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Abstract 54 

The stability of winter wheat-flowering-date is crucial for ensuring consistent and 55 

robust crop performance across diverse climatic conditions. However, the impact of 56 

climate change on wheat-flowering-dates remains uncertain. This study aims to 57 

elucidate the influence of climate change on wheat-flowering-dates, predict how 58 

projected future climate conditions will affect flowering date stability, and identify the 59 

most stable wheat genotypes in the study region. We applied a multi-locus genotype-60 

based (MLG-based) model for simulating wheat-flowering-dates, which we calibrated 61 

and evaluated using observed data from the Northern China winter wheat region 62 

(NCWWR). This MLG-based model was employed to project flowering dates under 63 

different climate scenarios. The simulated flowering dates were then used to assess 64 

the stability of flowering dates under varying allelic combinations in projected 65 

climatic conditions. Our MLG-based model effectively simulated flowering dates, 66 

with a root mean square error (RMSE) of 2.3 days, explaining approximately 88.5% 67 

of the genotypic variation in flowering dates among 100 wheat genotypes. We found 68 

that, in comparison to the baseline climate, wheat-flowering-dates are expected to 69 

shift earlier within the target sowing window by approximately 11 and 14 days by 70 

2050 under the Representative Concentration Pathways 4.5 (RCP4.5) and RCP8.5 71 

climate scenarios, respectively. Furthermore, our analysis revealed that wheat-72 

flowering-date stability is likely to be further strengthened under projected climate 73 

scenarios due to early flowering trends. Ultimately, we demonstrate that the 74 

combination of Vrn and Ppd genes, rather than individual Vrn or Ppd genes, plays a 75 

critical role in wheat-flowering-date stability. Our results suggest that the combination 76 

of Ppd-D1a with winter genotypes carrying the vrn-D1 allele significantly contributes 77 

to flowering date stability under current and projected climate scenarios. These 78 

findings provide valuable insights for wheat breeders and producers under future 79 

climatic conditions. 80 

 81 

Key words:  82 
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1. Introduction 85 

Global food security is dependent on the development of crops that maintain productive 86 

through diverse environments, recurrent stresses, and changing climates. Wheat is a 87 

crop of particular importance to our food security since it provides 18% of the world’s 88 

caloric intake and 19% of the protein (Erenstein et al., 2022). The global expansion of 89 

bread wheat (Triticum aestivum L.) from the Fertile Crescent in the Middle East to the 90 

rest of the globe has been facilitated by the development of varieties whose lifecycles 91 

and crop phenology have been adapted to their production environments (Haas et al., 92 

2019). Importantly, genetic variability in flowering date has been one of the main 93 

determinants driving wheat adaptation across global agrooecosystems (Bogard et al., 94 

2014; Cockram et al., 2007). During the adaptation process, through selective breeding, 95 

a stable match between development (i.e. phenology) and the local environment 96 

determines the optimal time when the wheat crop can best utilize agricultural ecosystem 97 

resources (Reynolds et al., 2009).  98 

Development of wheat varieties capable of producing mature grain within 99 

developmental windows through various climates is a common strategy for maximizing 100 

yield and helping plants adapt to seasonal heat, cold and drought stress (Chapman et al., 101 

2012). Flowering date stability, defined as the variation in flowering date over a range 102 

of sowing dates and different climate conditions, is a prerequisite (Flohr et al., 2018). 103 

Reducing flowering date variability is important for buffering against developmental 104 

changes that environmental stresses can introduce over a wide range of sowing dates 105 

and temperature regimes (Craufurd and Wheeler, 2009; Kamran et al., 2014). Wheat 106 
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producers and breeders invest substantial resources to manipulate and optimize 107 

flowering date to maximize available climatic resources under current climate 108 

conditions (Hills and Li, 2016). However, as ambient temperatures have increased 109 

globally in recent decades, mismatches between crop phenology and growing 110 

conditions have occurred, especially during extreme weather events, such that crops 111 

may no longer be adapted to or optimized for their production environments (Ray et al., 112 

2019). Temperature is a main driver of plant development and the rise in temperature 113 

due to climate change has been identified as a key driver of earlier flowering date and 114 

crop maturity (Wang et al., 2015).  115 

 Wheat adaptability to a wide range of climatic conditions is mainly attributed to 116 

the allelic diversity within genes controlling vernalization requirements and 117 

photoperiod sensitivity (Kamran et al., 2014). The flowering date of wheat is controlled 118 

in large part by the responses of three groups of genes: vernalization [Vrn], photoperiod 119 

[Ppd], and earliness per se [Eps] (Herndl et al., 2008). Adaptability through different 120 

agricultural environments is influenced by (Vrn) and (Ppd) genes through their 121 

interactions with new normal temperature regimes (Distelfeld et al., 2009; Gororo et al., 122 

2001; Zikhali and Griffiths, 2015). Numerous studies have explored the effects of Vrn 123 

and Ppd gene families on the phenological growth stages of wheat in different regions 124 

of the world (Gomez et al., 2014; Yan et al., 2004) as well as their responses to climate 125 

change (Gouache et al., 2015). Additionally, to elucidate the potential impact of climate 126 

change on wheat phenology, several studies have explored changes in plant growth and 127 

development under warmer temperatures (Asseng et al., 2015; Craufurd and Wheeler, 128 
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2009; Zhao et al., 2016). However, the impact of climate change on flowering date 129 

stability in wheat remains unclear. Furthermore, although Vrn and Ppd genes are 130 

associated with plant development, reports linking the two groups of genes to wheat 131 

flowering stability are lacking in the literature.  132 

Recent studies have revealed the impact of temperature, sowing dates and varieties 133 

on wheat phenology through diverse climates at regional scales using multi-locus 134 

genotype (MLG) models (Hu et al., 2022; Hu et al., 2021; Zheng et al., 2013). Multi-135 

locus genotypes (MLGs) define the possible combinations of alleles at multiple genetic 136 

loci for individual cultivars or accessions. Quantifying the effects of climate change on 137 

the different Vrn and Ppd MLG combinations will enable a better understanding of 138 

flowering date stability through rising temperatures and facilitates the development of 139 

wheat varieties with greater phenotypic resilience.  140 

This study aims to investigate the impact of climate change on winter wheat-141 

flowering-dates, projected shifts in flowering date stability under different climate 142 

scenarios, and identify key genetic factors influencing flowering date stability.  Such 143 

findings will enhance our understanding of the allelic variation driving wheat-144 

flowering-date stability and provide knowledge to guide breeding selections and the 145 

development of wheat production systems with greater resilience to the sustained 146 

effects of global warming. 147 

2.  Materials and methods 148 

2.1. Field tests, plant materials, and genotyping 149 

A field test for calibrating and evaluating the MLG-based model was performed from 150 
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2016 to 2019 at the Beijing Shunyi Experimental Base (40°15′N, 116°55′E) of the 151 

Institute of Environment and Sustainable Development in Agriculture, Chinese 152 

Academy of Agricultural Sciences. The field-test location was within the NCWWR, 153 

and the field experiment was based on a randomized complete-block design with three 154 

replicates. The sowing dates were October 17, October 12, and October 14 for the 155 

growing season 2016–2017, 2017–2018, and 2018–2019, respectively. The 156 

accumulated temperature from sowing dates to flowering dates varied among growing 157 

seasons (1126.9 to 1262.0 °C). The plots were 2 m long with 0.25-m spacing between 158 

rows, and seeding was at a depth of 5 cm. The seeds were sown in a single-row plot for 159 

each wheat variety. After heading, flowering dates were monitored every other day until 160 

data from all plots were recorded. Recommended field-management practices for 161 

obtaining high yields of wheat, including fertilization and irrigation, were adopted from 162 

previous studies (Li et al., 2005; Zhang et al., 2018). Irrigation was applied three times 163 

annually (before the sowing, jointing, and grain-filling stages). Fertilizer was applied 164 

prior to sowing and during stem elongation. Additionally, pesticides were applied for 165 

pest and disease control. Wheat-flowering-dates were observed and recorded based on 166 

50% flowering of the middle spikelet (Pietragalla, 2012).  167 

 A total of 100 adapted wheat varieties, including landrace varieties, commercial 168 

varieties, and newly bred varieties collected from the NCWWR, were used to 169 

characterize the Vrn and Ppd genes (Supplementary Table 1). The varieties used formed 170 

clusters of diverse genetic backgrounds, each with their own sets of allelic combinations 171 

of Vrn and Ppd, which enabled the development of an MLG-based model and 172 
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investigation of the responses of genotypes with various allele combinations to climate 173 

change scenarios. All plant materials used in this study were provided by The National 174 

Key Facility for Crop Gene Resources and Genetic Improvement of the Chinese 175 

Academy of Agricultural Sciences.  176 

 Genotyping experiments were conducted to detect the dominant and recessive 177 

expression of Ppd and Vrn alleles related to flowering date. Leaf DNA from young 178 

seedlings was extracted using the high salt and low pH method (Fu et al., 2005; Yan et 179 

al., 2006). The vernalization and photoperiod loci were identified using sequence-180 

tagged sites (STSs). Specifically, the alleles Vrn-A1, Vrn-B1, Vrn-B3, and Vrn-D1 were 181 

determined based on studies by Kiss et al. (2014), Muterko and Salina (2019), and Yan 182 

et al. (2006). Similarly, the alleles Ppd-A1, Ppd-B1, and Ppd-D1 were identified 183 

according to research findings by Nishida et al. (2013) and Würschum et al. (2018). 184 

Subsequently, the allelic combinations of Vrns and Ppds in each variety were 185 

determined based on these analyses. 186 

2.2.Observed weather data and projected climate data 187 

Daily weather data, encompassing sunshine hours, maximum temperature, minimum 188 

temperature, and precipitation, recorded at the Beijing Shunyi Experimental Base (40°189 

15′N, 116°55 ′E), spanning the years 2016 to 2019 were gathered from the China 190 

Meteorological Data Sharing Services System (CMDSSS) accessible at 191 

http://cdc.cma.gov.cn/home.do. This weather data were used for calibrating and 192 

evaluating the MLG-based model. 193 

To characterize the broader growing region and provide insights into historical 194 

http://cdc.cma.gov.cn/home.do
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climatic conditions in the Northern China winter wheat region, the distribution of 195 

monthly accumulated precipitation and air temperature of growing-season at 16 196 

locations of the Northern China Winter Wheat Region (NCWWR) for the period 1961–197 

2015 was collected. 198 

To estimate flowering date stability under climate change by 2050 (2036–2065) of 199 

the 16 locations of the Northern China Winter Wheat Region (NCWWR), an ensemble 200 

of five climate models (CanESM2, CCSM4, CSIRO-Mk3-6-0, HadGEM2-ES, 201 

MIROC-ESM-CHEM) under two greenhouse gas-emissions scenarios [Representative 202 

Concentration Pathways (RCPs): RCP4.5 and RCP8.5) were collected  (van Vuuren 203 

et al., 2011b). 204 

2.3.Modeling of the wheat-flowering-date 205 

The original phenology model of APSIM-Wheat. The APSIM-Wheat module 206 

simulates the wheat growth and development in a daily time-step on an area basis that 207 

simulates soil water, residue, nutrient dynamics, and the growth and development of 208 

more than 30 crops (v.7.6; http://www.apsim.info) (Holzworth et al., 2015). Briefly, 209 

phenological development between sowing and maturity in the APSIM-Wheat model 210 

has been divided into eight phases. The commencement of each phase, excluding 211 

sowing to germination, is determined by the accumulation of the thermal time (TT) 212 

(target total required thermal time for a specific phenological development phase). In 213 

case of flowering date, the target TT from floral initiation to flowering (TTFI, FL), 214 

which is the minimum TT requirement when the vernalization and photoperiod 215 

requirement are satisfied. The following equation was used for TT calculation in 216 

http://www.apsim.info/
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APSIM-Wheat: 217 

TT = ∑(ΔTT × min (Fv, Fp))                         (1) 218 

where ΔTT is calculated from the daily mean temperature using three cardinal 219 

temperatures, including 0 °C (base), 26 °C (optimum), and 34 °C (maximum). 220 

The calculation of total Vrn (V, dimensionless) accumulated by daily ∆V from daily 221 

mean crown temperature (Tc), daily maximum air temperature (Tmax) and minimum air 222 

temperature (Tmin) with crown temperature being daily mean temperature adjusted by 223 

snow depth (Ritchie JT, 1988). 224 ∆𝑉 = 𝑚𝑖𝑛 {1.4 − 0.0778𝑇𝑐, 0.5 + 13.44 13.44𝑇𝑐(𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛 + 3)2)} 225 

when Tmax < 30 °C and Tmin < 15 °C 226 

∆V=0, when Tmax ≥ 30 °C and Tmin ≥15 °C               (2) 227 

In APSIM-Wheat, devernalization (Vd) can occur if daily maximum temperature 228 

(Tmax) is above 30 °C and the total Vrn (V) is less than 10.  229 

          ∆Vd= min (0.5× (Tmax-30), V when Tmax > 30 °C and V < 10        (3) 230 

The total Vrn (V) is calculated by summing daily vernalization and devernalization 231 

from emergence to floral initiation. 232 

V = ∑(∆V − ∆Vd)                           (4) 233 

The Vrn factor (Fv) is calculated from plant emergence to floral initiation and 234 

updated daily (Sadras and Monzon, 2006; Zheng et al., 2013).  235 

Fv = 1 - (0.0054545 × Rv + 0.0003) × (50-V)           (5) 236 

where Rv is the sensitivity to vernalization (Zheng et al., 2013). The calculation of 237 

total Vrn (V) accumulated by daily ∆V has been described previously (Zheng et al., 238 

2013).  239 
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The Ppd factor (Fp) is calculated from plant emergence to flowering and updated 240 

daily as follows: 241 

Fp = 1 – 0.002 × Rp × (20 - Lp)
2                       (6) 242 

where LP is the day length plus civil twilight (h) (i.e., the center of the Sun’s disc is 6° 243 

below the horizon), and RP is the sensitivity to photoperiod (Zheng et al., 2013). 244 

A modified APSIM-Wheat phenology model (APSIM-Wheat-M). The original 245 

APSIM-Wheat phenology model considers only the maximum effect of 246 

either vernalization or photoperiod on the accumulation of daily TT. However, studies 247 

have shown that the observed interactions between vernalization and 248 

photoperiod effects could be better accommodated by a multiplicative function, e.g. 249 

ARCWHEAT 1 (Weir et al., 1984) and Sirius (Jamieson et al., 1998). Moreover, a 250 

physiological study suggested that the developmental rate of wheat is sensitive to 251 

photoperiod until flowering (Slafer and Rawson, 1994). Therefore, the APSIM-Wheat 252 

phenology model used in our study was changed by: 1) extending photoperiod effects 253 

until flowering date, and 2) changing interactions of vernalization and photoperiod from 254 

minimum to multiplication (Zheng et al., 2013). The description of the approach used 255 

to simulate wheat phenology in APSIM-Wheat-M has been described previously (Hu 256 

et al., 2021; Sadras and Monzon, 2006; Zheng et al., 2013). In APSIM-Wheat-M, the 257 

TT was calculated as follows: 258 

TT = ∑(ΔTT × Fv × Fp)                         (7) 259 

A gene-based model of APSIM-Wheat (MLG-based). The MLG-based phenology 260 

modules were developed based on the wheat varieties in the NCWWR environments 261 

and integrated into the APSIM-Wheat-M model. Some studies have shown different 262 
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effects among Vrn and Ppd genes and these effects were allowed to vary in magnitude 263 

via a weighting function (Allard et al., 2012; Eagles et al., 2010; González et al., 2005; 264 

Loukoianov et al., 2005). Therefore, a multiplicative function has been used to 265 

accommodate observed interactions between vernalization and photoperiod effects in 266 

some crop models (Jamieson et al., 1998; Weir et al., 1984). Considering there were no 267 

polymorphisms identified in the Vrn-A1, Vrn-B3, or Ppd-B1 loci, and the Vrn-B1 locus 268 

harbored polymorphism in only one variety, the Vrn and Ppd genes, Vrn-D1, Ppd-A1, 269 

and Ppd-D1, were used to link the physiological processes of vernalization and 270 

photoperiod in the modified APSIM-Wheat phenology model (APSIM-Wheat-M). The 271 

difference between the APSIM-Wheat-M model and the MLG-based model is that the 272 

Vrn (Rv) and Ppd (Rp) sensitivities [Eqs. (5) and (6)] are related to the number of 273 

sensitive alleles of the Vrn and Ppd genes. Linear functions (weighting functions) were 274 

used to simulate the contribution of each Vrn locus on vernalization sensitivity and also 275 

the effect of Vrn locus on photoperiod requirement of target processes: 276 

Rv = kvNv + bv                                        (8) 277 

 278 

Rp = kpNp + bp                                    (9) 279 

where kv and kp are the slopes of varieties for Vrn and Ppd, respectively, and bv and bp 280 

are the intercepts of the varieties indicating the unknown effects of the Vrn and Ppd 281 

genes, respectively. 282 

 The total weighted numbers of Nv and Np genes in Eqs. (8) and (9) were calculated 283 

by weighting and summing the genotype values of 0 or 1 at each of the Vrn and Ppd 284 

loci: 285 
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Nv = hvd × Vrn-D1                      (10) 286 

  Np = Ppd-D1 × Vrn-D1 × hpd + Ppd-A1 × Vrn-D1 × hpa           (11) 287 

where hvd is the weight of the effect at the Vrn-D1 locus on vernalization sensitivity, 288 

and hpd and hpa are the weighted Vrn effects on photoperiod requirement. The effects 289 

were estimated through removal of vernalization or photoperiod effects based on a 290 

previous experiment33. The Ppd and Vrn alleles are represented as zero for 291 

spring/insensitive allele and one for winter/sensitive allele. The new parameters in the 292 

linear response are estimated using global optimization33. 293 

 294 

2.4. Calibrating and evaluating the MLG-based model 295 

A comprehensive explanation of the MLG-based ecophysiological model can be found 296 

in the supplemental material's section on "Modeling the Wheat-Flowering Date". The 297 

final MLG-based model included the four gene-specific parameters (kv, kp, bv, and bp) 298 

and one variety-specific parameter (TTFI, FL). These parameters were fitted 299 

simultaneously for all varieties. We generated exhaustive combinations of these 300 

parameters across a wide range (from 0 to 3 for kv, kp, bv, and bp at 0.01 intervals; from 301 

300 to 1300 degree days (°Cd) for TTFI, FL at 5 °Cd intervals), and then calculate variety-302 

specific parameters based on gene-specific parameters obtained in our previous study 303 

(Zheng et al., 2013) and genotyping information for each variety. These parameter 304 

combinations were then used to run simulations to get corresponding wheat-flowering-305 

dates in the calibration year (2016–2018). The final variety-specific allele combinations 306 

are shown in Supplementary Table 2. Values were selected according to the minimum 307 
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RMSE between the observed and predicted wheat-flowering-dates, and the 308 

optimization process is conducted for all varieties. Finally, the performance of MLG-309 

based model was evaluated using an independent dataset from the third growing season 310 

(2018–2019, 100 observations including eight missing values). A program was 311 

developed in R (v.3.6.2; http://www.R-project.org/) to run the entire phenology 312 

algorithm from APSIM-Wheat using customized R scripts implemented across a high-313 

performance computing platform.  314 

Accurate simulation of flowering date using a gene-based model has been 315 

accomplished for bean using both varieties and recombinant inbred lines (RILs) 316 

(Oliveira et al., 2021) suggesting that dynamic crop simulation models can be 317 

transformed into gene-based models by replacing an existing process module with a 318 

gene-based module for simulating the same process. In the present study, we link crop 319 

genetic architecture to flowering date based on an MLG-based ecophysiological model 320 

(Hu et al., 2021). Calibration using variety-specific parameters based on only two years 321 

of data may result in multiple plausible model configurations that unreasonably fit 322 

observed outcomes, which is known as ‘‘equifinality’’ (Williams et al., 2020). The 323 

variety-specific parameters of the MLG-based model was calibrated using the gene-324 

specific parameters. For the MLG-based model calibration, 200 observations (including 325 

16 missing values) were used to estimate 104 parameters and these parameters were fit 326 

simultaneously for 100 varieties in one step. Although use of more observations would 327 

provide more robust parameter estimation, the calibration process of an MLG-based 328 

model facilitates the use of a smaller number of observations, which is one of the major 329 
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benefits to use an MLG-based method to simulate wheat phenology. The results 330 

highlight a notable advancement in our model, which accurately simulated flowering 331 

dates. This improvement distinguishes our approach from previous models that 332 

simulated wheat-flowering-date without incorporating genetic information (Boote et al., 333 

2001; Wang and Engel, 1998).  334 

2.5. Calculation of stability index of wheat-flowering-date 335 

To assess the impact of climate change on wheat-flowering-date stability, we 336 

hypothesized that applying an MLG-based ecophysiological model under projected 337 

climate change scenarios would aid investigations on the responses of flowering date 338 

stability to allelic combinations more than a matching allele model. The stability index 339 

of the flowering dates was calculated based on the predicted flowering dates under a 340 

suitable range of sowing dates under different climate scenarios. Here, early sowing 341 

dates were set to a range between September 21 and September 29, and the late sowing 342 

date was set to October 21. Thus, the sowing date window was 30 days, which is slightly 343 

wider than the typical agronomic boundary (i.e., September 25 to October 15). Based 344 

on the flowering dates simulated with the described sowing window, the flowering date 345 

stability index at year I (𝑆(𝑖)) for each location in the NCWWR was calculated as 1 346 

minus the ratio of the thermal-time range for flowering date for each variety (𝐹𝑙𝑒𝑛𝑑(𝑖) −347 

 𝐹𝑙𝑠𝑡𝑎𝑟𝑡(𝑖)) to the thermal-time range for sowing dates for each year (𝑆𝑜𝑤𝑒𝑛𝑑 −  𝑆𝑜𝑤𝑠𝑡𝑎𝑟𝑡).  348 

𝑆(𝑖) = 1 − 𝐹𝑙𝑒𝑛𝑑(𝑖)− 𝐹𝑙𝑠𝑡𝑎𝑟𝑡(𝑖)𝑆𝑜𝑤𝑒𝑛𝑑− 𝑆𝑜𝑤𝑠𝑡𝑎𝑟𝑡                      (12) 349 

2.6. Calculation of broad sense heritability 350 

The field-observed flowering date of wheat for calibrating and evaluating the MLG-351 
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based model (2016-2019 growing season) at the Beijing Shunyi Experimental Base 352 

(40°15′N, 116°55′E) was used to calculate broad sense heritability (H2). Heritability 353 

(H2) of wheat-flowering-date variance and mean of each MLG was estimated using the 354 

repeated measures with variety as a fixed effect using ANOVA. The broad sense 355 

heritability was estimated as the ratio of the sum of the additive and epistatic (additive-356 

by-additive) variance to the total phenotypic variance (Jia et al., 2013): 357 𝐻2 = 𝑉𝑔𝑉𝑔+𝑉𝑔𝑠/𝑠+𝑉𝑔𝑠/𝑠∗𝑉𝑒/𝑠𝑟                                 358 

(13) 359 

where Vg is the genotypicvariance, Vgs is the interactive variance between variety and 360 

growing season, Ve is the residual variance, s is the number of growing seasons, and r 361 

is the number of replications. 362 

2.7. Statistical analysis 363 

We describe the relationship between stability of the wheat flowering with MLG, 364 

climate scenario, location, and their interaction with a linear mixed model (LMM):               365 

           𝑦 = 𝑋𝛽 + 𝑍𝑢 +  𝜀, 𝑢 ∽  𝑁𝑞(0, 𝐺), 𝜀 ∽  𝑁𝑛(0, 𝑅)              366 

(14) 367 

where y is the n×1 response vector, n is the number of observations, β is a p×1 fixed-368 

effects vector, u is the random-effects, X is the n × p design matrix for the fixed-effects 369 

parameters, and Z is the n × q design matrix for the random-effects, u and ε are 370 

independent and R = σ2 I. The R package lme4 (Bates et al., 2015) in R version 3.6.2 371 

for Windows (Team, 2020) was used to estimate the stability of the wheat-flowering-372 

date for each MLG, climate scenario, location, and their interaction (fixed effect), 373 
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whereas the other components (i.e., year and interaction between year and location) 374 

were considered random effects. The statistical assumptions of normal distribution and 375 

variance homogeneity for the linear mixed models (LMM) were visually checked by 376 

inspecting the residual plots. Additionally, the variance components from the LMM 377 

were assessed separately to ensure model validity (Kuznetsova et al., 2017). The Type 378 

III ANOVA with Satterthwaite’s method was used to assess the fixed effects (package 379 

lmeTest), and pairwise comparisons were conducted using a Tukey adjustment 380 

(function emmeans in package emmeans (Lenth, 2019)). Statistical assumptions 381 

(normal distribution and variance homogeneity) for the LMMs were visually checked 382 

by inspecting the residual plots.  383 

 384 

3.  Results 385 

3.1. The Northern China Winter Wheat Region (NCWWR) and Climate Change 386 

The study was conducted in the Northern China winter wheat region (NCWWR), which 387 

is located at the northern edge of the autumn sown wheat area (Figure 1a). The area 388 

includes Beijing, Tianjin, north central Hebei, southeastern and central Shanxi, northern 389 

Shaanxi, and eastern Gansu, which together accounts for ~9% of the total wheat area 390 

in China (Li et al., 2019). Climatically, there is a large temperature difference between 391 

winter and summer and the precipitation falls mainly in sowing and grain-filling phases. 392 

The average temperature and solar radiation during the growing season are 6.5 °C and 393 

12.9 MJ/m2/day, respectively (Tao et al., 2014). Figure 1b shows the annual average 394 

temperature at 16 locations of NCWWR for the 1961–2015 period. Despite variation 395 
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from year to year, there has been a rapid increase in the average temperature during this 396 

period demonstrating that the climate has undergone an overall warming trend in the 397 

region. Figure 2 and Figure 3 show the distribution of monthly air temperature and 398 

accumulated precipitation of the growing season at the 16 locations of NCWWR for 399 

the 1961–2015 period. Overall, there is a large temperature difference between winter 400 

and summer and the precipitation mainly occurs during the sowing and grain-filling 401 

phases. Winter killing of seedlings (December, January, and February) and high 402 

temperature during grain filling (April, May, and June) are major problems (Figure 4) 403 

that often cause severe reductions in grain yield (Li et al., 2019). For the preceding 404 

climate scenarios, the average temperature of wheat growing season under baseline 405 

(1981–2010) and Representative Concentration Pathways 4.5 (RCP4.5) and RCP8.5 406 

scenarios (2036–2065) is 9.3°C, 11.7°C, and 12.6°C, respectively (Figure 1a). 407 

3.2.Multi-locus genotypes (MLGs) of 100 wheat varieties at key Ppd and Vrn genes 408 

To begin our assessment of climate change on wheat flowering, we genotyped a panel 409 

of 100 adapted wheat varieties at seven key Ppd and Vrn genes. The wheat diversity 410 

panel includes landrace varieties, commercial varieties, and newly bred varieties, 411 

collected from the NCWWR, which require high levels of winter hardiness when sown 412 

before winter. Twenty-four landraces, which represent a valuable source of genetic 413 

diversity and are specifically adapted to local environmental conditions, were included 414 

in our wheat panel. The varieties were clustered into seven possible homozygous MLGs 415 

for the three genes in our datasets (Vrn-D1, Ppd-A1, and Ppd-D1; Fig ure 1c). Most 416 

varieties were in two MLGs: 58 varieties with Ppd-A1b+Ppd-D1a+vrn-D1 and 20 for 417 
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Ppd-A1b+Ppd-D1b+vrn-D1 (Figure 1c). Within the diversity panel, we were able to 418 

identify seven MLGs at multiple Vrn and Ppd loci. No polymorphisms were identified 419 

in the Vrn-A1, Vrn-B3, or Ppd-B1 alleles, and allele Vrn-B1 harbored a polymorphism 420 

in only one variety. Therefore, we focused on Vrn-D1, Ppd-A1, and Ppd-D1 for our 421 

analyses of flowering date stability (Supplementary Table 1). The landraces, primarily 422 

containing MLG A4B2 and A3B2 (Figure 1c), were released or distributed before 1950. 423 

(Figure 1c). A3B1 and A3B2 MLGs, which harbor the Ppd-insensitive allele (Ppd-D1a), 424 

were dominant in varieties released during and after the 1960s (Figure 1c), indicating 425 

that selection in the NCWWR winter wheat breeding programs has favored selection 426 

for the Ppd-insensitive allele at the major Ppd-D1 loci, as photoperiod-insensitive genes 427 

shape the phenological cycles of vegetative and reproductive growth, thus improving 428 

the relationship between sink and source tissues (Pérez Gianmarco et al., 2018). 429 

3.3. Simulation of wheat-flowering-date to generate stability indices under projected 430 

climate conditions 431 

To simulate wheat-flowering-date for different allele combinations of Vrn (Vrn-D1) and 432 

Ppd (Ppd-A1, and Ppd-D1) genes under projected climate scenarios, we applied an 433 

MLG-based ecophysiological model in the Agricultural Production Systems sIMulator 434 

(APSIM) framework (Holzworth et al., 2015). The model incorporates gene allele 435 

combinations of Vrn and Ppd with the physiological processes of vernalization and 436 

photoperiod as described in the modified phenology model of APSIM-Wheat (APSIM-437 

Wheat-M) (Zheng et al., 2013). We assumed that all the varieties have the same cardinal 438 

temperatures in the present study, while acknowledging that the cardinal temperatures, 439 
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including the base temperature, optimal temperature, and maximum temperature, may 440 

vary across wheat varieties and phenological stages (Porter and Gawith, 1999). This set 441 

of cardinal temperatures has been applied to predict wheat phenological stages across 442 

wheat environments globally (Hu et al., 2021). The details of the MLG-based 443 

ecophysiological model we applied can be found in the Methods. Using both the 444 

calibration and validation datasets, the wheat-flowering-date of each genotype was 445 

fitted using the MLG-based ecophysiological model. 446 

Overall, there was close agreement (root mean square error [RMSE] = 1.6 days; y 447 

= 0.95x + 11.0, R2 = 0.939, p < 0.001, N = 184) between the simulated and observed 448 

flowering dates for the calibration dataset based on the 2016–2017 and 2017–2018 449 

growing season at Beijing Shunyi Experimental Base (Figure 5a). Additionally, we 450 

compared flowering dates simulated by optimized parameter values with observed 451 

flowering dates to evaluate data with an RMSE of 2.3 days (y = 1.01x − 3.75, R2 = 0.885, 452 

p < 0.001, N = 92) based on the 2018–2019 growing season at Beijing Shunyi 453 

Experimental Base (Figure 5b). All simulations showed close agreement with the 454 

observed results, with only a slight deviation from the expected 1:1 relationship (Figure 455 

5).  456 

We then used MLG-based model to predict winter wheat-flowering-date using 457 

downscaled climate models from the Coupled Model Intercomparison Project Phase 5 458 

(CMIP5) (Lobell et al., 2015). To ensure comprehensive coverage of future temperature 459 

and rainfall regimes in our study area, we selected five core CMIP5 models (CanESM2, 460 

CCSM4, CSIRO-Mk3-6-0, HadGEM2-ES, MIROC-ESM-CHEM) that have 461 
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demonstrated strong performance for both temperature and precipitation (Wang and 462 

Chen, 2014). We considered two greenhouse gas-emissions scenarios, RCP4.5 and 463 

RCP8.5 (Van Vuuren et al., 2011a), and used the MLG-based model to predict wheat-464 

flowering-date for each of the 16 locations in the NCWWR under baseline conditions 465 

(1981–2010) and future climate scenarios to 2050 (2036–2065). The increases in mean 466 

temperatures for vernalization and photoperiod phases are close to the seasonal 467 

increases and higher than those of flowering phases (Figure 6). Field-management 468 

practices (e.g. irrigation and fertilization) were set as non-water and non-nutrient stress 469 

conditions for both the baseline and projected climate conditions, since this research 470 

focused on wheat-flowering-date (Hu et al., 2021).  471 

The simulated results predicted flowering dates in response to climate change 472 

under different sowing dates. Early sowing dates ranged from September 21st to 473 

September 29th (Julian calendar dates of 248 to 272, respectively) and the late sowing 474 

date was set as October 21. The model projected average flowering dates for both early 475 

and late sowing dates under RCP4.5 and RCP8.5 that were about 11 and 15 days earlier 476 

than those under the baseline climate, respectively (Figure 7a). Notably, although the 477 

flowering dates differed among climate scenarios, the A1B2, A3B1, and A3B2 were the 478 

earliest MLGs under each scenario driven by Ppd-D1a. Ppd-D1a (except for MLG 479 

A1B1) was associated with early flowering in combined analyses across climate 480 

scenarios, regardless of MLGs carrying Vrn-D1 or vrn-D1 alleles for both early (Fig 481 

ure 7b) and late sowing (e.g., MLGs A1B2 and A3B1) (Figure 7c). Ppd-D1b exhibited 482 

late flowering, regardless of whether the MLGs carried Vrn-D1 or vrn-D1 alleles, 483 
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excluding the A4B1 allele combination. Under early sowing, the flowering date of allele 484 

combinations A1B1 and A4B1 did not differ significantly, whereas they differed 485 

significantly if sowing occurred one-month later (Figure 7b and Figure 7c). Even 486 

though 14 varieties had Vrn-D1 (MLG A1B1, A3B1, A4B1), which is dominant over 487 

the allele vrn-D1, each variety had the recessive vrn-A1, vrn-B1 and vrn-B3 alleles, and 488 

behaved as a winter wheat and not a spring wheat. There also might be other genes 489 

within the various genetic backgrounds that result in a winter growth habit, contrary to 490 

expectation (Zhang et al., 2008). 491 

 The wheat-flowering-date stability is poised to be further reinforced under the 492 

projected climate. A higher stability index indicated less change in flowering date for a 493 

large range of sowing dates and climate conditions (Flohr et al., 2018). The mean 494 

stability indices across the NCWWR including all MLGs were 0.744 (±0.089) for 495 

baseline, 0.783 (±0.089) for RCP4.5, and 0.791 (±0.088) for the RCP8.5 climate 496 

scenarios. Thus, the ranking of the stability index with increasing ambient temperature 497 

was as follows: baseline < RCP4.5 < RCP8.5 (Figure 8a). The baseline scenario showed 498 

lower and wider ranges for stability than those in the RCP4.5 and RCP8.5 scenarios, 499 

indicating that climate change could be favorable for wheat-flowering-date stability. 500 

3.4. Effect of climate change, MLG, and location on flowering date stability 501 

While MLG-based model simulation showed that the stability index of wheat flowering 502 

dates was influenced by MLG, climate change scenarios, and location, we were able to 503 

quantify their individual and interactive effects through a generalized linear mixed-504 

effects (GLM) model on the MLG-based simulation results. In light of the diverse range 505 
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of seven Multi-Locus Genotypes (MLGs) observed among the 100 varieties (Figure 1c), 506 

spanning 16 locations and three climate scenarios averaged from five climate models, 507 

our analysis of variance for simulated results revealed a notable impact of MLG. 508 

Specifically, the MLG factor, contributed  73.4% of the variance (p < 0.05, Figure 8b).. 509 

Climate scenario also contributed a large component of the variance at 20.5%. The 510 

GLM model demonstrated that scenario × location, MLG × location, and scenario × 511 

MLG interaction effects were significant (p < 0.001), indicating that the projected 512 

climate at each location influenced the stability index (Table 1). The significant MLG 513 

× scenario interaction effect suggested that the genotypes responded differently to 514 

climate (Table 1). Additionally, scenario × location interaction effects were greater than 515 

location effects. The best explanation for this is that all locations are located within a 516 

similar climatological zone in the NCWWR and highlights the importance of analysis 517 

in flowering date stability across different combinations of climates and locations. By 518 

contrast, the observation that scenario × MLG × location interaction effects were not 519 

significant suggested that the stability index was apparently more strongly a function 520 

of MLG and climate than location. This observation is intuitive given the similarity in 521 

climatological zone across the study locations. 522 

The MLGs with high flowering date stability under baseline climate were also 523 

stable under projected climates and, stability maintained the same order through the 524 

climate scenarios. For example, MLGs A1B2, A4B1, and A3B1 were consistently more 525 

stable than other MLGs under both the baseline and projected climates (p<0.05, Figure 526 

8c), with two of the three MLGs carrying the Ppd-D1a gene. Furthermore, the only 527 
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difference between MLG A3B2 and unstable MLG A4B2 is the Ppd-D1 locus, further 528 

demonstrating the importance of Ppd-D1a for wheat-flowering-date stability. Notably, 529 

the MLGs including fully early flowering allelic combinations (A1B1) or late flowering 530 

allelic combinations (A4B2) with Vrn and Ppd alleles were unstable across all climate 531 

scenarios, whereas allelic combinations with both flowering hastening and late 532 

flowering allelic combinations (e.g., A1B2 and A4B1) were more stable MLGs. The 533 

long tail on A4B2 also indicates strong variation due to its unstable response to climate 534 

variation. Comparison of A1B2 and A1B1 indicated that vrn-D1 is important for wheat-535 

flowering-date stability when Ppd harbors the insensitive alleles Ppd-D1a and Ppd-A1a.  536 

In comparing flowering date stability to actual flowering dates, the results 537 

indicated that MLGs promoting early flowering date also tended to be the MLGs with 538 

the high-stability under all climate scenarios. Conversely, MLGs which promoted late 539 

flowering such as A1B1, A4B2, and A2B2 tended to have the lowest flowering date 540 

stability. Overall, the fact that early flowering MLGs maintain high-stability through 541 

climate change scenarios within the NCWWR region is an important result relevant for 542 

future breeding activities. However, also important is the finding that A4B1, with Ppd-543 

A1b, Ppd-B1b, and Ppd-D1b, which was within the late flowering group had the second 544 

highest stability across the baseline and projected climates – thus, stability is not strictly 545 

associated with early flowering. 546 

5. Discussion 547 

We provide a robust assessment to benchmark the effect of climate change on 548 

flowering date stability of wheat based on an MLG-based model modeling approach. 549 
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As illustrated in our present study, flowering date stability is not always consistent with 550 

the flowering date of wheat among MLGs, hence the importance of focusing on stability. 551 

While the variation in climate for the calibration dataset used to develop the crop model 552 

is smaller than the variation expected under future climate change scenarios, the model 553 

can still provide useful insights into how crops might respond to these changes.. This is 554 

because crop models are designed to capture the fundamental processes that govern 555 

crop growth and development, and can extrapolate beyond the range of environmental 556 

conditions observed in the calibration dataset (Jagermeyr et al., 2021). Moreover, 557 

quantifying the responses of flowering date stability to climate change has great 558 

potential to provide guidelines for the development of phenotypically resilient wheat 559 

varieties. The results of the present study suggest that wheat-flowering-date stability is 560 

poised to be further reinforced under the projected climate scenarios due to early 561 

flowering trends.  562 

Comparisons with baseline climate data revealed that the simulated flowering date 563 

under the early sowing window shifted to earlier flowering dates across the NCWWR 564 

at an average of 11 days and 14 days sooner for the RCP4.5 and RCP8.5 climate 565 

scenarios, by 2050. Thus, in the present study, warmer temperatures were direct 566 

contributors to accelerating inflorescence development during early wheat reproductive 567 

stages (Craufurd and Wheeler, 2009; Dixon et al., 2018). However, it should be noted 568 

that there may also be delays in flowering associated with temperature increases 569 

through longer requirements for vernalization (Dixon et al., 2018). The insensitive 570 

alleles of Ppd genes reportedly have a dominant effect on the nature of accelerated 571 
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flowering (Gororo et al., 2001). Similar results were observed in our simulated results, 572 

where flowering date varied among MLGs carrying Ppd-A1/D1 allele(s). Although we 573 

focused on the simulation of flowering date based on MLGs, the present study also 574 

demonstrated the effects of the alleles of each gene and their interactions. The MLGs 575 

with photoperiod-insensitive alleles resulted in earlier flowering as compared with 576 

photoperiod-sensitive MLGs, which is consistent with results from other studies on 577 

winter wheat (Grogan et al., 2016; Worland, 1996).  578 

Key genes controlling the developmental transition to flowering in wheat include 579 

Vrn and Ppd genes and their interactions with temperature during growth (Gororo et al., 580 

2001; Herndl et al., 2008) may not directly link to wheat flowering stability. Allelic 581 

combinations of Ppd and Vrn reportedly result in variations in flowering dates (Cane et 582 

al., 2013). However, to date, no study has shown that these are related to wheat-583 

flowering-date stability. Additionally, Ppd- and Vrn-response genes hasten or delay 584 

flowering in response to climate, which also affects wheat-flowering-date stability 585 

(Law and Worland, 1997). Therefore, the selection of known allelic combinations and 586 

the assessment of their stability in response to projected climate change are crucial for 587 

the comprehensive understanding of plant adaptability to future climates in target 588 

environments. Although A1B2, A4B1, and A3B1 are among the most stable MLGs 589 

under current and projected climates, they achieve the similarity by different means. 590 

For example, MLG A1B2 carries photoperiod-insensitive genes (Ppd-A1a and Ppd-591 

D1a), whereas A4B1 carries photoperiod-sensitive genes (Ppd-A1b and Ppd-D1b). This 592 

is consistent with several studies showing that allelic combinations of Vrn and Ppd 593 
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allow for the fine-tuning of phenological events before flowering, without substantial 594 

changes to flowering date (Whitechurch et al., 2007). Comparison of the two early 595 

flowering and stable MLGs (A1B2 and A3B2) suggests that the Ppd-A1 locus had a 596 

marginal effect on flowering date stability in the presence of the alleles Ppd-D1a and 597 

vrn-D1. Moreover, comparison of the high-stability MLG A3B1 with the low-stability 598 

MLG A1B1 revealed that the Ppd-A1a allele played an important role in flowering date 599 

stability in the presence of the Vrn-D1 allele. However, this result is tempered by the 600 

limited sample size, with only one genotype in A1B1 and seven genotypes in A3B1.  601 

Our results indicate that the allelic combinations of Vrn and Ppd genes determine 602 

wheat-flowering-date stability. For example, MLGs carrying either insensitive (e.g., 603 

A1B2 Ppd-A1a + PpD1a)) or sensitive (e.g., A4B1 Ppd-A1b + Ppd-D1b) alleles can 604 

achieve stability. However, compared to A1B1 and A4B2, MLG A1B2 is more suitable 605 

for breeding improved varieties under the projected climate scenarios, not only because 606 

of their ability to adapt to a broader environmental range but also because wheat 607 

varieties that carry the important photoperiod-insensitive gene Ppd-D1a show a 608 

prolonged duration of the spike growth period. The prolonged duration of spike growth 609 

results in heavier spikes with a larger number of fertile florets, with greater grain 610 

number and higher yield (Gonzalez et al., 2011), possibly via increased cumulative 611 

spike assimilation (Ghiglione et al., 2008). However, ensuring the highest confidence 612 

in recommendations to wheat breeders regarding the optimal allelic combinations of 613 

the Vrn, Ppd, and Eps genes requires further research involving a wider range of 614 

genotypes and other factors. For example, although A4B1 is stable MLG under current 615 
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and projected climates, it only has moderate broad sense heritability (H2) for wheat-616 

flowering-date (Supplementary Table 3). 617 

  In conclusion, the dataset developed from an MLG-based model simulation 618 

output allowed us to account for the effects of gene allele combinations, climate, and 619 

location, along with their interactions, and facilitates the identification of the most 620 

stable genotypes under current and projected climates in the study location. Our 621 

findings highlight the potential of introducing allelic combinations of the winter allele 622 

vrn-D1 and photoperiod-insensitive genes (Ppd-D1a) into currently cultivated varieties 623 

to achieve a more stable flowering date in the NCWWR, especially under future climate 624 

change. Furthermore, by linking crop genetic architecture to wheat-flowering-date in 625 

our MLG-based physiological model, this study provides novel and useful insights into 626 

the responses of allelic combinations of Vrn and Ppd genes to climate change that could 627 

expedite the development of wheat varieties with high stability under increasingly 628 

warmer climates. The results and methods presented in this study have implications 629 

beyond the NCWWR, considering warming trends across the major wheat producing 630 

regions including countries that have similar (or higher) trends of increasing 631 

temperatures (Asseng et al., 2015).  632 

6. Limitations of Study 633 

We acknowledge certain limitations in our study. Firstly, we did not consider the 634 

potential impacts of extreme weather events, such as drought or storm damage before 635 

flowering. Moreover, we assumed that the increased ambient CO2 concentrations do 636 

not influence wheat phenological development (Moot et al., 1996). However, recent 637 
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study indicate that increased ambient CO2 concentrations accelerated phenology and 638 

resulted in early flowering of wheat (Padhan et al., 2020). Therefore, future modelling 639 

approaches should be improved by considering these factors. Consequently, it is 640 

imperative that future modeling approaches incorporate these factors to provide a more 641 

comprehensive understanding of the system.  642 

The present MLG-based eco-physiological model could be improved further to 643 

include up-to-date knowledge of wheat physiology that takes into account genetic 644 

variation in base (cardinal) temperature and optimal temperatures for vernalization. Our 645 

study revealed no obvious difference of simulated thermal time or flowering date when 646 

we introduced hourly temperature into crop growth model for the environment (Figure 647 

9). However, to capture the subtle varietal differences through diverse environments, it 648 

might be necessary to explore growth models with other temperature response functions 649 

(e.g., Linear, Triangular, Bilinear, Sin, Bell-shaped, non-linear, or Trapezoidal 650 

functions). Furthermore, considering wheat yield in simulations could provide more 651 

robust guidance for adaptive breeding. However, incorporating this factor would 652 

involve a more complex process and require a more comprehensive calibration dataset,  653 

including temperature, precipitation, and other climatic factors which play a pivotal role 654 

in shaping the ultimate impact on grain yield. his could be investigated in future 655 

research when MLG-based models can accommodate a larger number of genes. 656 

Additionally, our genetic analysis revealed no polymorphisms in the Vrn-A1, Vrn-657 

B3, or Ppd-B1 alleles, and the presence of a polymorphism in the Vrn-B1 allele was 658 

observed in only one variety. Given these outcomes, we focused our analyses of 659 
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flowering date stability on the Vrn-D1, Ppd-A1, and Ppd-D1 alleles, as documented in 660 

Supplementary Table 1. It is noteworthy that the earliness per se [Eps] was not taken 661 

into account in our present MLG-based eco-physiological model. These limitations 662 

underscore the need for further research and refinement of our modeling approach to 663 

encompass a broader range of genetic and environmental factors, ultimately enhancing 664 

the accuracy and applicability of our findings.  665 

A noteworthy limitation of our study is the uniformity of sowing dates across the 666 

three years of experimentation. Furthermore, while we investigate the impact of 667 

warming under climate conditions, it is important to note that our experiment lacks a 668 

specific warming treatment. Our study underscores the significance of future research 669 

initiatives aimed at examining the influence of diverse sowing dates and simulated 670 

warming conditions on winter wheat-flowering-dates. These experiments are essential 671 

for generating crucial data to validate and enhance the insights derived from our 672 

modeling approach. They will also facilitate a nuanced exploration of the interactions 673 

between climatic variables and wheat genotypes under varying climate scenarios. 674 
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