriate than the use of ROC

and AUC in scenarios with highly imbalanced datasets. We

can also extended the same idea to use Shapley values for

explaining the PRC and the AUPRC, termed as ShapPRC

and ShapAUPRC, respectively. The proposed ShapAUPRC

provides an explanation for the area under the PRC. When

assuming a random classifier, the obtained Precision is equal

to 0.50 regardless of the Recall values. Therefore, similarly

as in the ShapAUC, we have the baseline area of 0.50. We

then explain the contributions of features that can potentially

improve the AUPRC (from the random classifier). In this case,

the payoffs can be defined as follows:

υAUPRC(A) = AUPRCA − 0.50, (12)

where AUPRCA represents the area under the PRC when

only the features in A are used in the training step.

The Shapley values for AUPRC can also be estimated

using the steps defined for the ShapAUC. The equation for

calculating the Shapley values for AUPRC can be defined as

below:

φAUPRC
i =

∑

A⊆N\{i}

(n− |A| − 1)! |A|!

n!
∆iυ

AUPRC(A),

(13)

where ∆iυ
AUPRC(A) = υAUPRC(A ∪ {i})− υAUPRC(A).

In ShapPRC, we propose to explain the contributions of

features towards the Precision values along with the PRC.

If one takes a single slice in the PRC, we can also use the

ShapPRC to explain the improvement in the Precision value

(from the random classifier). The steps are as defined for the

ShapROC, with a redefinition of the baseline, payoffs and

Shapley values calculation. For all Precision values in the

PRC, the baseline remains to be 0.50 regardless of the Recall

values. This leads us to the following definition of payoffs:

υPRC
rec (A) = prerec,A − 0.50, (14)

where 0 ≤ rec ≤ 1 and prerec,A is the Precision value

associated with a given Recall value (rec) and a coalition A
of features.

When analysing the Precision values along with the PRC,

we provide an explanation for each slice in it. So the equation

for calculating the Shapley values for each Precision value

pre′rec′,A (associated with a Recall value rec′) can be defined

as:

φPRC,rec′

i =
∑

A⊆N\{i}

(n− |A| − 1)! |A|!

n!
∆iυ

PRC
rec′ (A), (15)

where ∆iυ
PRC
rec′ (A) = υPRC

rec′ (A ∪ {i})− υPRC
rec′ (A).

IV. ILLUSTRATIVE EXAMPLE FOR EXPLAINING

ROBUSTNESS

We illustrate the proposed approaches2 based on a real

dataset called Banknote Authentication Dataset [51]. This

dataset consists of 1372 images that were used to evaluate an

authentication procedure for genuine (and forged) banknotes.

Wavelet Transforms were applied to these images in order

to extract the following (continuous) attributes: variance,

skewness, kurtosis and entropy.

The ML model was trained using Gaussian Naive Bayes

(implementation from scikit-learn), however, the proposed

approach can be used with any other ML model. The dataset

was split with 80% for training and 20% for testing purpose.

The ROC curve obtained is shown in Figure 4a, with AUC

value of 94.03%. By applying the ShapAUC approach, we

can interpret the contribution of each feature towards this

AUC. Figure 4b shows the obtained results (RC represents the

random classifier). We can see that the highest contribution

is assigned to the variance (31.08%), while both kurtosis and

entropy have very low contribution to the AUC (0.56% and

0.20%, respectively).

(a) Standard ROC curve.

(b) Contributions towards the AUC.

Fig. 4. ROC and AUC for the banknotes dataset.

The results from the ShapROC approach are presented in

Figure 5. These results were generated with the interpolation

strategy, however, it can be repeated for other strategies as well

(see Section IV-A). As seen in Figure 5a, variance remains

to be the attribute with most contribution towards the TPR

values throughout the ROC curve. Both kurtosis and entropy

have practically negligible contribution in the whole range of

the FPR values.

2All codes can be accessed in https://github.com/shaprob/shaproc.
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Figure 5b shows the contributions for a FPR of 20%, i.e.

when moving from a TPR of 20% (random classifier) to the

actual 91.59%. This waterfall plot can be considered as a slice

view of Figure 5a for FPR = 0.2. In this figure, an interesting

observations is that the entropy feature negatively contributes

to the TPR value. In other words, instead of improving the

performance, entropy is deteriorating the performance of the

classifier at this point.

(a) along with the ROC curve.

(b) for a single slice (FPR of 20%).

Fig. 5. Feature contributions towards TPR values.

A. On the use of different strategies for the TPR values

estimation

We mentioned in Section III-B that different TPR values

estimation strategies could be used in the proposed ShapROC

approach. In this section, we discuss the different results that

can be achieved by adopting the optimistic, pessimistic or

interpolation strategies. Figure 6 presents the estimated ROC

curve for these three strategies. As all curves are very similar,

we show a magnified version of a selected piece of the ROC

curves (to better visualise the differences). It can be seen that

the optimistic strategy generates relatively higher values for

TPRs and the pessimistic strategy has generated lower values.

The interpolation strategy produces values between the other

two strategies.

A comparison between the considered strategies is presented

in Figure 7. Although there are slight differences among the

obtained results, in all cases, both variance and skewness are

the two features with highest contributions towards the AUC

and the TPR values (see Figures 7a, 7b and 7c).

One may also note in Figures 7d, 7e and 7f that the shapes

of these features do not change a lot with the strategy, although

the shapes for kurtosis and entropy features change slightly.

An interesting observation is that entropy has a positive overall

contribution towards AUC for the optimistic strategy while

it has a negative contribution when using the pessimistic

strategy. However, as both kurtosis and entropy have a very

low contribution towards robustness, these differences can be

considered negligible in terms of explainability.

As mentioned earlier, the aim here is not to propose or

evaluate the best strategy, although this can be an area of

future work. Without loss of generality, we will consider the

interpolation strategy for the onward discussion in this paper.

B. Visualising uncertainties in assessing robustness

A ML model should not be sensitive to a certain subset

of the dataset selected for training (and/or testing), and there-

fore, it is a common practise to create multiple versions of

training and testing datasets to assess the performance of ML

models. These multiple versions can be created from original

dataset by creating different combinations of subsets used for

training and testing. The two most common approaches for

performing these experiments are K-Fold Cross Validation

[52] and Monte-Carlo Cross Validation [53]. Regardless of

which approach we take, multiple experiments are involved

that end up in multiple performance evaluations like AUC,

ROC and PRC. For example, in Figure 8a, we show the

ROC curves obtained for the banknotes dataset using Monte-

Carlo Cross Validation (using 100 iterations with uniformly

distributed sampling). The crisp line in the middle shows the

curve generated from expected values, and the shaded area

around the curve shows the standard deviation in the values

of these curves.

For each iteration, Shapley values can be used to estimate

the contribution of each feature towards the AUC. These

contributions may vary in each iteration, and therefore, we

propose the dispersion in these values as a way of measuring

uncertainty. Similarly, Figure 8b explains the contribution of

each feature towards the overall AUC where the bar height

represents the expected contribution value while the whisker

lines show standard deviation (i.e. uncertainty) in the contri-

bution values.

Extending this idea to the whole ROC curve, it is also

possible to calculate these contributions of each attribute

towards achieving a TPR value (for each FPR value in the

ROC curve). This is demonstrated in Figure 9a where the

four attributes of banknotes dataset are plotted separately. The

figure shows expected contribution values as a solid line in the

middle, while the shaded values depict the standard deviation

in these contribution values.

As a data analyst, one may need to investigate specific part

of this plot, for example, focusing on the FPR value of 0.20,

and investigating the contribution of each feature/attribute

towards achieving the TPR value for FPR = 0.20. Figure 9b

shows such an example which is essentially a sliced view of

the ROC curve shown in Figure 8a. To summarise, both the

measurement of robustness itself, as well as the uncertainty

in measuring robustness can be explained with the help of

Shapley values.
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Fig. 6. Estimated ROC curve for different strategies.

C. Analysing imbalanced classification datasets

As mentioned earlier, the use of ROC and AUC has been

debated for imbalanced classification problems and the use of

Precision-Recall Curve (PRC) is considered more appropriate

[54]. We demonstrate the use of ShapPRC with the same

illustrative example of banknotes. For demonstration purpose,

we sub-sampled the banknotes data to synthetically create an

imbalance of 90%-10% (with 10% fake/forged notes). Figure

10a shows the PRC for this derived dataset. The contributions

of each feature towards achieving the AUPRC value is shown

in Figure 10b. The features of kurtosis and entropy can be seen

to have negative contributions which implies that these features

are decreasing the robustness (measured through PRC).

A more detailed picture can be seen in Figure 10c, where

variance and skewness are contributing significantly higher

than the other two. Please note that the aim of this experiment

is not to compare PRC and ROC curves, as this is out of the

scope of this paper. We demonstrate that both curves and their

respective areas can be explained with the help of Shapley

values.

D. Using robustness analysis for feature engineering

The gain or loss in the robustness by removing a specific

feature is not necessarily equivalent to its marginal con-

tribution. Instead, this is given by the difference between

the payoffs with and without such a feature. However, as

the Shapley value provides the marginal contribution when

all possible coalitions are considered, it also serves as an

indicative whether the presence (or absence) of a feature

impacts the model robustness. Features whose contributions

are insignificant could arguably be removed without affecting

the robustness of the model.

Recall Figure 8b for the illustrative example, it showed that

both kurtosis and entropy have practically no contributions

towards AUC while variance has the highest contribution. By

removing the kurtosis and entropy features, a slight improve-

ment can be achieved on the model robustness. This is shown

in Figure 11a where the AUC increases slightly from 94.03%

to 95.19%. However, if a more useful feature, like variance, is

removed from the dataset, the AUC may decrease significantly.

This is demonstrated in Figure 11b for the illustrative example

where the AUC decrease from 94.03% to 73.98%, which is a

detrimental change in robustness that might end up in making

the model practically useless.

Also, to investigate the impact of having duplicate feature,

we create a novel feature which is a copy of variance.

Figure 12 shows the contributions of this duplicate variable

towards the AUC and the ROC curve. In Figure 12a, we

see that both variance and the novel feature (represented

by dupl. variance) contributes equally towards the AUC

(16.86%). This is attested in Figure 12b where the contri-

butions of the duplicate variance are identical to the orig-

inal variance curve. The figure uses vertical and horizontal

markers on these two curves to highlight their overlap. As

the novel feature is a duplicate of variance, the payoffs

υ (A ∪ {variance}) = υ (A ∪ {dupl. variance}) and, there-

fore, φvariance = φdupl. variance (see the Symmetry property in

Section II-D).

Note that the use of PRCs is preferred for assessing robust-

ness in case of having imbalanced dataset. Recall Figure 10b

where kurtosis and entropy both contributed negatively to-

wards the AUPRC. Therefore, an obvious recommendation

would be to remove these two features from the model.

Figure 13b shows the results after removing these two features.

Clearly, the performance of the classifier has improved from

74.67% to 86.52%. This is a significant improvement in a

sense that the model has improved by more than 15%.

This demonstrates the usefulness of our proposed approach

in selecting or removing features, which is a critical step in

machine learning applications. Appendix-I further illustrates

the use of our proposed approach on the datasets for Red

Wine Quality [55], Rice [56], and Pima Indians Diabetes [57]

as well.
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(a) Optimistic strategy. (b) Pessimistic strategy. (c) Interpolation strategy.

(d) Optimistic strategy. (e) Pessimistic strategy. (f) Interpolation strategy.

Fig. 7. Comparison between the optimistic, pessimistic and interpolation strategies. Plots in the left: contributions towards the AUC. Plots in the right:
contributions towards TPR values along with the ROC curve.

(a) ROC curve.

(b) ShapAUC.

Fig. 8. Uncertainties in ROC curve and ShapAUC.

(a) Along with the ROC curve.

(b) For a single slice (FPR of 20%).

Fig. 9. Uncertainties in ShapROC.

V. CONCLUSIONS

We proposed techniques that can be used to explain the

contribution of each feature towards the robustness of ML
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(a) PRC. (b) ShapAUPRC. (c) ShapPRC.

Fig. 10. Application of ShapPRC and ShapAUPRC in imbalanced dataset.

(a) Removing kurtosis and entropy.

(b) Removing variance.

Fig. 11. Application of ShapAUC as a feature selection method.

models. For explaining the area under the ROC curve, we

propose to use 0.50 as the baseline value as any random

classifier can achieve this value without help from any useful

feature. Then, we propose to estimate the contribution of

features towards adding robustness with the help of Shapley

values. We also propose to explain each point at the ROC

curve and therefore creating a decomposition of an overall

curve into a set of individual curves (for each feature). As the

use of PRC is considered more appropriate for imbalanced

datasets, we also extended the idea to use Shapley values for

explaining the PRC and the AUPRC. Explaining the robustness

of classifiers can help analysts in auditing various features in

their models and to revise their performance tuning parameters

accordingly.

We demonstrate the use of our proposed approaches in

feature selection. Based on the estimated Shapley values,

it is possible to spot a feature that contributes negatively,

and therefore, can be removed from the model. Also, this

can help us identify features that should not be removed

from the model due to their critical contributions towards

robustness. In addition, it is also possible to identify a feature

having insignificant contribution to the model’s robustness,

and therefore, removing such feature might help increasing

the overall computational efficiency.

A. Limitations and future work

As mentioned in Section III-B, to explain a ROC curve,

we generate multiple curves where each curve represents one

of the coalitions among the players (i.e. features). Comparing

these curves is not a straightforward task due to the fact that

each curve has a different set of FPR/TPR values which does

not necessarily align with other curves. For this, we proposed

the three possible strategies for estimating these values: opti-

mistic, pessimistic and interpolation strategies. However, one

may argue that these strategies are sub-optimal, and better

strategies are possible. Therefore, we consider this an area of

further research.

The visualisation of ShapROC (as shown in Figure 5a)

can assist data analysts in assessing the contribution of each

feature across a range of FPR values. However, as we move

on this curve from left to right, the contribution of random

classifier dominates the contribution of features. This is visible

in the figure where all individual curves are approaching

zero, and therefore, the relative importance of these features

cannot be inspected visually. An analyst might be interested

in assessing these contributions of features in a relative sense,

and therefore, a normalised version of this plot might be more

useful in such case. We show an example of normalisation in

Figure 14 which might be more useful when comparing the

relative contributions of features towards achieving the TPR

values. The same can be applied to ShapPRC plots as well.

We consider this another area of future work that can help

data analysts and researchers.

We demonstrated the use of Shapley values to explain

the contribution of each feature towards the robustness of

classifiers. However, this idea can be extended further to assess
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(a) Contributions towards AUC. (b) Contributions along with the ROC curve.

Fig. 12. Evaluating the inclusion of a duplicate variance.

(a) PRCs. (b) AUPRCs.

Fig. 13. Application of ShapAUPRC as a feature selection method.

Fig. 14. Example of relative feature contributions visualisation.

the interaction among the features. In some cases, it might be

important to estimate the contribution of some combinations

of features instead of treating them as standalone/independent

features. We consider this another important area of future

work with practical implications.

Finally, it is possible to further investigate datasets from

different application domains using the proposed approaches,

which is considered to be another area of future research.

APPENDIX

The following three Figures demonstrate the contribution of

each feature towards the AUC for the Red Wine Quality [55],

Rice [56], and Pima Indians Diabetes [57] datasets. By remov-

ing features pH and free sulfur dioxide in the Wine dataset,

the overall AUC have improved from 86.95% to 87.15%. For

the Rice dataset, by removing feature Extent, the overall AUC

practically remained the same (from 95.27% to 95.29%). In the

Diabetes dataset, by removing feature Glucose, which has the

highest contribution towards AUC, the robustness decreased

from 79.82% to 72.59%.
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[38] M. Kristiansen, M. Korpås, and H. G. Svendsen, “A generic framework
for power system flexibility analysis using cooperative game theory,”
Applied Energy, vol. 212, pp. 223–232, 2018.

[39] J. He, Y. Li, H. Li, H. Tong, Z. Yuan, X. Yang, and W. Huang,
“Application of Game Theory in Integrated Energy System Systems:
A Review,” IEEE Access, vol. 8, pp. 93 380–93 397, 2020.

[40] A. Churkin, J. Bialek, D. Pozo, E. Sauma, and N. Korgin, “Review
of cooperative game theory applications in power system expansion
planning,” Renewable and Sustainable Energy Reviews, vol. 145, p.
111056, 2021.

[41] A. Meca, I. Garcı́a-Jurado, and P. Borm, “Cooperation and competition

in inventory games,” Mathematical Methods of Operations Research,
vol. 57, pp. 481–493, 2003.

[42] G. P. Cachon and S. Netessine, “Game theory in supply chain analysis,”
INFORMS Tutorials in Operations Research. Models, methods, and

applications for innovative decision making, pp. 200–233, 2006.
[43] M. G. Fiestras-Janeiro, I. Garcı́a-Jurado, A. Meca, and M. A. Mosquera,

“Cooperative game theory and inventory management,” European Jour-

nal of Operational Research, vol. 210, pp. 459–466, 2011.
[44] X.-X. Zheng, Z. Liu, K. W. Li, J. Huang, and J. Chen, “Cooperative

game approaches to coordinating a three-echelon closed-loop supply
chain with fairness concerns,” International Journal of Production

Economics, vol. 212, pp. 92–110, 2019.
[45] H. P. Young, “Monotonic solutions of cooperative games,” International

Journal of Game Theory, vol. 14, pp. 65–72, 1985.
[46] S. M. Lundberg, G. Erion, H. Chen, A. DeGrave, J. M. Prutkin,

B. Nair, R. Katz, J. Himmelfarb, N. Bansal, and S.-I. Lee, “From local
explanations to global understanding with explainable AI for trees,”
Nature Machine Intelligence, vol. 2, no. 1, pp. 56–67, 2020.

[47] K. Aas, M. Jullum, and A. Løland, “Explaining individual predictions
when features are dependent: More accurate approximations to Shapley
values,” Artificial Intelligence, vol. 298, p. 103502, 2021.
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