
This is a repository copy of Bioinformatics analysis of the potentially functional circRNA-
miRNA-mRNA network in breast cancer.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/211659/

Version: Published Version

Article:

Erdogan, C. orcid.org/0000-0001-5495-7754, Suer, I. orcid.org/0000-0003-1954-4190, 
Kaya, M. et al. (3 more authors) (2024) Bioinformatics analysis of the potentially functional 
circRNA-miRNA-mRNA network in breast cancer. PLOS ONE, 19 (4). e0301995. ISSN 
1932-6203 

https://doi.org/10.1371/journal.pone.0301995

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



RESEARCH ARTICLE

Bioinformatics analysis of the potentially
functional circRNA-miRNA-mRNA network in
breast cancer

Cihat ErdoganID
1☯, Ilknur SuerID

2,3☯, Murat Kaya3☯, Sukru OzturkID
3, Nizamettin Aydin4,

Zeyneb KurtID
5*

1 Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis,
Indiana, United States of America, 2 Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul

University, Istanbul, Turkey, 3 Department of Internal Medicine, Division of Medical Genetics, Istanbul
Faculty of Medicine, Istanbul University, Istanbul, Turkey, 4 Department of Computer Engineering, Faculty of

Computer and Informatics, Istanbul Technical University, Istanbul, Turkey, 5 Information School, The
University of Sheffield, Sheffield, United Kingdom

☯ These authors contributed equally to this work.
* z.kurt@sheffield.ac.uk

Abstract

Breast cancer (BC) is the most common cancer among women with high morbidity and mor-

tality. Therefore, new research is still needed for biomarker detection. GSE101124 and

GSE182471 datasets were obtained from the Gene Expression Omnibus (GEO) database

to evaluate differentially expressed circular RNAs (circRNAs). The Cancer Genome Atlas

(TCGA) and Molecular Taxonomy of Breast Cancer International Consortium (METABRIC)

databases were used to identify the significantly dysregulated microRNAs (miRNAs) and

genes considering the Prediction Analysis of Microarray classification (PAM50). The cir-

cRNA-miRNA-mRNA relationship was investigated using the Cancer-Specific CircRNA,

miRDB, miRTarBase, and miRWalk databases. The circRNA–miRNA–mRNA regulatory

network was annotated using Gene Ontology (GO) analysis and Kyoto Encyclopedia of

Genes and Genomes (KEGG) pathway database. The protein-protein interaction network

was constructed by the STRING database and visualized by the Cytoscape tool. Then, raw

miRNA data and genes were filtered using some selection criteria according to a specific

expression level in PAM50 subgroups. A bottleneck method was utilized to obtain highly

interacted hub genes using cytoHubba Cytoscape plugin. The Disease-Free Survival and

Overall Survival analysis were performed for these hub genes, which are detected within the

miRNA and circRNA axis in our study. We identified three circRNAs, three miRNAs, and

eighteen candidate target genes that may play an important role in BC. In addition, it has

been determined that these molecules can be useful in the classification of BC, especially in

determining the basal-like breast cancer (BLBC) subtype. We conclude that hsa_-

circ_0000515/miR-486-5p/SDC1 axis may be an important biomarker candidate in distin-

guishing patients in the BLBC subgroup of BC.
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1 Introduction

Breast cancer (BC) is a heterogeneous type of malignancy that occurs as a result of distinct

molecular alterations in breast tissue [1]. Circular RNAs (circRNAs) are evolutionarily con-

served and stable RNA regulators that can behave as microRNA (miRNA) sponges, regulate

alternative splicing mechanisms, and take an active role in the expression of the gene in which

they are encoded [2]. circRNAs have been shown to play crucial roles in the cell, and in recent

years this RNA class has been one of the most important research focuses, particularly in the

field of cancer [3]. It has been noted that biological processes in living cells would better be

modeled by networks since molecular phenotypes do not operate in isolation, instead their

interactions collectively carry out these processes [4]. Hence, a network representation can

provide a better understanding of the biological and molecular processes beyond analyzing a

single molecule or gene, for instance identified from differentially expressed gene analyses. It

is expected that identifying circRNA-miRNA-mRNA connections will be essential in explain-

ing the molecular processes of numerous illnesses, detecting biomarkers for early diagnosis,

and expanding therapy choices. A single miRNA has the capacity to target hundreds of genes,

while a single circRNA can serve as a sponge for dozens of miRNAs. Using bioinformatics

data to simplify the circRNA-miRNA-mRNA interactions, which are comprised of such com-

plicated processes, can shed light on in vitro and in vivo investigations. For example, in the

bioinformatics study of Liu et al [5], it was emphasized that hsa_circRNA_0003638may play a

role in the pathogenesis of atrial fibrillation by targeting the CXCR4 gene via hsa-miR-1207-

3p. Similarly, Hu et al [6] suggested that the interaction of hsa_circ_0009581/hsa-miR-150-5p,

and hsa_circ_0001947/hsa-miR-454-3pmay play a role in the AML cancer process. The precise

biological classification of the BC subtype is critical for predicting the disease’s progression.

Clinical management of BC is dependent on criteria such as tumor size, age, Estrogen (ER)

and Progesterone (PR) expression, and the presence or absence of amplification and concur-

rent enhanced Human epidermal growth factor receptor 2 (HER2) expression. However, these

indicators are currently insufficient for accurately categorizing individuals into sections with a

high or low risk of relapse, as well as identifying subgroups resistant to therapy [7]. Technolog-

ical breakthroughs in recent decades have enabled molecular classification based on distinct

global gene expression. mRNA expression patterns assessed using microarrays revealed that

BC had distinct intrinsic fingerprints that may be utilized to classify tumors into intrinsic

molecular subgroups [8–11]. Despite considerable advances in this field, there is still a need

for novel markers to refine categorization, particularly for some subtypes [7]. Studies on cir-

cRNA, which is a relatively new field of research area, and its relationship with BC subtypes

are still quite insufficient. The identification of new genes with variable expression across dif-

ferent types of BC, as well as the detection of miRNAs and circRNAs associated with these

genes, may be critical for cancer categorization and potential treatment. Therefore, in our

study we demonstrated the circRNA-miRNA-mRNA regulatory connections in BC subtypes

using various databases (S1 Table). The circRNAs were detected using the GSE101124 [12]

and GSE182471 [13] datasets. miRNAs with significantly altered expression in Prediction

Analysis of Microarray (PAM50) subtypes were identified using The Cancer Genome Atlas

(TCGA) and Molecular Taxonomy of Breast Cancer International Consortium (METABRIC)

datasets. The TCGA dataset was also used to identify genes with dramatically changed expres-

sions in BC. The circRNA-miRNA-mRNA relationship was investigated for each PAM50 sub-

type using the Cancer-Specific CircRNA (CSCD) [14],miRDB [15],miRWalk [16], and

miRTarBase [17] databases. Previously, overall BC-associated circRNA-miRNA-mRNA inter-

actions have been found out [18] but this was not investigated for different PAM50 subtypes

individually. Also, solely a single dataset for each molecular data type has been used previously.
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We identified those interactions for each PAM50 subtype using multiple datasets per data

type. Although the PAM50 subtyping was available for the miRNA and gene expression data-

sets, this information does not exist for the circRNA datasets. We have initiated our examina-

tion from the upper stream of the candidate circRNA-miRNA-mRNA axes and the PAM50

subtype-associated shortlisted molecules were mapped to the downstream until the subtype

information was not available any further. We have proceeded our further investigation and

in-silico confirmation for the differentially regulated miRNAs and genes that are shared across

all PAM50 subtypes with a further emphasize on implications of our findings on the basal-like

breast cancer (BLBC) molecular subtype since it is the most aggressive one among all with a

higher recurrence rate and poorer outcome for 5-year survival [19].

2 Materials andmethods

2.1 Differentially expression analysis of BC datasets

The circRNA, miRNA and mRNA expressions were analyzed using various databases and

datasets. The block diagram of our pipeline is illustrated in Fig 1.

2.1.1 circRNA expression. The circRNA expression profiles were gathered from the Gene

Expression Omnibus (GEO) database with an access code of GSE101124 [12] (the dataset

includes four BC cell samples, four triple negative breast cancer (TNBC) and four Luminal-A

(LumA) molecular subtype tissue samples and three non-tumoruos mammary gland tissue

samples) and GSE182471 [13] (the dataset includes five BC samples and five non-tumor sam-

ples). Four cancer cell lines in the GSE101124 dataset have been removed and the eight tumor-

ous and three non-tumorous tissue samples have been kept. Molecular subtypes of the samples

in the dataset GSE182471 were not annotated. Then, the differentially expressed circRNAs

(DECs) were identified by using the limma R package (v.3.46.0) with a p-value less than 0.05

and an absolute log2-transformed FC (fold change) value of�1.

2.1.2 miRNA and mRNA expression. The miRNA and mRNA expression data as well as

meta-data of the samples were downloaded from the TCGA database [20]. The TCGA dataset

contains alterations in miRNA and mRNA expressions from 901 BC samples (162 basal-like,

73 HER2-positive, 455 Luminal A, 178 Luminal B, 33 normal-like) and 112 control samples.

Fig 1. The steps of the BC PAM50 subtype analysis. The miRNA–mRNA interactions were estimated withmirDB (v6),miRTarBase (Release
8.0), andmiRWalk (v3). DE: Differentially expressed, CSCD (v2.0): The Cancer-specific circRNAs database, BC: Breast cancer, FC: Fold
change, log: logarithm base 2.

https://doi.org/10.1371/journal.pone.0301995.g001
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Also, the METABRIC (University of Cambridge) dataset [21] was obtained from the European

Genome-Phenome Archive (EGA-S00000000122) to validate our findings. The METABRIC

dataset includes 1,301 BC samples (198 basal-like, 161 HER2-positive, 461 Luminal A, 370

Luminal B, 99 normal-like, and 12 unknown tumors) and 116 control samples of the miRNA

expression analyses. We used the DESeq2 R package (v.1.28.1) to determine differentially

expressed mRNAs (DEGs) and miRNAs (DEMs) with a set of criteria, False Discovery Rate

(FDR)< 0.01 and an absolute log2FC value of�1 (for both mRNAs and miRNAs), for each

group of the PAM50 classification across the TCGA samples in comparison to the healthy tis-

sue samples. Since there are no control samples in the mRNA expression dataset from the

METABRIC database, we conducted the DEG analysis only on the TCGA.

Since the raw data was not provided, but only the normalized data were available in the

METABRIC database, the DEMs were determined with the same criteria given above by using

the limma R package. Overlapping mRNA and miRNAs from differential expression analyses

were curated for further analysis. All FDR values were obtained by the Benjamini-Hochberg

method.

2.2 Predicting the associated biological features

In order to predict circRNAs and miRNAs interactions, the most significantly altered 13 DECs

(both down- and up-regulated) were chosen via the CSCD v2.0 database. On the other hand,

themiRDB,miRWalk, andmiRTarBase databases were used to find the interactions between

the DEGs and DEMs across all of the PAM50 classes. Hence, the knowledge base-driven target

mRNAs of the up-regulated miRNAs in all PAM50 classes were searched among the down-

regulated mRNAs, whereas the down-regulated miRNAs’ targets were searched among the up-

regulated mRNAs. Similarly, knowledge base-driven target miRNAs of the up-regulated cir-

cRNAs were searched among the down-regulated miRNAs, whereas the targets of the down-

regulated circRNAs were searched among the up-regulated miRNAs. After that, the interac-

tions of circRNAs, miRNAs and mRNAs, which were found to have the most significant

expression change, were investigated from the literature.

2.3 Selection criteria for filtered candidate miRNAs and mRNAs

The selected miRNAs and mRNAs should have a strong association with both BC and other

cancers in the literature (keywords such as "gene name, miRNA name, cancer, breast cancer,

breast" were searched in the PubMed database),

A distinct altered expression level of these mRNAs should be detected across all of the

PAM50 subgroups from normal-like to the BLBC with an increasing trend in the form of a

pan flute. Genes that do not meet this criterion will be eliminated and genes with the top sig-

nificant log fold change (logFC) values will be kept,

The selected genes should be associated with poor OS and DFS in BC.

2.4 Survival analysis

The survival data of the TCGA dataset was obtained from the Pan-Cancer Clinical publication

[22]. Survival curves were obtained according to the Kaplan-Meier method (surv_plot func-

tion) from the finalfit (v1.0.3) R package [23], and differences between survival distributions

were assessed by log-rank test. The patients were divided into two risk groups as high and low

according to their normalized median expression values. The normalized expression values

were obtained using voom function from limma (v3.46.0) R package [24]. For analysis of rela-

tionships between the selected gene and BC, univariate models were fitted using cox propor-

tional hazard regression (coxph function) from the survival R package [25]. Furthermore, we
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used the GSE25066 dataset from GEO to validate our survival analysis findings [26]. The

GSE25066 dataset contains 508 BC (189 BLBC, 37 HER2-positive, 160 LumA, 78 LumB, 44

normal-like) mRNA samples.

2.5 The relation of circRNA, miRNA and mRNA

The circRNA–miRNA–mRNA regulatory network was established using the Cytoscape tool

(v3.9.0) [27] based on the interactions between circRNA, miRNA, and mRNA obtained from

CSCD,mirDB,miRTarBase, andmiRWalk databases. After finding the DECs shared between

the two circRNA datasets and DEMs shared between METABRIC and TCGA, we searched for

the presence of the circRNA-miRNA pairs from the CSCD v2.0 database. We also checked the

direction of the regulation of the DE miRNAs and DE circRNAs, since they are expected to be

inversely related. This election process has shortlisted the number of DECs and their matching

DEMs as described in the Results. Similarly, the presence of the matching miRNA-mRNA

pairs was searched from themirDB,miRTarBase, andmiRWalk databases and this process has

led to narrowing down the DEG list.

2.6 Correlation analysis between the selected miRNA and mRNAs

Spearman correlation was used to measure the correlation between the selected miRNA and

mRNA expressions in the TCGA dataset. The corrplot function from the corrplot (v 0.92) [28]

R package was used to visualize the correlation heatmap.

2.7 Analysis of the protein–protein interaction (PPI) network

The PPI network was created by using the STRING 2021 [29] database with a minimum

required interaction score of> 0.4 and visualized by the Cytoscape tool (v3.9.0).

2.8 Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) enrichment analyses

The gene set enrichment analyses were obtained by using Enrichr [30] web tool with the crite-

rion of FDR value lower than 0.05 according to GO annotation and KEGG Pathway. Enrichr is

a gene list enrichment analysis tool that is frequently used in the literature and allows querying

on hundreds of gene sets such as KEGG, GO, Reactome [31], and DisGeNet [32]. The p-value,

provided by Enrichr, as a result of the enrichment analysis is determined by Fisher’s exact test

(hypergeometric test), which is a binomial proportionality test that assumes the binomial dis-

tribution and independence for the probability of any gene set. Also, the FDR value, provided

by Enrichr, is calculated using the Benjamini-Hochberg method to adjust the multiple hypoth-

esis testing.

3 Results and discussion

3.1 Determination of DECs, DEMs and DEGs

3.1.1 DECs. We observed that 149 circRNAs (94 of them were up-regulated and 55 were

down-regulated) in GSE101124 (Fig 2A) and 993 circRNA (665 of them were up-regulated

and 328 were down-regulated) in GSE182471 (Fig 2B) in BC tumor samples were differentially

expressed when compared to the control samples. Furthermore, we obtained 13 down- and

up-regulated circRNAs in total that are shared between the GSE101124 and GSE182471 data-

sets. The overlapped 11 up- and two down-regulated circRNAs are listed in Fig 2C. The

expression of the overlapped up- and down-regulated circRNAs in each dataset is demon-

strated in S1 Fig of S1 File.
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Fig 2. The volcano plot for DECs in BC based on the two microarray datasets from GEO and intersected up- and down regulated circRNAs. The volcano
plot for DEMs in BC based on the two microarray datasets from TCGA and EGA, and intersected up- and down regulated miRNAs. (A): GSE101124, (B):
GSE182471, (C): The intersected up- and down-regulated circRNAs between the GSE101124 and the GSE182471 datasets. (D): TCGA, (E): METABRIC, (F):
The intersected up- and down-regulated miRNAs from shared miRNAs in the TCGA and the METABRIC datasets, The intersection of the down-regulated
mRNAs (G) and the up-regulated mRNAs (H) between PAM50 subtypes, DECs: differently expressed circRNAs, BC: Breast cancer, DEMs: Differentially
expressed miRNAs, EGA: European Genome-phenome Archive, BC: Breast cancer, hsa: Homo-sapiens.

https://doi.org/10.1371/journal.pone.0301995.g002
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3.1.2 DEMs. Regarding the miRNAs, in the TCGA dataset 133 miRNAs (66 of them were

up-regulated and 67 were down-regulated) in BLBC samples (Fig 2D, shown as an example

subtype), 114 miRNAs (65 up- and 49 down-regulated) in HER2-positive samples, 105 miR-

NAs (49 up- and 56 down-regulated) in LumA group, 133 miRNAs (69 up- and 64 down-regu-

lated) in LumB group, and 78 miRNAs (41 up- and 37 down-regulated) in normal-like tumor

group were differentially expressed, when compared to the control samples.

Furthermore, in the METABRIC dataset 69 miRNAs (34 of them were up-regulated and 35

were down-regulated) in BLBC samples (Fig 2E, shown as an example subtype), 66 miRNAs

(31 up- and 35 down-regulated) in HER2-positive samples, 51 miRNAs (28 up- and 23 down-

regulated) in LumA group, 70 miRNAs (31 up- and 39 down-regulated) in LumB group, and

31 miRNAs (17 up- and 14 down-regulated) in normal-like tumor group were differentially

expressed, when compared to the control samples.

Finally, we obtained the overlapped DEMs between the TCGA and METABRIC datasets

and that are shared miRNAs across all PAM50 subtypes. The determined miRNAs (three

down- and eight up-regulated miRNAs) are given in Fig 2F.

3.1.3 DEGs. We observed that 5,143 genes (2,925 of them were up-regulated and 2,218

were down-regulated) in BLBC samples, 5,078 genes (2,442 up- and 2,636 down-regulated) in

HER2-positive samples, 4,245 genes (2,066 up- and 2,179 down-regulated) in LumA group,

4,836 genes (2,325 up- and 2,511 down-regulated) in LumB group, and 2,850 genes (1,847 up-

and 1,003 down-regulated) in normal-like tumor group were differentially expressed, when

compared to the control samples.

Among the down-regulated genes (Fig 2G), 630 were shared across all five PAM50 classes,

whereas 736 up-regulated genes (Fig 2H) were shared across all five PAM50 classes in the

TCGA dataset.

3.2 Determining the relationship between the detected DECs, DEMs and
DEGs

Knowledge-driven investigation between the shared mRNA and miRNAs, across all five

PAM50 classes, revealed that 188 up-regulated genes are associated with the 3 down-regulated

miRNAs; whereas 317 down-regulated genes are found to be associated with the 8 up-regu-

lated miRNAs, based on themiRDB,miRWalk, andmiRTarBase databases.

3.3 Identification of the circRNA–miRNA interactions

The overlapped DECs were selected for further analysis. To indicate whether the 13 circRNAs

(described in Section 3.1.1) play a significant role in BC, we gathered their potential target

miRNAs from the CSCD v2.0 online databases. In the GSE101124 dataset, compared to the

normal group, hsa_circRNA_100435 and hsa_circRNA_101004 were down-regulated in the

TNBC group, while hsa_circRNA_000585 was up-regulated (p<0.05; logFC>1.5). In total,

three circRNA–miRNA interactions including three circRNAs (hsa_circRNA_000585, hsa_-

circRNA_101004, and hsa_circRNA_100435) and three miRNAs (miR-486-5p,miR-141-5p,

andmiR-183-5p) were identified in the database.MIENTURNET [33] was used to investigate

the signaling pathways (KEGG, Reactome,WikiPathways, and Disease Ontology) in which the

three miRNAs may be involved according tomiRTarBase database. As shown in S2 Fig of S1

File, all three miRNAs were associated with some cancer-related pathways.

The basic features of the three circRNAs are displayed in Table 1. The main structural mod-

els of the three circRNAs are given in S3 Fig of S1 File. The unpaired two-samples Wilcoxon

test results according to tumor and control samples of the selected three DECs are given in vio-

lin plots in Fig 3 for each circRNA dataset separately.
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3.4 Identification of circRNA–miRNA–mRNA association

We investigated the miRNA and mRNA associations by using themiRDB (v6),miRTarBase

(r8.0),miRWalk (v3) databases for the intersected miRNAs and shared DEGs with an absolute

log2FC values greater and equal than 1. Then, we combined the circRNA–miRNA interactions

and miRNA–mRNA interactions to identify the circRNA–miRNA–mRNA associations.

Finally, we established a circRNA-miRNA-mRNA network, which ensures a preliminary

insight into the links between the three circRNAs (hsa_circRNA_000585, hsa_-

circRNA_101004, and hsa_circRNA_100435), the three miRNAs (miR-486-5p,miR-141-5p,

andmiR-183-5p) and the 339 mRNAs. The constructed network can be seen in Fig 5.

Table 1. The basic features of the three DECs.

circRNA Alias circRNA type Position (HG19) Position (HG38) Strand Regulation Gene symbol

hsa_circRNA_100435 hsa_circ_0016201 exonic chr1:205156545|205156934 chr1:205187417|205187806 - Down DSTYK

hsa_circRNA_101004 hsa_circ_0000375 exonic chr12:6657590|6657991 chr12:6548424|6548825 - Down IFFO1

hsa_circRNA_000585 hsa_circ_0000515 sense overlapping chr14:20811305|20811534 chr14:20343146|20343375 - Up RPPH1

The unpaired two-samples t-test results according to basal and control samples of the selected three (miR-141-5p,miR-183-5p, andmiR-486-5p) DEMs are given as

violin plot in Fig 4 for each miRNA dataset separately.

https://doi.org/10.1371/journal.pone.0301995.t001

Fig 3. The combined violin and box plots for the normalized expression values of hsa_circRNA_101004, hsa_circRNA_000585,
hsa_circRNA_100435 in GSE101124 and GSE182471 datasets by the unpaired two-samples Wilcoxon test according to tumor and
control samples. (A): hsa_circRNA_101004 in GSE101124, (B): hsa_circRNA_000585 in GSE101124, (C): hsa_circRNA_100435 in
GSE101124, (D): hsa_circRNA_101004 in GSE182471, (E): hsa_circRNA_000585 in GSE182471, (F): hsa_circRNA_100435 in
GSE182471.

https://doi.org/10.1371/journal.pone.0301995.g003
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Among the DE 339 mRNAs, we selected the top 10 genes for each one of the three selected

miRNAs individually according to the log2FC values and that are the target of the shortlisted

three miRNAs. After that, we only kept the mRNAs which demonstrate an increasing logFC

trend in the form of a pan flute from normal-like to the BLBC (Fig 6). Hence, according to the

criteria we defined (criterion I and II), a distinct altered expression level of 18 genes (SDC1,

PRAME,MELK, NEK2, EXO1, TPX2, BUB1, DLGAP5, CIDEC, ADH1B, TMEM132C,

ACVR1C, LIPE, ABCA8, BTNL9, TNXB, GPAM, and AOC3) were detected in PAM50 sub-

groups from the normal-like group to the BLBC group (expression levels shown in S4 Fig of S1

File). We demonstrated the Log2FC values of these 18 DEGs in S2 Table and in the form of

barcharts in Fig 6. This splits the genes into three groups according to their target miRNAs.

BLBC has the greatest Log2FC values for 13 out of 18 DEGs (almost all target genes ofmiR-

486-5p andmiR-183-5p) and the bar charts represents almost like a pan flute form, with the

Log2FC values represent a decreasing trend from BLBC towards HER2, LumB, LumA, and

Normal-like subtype. We also showed the correlation patterns between shortlisted three

DEMs and their target shortlisted 18 DEGs (Fig 7 represents correlation patterns (A) across all

samples and (B) across solely BLBC-subtype samples).

3.5 Survival analysis

We performed survival analysis on the shortlisted 18 genes (S5 and S6 Figs in S1 File for overall

and disease-free survival, respectively, in the TCGA dataset). We observed that only four genes

(SDC1, DLGAP5, PRAME, and EXO1) demonstrated a significant survival outcome in both

Fig 4. The combined violin and box plots for the normalized expression values ofmiR-141-5p,miR-183-5p, andmiR-486-5p in
TCGA andMETABRIC datasets by the unpaired two-samples t-test according to basal and control samples. (A):miR-141-5p in
TCGA, (B):miR-183-5p in TCGA, (C):miR-486-5p in TCGA, (D):miR-141-5p in METABRIC, (E):miR-183-5p in METABRIC, (F):
miR-486-5p in METABRIC.

https://doi.org/10.1371/journal.pone.0301995.g004
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TCGA and GSE25066 datasets. The increased expression of the SDC1 gene had a poor disease-

free survival (DFS) and overall survival (OS) and over-expressions of DLGAP5, PRAME, and

EXO1 genes had a poor DFS (Fig 7C–7E and S7A-S7C Fig in S1 File) in the TCGA dataset. We

also found that highly expressed SDC1 had a poor DFS, and over-expressions of DLGAP5,

PRAME, and EXO1 genes had a poor DFS (S7D-S7F Fig in S1 File) in the GSE25066 [26] data-

set. The expression distributions of the SDC1, PRAME, EXO1, and DLGAP5 genes are shown

in S8 Fig of S1 File.

Fig 5. circRNA–miRNA–mRNA regulatory network. The network consisting of three cricRNAs (hsa_circRNA_000585,
hsa_circRNA_101004, and hsa_circRNA_100435), three miRNAs (miR-486-5p,miR-141-5p, andmiR-183-5p) and 339 genes was
generated by Cytoscape 3.9.0.

https://doi.org/10.1371/journal.pone.0301995.g005

Fig 6. Log2FC values of the selected 18 DEGs.

https://doi.org/10.1371/journal.pone.0301995.g006
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3.6 Identification of the hub genes with bottleneck algorithm from the PPI
network

Using the genes in Fig 5, after removing the isolated nodes, we constructed a PPI network,

which consists of 138 nodes and 780 edges, to observe the interactions among the 339 mRNAs

(Fig 8A). Considering the importance of the hub gene in a network, we utilized the bottleneck

algorithm to screen hub-genes from the PPI network. The subnetwork with 14 nodes (10 hub

genes and 4 extended genes) and 24 (14 between hub genes and 10 between extended genes)

edges was determined (Fig 8B), which uncover the crucial roles of the ten genes (AHNAK,

CAV1, CDK1, EGR1, FGF2, FOS, KIF11, PPARG, SDC1, and TNXB) in BC. A circRNA-

miRNA-hub gene network was then built to describe the links among the DECs, DEMs and

hub genes (Fig 9). Thirteen circRNA–miRNA–mRNA regulatory modules, including hsa_-

circRNA_100435/miR-141-5p/ AHNAK regulatory axis, hsa_circRNA_100435/miR-141-5p/

PPARG regulatory axis, hsa_circRNA_100435/miR-141-5p/ CAV1 regulatory axis, hsa_-

circRNA_101004/miR-183-5p/ AHNAK regulatory axis, hsa_circRNA_101004/miR-183-5p/

PPARG regulatory axis, hsa_circRNA_101004/miR-183-5p/ CAV1 regulatory axis, hsa_-

circRNA_101004/miR-183-5p/ FGF2 regulatory axis, hsa_circRNA_101004/miR-183-5p/

Fig 7. The correlation heatmap of the selected mRNA and miRNAs (A):All PAM50 groups, (B): Only BLBC subgroup, Survival analysis of SDC1. (C): Overall
survival of SDC1 in TCGA dataset, (D): Disease-free survival of SDC1 in TCGA dataset, (E): Disease-free survival of SDC1 in GSE25066 dataset.

https://doi.org/10.1371/journal.pone.0301995.g007
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EGR1 regulatory axis, hsa_circRNA_101004/miR-183-5p/ TNXB regulatory axis, hsa_-

circRNA_101004/miR-183-5p/ FOS regulatory axis, hsa_circRNA_000585/miR-486-5p/ CDK1

regulatory axis, hsa_circRNA_000585/miR-486-5p/ KIF11 regulatory axis, and hsa_-

circRNA_000585/miR-486-5p/ SDC1 regulatory axis, were found from the network.

Fig 8. Identification of hub genes from the PPI network by bottleneck algorithm using the cytoHubba Cytoscape plugin. The node
color changes gradually from blue to red in ascending order according to the log2 (fold change) of genes. (A): A PPI network of the 339
target genes playing crucial roles in BC. This network consists of 138 nodes and 780 edges. The node size changes gradually from small
to large in ascending order according to the number of the PMIDs from DisGeNET per gene. (B): A PPI network consist of the ten hub
genes (colored blue and red) and 4 extended genes (colored gray) extracted from a. This network consists of 14 (10 hub genes and 4
extended genes) nodes and 24 (14 between hub genes and 10 between extended genes) edges. PPI protein–protein interaction, BC:
Breast Cancer.

https://doi.org/10.1371/journal.pone.0301995.g008
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3.7 GO annotation and KEGG pathway analyses of the ten hub genes

GO analysis was performed to demonstrate the functional annotations of the ten hub genes.

The top five highly enriched GO terms related to biological process (BP), cellular component

(CC) and molecular function (MF) are shown in Fig 10A. The most enriched GO terms in BP

was “positive regulation of pri-miRNA transcription by RNA polymerase II (GO:1902895)”

(FDR = 7.56E-07), that in CC was “sarcolemma (GO:0042383)” (FDR = 8.51E-03), and that in

MF was “transcription regulatory region nucleic acid binding (GO:0001067)” (FDR = 7.74E-

03). KEGG pathway analysis was carried out to determine the signaling cascade in which ten

genes are involved. With an FDR< 0.05, 17 significantly enriched pathways were determined

Fig 9. CircRNA–miRNA–hubgene network. The network consisting of three circRNAs (hsa_circRNA_000585,
hsa_circRNA_101004, and hsa_circRNA_100435), three miRNAs (miR-486-5p,miR-141-5p, andmiR-183-5p) and 10 hub genes
(AHNAK, CAV1, CDK1, EGR1, FGF2, FOS, KIF11, PPARG, SDC1, and TNXB) was generated by Cytoscape 3.9.0.

https://doi.org/10.1371/journal.pone.0301995.g009

Fig 10. Top five Gene Ontology (GO) enrichment annotations of the ten hub genes: (A): biological process, (B): cellular
component, (C): molecular function. (D)The significantly enriched Kyoto Encyclopedia of hub-genes and genomes (KEGG)
pathways with a FDR< 0.05. The results of the GO and the KEGG analyses were obtained from the ‘Enrichr’ web tool (https://
maayanlab.cloud/Enrichr/) and visualized by R package ‘ggplot2’. Cohort plot shows that the ten hub genes are correlated via
ribbons with their assigned KEGG terms. FDR: False discovery rate, is calculated using the Benjamini-Hochberg method to
adjust the multiple hypothesis testing.

https://doi.org/10.1371/journal.pone.0301995.g010
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(Fig 10B). Among the 17 pathways, “Proteoglycans in cancer pathway” and “Breast cancer

pathway” are linked with the BC progression [34, 35]. In addition, some of the pathways such

as “Pathways in cancer”, “Chemical carcinogenesis”, and “Non-alcoholic fatty liver disease”

were also tumor-related pathways.

3.8 Summary of the filtered circRNA/miRNA/gene axis

The DE circRNAs with Log2FC value�1 were intersected in both datasets, GSE101124 and

GSE182471, and three circRNA remained (hsa_circ_0000515, hsa_circ_0016201, and hsa_-

circ_0000375) according to their existence in the CSCD database. Similarly, overlapping DE

miRNAs with Log2FC value�2 in both TCGA and METABRIC, were kept. Among them,

three miRNAs (miR-486-5p,miR-141-5p, andmir-183-5p) were presented in the CSCD data-

base as the targets of the three shortlisted circRNAs.

Then, the 18 DE genes with a Log2FC value of�2 which were reported to be strongly asso-

ciated with BC, and could be targeted by the shortlisted miRNAs, were determined. Those

genes were found to be differentially expressed for all PAM50 groups but most significantly in

the BLBC subtype (as shown in Fig 6 the logFC values are highest for the BLBC group). Addi-

tionally, as shown in Fig 7, correlations between the mRNAs and the target miRNAs are stron-

ger in the BLBC-subtype samples (Fig 7B) compared to the correlation patterns obtained by

using all tumor samples together (Fig 7A).

The possible circRNA-miRNA-mRNA interaction, which was detected to play a role in the

cellular processes of BC, is shown in Fig 11.

Fig 11. The summary of the possible role of circRNA/miRNA/gene axis in BC pathogenesis according to our study.

https://doi.org/10.1371/journal.pone.0301995.g011
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3.9 Discussion

BC is the most frequently identified tumor among women around the world and more than

90% of BC deaths are related to metastasis. Existing treatment approaches for metastatic BC

have been inadequate, compounded by a lack of early prognosis/ predictive criteria for esti-

mating which body parts are most susceptible to metastasis. Although there are many new

developments in the fields such as chemotherapy, endocrine treatment and targeted therapy

for BC in recent years, this cancer type is still the most common cancer in women with high

morbidity and mortality [36]. Subtypes in BC are heterogeneous and treatment practices are

determined according to these subtypes. From better to the worst, the aggressiveness of the BC

subgroups are generally in the following order: Normal breast-like, LumA, LumB, HER2-posi-

tive, BLBC [37, 38]. It is clearly known that the OS of cases with HER2-positive and BLBC

groups are worst in PAM50 subtypes [39]. The cells are "basal-like," which implies they match

the basal cells which line the breast ducts. It is strongly associated with TNBC appearance

described by the deficiency of expression of ER, PR, and HER2-positive. BLBC, which is more

associated with distant metastasis, has an extremely poor prognosis compared to other intrin-

sic BC groups, and the success in its treatment is currently limited [40, 41]. This knowledge

has substantially advanced our understanding of BC’s heterogeneity and the several biological

processes that the disease employs. In 2009, Parker et al. defined a minimum gene set, PAM50,

for categorizing these intrinsic subgroups [42]. Because the biology of all these intrinsic sub-

groups indicates changes in incidence, responsiveness to therapy and survival, unique genes

for each subtype may be evaluated as markers to direct potential treatments. In this respect, it

is crucial to elucidate novel circRNA-miRNA-mRNA relationships in the determination of

these subgroups [43–45]. In our study, the expression states of miRNAs and genes in datasets

were classified according to the five molecular subtypes classification.

circRNAs, which are a new class of endogenous evolutionarily conserved RNAs, have a sta-

ble structure and they are stated to serve as vital regulators in the various cellular activities.

According to studies conducted so far, it has been understood that the main reason for cir-

cRNAs to act as critical regulators in cells is their relationship with target miRNAs [46]. In

recent years, it has been suggested that miRNAs act as a bridge in the realization of the role of

circRNAs in the regularization of cellular events [47]. circRNAs change gene expression by

acting as miRNA sponges with their binding sites [3, 48]. As increased expression rates of cir-

cRNAs in the cell may contribute to decreased expressions of target miRNAs and the increased

expressions of target genes. circRNA-miRNA-mRNA interactions, which are the focus of this

work, are very new to the scientific world but experiments have shown that these relationships

could be beneficial for the detection of novel biomarkers for cancer [49, 50]. The studies on

circRNAs about the determination of subtypes of BC are limited. The study by Nair et al. in

2016 is one of the first studies showing circRNAs may be useful in identifying subtypes of BC

[51]. In the study of Darbeheshti et al. in 40 TNBC, 20 Lum A, 18 Lum B and 17 HER2-positive

tumor samples, it was determined that hsa_circ_0044234 has a distinct molecular signature as

a potential GATA3 regulator in TNBC [52]. In another study, circ-PGAP3 was shown to

increase TNBC proliferation and invasion viamiR-330-3p/Myc axis [53]. Sheng et al have also

found out overall BC-associated circRNA-miRNA-mRNA interactions but they have not

investigated those interactions for PAM50 [18] subtypes which is different from our study

design.

As a result of our study, many circRNAs, miRNAs and genes that may be associated with

BC have been identified. We found that three circRNAs (hsa_circ_0016201, hsa_circ_0000375,

and hsa_circ_0000515), three miRNAs (mir-183-5p,miR-141-5p, andmiR-486-5p) and 18

genes (CIDEC, ADH1B, TMEM132C, ACVR1C, LIPE, ABCA8, BTNL9, TNXOCB3, GPAM,

PLOS ONE Regulatory circRNA-miRNA-mRNA networks in breast cancer

PLOSONE | https://doi.org/10.1371/journal.pone.0301995 April 18, 2024 15 / 21

https://doi.org/10.1371/journal.pone.0301995


PRAME,MELK, NEK2, EXO1, TPX2, BUB1, DLGAP5, and SDC1) may be important in BC,

especially in a basal-like group, by applying filters as described in the material method section.

Analysis of TNBC versus normal tissue samples on the GSE101124 dataset results may indicate

that these three circRNAs highlighted in the study may play an important role in BLBC. More-

over, although the expression alteration of genes, targeted by miRNAs that sponged via

selected circRNAs, was more prominent in the BLBC and Her2-positive subgroups, it was

much more limited in the normal-like and Lum-A groups (an expression alteration was

detected as similar to a pan flute, Fig 6).

Expressions ofmiR-141-5p andmir-183-5p, which are known to be dysregulated in many

cancers including BC (46–50), were found to be significantly increased in our study in all data-

set samples from all PAM50 groups. Possible target genes that may contribute to the cancer

progression and in whichmiR-141-5p andmir-183-5p could alter their expression in BC are

shown in S1 Table. According to the criteria we determined, the possible paired targets of

miR-141-5p/ ADH1B andmir-183-5p/ BTNL9, may be related to the BC process. In the dataset

we examined, it was identified that hsa_circ_0016201, which is among the circRNAs whose

expression was significantly decreased, could have a role as a sponge formiR-141-5p and hsa_-

circ_0000375 could be acted as a sponge formiR-183-5p. Therefore, we would like to empha-

size that the relationship between hsa_circ0016201/miR-141-5p/ ADH1B and hsa_0000375/

miR-183-5p/ BTLN9 should be investigated at the cellular functional level. It could be substan-

tial to examine this relationship with conventional molecular genetic techniques in both BC

cells and tumor tissue.

More importantly, the expression ofmiR-486-5p, which is an essential tumor suppressor

miRNA in BC and many other cancer types [54–57], was significantly decreased in all PAM50

groups examined in our study. It was determined that hsa_circ_0000515, one of the circRNAs

whose expression was significantly increased in the dataset we detected, could act as a sponge

formiR-486-5p. In addition, we determined that the increased expression of SDC1, PRAME,

EXO1, BUB1, and DLGAP5 genes could be more strongly associated targets ofmiR-486-5p in

BC. The overexpressed SDC1 gene was found to lead a significantly poor OS and DFS and

overexpressed PRAME, EXO1, BUB1 and DLGAP5 genes were found to lead a significantly

poor DFS in BC (Fig 7C–7E and S8 Fig in S1 File) (criterion III).miR-486-5p has been notified

as an important tumor suppressor miRNA in various cancers, including BC. It has been

reported thatmiR-486-5p which could be found exosomal miRNA in BC inhibits epithelial-

mesenchymal transition (EMT) by targeting Dock1 and suppresses cancer cell proliferation by

targeting the PIM-1 oncogene in BC, can be used as a biomarker in the prediction of BC recur-

rence [56–58]. Valuable studies are showing thatmiR-486-5pmay be associated with different

circRNAs. The importance of circNFIB1/miR-486-5p/PIK3R1/VEGF-C axis in lymphatic sys-

tem metastasis in pancreatic cancer [59]; hsa_circ_0016788/miR-486-5p/ CDK4 pathway in

hepatocellular carcinoma tumorigenesis [60]; circHUWE1/miR-486-5p in colorectal cancer

migration and invasion [61] and Circ-TCF4.85/miR-486-5p/ ABCF2 in hepatocellular carci-

noma progression [62] are reported in the literature. However, as far as we know the relation-

ship betweenmiR-486-5p and circRNAs has not yet been reported in BC. Syndecan-1 (SDC1,

CD138) is a critical cell surface adhesion molecule required for cell morphology and impact on

the natural microenvironment. SDC1 dysregulation enhances cancer development by increas-

ing cell proliferation, angiogenesis, invasion, and metastasis and is linked to chemo-resistance.

SDC1 expression is also correlated to chemotherapy responses and prognosis in numerous

solid and/ or hematological cancers, including BC [63, 64]. It has been suggested that SDC1

could be a new molecular marker that alters the phenotype of cancer stem cells through the IL-

6/STAT3, Notch, and EGFR signaling pathways in triple-negative inflammatory BC [65].

Induction of SDC1 in the lung microenvironment may promote the formation of breast tumor
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metastasis [66]. SDC1 has been found to have a prominent role in the process of BC metastasis

to the brain. SDC1 has been shown to increase BC cell migration across the blood-brain barrier

via modulating cytokines, which may alter the blood-brain barrier [67]. SDC1 overexpression

in BC is associated with various miRNAs [68, 69]. However, the relationship betweenmiR-

486-5p/ SDC1 and BC is not yet known. It has been reported that SDC1 expression can also be

indirectly altered by circRNAs as it has been demonstrated that circCEP128 is associated with

bladder cancer progression via themiR-515-5p/ SDC1 axis [70]. According to our bioinformat-

ics study findings, we recommend further investigation of the SDC1 gene together with the

hsa_circ_0000515/miR-486-5p axis when conducting circRNA/miRNA/gene functional

research in BC. The SDC1 hub gene, which is targeted by miR-486-5p, was found to be highly

compatible with the selection criteria we applied in our study. We propose that hsa_-

circ_0000515/miR-486-5p/ SDC1 axis may be an important biomarker candidate in distin-

guishing patients especially in the BLBC group, according to the PAM50 classification of BC.

4 Conclusion

Finding new biomarkers to clearly classify subtypes of BC could be quite crucial in the battle

against cancer. To identify novel biomarkers and new therapeutics, a deeper understanding of

the mechanisms underlying BC metastasis is extremely important. According to our study

results, we suggest various DE mRNAs, miRNAs and circRNAs that may be important in the

onco-transcriptomic cascade for BC. The interrelationships of these molecules can be potential

diagnostic biomarkers or therapeutic targets. Therefore, functional experiments such as prolif-

eration, apoptosis, invasion, and metastasis on BC cells should be studied to elucidate these cir-

cRNA-miRNA-mRNA relationships in the future.
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