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Abstract

A collocation method is developed for discrete fracture models in the con-

text of the partition-of-unity method. Spline technologies used in isogeometric

analysis (IGA) are exploited to provide a smooth inter-element transition of

gradients, thus allowing to get rid of extra flux terms at element boundaries

which are generated by Lagrange polynomials. Bézier extraction is utilised to

formulate IGA commensurate with a standard finite element data-structure.

The efficacy of the proposed approach is examined through different numerical

examples and is comparedwith other discretemethods for fracture analysis. The

proposed approach is competitive in terms of accuracy with the least computa-

tional cost, rendering it a suitable candidate for superseding available collocation

approaches for fracture simulation. Moreover, the approach naturally assesses

the possibility of physics informed neural networks for fracture simulation, to

which collocation is central.

KEYWORD S
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1 INTRODUCTION

Computationalmechanics, in particular finite element analysis (FEA),1,2 has played a pivotal role in providing simulation

tools with an unprecedented accuracy. However, the presence of singularities, as occur for instance in fracture, still pose

challenges. The importance, however, of accurate computational tools for fracture simulations is high, since experimental

studies on fracture mechanisms are difficult to conduct and not always reliable. Therefore, there is much interest in

developing numerical strategies for fracture analyses. Herein, we seek to develop an alternative method which directly

exploits the partial differential equation (PDE), and is known as collocation.3,4

From a variational viewpoint, collocation employs weighted residuals of the strong form that are enforced at some

arbitrary evaluation points, that is, PDEs are used directly, different from the Galerkin method,1 which transforms the

governing PDEs into a weak format and provides the basis for standard FEA. A typical approach to derive a collocation

method is to choose theDirec-𝛿 as the test function at evaluation points.3,5 An alternative approach evaluates theweighted

residuals at particular locationswhere the chosen test functions return theKronecker-𝛿 property.4 This has been exploited

in a so-called collocated FEA6 that uses Gauss-Lobatto Lagrange polynomials as test functions and Gauss-Lobatto points

as collocation/evaluation points. The Kronecker-𝛿 property of Gauss-Lobatto Lagrange bases at its quadrature points
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leads to an innate collocationmethod, and can be classified as a special form of the Petrov-Galerkinmethod.6 Collocation

methods have been incorporated in a wide range of applications, from spectral elements3,4 to meshfree methods.7

More recently, IsoGeometric Analysis (IGA), a paradigm for explicitly utilising a geometric model in an analysis, has

also been used in conjunction with collocation.8 IGA integrates computer aided design (CAD) and FEA tools and aims at

mitigating the computational cost by bypassingmesh generation,9,10 since themodel directly results from the CADmodel.

Indeed, the same spline functions are utilised as in the design packages, for example, Non-Uniform Rational B-Splines

(NURBS),7,11 T-splines12,13 or Powell-Sabin B-splines.14

From a computational perspective, IGA tends to outperform standard FEA in a per-degree-of-freedom comparison

on accuracy and robustness.15,16 The smooth nature of splines provides higher-order continuity even across element

boundaries where 0-continuity is all that Lagrange polynomials can offer. This improves the evaluation of stresses and
guarantees mass balance for fluid problems,17,18 and is particularly important when higher-order differentials have to be

evaluated, as in for example, the Cahn–Hilliard equation.19,20 When using IGA together with collocation the advantages

can even be more pronounced. Indeed, utilising the strong form of governing equations calls for a smooth set of basis

functions even in an elasto-statics problem where the weak form is naturally consistent with the lowest continuity order,

that is, 0. The presence of the inter-element continuity is imperative in the collocation method, as it allows for getting
rid of extra flux terms at element boundaries.6

Theoretical aspects of blending IGA and collocation method were first investigated for an elliptic problem,21 fol-

lowed by a variational interpretation of the method for static and dynamic cases.22 They were further explored in

other applications, such as Bernoulli–Euler and Timoshenko beams, and Kirchhoff plate elements.23–25 In a comparison

between Galerkin and collocation isogeometric analyses7 it was demonstrated that the latter can significantly reduce the

computational cost and provides a guarantee against shear locking.24,25

De Lorenzis et al.26 have shown that there can be a significant loss of accuracy in case of a strong imposition of Neu-

mannboundary conditions. As a remedy, they suggested a hybrid approach that adopts aGalerkinmethod to locally satisfy

Neumann boundary conditions in a weak sense. This idea has been tested in the context of spectral collocation,27 and has

been further utilised in fracture analyses using phase-field models.28 For pure collocation in IGA spurious oscillations

can result for Neumann boundary conditions and near a crack.

Herein, wewill combine collocation IGAwith the partition of unitymethod (PUM) for a discrete representation of the

crack. Unlike phase-field contributions,28,29 we extend the formulation by providing a local switch for cohesive tractions

at the discontinuity. This is one of the advantages of discrete fracture over phase-field models, where cohesive fracture

is not modelled naturally. The resulting approach enables assessing physics informed neural networks (PINNs)30 in a

discrete fracture analysis, where the collocation method plays a central role and will be the subject of future work. We

explore fracturemodelling using isogeometric collocation, resulting in an extended isogeometric collocationmethod, and

adopt Dirac-𝛿 as the test function for the collocation method.

The article is structured as follows. Section 2 presents the governing equations at the bulk and at the discontinu-

ity. Next, the prerequisites are outlined for the extended isogeometric collocation method. This is followed by a succinct

review of NURBS as basis functions adopted for IGA, Section 3. Section 4 discusses implementation aspects, includ-

ing compatibility enforcement, enrichment and integration schemes. Finally, some case studies are presented which

demonstrate the capability of the approach to model stationary and progressive fracturing.

2 GOVERNING EQUATIONS

Rate-independent, isotropic linear elasticity has been utilised for the bulk material, and small displacement gradients

are assumed throughout. It is noted that the term extended FEA is adopted to encompass a wider family, includ-

ing extended isogeometric FEA.16,17,31–33 Where used, the eXtended Finite Element Method (XFEM) denotes extended

FEA that adopts Lagrange polynomials as the set of basis functions.34–36 Therefore, we strictly avoid using these

terms interchangeably.

The partition-of-unity method (PUM) allows for approximating the enrichment functions 𝛾 with the shape

functions 𝜑

uhPUM =
∑
i

𝜑i(x)

(∑
j

uij 𝛾j(x)

)
where

∑
i

𝜑i(x) = 1. (1)
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Combining customary FEA and PUM leads to generalised finite element method (GFEM)37 whose displacement field is

decomposed into standard and enhanced sections, Equation (2)

uh = uhstd + uhenh =
∑
i

𝜑std
i (x) ûi +

∑
i

𝜑enh
i (x)

(∑
j

ũij 𝛾j(x)

)
, (2)

where uh denote the approximated displacements, û and ũ are the standard and the enhanced displacements. The stan-

dard part governs the general boundary value problem estimated by the set of shape functions 𝝋std, and the enhanced

part approximates the set of enrichment functions 𝛾 by means of basis functions 𝝋enh. The local support of 𝝋enr enables

a local evaluation of 𝛾 , for instance a sharp gradient due to localisation.

To deal with cracks and voids, we adopt aHeaviside function(xn) for 𝜸with approximantswhich are locally enriched

in an extrinsic manner,34 and the method is called extended FEA. xn indicates the normal distance from crack. The

displacement field u for a cracked medium reads:

uh = ûh +Γd
(xn) ũ

h. (3)

This approach has been widely used in XFEM34–36 and proven accurate, efficient and robust for fracture analysis. Later,

it was incorporated in IGA context as eXtended IsoGeometric Analysis (XIGA).16,17,31–33

Now,we aim at expandingXIGA to use collocation. Consider the bodyΩ in Figure 1. In the absence of the acceleration,

the quasi-static total potential energy yields:

Ψpot =  int − ext =
1

2 ∫Ω

𝝈(u) ∶ 𝜺(u) dΩ − ∫Γt

t ⋅ u dΓ − ∫Ω

b ⋅ u dΩ (4)

with stresses, strains, prescribed tractions and body forces indicated by 𝜎 and 𝜖, t and b, respectively. Applying the

principle of virtual work, as a set of virtual displacement 𝛿u into Equation (4), leads to:

𝛿Ψpot = ∫Ω

𝝈(u) ∶ 𝛿𝜺(u) dΩ − ∫Γt

t ⋅ 𝛿u dΓ − ∫Ω

b ⋅ 𝛿u dΩ = 0, (5)

with the virtual displacements 𝛿u = 𝛿û +Γd
(xn) 𝛿ũ. The constitutive relationship between stress-strain is given as:

𝝈(u) = C 𝜺(u) = C 𝛁
su (6)

with 𝛁
s the symmetric gradient operator and C the elasticity matrix. Inserting Equation (6) into (5) gives:

F IGURE 1 Boundary value problem Ω with the discontinuity Γd and cohesive tractions td.
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𝛿Ψpot = ∫Ω

C 𝛁
su ∶

(
𝛁
s𝛿û +Γd

(xn) 𝛁
s𝛿ũ + 2𝛿Γd(xn) sym

(
𝛿ũ⊗ nΓd

))
dΩ − ∫Γt

t ⋅
(
𝛿û +Γd

(xn) 𝛿ũ
)
dΓ

− ∫Ω

b ⋅
(
𝛿û +Γd

(xn) 𝛿ũ
)
dΩ = 0.

(7)

where n□ denotes the vector normal to the respective boundary □ and sym(•) indicates the symmetric value of (•).

Utilising the identity ∫
Ω
𝛿Γd(xn) 𝜙(x) dΩ = ∫

Γd
𝜙(x) dΓ and further rewriting the ensuing term for Dirac-𝛿 at the boundary

Γd (discontinuity)

∫Ω

C 𝛁
su ∶ 𝛿Γd(xn) sym

(
𝛿ũ⊗ nΓd

)
dΩ = ∫Γd

(
𝝈 ⋅ nΓd

)
⋅ 𝛿ũ dΓ = ∫Γd

td ⋅ 𝛿ũ dΓ (8)

leads to

∫Ω

C 𝛁
su ∶ 𝛁

s𝛿û dΩ − ∫Γt

t ⋅ 𝛿û dΓ − ∫Ω

b ⋅ 𝛿û dΩ = 0, (9a)

∫Ω

C 𝛁
su ∶ Γd

(xn) 𝛁
s𝛿ũ dΩ + 2∫Γd

td ⋅ 𝛿ũ dΓ − ∫Γt

t ⋅Γd
(xn) 𝛿ũ dΓ − ∫Ω

b ⋅Γd
(xn) 𝛿ũ dΩ = 0 (9b)

for continuous and discontinuous fields, respectively.

2.1 Constitutive relation at the discontinuity

So far, the governing equations have been written in a general sense, where non-linear deformations and their gradients

form a zone at the vicinity of the crack tip. The size of the fracture process zone determines the strategy for a fracture

modelling that removes/retains td at Γd. The latter leads to a general case with a non-zero size of the fracture process

zone. We adopt the cohesive-zone model to account for the fracture process zone. The corresponding cohesive traction

law td reads:

td(⟦u⟧, 𝜅) = QT ⋅ tlocd (⟦u⟧, 𝜅), (10)

where ⟦u⟧ =
∑nenr

k=1
Nkũk denotes the displacement jump and 𝜅 indicates a history parameter. tloc

d
are the tractions in the

local coordinate system at the discontinuity, which are transferred into the global coordinate system through the rotation

matrix Q. The loading/unloading criterion is governed by a Kuhn–Tucker condition:

f = ⟦un⟧ or ⟦us⟧ − 𝜅 ≤ 0, 𝜅̇ ≥ 0, 𝜅̇ f = 0. (11)

Subscripts○s and○n denote the normal and tangential components of○, respectively.

3 EXTENDED ISOGEOMETRIC COLLOCATION METHOD

The set of equations in (9) denote the conventional weak form utilised in extended FEA. For the formulation of the

collocationmethodwe first integrate by parts and then apply divergence theorem for at leastC1-continuous approximants

(such as NURBS) to derive

∫Ω

C 𝛁
su ∶ 𝛁

s𝛿û dΩ = ∫Γt

(
C 𝛁

su ⋅ nΓt

)
⋅ 𝛿û dΓ − ∫Ω

div
(
C 𝛁

su
)
⋅ 𝛿û dΩ, (12a)

∫Ω

C 𝛁
su ∶ Γd

(xn) 𝛁
s𝛿ũ dΩ = ∫Γt

(
C 𝛁

su ⋅ nΓt

)
⋅Γd

(xn) 𝛿ũ dΓ − ∫Ω

div
(Γd

(xn) C 𝛁
su
)
⋅ 𝛿ũ dΩ, (12b)

where by definition div(•) = 𝛁
s
⋅ •. The identity div(□ ○⃗) = □ div(○⃗) + 𝛁□ ⋅ ○⃗ can be utilised to further expand the

last term in Equation (12b), where□ and ○⃗ denote the scalar and vector fields, respectively.
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∫Ω

div
(Γd

(xn) C 𝛁
su
)
⋅ 𝛿ũ dΩ = ∫Ω

div
(
C 𝛁

su
)
⋅Γd

(xn) 𝛿ũ dΩ + 2∫Ω

C 𝛁
su ⋅ 𝛿Γd(xn) sym

(
𝛿ũ⊗ nΓd

)
dΩ. (13)

Recalling the identity ∫
Ω
𝛿Γd (xn) 𝜙(x) dΩ = ∫

Γd
𝜙(x) dΓ, the variational forms of the elasto-static problem built for collo-

cation method read

−∫Ω

(
div

(
C 𝛁

su
)
+ b

)
⋅ 𝛿û dΩ + ∫Γt

(
C 𝛁

su ⋅ nΓt
− t

)
⋅ 𝛿û dΓ = 0, (14a)

−∫Ω

(
div

(
C 𝛁

su
)
+ b

)
⋅Γd

(xn) 𝛿ũ dΩ − 2∫Γd

(
C 𝛁

su ⋅ nΓd
− td

)
⋅ 𝛿ũ dΓ + ∫Γt

(
C 𝛁

su ⋅ nΓt
− t

)
⋅Γd

(xn) 𝛿ũ dΓ = 0.

(14b)

It is noted that we could achieve identical results from an interface crack viewpoint, see Appendix A.

3.1 Non-uniform rational B-splines

Herein, we adopt NURBS as weighted B-splines that are capable of accurately parametrising the geometry. A curve

can be expressed as a linear combination of NURBS basis functions, that map a parametric coordinate 𝜉 onto the

physical domain:

C(𝜉) =

nIGA∑
k=1

Rk(𝜉)Pk, (15)

where nIGA is the number of control points coordinates P. Weights w and the set of B-spline basis functions N, defined

recursively by the Cox–de Boor formula,2 form the NURBS shape functions:

Rk,p(𝜉) =
wkNk,p

W(𝜉)
, (16)

withW(𝜉) =
∑n

k=1Nk(𝜉)wk and p denoting the order of the underlying knot vector. Bézier extraction has been adopted to

provide an elementwise framework in compliance with standard finite element data-structures,38,39

Ne = Ce
. (17)

C is the Bézier extraction operator,32 and  is the set of Bernstein polynomials defined on [−1 1],

k,p(𝜉) =
1

2
(1 − 𝜉)k,p−1(𝜉) +

1

2
(1 + 𝜉)k−1,p−1(𝜉), (18a)

1,0(𝜉) ≡ 1, (18b)

k,p(𝜉) ≡ 0 if k < 1 or k > p + 1 , (18c)

and

Re(𝝃) = WeCe 
e
(𝝃)

W e(𝝃)
, (19)

whereWe is the diagonal matrix of weights. Generalisation to higher dimensions is possible via tensor products.

3.2 Discretised equations

We discretise the weak forms commensurate with the finite element data-structure, so that the domain Ω is subdivided

into non-overlapping smaller sections, called elements

Ω =

nelm⋃
e=1

Ωe, (20)
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where nelm denote the number of elements. We wish to explore different combinations of Galerkin and collocation

methods in order to find the best combination for the extended isogeometric collocation method. As noted before, imple-

mentation of Neumann boundary conditions can give rise to the oscillatory response in some spatial discretisations. The

local use of Galerkin method has been proven an effective remedy,26 which we therefore employ at Neumann and other

external boundaries.

In order to utilise Equation (2) in the extended isogeometric collocation method, test and weight functions have been

chosen commensurate with the functionality of the proposed hybrid Galerkin-collocation method at different locations.

Particularly, we use the sifting property of the Dirac-𝛿 for the collocation points 𝜏col:

∫Ω

𝜙(x) 𝛿Dirac(x − x∗) dΩ = 𝜙(x∗) ∀x∗ ∈ 𝜏Col. (21)

For internal boundaries such as cracks, theHeaviside function in the enhanced term violates the requirement of the sifting

property that 𝜙(x) is continuous. Therefore, we must use a Galerkin method at the vicinity of the crack. This is unlike

phase-field representation of isogeometric collocation method where the discontinuity is approximated by a continuous

exponential decay, so that the sifting property can be used. Yet, oscillations have been reported at the vicinity of the

crack when collocation method is used near the crack.28 Unsurprisingly, the Galerkin method mitigates the issue for a

phase-field model.28

Inserting NURBS basis functions for the Galerkin method that is used at external/internal boundaries yields

𝛿ûh =

k∑
i=1

Ri(x) 𝛿ûi +
n∑

i=k+1

𝛿Dirac
(
x − x∗i

)
𝛿ûi, ûh =

n∑
j=1

Rj(x) ûj,

𝛿ũh =

nenr∑
i=1

Ri(x) 𝛿ũi, ũh =

nenr∑
j=1

Rj(x) ũj.

(22)

The external and the internal forces read:

fextû∗ =

nelm⋃
e=1

[
∫Ω

RT(x) b(x) dΩ + b(x∗)

]e
, fextũ∗ =

nelm⋃
e=1

[
∫Ω

(
Renr

)T
(x) b(x) dΩ

]e
,

x∗ ⊂ 𝜏col ⊂ Ω

x ⊂ Ω
, (23a)

fextũ = 0, x ⊂ Γd, (23b)

fextû =

nelm⋃
e=1

[
∫Γt

RT(x) t(x) dΓ + t(x∗)

]e
, fextũ =

nelm⋃
e=1

[
∫Γt

(
Renr

)T
(x) t(x) dΓ

]e
,

x∗ ⊂ 𝜏col ⊂ Γt

x ⊂ Γt
, (23c)

and

fintû =

nelm⋃
e=1

[
∫Ω

RT(x) HR(x) u dΩ + HR(x∗) u

]e
, fintũ =

nelm⋃
e=1

[
∫Ω

(
Renr

)T
(x) HR(x) u dΩ

]e
,

x∗ ⊂ 𝜏col ⊂ Ω

x ⊂ Ω
, (24a)

fintũ =

nelm⋃
e=1

[
2∫Γd

(
RT(x) nT

Γd
DR(x) ũ − RT td(x)

)
dΓ

]e
, x ⊂ Γd, (24b)

fintû =

nelm⋃
e=1

[
∫Γt

RT
n
T
Γd

DR(x) u dΓ + nT
Γd

DR(x∗) u

]e
, fintũ =

nelm⋃
e=1

[
∫Γt

(
Renr

)T
(x) nT

Γd
DR(x∗) u dΓ

]e
,

x∗ ⊂ 𝜏col ⊂ Γt

x ⊂ Γt
,

(24c)

where

n
T
Γd

=

[(
nΓd

)
x

0
(
nΓd

)
y

0
(
nΓd

)
y

(
nΓd

)
x

]
, (25)

and

[•]enr = Γd
(x) [•]. (26)
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DR and HR indicate the first and the second derivative operators of basis functions.

The linearised discrete equations for a Newton–Raphson solver read:

[
KΩ
ûû +K

Γt
ûû

KΩ
ûũ +K

Γt
ûũ

KΩ
ũû +K

Γt
ũû

KΩ
ũũ +K

Γt
ũũ +K

Γd
ũũ

][
Δû

Δũ

]
=

[
fextû

fextũ

]
−

[
fintû

fintũ

]
. (27)

It is noteworthy that the stiffness matrix is generally asymmetric,6 different from the more traditional extended FEA.

Derivative operators and tangent terms of Equation (27) are given in the Appendix.

4 IMPLEMENTATION ASPECTS

Compatibility enforcement, that is, localising the discontinuous enhanced terms in a narrow region around the crack

path, is imperative in extended FEA.However, the support overlap of NURBS basis functions impedes a complete removal

of the enhanced term at locations other than cracked elements. Nevertheless, compatibility enforcement narrows it down

to a small region around the crack, reducing the error to a sufficiently narrow band, which can be further reduced with

mesh refinement.16 Moreover, the higher-order continuity of NURBS (p p > 0) complicates the enrichment scheme

during crack propagation. In this section, we discuss remedies and implementation aspects.

4.1 Collocated evaluations and numerical integration

Motivated by previous studies on collocation IGA,21,22,26,28 we adopt Greville abscissae40 that are constructed on a

univariate knot vector of degree p:

xI =
𝜉I+1 + 𝜉I+2 + · · · + 𝜉I+p

p
I = 1 … m, (28)

wherem is the number of basis functions. It is noted that in the context of IGA these points can play the role of collocation

points as well.41 Greville points have a bijective relation with control points, that is, there is a one-to-one correspondence

between Greville points and control points.

For extended FEA, however, the additional enhanced term is locally involved in approximating the solutionwithin the

cracked element. To properly represent the discontinuity in the cracked element, it is necessary that a sufficient number

of quadrature points are provided at sections divided by the crack.35 Therefore, regardless of the approximants, Lagrange

polynomials35 or NURBS,32 we use Gaussian quadrature for approximating the discontinuity. Hence, we adopt Greville

points to evaluate the collocation method, and Gauss-quadrature where we switch to Galerkin method.

4.2 Enrichment of individual points

Since the Galerkin method is adopted at the vicinity of the crack, as well as at external boundaries, we can identically use

the enrichment strategy prescribed inXIGA.16,32Hence, points at, or in front of the crack tip are not enriched.Disregarding

this would lead to an incorrect solution for cohesive fracture when adopting relatively coarse meshes.32 The front is usu-

ally defined in either of twoways, bymeans of a tangential level-set33 or the elementwise approach.16,32 These approaches

lead to very similar results,17 at least for a small displacement gradient regime. Herein, we adopt an elementwise

propagation.32

We illustrate the enrichment strategy for quadratic and quartic NURBS in Figure 2. Collocation and Galerkin points

are shown for standard and enhanced fields, separately. We consider two scenarios to find the best approach, namely:

Hybrid Collocation-Galerkin approach (HCG), and HCG approach augmented with extra Galerkin in the standard field

(HCXG). For comparison purposes a fully Galerkin method (GLK) is also considered. Figure 2 illustrates the enrichment

scheme for HCG (A and B) and HCXG (C and D), while GLK enrichment is identical to that of HCXG with all Galerkin

points in the standard field.
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8 of 20 FATHI et al.

F IGURE 2 Quadratic and quartic NURBS enrichments illustrated for hybrid collocation-Galerkin (HCG) in A and B, and hybrid

collocation-extra-Galerkin (HCXG) illustrated in C and D. The crack is located at the centre of a seven-element one-dimensional problem.

For HCG, collocation is utilised at interior Greville points only, while Galerkin method is adopted at boundaries and for the enhanced field.

In HCXG, however, the Galerkin method is also used for the interior points of the standard field, those corresponding to the points of the

enhanced field.

F IGURE 3 Shifting technique for a seven-element rectangular domain that is cracked at the centre. A quadratic NURBS is adopted

here. The shifted Heaviside domain is extended to elements adjacent to the cracked. Yet, the domain is still narrower than natural support of

enriched points. Enriched control points are indicated by red asterisks.

4.3 Compatibility enforcement

In order to remove the undesired effect of the discontinuous (enhanced) field in front of the crack tip, we employ a

blending technique by an extra Heaviside step functionBl
Γd
. We adopt a shifting technique35,36 to localise the effect of the

discontinuity normal to the crack path. This technique has been successfully tested for XIGA.32,33 While domain excess

of the shifted Heaviside function from the cracked element is inevitable, shifting reduces the support of NURBS basis

functions by confining the Heaviside term, as observed in Figure 3:

[•]enr = Bl
Γd
(xs)

(Γd
(xn) −Γd

(
xjn

))
[•]j j = 1 … neenr, (29)
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FATHI et al. 9 of 20

where Bl
Γd
(xs) denotes the blending function on the tangential distance of the integration point xs. n

e
enr is the number

of enriched points of the element under consideration. The shifted Heaviside function reads Γd
(xn) −Γd

(
xjn

)
which

mitigates the domain excess of the enhanced term normal to the crack path.32,33 xjn is the normal distance of jth enriched

control point of the element. The extent of the shifted domain (i.e., the enriched field) depends on the continuity-order

of the NURBS utilised; for instance, 3 elements for quadratic and cubic, and 5 elements for quartic and quintic NURBS.32

Finally, Equation (26) is substituted for Equation (29). It is noteworthy that a simple shifting technique successfully con-

fines the enhanced terms to the cracked element within XFEM due to the 0-continuity of Lagrange polynomials across
element boundaries.

4.4 Direction of crack extension

While IGA improves the stress distribution in general, the local oscillations of stresses around the crack tip cannot

be completely avoided. This is important for progressing fractures, where the crack extension is determined by the

state of the stress at the crack tip. This calls for a smoothing scheme to better evaluate the crack propagation cri-

terion. Here, we adopt a non-local approach42 in the form of a Gaussian weight function similar to what utilised

in XIGA.32 The propagation criterion compares the equivalent traction with the fracture strength at the extension

direction. Crack nucleation occurs upon satisfying this criterion at certain number of evaluation points along the

extension path.

5 NUMERICAL EXAMPLES AND DISCUSSION

We assess the efficacy of the formulation under a wide range of examples. Mode-I fracture is assumed through-

out this section. Note that we only examine quadratic (p = 2) and quartic (p = 4) NURBS due to the fact that even

polynomial-degrees return (p) while odd polynomial-degrees lead to (p − 1) rate of convergence based on H1

semi-norm error.21,22,28 By definition, L2 norm and H1 semi-norm errors read:

eL2 =

(
∫Ω

(
uh − uexct

)2
dΩ

) 1

2

eH1 =

(
∫Ω

(
𝜕uh

𝜕x
−

𝜕uexct
𝜕x

)2

dΩ

) 1

2

. (30)

5.1 One-dimensional bar

We first assess the formulations for a one-dimensional problem, namely a bar subjected to a sinusoidal load, see Figure 4.

Since there are only Dirichlet boundary conditions for this problem, the comparison is between a pure collocation and a

fully Galerkin method.

F IGURE 4 One dimensional (left) intact bar and (right) cracked bar subjected to sinusoidal load.
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10 of 20 FATHI et al.

F IGURE 5 Comparison between pure collocation and fully Galerkin methods for an intact bar. Quadratic and quartic NURBS have

been examined for L2 norm (A and B) and H1 semi-norm (C and D) errors.

5.1.1 Intact bar

We first examine an undamaged bar in Figure 4 with Young’s modulus E = 1 and the cross-section area A = 1. The exact

solution reads:

uexct =
1

𝜋2
sin(𝜋x), 𝜎exct =

1

𝜋
cos(𝜋x). (31)

Figure 5 shows the L2 norm andH1 semi-norm errors for quadratic and quartic NURBS for pure collocation and for a fully

Galerkin method, respectively. As expected, the Galerkin method leads to lower per-degree-of-freedom errors, at the cost

of a higher computational cost in comparison with collocation methods. Owing to the discrete fracture model adopted

in this article, even the smallest values for degrees of freedom (DOFs) lead to results within accepted error range, while

much bigger values of DOFs has been reported for phase-field models28 due to the smeared nature of the approach.

5.1.2 Fractured bar

Now we place a traction-free crack at the middle of the bar, see Figure 4. A comparison between the proposed hybrid

approaches, HCG and HCXG, and the fully Galerkin approach (GLK) is nowmade. Evaluations are done for the L2 norm

and H1 semi-norm errors.

Figure 6 gives the comparison between HCG and HCXG (Figure 6A,C). For quadratic functions, the performances

are close except for the very beginning of HCXG for L2 norm error. This part of the graph corresponds to very few DOFs

and, consequently, a response dominated by Galerkin section of the hybrid approach. This is confirmed by Figure 6B,D,

where the blue curves intersect at the very beginning, that is, the fully Galerkin method (GLK) matches with HCXG. For

quartic functions (red curves in Figure 6A,C), however, there is an obvious difference at the end of the red curves, where

HCXG outperforms HCG. In a comparison between quadratic and quartic functions it is evident that quartic functions

return smaller errors for both HCG and HCXG, with an exception for the beginning of L2 norm, where the red and the

blue curves intersect. A similar behaviour is observed for GLK (solid lines in Figure 6B). Next, we compare GLK and
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F IGURE 6 L2 norm and H1 semi-norm errors illustrated for hybrid collocation-Galerkin (HCG), hybrid collocation-extra-Galerkin

(HCXG) and Galerkin (GLK) approaches. Quadratic and quartic NURBS have been examined.

HCXG in Figure 6B,D. As expected GLK exhibits a lower error in the L2 norm andH1 semi-norms at the expense of higher

computational cost. The cost is a crucial issue when moving to higher dimensions, or to fine discretisations necessary to

properly model crack propagation. We observe that HCXG quadratic NURBS returns a convergence slope smaller than 4,

which holds for GLK.

The overall displacements u and their constituents, û and ũ, are shown in Figures 7 and 8, respectively. A good

agreement is observed betweenHCG,HCXGandGLK,while differences aremore significant for the error representations,

Figure 6. The stresses are another good measure of the differences between the approaches, as illustrated in Figure 9

for 11 and 21 elements. The results for quartic functions show an excellent agreement between the approaches for both

discretisations, but those for quadratic functions are slightly poorer for 11 elements near the boundaries.

So far, we have examined all the possibilities of a blend between collocation and Galerkin methods. We now continue

with fully Galerkin (GLK) and hybrid collocation-extra-Galerkin (HCXG) approaches. Especially since evaluating cohe-

sive terms for collocation, particularly Equation (24b), necessitates that some collocation points are located at the crack

path. Abiding to this requirement implies an order reduction in isogeometric analysis43 which is equivalent to chang-

ing the discretisation to accommodate the crack path, for example, interface element approach.44–46 This is, however,

in contrast with the nature of PUM that decouples crack path from the underlying discretisation. Therefore, adopt-

ing a Galerkin form for the cracked element in both the standard and the enhanced field, as in the HCXG approach,

removes such a complication. Finally, HCXG is closer to the idea that different orders for the standard and the enhanced

terms must be avoided for XIGA.31,32 The only exception is blending IGA with local maximum entropy (LME)33 for the

standard and the enhanced fields, respectively, since the ∞-continuity of LME provides a flexibility that matches any

NURBS order.33

5.2 Two-dimensional uniform tension test

The cohesive-zone model is now applied to a uniform tension test, see Figure 10. The crack is located at the centre of

the plate and displacements are uniformly applied at the top and the bottom edges in opposite directions. The material
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F IGURE 7 Displacement comparison for Galerkin (GLK), hybrid collocation-Galerkin (HCG) and hybrid collocation-extra-Galerkin

(HCXG). Discretisations of 11 (A and B) and 21 elements (C and D) are illustrated.

F IGURE 8 Displacements of the standard and the enhanced fields are compared for GLK, HCG and HCXG. Discretisations of 11 (A, B,

E, and F) and 21 elements (C, D, G, and H) are illustrated.
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F IGURE 9 Stress comparison for Galerkin (GLK), hybrid collocation-Galerkin (HCG) and hybrid collocation-extra-Galerkin (HCXG).

Results for discretisations of 11 (A and B) and 21 elements (C and D), respectively.

F IGURE 10 Cohesive fracture assessed in a uniform tension test. The enriched points (denoted in green) are illustrated for quadratic

and quartic NURBS. Displacement contour and graph are also presented confirming the uniform opening and deformation at the presence of

the non-zero Poisson’s ratio. ū, ⟦u⟧, f, td denote prescribed displacement, displacement jump, force and cohesive traction, respectively.
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properties read: Young’s modulus E = 100 MPa; Poisson’s ratio 𝜈 = 0.3; fracture strength tu = 1 MPa; fracture energy

f = 0.1N/mm. The objective is to assess the evaluation of the governing equations in the presence of a non-zero Poisson’s

ratio and the integral terms at boundaries that are absent in standard FEA (see Γt integral terms in Equation (14)). Uni-

form opening and deformation similar to those in a one-dimensional problem are shown in Figure 10 which visually

confirms the correct implementation. Quantitative assessments are made through two relative error measures. For an

elastic material the behaviour of the structure can be related to the traction-opening relationship at the crack location

as follows:

Relative error 1 =
||2 ∫ f dū − ∫ td d⟦u⟧||

|| ∫ td d⟦u⟧|| × 100.

The factor 2 denotes that the jump at the discontinuity is twice the displacement at the loading boundaries. The fracture

energy also correlates with the behaviour of the structure:

Relative error 2 =
||2 ∫ f du − f ||

f × 100.

This is a more strict criterion as it compares the numerical results with an absolute value of an input.

An exponential decay is adopted for the traction-opening relationship at the discontinuity

tlocd = tu exp

(
−
tu
f 𝜿

)
. (32)

Two discretisations (5 and 21 elements, respectively) are examined. The results for quadratic and quartic NURBS

have been plotted in Figure 11 and the errors have been presented in Table 1 for a better comparison. For the coarse

mesh, GLK and XICM perform poorly for quadratic NURBS (errors > 10%), while quartic NURBS slightly improves

the results (errors ≈ 7%–8%). For the fine mesh, however, GLK and XICM yield good results (errors ≤ 2%). For

the more strict criterion, that is, relative error 2, XICM equals or exceeds GLK, with computational cost less than

those of GLK or XIGA.

F IGURE 11 Exponential cohesive law for uniform tension test. Force-displacement and traction-opening graphs are shown in left and

right hand side boxes, respectively. Extended isogeometric analysis (XIGA), Galerkin (GLK) and extended isogeometric collocation method

(XICM) are compared for quadratic and quartic NURBS. Two discretisations have been examined, coarse (5 elements) and fine (21 elements)

meshes.
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TABLE 1 Comparison of released energy: Galerkin (GLK), extended isogeometric collocation method (XICM) and extended

isogeometric analysis (XIGA) for an exponential traction-opening relation.

NURBS Value/relative error

Coarse mesh Fine mesh

GLK XICM XIGA GLK XICM XIGA

Quadratics Value (N mm−1) 0.0813 0.0813 0.0984 0.0979 0.0979 0.0983

Rel. error 1 (%) 14.8 14.9 0.3 0.3 0.3 0.0

Rel. error 2 (%) 18.7 18.7 1.6 2.1 2.1 1.7

Quartics Value (N mm−1) 0.0922 0.0922 0.0984 0.0988 0.0996 0.0984

Rel. error 1 (%) 8.1 8.1 0.3 1.0 1.6 0.3

Rel. error 2 (%) 7.8 7.8 1.6 1.2 0.4 1.6

Note: Computations are done for coarse (5 elements) and fine (21 elements) discretisations.

5.3 Fracturing: Single edge notched test

An assessment for a case with crack propagation completes the numerical investigations. A single-edge notched

specimen is considered, see Figure 12. The geometry is discretised with 1740 (60 × 29) elements and quar-

tic NURBS are adopted. The Greville abscissae are drawn in orange while the Galerkin method is evaluated

at the green points, see Figure 12B. An exponential decay is adopted for the cohesive zone modelling at the

crack location, and the material properties read: Young’s modulus E = 210 GPa; Poisson’s ratio 𝜈 = 0.3; frac-

ture strength tu = 2.5 GPa; fracture energy f = 2.7 N/mm. The prescribed displacements at the top are applied

incrementally:

{
Δu = 5.625 × 10−4 if u ≤ 4.5 × 10−3

Δu = 8.333 × 10−5 if u > 4.5 × 10−3.

The Galerkin method is adopted at all external boundaries regardless of the type. A full Galerkin method (GLK)

will not be examined in this example as it is computationally more expensive than XIGA due to the integral terms

at boundaries that are absent in a customary weak form. Hence, XICM is compared with XIGA by quantifying

errors with respect to the energy dissipated by fracturing. The mechanical response of the structure is shown in

Figure 12C. Despite slight differences at the peaks, similar patterns are observed for XICM and XIGA. To quantify the

differences, the energy dissipated for fracturing is evaluated by computing the area below the structural behaviour,

that is, force-displacement curve in Figure 12C, and is compared with f × lcrk where lcrk denotes the crack-path

length. Errors of 3% and 1.3% result for XIGA and XICM, showing that XICM is competitive with respect to other

approaches. Displacements and stress values are reported in Figure 12D. Finally, it is recalled that the compari-

son is made between two naturally different approaches, a collocation method corrected with Galerkin at certain

locations (XICM) and a standard finite element Galerkin method (XIGA). Yet, the errors of the two approaches

remain close.

It is worth comparing the computational cost between XICM and XIGA by correlating the cost for the assem-

bly of each approach with the number of evaluation points, similar to the isogeometric collocation for phase-field

fracture models.28 We used (p + 1) × (p + 1) Gauss points for XIGA, resulting in a symmetric stiffness matrix. On

the other hand, forming the asymmetric stiffness matrix for XICM requires consideration of both integration and

collocation points, given its hybrid nature. We adopted (p + 1) × (p + 1) Gauss points for Galerkin method used in

XICM, for instance at the boundaries and the vicinity of the crack, and collocated XICM is evaluated at collocation

points only. The total number of evaluation points for XIGA is 43,500, while only 9432 points are used for XICM,

representing a reduction of approximately 78% in the number of evaluation points with XICM. It is noted that the

comparison pertains to the initial configuration of the problem, as the use of Galerkin method extends with the

crack propagation.
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F IGURE 12 Single-edge notched specimen under tension test. The geometry and the special discretisation are shown in A and B,

respectively. Orange points denote Greville abscissae for collocation method, and green ones indicate control points that Galerkin method is

utilised for. The force-displacement response is illustrated in C while the displacements in - and -directions along with the normal
stresses in -direction, which correspond to the last values reported for each approach in the force-displacement curve, are presented in D.

6 CONCLUDING REMARKS

Collocation has been cast in the format of a partition-of-unity method for fracture analysis. Isogeometric analysis, using

NURBS, has been adopted to handle the higher-order derivatives present in the strong form. In this article, the variational

weak forms have been cast in the strong form by means of the Dirac-𝛿 function. However, the discontinuous Heaviside

function utilised for the discrete fracture model violates the requirement that the integrand of the Dirac-𝛿 term is con-

tinuous. Local use of Galerkin method in the vicinity of the crack, as well as at Neumann boundary conditions, has been

successful in stabilising the solution. The present approach compares favourably with respect to phase-field models as

(i) it better supports coarse meshes due to the discrete nature, (ii) it leads to a lower computational cost owing to coarser

discretisations, and (iii) it handles cohesive-zone models naturally. Additional techniques have been adopted to render

the discontinuous enhanced term compatible with the standard field, that is, shifting and blending.

A range of examples has been investigated in this article. First, a bar subjected to a sinusoidal load has been examined

with and without a crack. The former compares a pure collocation with a fully Galerkin method (GLK). For the cracked

bar, however, a pure collocation is invalid since the sifting property of the Dirac-𝛿 is only valid for continuous integrands,

while the Heaviside function violates this. Therefore, a Galerkin method is exploited locally to remedy deficiencies of
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the collocation method, for example, at cracks and at Neumann boundaries. Next, we have examined adding cohesive

tractions to the crack in a two-dimensional uniform tension test. Finally, crack propagation has been modelled and the

performance of XICM versus XIGA has been assessed. The numerical tests show that XICM is competitive with respect

to other approaches for fracture analysis.

An important application for XICM are PINNs, to which collocation is central. Since PINNs use pure collocation,

local amendments must be considered to enable discrete fracture simulation. Alternatively, moving to weak forms, some

variants of PINNs can also resolve the issue. For instance, variational- and variational energy-PINNs are candidates for

simulating fracture propagation with deep learning techniques.
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APPENDIX A. ANOTHER DERIVATION OF EXTENDED ISOGEOMETRIC COLLOCATION

FORMULA

We can also derive Equations (14a) and (14b) by considering the discontinuity as an interface crack. First, we focus on

the internal forces in weak forms, the first terms in Equations (9a) and (9b). Integrating by part

∫Ω

C 𝛁
su ∶ 𝛁

s𝛿û dΩ = ∫Ω

div
(
C 𝛁

su ⋅ 𝛿û
)
dΩ − ∫Ω

div
(
C 𝛁

su
)
⋅ 𝛿û dΩ, (A1a)

∫Ω

C 𝛁
su ∶ Γd

(xn) 𝛁
s𝛿ũ dΩ = ∫Ω

div
(
C 𝛁

su ⋅Γd
(xn) 𝛿ũ

)
dΩ − ∫Ω

div
(Γd

(xn) C 𝛁
su
)
⋅ 𝛿ũ dΩ. (A1b)
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F IGURE A1 Divergence theorem in the context of PUM. The original problem is decoupled into continuous and discontinuous parts,

which is in line with the decomposition of governing equations.

Applying the divergence theorem to the first term of the right-hand side in Equation (A1a) and adding external terms

of the continuous problem yields:

−∫Ω

(
div

(
C 𝛁

su
)
+ b

)
⋅ 𝛿û dΩ + ∫Γt

(
C 𝛁

su ⋅ nΓt
− t

)
⋅ 𝛿û dΓ = 0. (A2)

For the discontinuous problem in Equation (A1b), we divide the object into two separate bodies

Ω = Ω− + Ω+, Γt = Γ−
t + Γ+

t and Γd = Γ−
d + Γ+

d
, see Figure A1. Next, we apply the divergence theorem

on each body

∫Ω−

div
(
C∇su ⋅Γd

(xn) 𝛿ũ
)
dΩ = ∫Γ−

t

(
C∇su ⋅Γd

(xn) 𝛿ũ
)
⋅ nΓ−

t
dΓ + ∫Γ−

d

(
C∇su ⋅−

Γd
(xn) 𝛿ũ

)
⋅ nΓ−

d
dΓ (A3)

and

∫Ω+

div
(
C∇su ⋅Γd

(xn) 𝛿ũ
)
dΩ = ∫Γ+

t

(
C∇su ⋅Γd

(xn) 𝛿ũ
)
⋅ nΓ+

t
dΓ + ∫Γ+

d

(
C∇su ⋅+

Γd
(xn) 𝛿ũ

)
⋅ nΓ+

d
dΓ. (A4)

Adding Equations (A3) and (A4) and setting nΓd
= nΓ−

d
= −nΓ+

d
and+

Γd
= −−

Γd
= 1 yields

∫Ω

div
(
C∇su ⋅Γd

(xn) 𝛿ũ
)
dΩ = ∫Γt

(
C∇su ⋅Γd

(xn) 𝛿ũ
)
⋅ nΓt

dΓ − 2∫Γd

(
C∇su 𝛿ũ

)
⋅ nΓd

dΓ. (A5)

By adding external terms of the discontinuous problem,

−∫Ω

(
div

(
C 𝛁

su
)
+ b

)
⋅Γd

(xn) 𝛿ũ dΩ − 2∫Γd

(
C 𝛁

su ⋅ nΓd
− td

)
⋅ 𝛿ũ dΓ + ∫Γt

(
C 𝛁

su ⋅ nΓt
− t

)
⋅Γd

(xn) 𝛿ũ dΓ = 0,

(A6)

results.

Newly derived Equations (A2) and (A6) are identical to those in Equations (14a) and (14b).
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APPENDIX B. DERIVATIVE OPERATORS

Differential operators used in this article are defined as follows:

DR(x∗) =

⎡
⎢⎢⎢⎢⎣

C11
𝜕Rj

𝜕x
+ C13

𝜕Rj

𝜕y
C12

𝜕Rj

𝜕y
+ C13

𝜕Rj

𝜕x

C21
𝜕Rj

𝜕x
+ C23

𝜕Rj

𝜕y
C22

𝜕Rj

𝜕y
+ C23

𝜕Rj

𝜕x

C31
𝜕Rj

𝜕x
+ C33

𝜕Rj

𝜕y
C32

𝜕Rj

𝜕y
+ C33

𝜕Rj

𝜕x

⎤
⎥⎥⎥⎥⎦
, (B1)

HR(x∗) =
⎡⎢⎢⎣
C11

𝜕2Rj

𝜕x2
+ C31

𝜕2Rj

𝜕y 𝜕x
+ C13

𝜕2Rj

𝜕x 𝜕y
+ C33

𝜕2Rj

𝜕y2
C12

𝜕2Rj

𝜕x 𝜕y
+ C32

𝜕2Rj

𝜕y2
+ C13

𝜕2Rj

𝜕x2
+ C33

𝜕2Rj

𝜕y 𝜕x

C21
𝜕2Rj

𝜕y 𝜕x
+ C31

𝜕2Rj

𝜕x2
+ C23

𝜕2Rj

𝜕y2
+ C33

𝜕2Rj

𝜕x 𝜕y
C22

𝜕2Rj

𝜕y2
+ C32

𝜕2Rj

𝜕x 𝜕y
+ C23

𝜕2Rj

𝜕y 𝜕x
+ C33

𝜕2Rj

𝜕x2

⎤⎥⎥⎦
. (B2)

APPENDIX C. TANGENTIAL STIFFNESS MATRICES

The linearised tangential stiffness matrix reads

KΩ
ûû =

𝜕fintû
𝜕û

=

nelm⋃
e=1

[
∫Ω

RT(x) HR(x) dΩ + HR(x∗)

]e
, (C1a)

KΩ
ûũ =

𝜕fintû
𝜕ũ

=

nelm⋃
e=1

[
∫Ω

RT(x) HRenr(x) dΩ

]e
, (C1b)

KΩ
ũû =

𝜕fintũ
𝜕û

=

nelm⋃
e=1

[
∫Ω

(
Renr

)T
(x) HR(x) dΩ

]e
, (C1c)

KΩ
ũũ =

𝜕fintũ
𝜕ũ

=

nelm⋃
e=1

[
∫Ω

(
Renr

)T
(x) HRenr(x) dΩ

]e
, (C1d)

with x∗ ⊂ 𝜏Col ⊂ Ω and x ∈ Ω. For the internal boundary Γd

K
Γd
ũũ =

𝜕fintũ
𝜕ũ

=

nelm⋃
e=1

[
2∫Γd

(
RT
n
T
Γd

DR(x) − RT 𝜕td
𝜕ũ

)
dΓ

]e
. (C2)

The tangent matrices for Γt yield

K
Γt
ûû

=
𝜕fintû
𝜕û

=

nelm⋃
e=1

[
∫Γt

RT
n
T
Γd

DR(x) dΓ + nT
Γd

DR(x∗)

]e
, (C3a)

K
Γt
ûũ

=
𝜕fintû
𝜕ũ

=

nelm⋃
e=1

[
∫Γt

RT
n
T
Γd

DRenr(x) dΓ

]e
, (C3b)

K
Γt
ũû

=
𝜕fintũ
𝜕û

=

nelm⋃
e=1

[
∫Γt

(
Renr

)T
(x) nT

Γd
DR(x) dΓ

]e
, (C3c)

K
Γt
ũũ =

𝜕fintũ
𝜕ũ

=

nelm⋃
e=1

[
∫Γt

(
Renr

)T
(x) nT

Γd
DRenr(x) dΓ

]e
. (C3d)

with x∗ ⊂ 𝜏Col ⊂ Γt and x ∈ Γt.
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