
This is a repository copy of Polyglot Software Development:Wait, What?.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/211594/

Version: Published Version

Article:

Mussbacher, Gunter, Combemale, Benoit, Kienzle, Joerg et al. (10 more authors) (2024)
Polyglot Software Development:Wait, What? IEEE Software. pp. 124-133. ISSN 0740-
7459

https://doi.org/10.1109/MS.2023.3347875

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

124 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIET Y

T h i s w o r k i s l i c e n s e d u n d e r a C r e a t i v e C o m m o n s

A t t r i b u t i o n 4 . 0 L i c e n s e . F o r m o r e i n f o r m a t i o n ,

s e e h t t p s : //c r e a t i v e c o m m o n s .o r g / l i c e n s e s / b y /4 . 0 /

FEATURE: POLYGLOT SOFTWARE DEVELOPMENT

// We propose a concise

and unambiguous

definition of polyglot

software development

with a conceptual

model and characterize

the techniques used

for the specification

and operationalization

of polyglot software

development with a

feature model. //

MODERN SOFTWARE DEVELOP-
MENT commonly requires the use of

several languages in almost all activ-

ities, whether they involve require-

ments engineering, programming

in one or more languages, or con-

tinuous integration and delivery. For

example, requirements may be speci-

fied using templates for use cases or

user stories and Gherkin scenarios.1

Continuous integration and delivery

may be specified with GitHub Ac-

tions and build languages such as

Maven or Gradle.2 The proliferation

of domain-specific languages further

adds to the incentive to use different

languages for an activity.3 Even a so-

called Ruby project, such as Mast-

odon, an open source, distributed

social media platform, in fact al-

ready uses many languages.4 Besides

Ruby, specifications in Docker Com-

pose, Dockerfile, GitHub Actions,

Haml, HTML, JavaScript, package.

json, Rakefile, SCSS, and Structured

Query Language are used to handle

user interface, persistence, and build

issues. Mastodon is not an isolated

example. In 2017, Mayer et al. con-

ducted a survey to gather responses

Polyglot
Software
Development

Wait, What?

Gunter Mussbacher , McGill University and INRIA

Benoit Combemale , Université de Rennes

Jörg Kienzle , Universidad de Málaga and McGill University

Lola Burgueño , Universidad de Málaga

Antonio Garcia-Dominguez , University of York

Jean-Marc Jézéquel , Gwendal Jouneaux , and Djamel-Eddine

Khelladi , Université de Rennes and CRNS

Sébastien Mosser , McMaster University

Corinne Pulgar , Université du Québec

Houari Sahraoui , Université de Montréal

Maximilian Schiedermeier , McGill University

Tijs van der Storm , Centrum Wiskunde & Informatica and

Rijksuniversiteit Groningen

Digital Object Identifier 10.1109/MS.2023.3347875

Date of publication 3 January 2024; date of current version 12 June 2024.

©SHUTTERSTOCK.COM/JIRSAK

 JULY/AUGUST 2024 | IEEE SOFTWARE 125

from 139 professional software de-

velopers, who reported an average

of seven languages per project, with

more than 90% of developers re-

porting problems related to lan-

guage interactions.5

There are many reasons why sev-

eral languages are used in combina-

tion: sociotechnical reasons, such

as practitioner expertise/preferences

and best practices; conceptual rea-

sons, such as separation of concerns,

design decisions, and variability man-

agement; technical reasons, such as

availability of libraries/functionality,

efficiency, automation/reproduction,

reasoning/analysis, and quality as-

surance; and business reasons, such

as coping with legacy applications/

systems, technological debt, and

vendor lock-in.

It is therefore no surprise that

many communities are investigating

the combination of several languages.6

Yet, a long and ambiguous list of terms

exists for polyglot software develop-

ment from different communities.

We have illustrated all of the terms

we discovered in Figure 1, and we

also provide references to representa-

tive articles in the scientific literature

that use that terminology. While by

no means exhaustive, this list already

showcases the lack of a common

view; that is, different communities

often use the same term with differ-

ent meanings, or use different terms

for the same meaning. The effect is a

vastly ambiguous picture of the term

polyglot as well as a merely blurry

sketch of common associated impli-

cations for a development process.

Our goal is to clarify this fuzziness

by providing a clear definition of

polyglot software development. In

turn, this may qualify as a common

denominator for individual domain

experts, to leverage an antisilo effect

FIGURE 1. Ambiguous terms related to polyglot software development.

Multilanguage
Development

Polyglot Programming/

Polylingual Software

Cross-Language

2

Multilingual

Multilanguage Tools and
Development Environments

Hybrid Programming

Language Composition

1
3

4 5

6

7

8

10 11 12

9

Multiparadigm

Modeling/

Globalization

Legend

 1) “Lightweight Multilingual Software Analysis” doi.org/10.48550/arXiv.1808.01210

 2) “CLCDSA: Cross Language Code Clone Detection Using Syntactical Features and

 API Documentation” doi.org/10.1109/ASE.2019.00099

 3) “On Multilanguage Software Development, Cross-Language Links and Accompanying Tools: a Survey of Professional

 Software Developers” doi.org/10.1186/s40411-017-0035-z

 4) “Cross-Language Interoperability in a Multi-Language Runtime” doi.org/10.1145/3201898

 5) “The Design Space of Multilanguage Development Environments” doi.org/10.1007/s10270-013-0376-y

 6) “Multilanguage Debugger Architecture” doi.org/10.1007/978-3-642-11266-9_61

 7) “Debug All Your Code: Portable Mixed-Environment Debugging” doi.org/10.1145/1640089.1640105

 “Code Smells for Multilanguage Systems” doi.org/10.1145/3361149.3361161

 8) “An Empirical Assessment of Polyglot-ism in GitHub” doi.org/10.1145/2601248.2601269

 “Investigating the Effect of Polyglot Programming on Developers” doi.org/10.1109/VL/HCC51201.2021.9576404

 “Automated Support for Seamless Interoperability in Polylingual Software Systems” doi.org/10.1145/250707.239123

 9) “Multiparadigm Modeling for Cyber–Physical Systems: A Systematic Mapping Review” doi.org/10.1016/j.jss.2021.111081

10) “Globalizing Modeling Languages” doi.org/10.1109/MC.2014.147

11) “Language Composition Untangled” doi.org/10.1145/2427048.2427055

12) “A Hybrid Synchronous Language With Hierarchical Automata: Static Typing and Translation to Synchronous Code”

 doi.org/10.1145/2038642.2038664

126 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FEATURE: POLYGLOT SOFTWARE DEVELOPMENT

that facilitates the exchange of con-

tained knowledge.

In the remainder of this article, we

first introduce a conceptual model for

polyglot software development that

allows us to clearly define polyglot

software development and its polyglot

processes and tasks and to discuss

whether polyglot stakeholders are

required. We exemplify the concep-

tual model with Mastodon and other

examples. We further characterize

polyglot software development and

elaborate on polyglot programming,

before concluding with open chal-

lenges and perspectives.

Conceptual Model
To unify the large variety of terms

related to the use of languages, this

section proposes a conceptual model

for software development with mul-

tiple languages in Figure 2. Note

that we focus only on those develop-

ment concepts that directly involve

or somehow relate to languages.

At the heart of our conceptual

model is the Task, which is a unit

of work (for example, “specify web

views”) that involves a set of Stake-

holderRoles (such as “developer”).

One Stakeholder may play one or

more stakeholder roles. A task requires

the use of one or several Artifacts ex-

pressed in one or more Languages be-

cause the artifacts are either consumed

as input or produced as output by the

task. Some artifacts may be integrated

with each other using one or several

IntegrationTechniques. A language of-

fers one or more Paradigms in which

to formulate the intended properties

FIGURE 2. A conceptual model for polyglot software development and a feature model illustrating different integration techniques.

ProcessStakeholder
0..*

subProcesses

1..*

stakeholders

StakeholderRole

Task

Artifact

IntegrationTechnique

IntegrationTechnique

Operationalization

Interpretation

Call

Local RemoteOutputInputDataStreamSharedMemory

SharedData

Composition Interoperability Compilation

Specification

Legend

Mandatory

Optional

Alternative (OR)

Exclusive (XOR)

0..* tasks

1..* processes

0..*

contexts

techniques

0..*

outputs 0..*

producedBy 0..*

0..* inputs

0..* consumedBy

LanguageParadigm

roles 1..*

task

1

0..* roles
0..*

roles

editedArtifacts

0..*

0..*

paradigms

languages

0..*

1..* languages

0..* artifacts

S
tr

in
g

S
tr

in
g

0..*

artifacts

0..*

languages

usedLanguages

0..*

Conceptual Model

Feature Model

 JULY/AUGUST 2024 | IEEE SOFTWARE 127

or behavior of the system under devel-

opment (for example, “object-oriented

programming,” “functional program-

ming,” and “procedural programming”

for Ruby).

An important distinction for a

stakeholder role to be associated

with an artifact of a language is

that the role needs to actively edit

something in the artifact (for exam-

ple, write code, or add a model el-

ement). If this is not the case, then

the stakeholder does not use the lan-

guage. Simply viewing or executing

an artifact does not qualify (such as

the result of a model generation or

compilation, respectively). For ex-

ample, while the task of compiling

code will require an input artifact

and will output bytecode/machine

code, most stakeholders will not di-

rectly engage with the compilation

results. Hence, the stakeholders do

not use the bytecode/machine code

language, nor do they use the lan-

guage of the input artifact since they

do not edit it.

A ternary association is required

since an artifact may be expressed

in several languages, and a stake-

holder role may only use some of

those languages. For example, a per-

formance specialist may edit only

the MARTE annotations in a UML

class diagram.

To bring artifacts of languages

together for a task, a certain Inte-

grationTechnique is used, where

each artifact and its language(s)

play a role, captured in the concep-

tual model by the qualified associa-

tions between integration technique

and artifact and between integration

technique and language.

As an example, the “specify web

views” task in Mastodon involves

the creation of a “Haml” output ar-

tifact for the front-end developer

and a “Ruby” output artifact for the

back-end developer. These developers

may in fact be the same person as a

stakeholder may play multiple roles.

Since this is a task that requires in-

tegrating two or more languages, the

task uses an integration technique

where Haml plays the role of “tem-

plate” and Ruby is the “interpreter”.

The follow-up runtime task “gener-

ate web views” that produces arti-

facts in “HTML” from the integrated

Haml+Ruby specifications is a task

that involves no editing stakeholders

but has two input artifacts and one

output artifact.

Finally, during software develop-

ment, tasks are typically performed

in some order. For this purpose, our

conceptual model contains the Pro-

cess concept, which groups a set of

tasks and a set of stakeholders. For

the sake of practicality, we also al-

low processes to contain subpro-

cesses, that is, to form hierarchies.

We are not explicitly modeling the

partial ordering of tasks within a

process, though, as it is of no rel-

evance regarding our discussion on

polyglotism. Implicitly, a partial or-

dering is established nevertheless

because tasks that require input ar-

tifacts can only be performed once

the artifacts have been output by a

preceding task in the process.

To finalize, we need to make

the definition of a task more pre-

cise to avoid confusion among pro-

cess, subprocesses, and tasks. A

task is supposed to be the small-

est unit of work; that is, it should

not arbitrarily consist of artifacts

with many languages that are not

directly related to each other (for

example, one task is defined for

a whole process instead of split-

ting the process into several atomic

tasks). We can do this by adding

the following constraint to the con-

ceptual model:

A task may only contain artifact(s)

of more than one language if the lan-

guages are integrated by a technique.

context Task:
inv: roles.usedLanguages asSet() size()

2 implies techniques.artifacts
 includesAll(roles.editedArtifacts)

and techniques.languages
 includesAll(roles.usedLanguages)

In the Mastodon project, for exam-

ple, an activity such as “specify web

views and build script” that includes

Ruby, Haml, and Dockerfile would

have to be modeled as two tasks.

Polyglotism
Since the production of software always

involves translation from human-read-

able languages to machine languages,

all software development can be seen as

polyglot. However, we are going to give

a more nuanced definition of polyglot

based on the use of languages for a task

as explained earlier.

The conceptual model introduced

allows for thinking about polyglot-

ism at multiple levels, that is, at the

task and the process levels and also

with respect to stakeholder roles

and stakeholders.

A task is polyglot if the stakeholder

roles of the task edit artifact(s) in more

than one language.

context Task def isPolyglot(): Boolean
 roles.usedLanguages asSet() size() 2

For example, consider a task

“specify web page” with an output

artifact in two languages: HTML

and Cascading Style Sheets (CSS).

The task could require two stake-

holder roles, one for HTML and one

for CSS, or the same stakeholder role

for both languages. In both cases

the task is polyglot, and an integra-

tion technique is required because

two languages are used in an edited

128 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FEATURE: POLYGLOT SOFTWARE DEVELOPMENT

artifact. Another common situation

occurs when a low-level language is

embedded within a high-level pro-

gramming language. For example,

it is common to embed C code in

Python to increase the performance

of computationally expensive al-

gorithms, and therefore any pro-

gramming task with such a setup is

polyglot. However, if the task is fully

automated, that is, there is no stake-

holder role, then the task is not poly-

glot. A polyglot task requires active

stakeholder involvement with mul-

tiple languages.

This distinction is also exemplified

by the tasks “write model transfor-

mation” and “run model transfor-

mation”. Both tasks are not polyglot.

The former is not polyglot because it

involves a stakeholder role that ed-

its the output artifact in only a sin-

gle language, for example, an ATL

script for the model transformation,

based on two input artifacts, that is,

the metamodels for the source and

target languages of the transforma-

tion. The latter is not polyglot be-

cause it is automated and does not

involve an active stakeholder role

but three input artifacts (for exam-

ple, the ATL script and two models

corresponding to the source and tar-

get metamodels) and an automati-

cally created output artifact in the

target language.

Similarly, the specification of

a consistency rule or an analysis

script (such as energy consumption

for webpages) is a task that is not

polyglot unless the specification it-

self requires multiple languages. The

metamodels of the languages for

which a consistency rule is specified

are the input artifacts and are not

edited. Likewise, the webpages that

are analyzed are also input artifacts

that are not edited. The execution

of the consistency rule (which may

perform changes to the input mod-

els) and the running of the analysis

are automated, and hence they are

not polyglot because no stakeholder

is actively involved.

Based on the definition of a poly-

glot task, similar definitions for

stakeholder roles, stakeholders, and

processes can be formulated:

A stakeholder role is polyglot if it re-

quires to edit artifact(s) in more than

one language.

context StakeholderRole def: isPolyglot():
 Boolean usedLanguages asSet()

size() 2

A stakeholder needs to be poly-

glot if the union of roles they play

edits artifact(s) in more than one

language.

context Stakeholder def: isPolyglot(): Boolean
 roles.usedLanguages asSet() size() 2

A process is polyglot if the stake-

holder roles of the tasks that it or

any of its subprocesses contains edit

artifact(s) in more than one language.

context Process def: isPolyglot(): Boolean
 self.closure(subprocesses).tasks.roles

.usedLanguages asSet() size() 2

For example, the earlier Ruby+

Haml “specify web views” task has

task-level polyglotism, but some other

systems may exhibit process-level

polyglotism. For instance, in a “data

visualization” process, one task may

use Python to transform data, and

another task may use R to visual-

ize the transformed data. At the up-

permost process level, many modern

systems will exhibit polyglotism (for

example, using a formal require-

ments language and an implementa-

tion language).

On the other hand, there are still

many projects that are not polyglot.

For instance, there are numerous

domains, such as data science, biol-

ogy, or finance, whose projects use a

single language (such as Python) for

all tasks (for example, data curation,

analysis, computation, visualization,

etc.). Such a task is represented in

the conceptual model by a task that

produces an output artifact edited by

a stakeholder role but only in the Py-

thon language and without any inte-

gration technique.

In the literature and in practice,

different communities refer to the

concepts in our conceptual model

differently. This existing terminology

(see Figure 1) can be mapped to our

conceptual model as follows. “Poly-

glot development/programming” is

in line with our definition of poly-

glotism. Within it, “multiparadigm

modeling/globalization” are seminal

approaches with an explicit focus on

language integration (or composi-

tion) techniques. “Polyglot program-

ming” and “polylingual software”

as well as “multilanguage develop-

ment” refer to a development pro-

cess with tasks that span more than

one language, but multilanguage

development is more general and re-

fers to approaches without language

integration techniques. These terms

should not be confused with “multi-

lingual” software development tools,

which include all language-agnostic

tools that can be reused across a

well-defined range of existing lan-

guages. “Cross-language” refers to

tools that can operate across mul-

tiple languages while relating them

(for example, when performing clone

detection across Java and Python

programs, the tool not only has to

work on both Java and Python pro-

grams but also has to relate them).

“Multilanguage tools and develop-

ment environments” focus on the

tooling aspect but do not contrib-

ute to the underlying foundations of

 JULY/AUGUST 2024 | IEEE SOFTWARE 129

software development with multiple

languages. By contrast, “language

composition” techniques refer to

work on the foundations for dealing

with multiple languages, which may

involve polygot development but also

language design and implementation

for hybrid programming languages,

that is, with multiple paradigms but

without language integration tech-

niques. Finally, “hybrid program-

ming” refers to a single language

that combines more than one para-

digm (for example, continuous and

discrete programming).

All communities depicted in Fig-

ure 1 build on the foundations of

model-driven engineering (MDE) as

well as language-oriented program-

ming (LOP). In MDE, models play

a central role during software devel-

opment as the whole software life

cycle is seen as a process of model

production, refinement, and integra-

tion.7 Similarly, in LOP a language is

treated like any other development

artifact, and, instead of using gen-

eral-purpose languages, the creation

and implementation of domain-spe-

cific languages for solving problems

are preferred.8

Integration Techniques
In this section, we provide more de-

tails on existing language integra-

tion techniques mentioned in the

conceptual model by focusing on

polyglot programming and hence ex-

ecutable artifacts. Figure 2 depicts

the possible choices for the integra-

tion technique of executable artifacts

as a feature model. Each feature rep-

resents a choice.

Each integration technique re-

quires at least one choice for its

Specification and one for its Opera-

tionalization. The former handles

how we define the interaction be-

tween languages at design time, and

the latter specifies how the interac-

tion is realized during execution. The

specification can be implemented

with a Composition solution9 and/or

an Interoperability solution.10 Com-

position covers all various techniques,

from embedding of a language into

another to unifying two languages

at the syntax and/or semantic level.

We do not provide further details on

the many existing composition tech-

niques and their classification, but

the interested reader is referred to

the survey article by Erdweg et al.11

Interoperability covers the com-

munication among different lan-

guages. Interoperability needs to

deal with two important aspects,

namely how data sharing (Shared-

Data) and Calls are handled. The

calls between languages can be either

Remote, when the call goes through

a network, or else Local. The shared

data can either be implemented with

a SharedMemory, a data streaming

mechanism (DataStream), or simply

by one language writing some out-

put that another language consumes

as an input, for example, through a

file on disk (OutputInput).

Operationalization represents how

the specification will be realized dur-

ing execution. This can either be

achieved through Compilation and/

or Interpretation, that is, either by ex-

ecuting the relationships between the

two languages at compile time, for ex-

ample, in Melange,6 or by interpreting

the specified relationships at runtime,

for example, in BCOoL.12

For example, a Scala program call-

ing Java libraries fits the following

choices in the feature model of Fig-

ure 2: shared memory and local call

interoperability, and compilation op-

erationalization. Another example is

the case where code in one language

invokes code in another language; for

instance, the new Foreign Function

and Memory application program-

ming interface (API) in Java allows

Java code to invoke low-level code

and access data outside the Java vir-

tual machine on the same machine. In

other cases, interoperability happens

through the use of an interface defi-

nition language, such as OpenAPI,

from which client and server stubs are

generated. This integration technique

would use output/input and remote

call interoperability. If, for example,

Python talks to compiled C++, then

the operationalization would use in-

terpretation on the Python side and

compilation on the C++ side.

Taking again the example of

Mastodon, different integration tech-

niques are used at various times. For

instance, the integration technique

between Haml and Ruby uses in-

teroperability as specification through

local calls to Haml code as well as

shared memory, and it is operation-

alized using the Haml interpreter.

A second used integration technique

between Ruby and JavaScript relies

New opportunities await with the

application of AI techniques to

polyglot software development.

130 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FEATURE: POLYGLOT SOFTWARE DEVELOPMENT

on interoperability as specification

with a data stream using Redis and

remote calls, and interpretation as

operationalization.

As mentioned in the previous sec-

tion, not every integration technique

is associated with a polyglot task be-

cause stakeholder involvement is re-

quired. A fully automated task that

is not polyglot may still have an inte-

gration technique. However, the ear-

lier integration techniques between

Haml and Ruby and between Ruby

and JavaScript belong indeed to

polyglot tasks since the stakeholders

edit artifacts in all languages.

Challenges and
Perspectives
As mentioned previously, most soft-

ware development is already polyglot

to some extent, and it is not sur-

prising that we see increasingly

more languages appearing in mod-

ern software projects, for example,

to build systems more efficiently or

to separate concerns (see “To Make

a Program”). Polyglot software de-

velopment, however, faces many

technical, process-related, educa-

tional, and community challenges.

We discuss them and provide re-

lated perspectives.

Technical Challenges

and Perspectives

Some software development activities

that are well understood within a sin-

gle language become challenging in

polyglot software development. For

example, we need to develop novel

and intuitive tools and techniques

for polyglot software comprehension,

polyglot software analysis (includ-

ing, for example, semantic alignment,

debugging, and profiling), and poly-

glot software documentation. Simi-

larly, whereas testing each language

separately is well supported, testing

the overall polyglot program and its

different interactions remains a chal-

lenge. Indeed, a test case would re-

quire one to integrate the “oracle

states” of different programs written

in different languages.

Techniques for software secu-

rity will have to be revisited in the

context of polyglot software devel-

opment. For example, we need to en-

sure secure communication channels

among languages and enable cross-

language access control.

When developing polyglot pro-

grams, we often have to write the lan-

guage integration logic from scratch.

As a first step, our current code gen-

erators should be extended with a

layer that automatically exposes the

services by system components writ-

ten in one language to the other lan-

guages. Ultimately, the goal is to have

full-fledged code generation for poly-

glot programs that includes the inte-

gration logic.

Finally, new opportunities await

with the application of artificial

TO MAKE A PROGRAM
To make a program, it takes a language and a machine.

One language and a machine—at least in theory.

But practice asks for separation of concerns,

a division of labor between you, and me, and her.

The people demand speed and efficiency, but alas,

a language can compute anything, but is it fast?

So then we invite another and thus transgress

out of paradise with a bite, a sudden kiss of death,

and descend the tar pit of our fetished Babylon,

sentenced to tame the Hydra that we have

spawned.

Let’s study the techniques of our tongues’ embrace:

A language alongside another wants to communicate.

A language on top of another is one that generates.

A language within a language, a hatch for my escape.

So many tradeoffs at stake

when complexity procreates.— Tijs van der Storm

To bring artifacts of languages

together for a task, a certain

Integration Technique is used, where

each artifact and its language(s) play

a role.

 JULY/AUGUST 2024 | IEEE SOFTWARE 131

intelligence techniques to polyglot

software development. More spe-

cifically, we should investigate how

to capitalize on multilingual trained

large language models.13

Process-Related Challenges

and Perspectives

We must develop strategies to deter-

mine the most appropriate combina-

tion of languages to use for a given

task, also taking into account the

sociotechnical context. We might

even benefit from identifying anti-

patterns of language combinations

from unsuccessful projects. We need

to develop a theory for tradeoffs be-

tween productivity and complexity

involved with polyglotism. Adding

a language that is well suited to a

task can speed up development, but

it might also increase the cognitive

load for the developer and require a

broader range of development skills.

Finally, a completely new challenge

arises regarding language evolution.

As many languages are used and

interact with each other, when one

evolves, others may be impacted as

well. We would need to develop tools

and techniques for polyglot impact

analysis that can reason over multi-

ple languages simultaneously. Then,

when impacts are identified, they

must be considered and languages

have to coevolve accordingly.

Educational Challenges

and Perspectives

Most software engineering curricula

contain courses that teach languages

and paradigms, but only rarely are

students explicitly exposed to poly-

glot software development with dedi-

cated support for the coordinated use

of multiple languages.14 We need to

find ways to use the presented con-

ceptual model as an education tool

to convey the real-life complexities to

students who are used to “lab” proj-

ects as well as augment our teaching

practices with examples of polyglot

development activities and tech-

niques to give a more holistic view of

real-life software development.

Community Challenges and

Perspectives

In this article, we have identified

similarities and variabilities in the

terminology related to polyglot de-

velopment used by various software

engineering communities. Tradition-

ally, different communities have been

working in relative isolation from

each other, and work like the one

presented here can help break down

the silos that separate them. Yet this

work needs to be amended by the

plethora of other communities deal-

ing with polyglotism to enable global

cross-fertilization.

References
 1. M. S. Murtazina and T. V. Avdeenko,

“Ontology-based approach to the

requirements engineering in agile

environment,” in Proc. 14th Int. Sci-

entific-Tech. Conf. Actual Problems

Electron. Instrum. Eng. (APEIE),

Piscataway, NJ, USA: IEEE Press,

2018, pp. 496–501, doi: 10.1109/

APEIE.2018.8546144.

 2. M. Shahin, M. A. Babar, and L. Zhu,

“Continuous integration, delivery

and deployment: A systematic review

on approaches, tools, challenges and

practices,” IEEE Access, vol. 5, pp.

3909–3943, 2017, doi: 10.1109/

ACCESS.2017.2685629.

 3. T. Kosar, S. Bohra, and M. Mernik,

“Domain-specific languages: A system-

atic mapping study,” Inf. Softw. Tech-

nol., vol. 71, pp. 77–91, Mar. 2016,

doi: 10.1016/j.infsof.2015.11.001.

[Online]. Available: https://www.

sciencedirect.com/science/article/pii/

S0950584915001858

 4. A. Raman, S. Joglekar, E. D. Cris-

tofaro, N. Sastry, and G. Tyson,

“Challenges in the decentralised web:

The mastodon case,” in Proc. Internet

Meas. Conf., 2019, pp. 217–229, doi:

10.1145/3355369.3355572.

 5. P. Mayer, M. Kirsch, and M. A.

Le, “On multi-language software

development, cross-language links

and accompanying tools: A survey of

professional software developers,” J.

Softw. Eng. Res. Develop., vol. 5,

no. 1, 2017, Art. no. 1, doi: 10.1186/

s40411-017-0035-z.

 6. T. Degueule, B. Combemale,

A. Blouin, O. Barais, and J.-M.

Jézéquel, “Melange: A meta-lan-

guage for modular and reusable

development of DSLs,” in Proc.

ACM SIGPLAN Int. Conf. Softw.

Lang. Eng. (SLE), New York, NY,

USA: Association for Computing

Machinery, 2015, pp. 25–36, doi:

10.1145/2814251.2814252.

 7. D. C. Schmidt, “Guest Editor’s

 Introduction: Model-driven engineer-

ing,” Computer, vol. 39, no. 2, pp.

25–31, Feb. 2006, doi: 10.1109/

MC.2006.58.

 8. R. Pickering, “Language-oriented pro-

gramming,” in Beginning. Berkeley,

CA, USA: Apress, 2010, pp. 327–349.

 9. J. Kienzle, G. Mussbacher,

B. Combemale, and J. Deantoni,

“A unifying framework for homoge-

neous model composition,” Softw.

Syst. Model., vol. 18, no. 5, pp.

3005–3023, Jan. 2019, doi: 10.1007/

s10270-018-00707-8.

 10. M. Grimmer, R. Schatz, C.

Seaton, T. Würthinger, M. Luján,

and H. Mössenböck, “Cross-lan-

guage interoperability in a multi-

language runtime,” ACM Trans.

Program. Lang. Syst., vol. 40,

no. 2, May 2018, Art. no. 8, doi:

10.1145/3201898.

 11. S. Erdweg, P. G. Giarrusso, and T.

Rendel, “Language composition

132 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FEATURE: POLYGLOT SOFTWARE DEVELOPMENT
A

B
O

U
T
 T

H
E

 A
U

T
H

O
R

S

GUNTER MUSSBACHER is an associate

professor at McGill University, Montreal,

QC H3A 0E9, Canada. His research inter-

ests include model-driven requirements

and software language engineering, sus-

tainability, and human values. Mussbacher

received his Ph.D. in computer science

from the University of Ottawa. Contact

him at gunter.mussbacher@mcgill.ca and

http://www.ece.mcgill.ca/~gmussb1/.

ANTONIO GARCIA-DOMINGUEZ is

a lecturer in software engineering in the

 Department of Computer Science at the

University of York, YO10 5GH York, U.K.

His research interests are model-driven

software engineering and software testing.

Garcia-Dominguez received his Ph.D. in

engineering and architecture from the Uni-

versity of Cádiz. Contact him at a.garcia-

dominguez@york.ac.uk and https://www

-users.york.ac.uk/~agd516/

BENOIT COMBEMALE is a full profes-

sor of software engineering at the ESIR,

University of Rennes, 35065 Rennes,

France, and cohead of the DiverSE

research team. His research interests

include model-driven and software

language engineering and DevOps.

Combemale received his a Ph.D. in

software engineering from the University

of Toulouse. He is a Member of IEEE.

Contact him at benoit.combemale@irisa.

fr and http://combemale.fr/.

JEAN-MARC JÉZÉQUEL is a professor at

the University of Rennes, 35042 Rennes,

France, and a member of the DiverSE

team at IRISA/Inria. His research interests

include model-driven software engineering.

Jézequel received his Ph.D. in computer

science from the University of Rennes. He

is a Senior Member of IEEE. Contact him at

jezequel@irisa.fr and http://people.irisa.fr/

Jean-Marc.Jezequel.

JÖRG KIENZLE is a researcher at ITIS

Software, Universidad de Málaga, Málaga,

Spain, and a full professor at McGill

University, Montreal, QC H3A 0E9, Canada.

His research interests include model-driven

software development, software product

lines, and modularity. Kienzle received his

Ph.D. in computer science from the Swiss

Federal Institute of Technology. Contact

him at joerg.kienzle@uma.es, joerg.

kienzle@mcgill.ca, and https://djeminy.

github.io.

GWENDAL JOUNEAUX is a Ph.D. student

in software engineering at the University

of Rennes, 35042 Rennes, France, and a

member of the DiverSE research team. His

research interests are model-driven and

software language engineering and self-

adaptable languages. Jouneaux received

his master’s degree in software engineer-

ing from the University of Rennes. Contact

him at gwendal.jouneaux@irisa.fr and

https://www.gwendal-jouneaux.fr.

LOLA BURGUEÑO is an associate profes-

sor at the University of Málaga, 29071

Malaga, Spain. Her research interests

include artificial intelligence in software

development, uncertainty management, and

software testing. Burgueño received her

Ph.D. in software engineering and artificial

intelligence from the University of Málaga.

Contact her at lolaburgueno@uma.es and

https://lolaburgueno.github.io.

DJAMEL-EDDINE KHELLADI is a CNRS

researcher at the IRISA lab in the DiverSE

team, Université Rennes 1, 35000 Rennes,

France. His research interests are model-

driven engineering, scaling code analysis,

and software processes. Khelladi received

his Ph.D. in computer science from the

University of Paris 6. Contact him at

djamel-eddine.khelladi@irisa.fr and http://

people.irisa.fr/Djamel-Eddine.Khelladi/.

 JULY/AUGUST 2024 | IEEE SOFTWARE 133

untangled,” in Proc. 12th Work-

shop Lang. Descriptions, Tools,

Appl. (LDTA), New York, NY,

USA: Association for Comput-

ing Machinery, 2012, pp. 1–8, doi:

10.1145/2427048.2427055.

 12. M. E. Vara Larsen, J. DeAntoni,

B. Combemale, and F. Mallet, “A

behavioral coordination operator

language (BCOoL),” in Proc. ACM/

IEEE 18th Int. Conf. Model Driven

Eng. Lang. Syst. (MODELS),

2015, pp. 186–195, doi: 10.1109/

MODELS.2015.7338249.

 13. T. Ahmed and P. Devanbu,

“Multilingual training for

software engineering,” in Proc.

IEEE/ACM 44th Int. Conf. Softw.

Eng. (ICSE), Los Alamitos, CA,

USA: IEEE Computer Society,

May 2022, pp. 1443–1455, doi:

10.1145/3510003.3510049.

 14. M. Ardis, D. Budgen, G. W. His-

lop, J. Offutt, M. Sebern, and

W. Visser, “SE 2014: Curriculum

guidelines for undergraduate degree

programs in software engineering,”

Computer, vol. 48, no. 11, pp.

106–109, Nov. 2015, doi: 10.1109/

MC.2015.345.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

SÉBASTIEN MOSSER is a professor

of software engineering at McMaster

University, Hamilton, ON L8S 4L8, Canada,

and a member of the McSCert centre. His

research interests are related to domain-

specific modeling and software composi-

tion from a language point of view. Mosser

received his Ph.D. in software engineering

from the Université de Nice-Sophia Antipo-

lis. Contact him at mossers@mcmaster.ca

and https://mosser.github.io/.

MAXIMILIAN SCHIEDERMEIER is a

Ph.D. student in computer science at McGill

University, Montreal, QC H3A 0E9, Canada.

His research focuses on domain-specific

language-based tools for Representational

State Transfer development/security proto-

col integration and empirical assessments.

Schiedermeier received his master's degree

in computer science from Universität Pas-

sau. Contact him at max.schiedermeier@

mcgill.ca and https://m5c.github.io/.

CORINNE PULGAR is a master’s student

at Ecole de Technologie Supérieure,

Université du Québec, Montreal, QC, H3C

3P8 Canada. Their research interests

include model-driven engineering, domain

specific languages, DevOps, and inclusiv-

ity. Pulgar received their bachelor’s degree

in computer science from the Université

du Québec. Contact them at corinne.

pulgar.1@ens.etsmtl.ca and https://www.

linkedin.com/in/corinne-pulgar-12a58190/

TIJS VAN DER STORM is a senior re-

searcher and group leader of the Software

Analysis & Transformation group at CWI,

1098 XG Amsterdam, The Netherlands,

and a professor of software engineering at

the University of Groningen. His expertise

spans language engineering, domain-

specific languages, and model-driven

engineering. Van der Storm received his

Ph.D. from the University of Amsterdam.

Contact him at storm@cwi.nl and http://

www.cwi.nl/~storm.

HOUARI SAHRAOUI is a professor in

the Department of Computer Science and

Operations Research at the Université de

Montréal, Montreal, QC H3C 3J7, Canada.

His research interests include artificial in-

telligence applied to software engineering

and search-based software and model-

driven engineering. Sahraoui received his

Ph.D. in computer science from Université

Pierre et Marie Curie. Contact him at

sahraouh@iro.umontreal.ca.

	124_41ms04-kienzle-3347875

