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Abstract: As of April 2021, the COVID-19 pandemic has swept through 213 countries and infected
more than 132 million individuals globally, posing an unprecedented threat to human health. There
are currently no specific antiviral treatments for COVID-19 and vaccination programmes, whilst
promising, remain in their infancy. A key to restricting the pandemic is the ability to minimize
human–human transmission and to predict the infection status of the population in the face of
emerging SARS-CoV-2 variants. Success in this area is dependent on the rapid detection of COVID-19
positive individuals with current/previous SARS-CoV-2 infection status. In this regard, the ability to
detect antibodies directed against the SARS-CoV-Spike protein in patient sera represents a powerful
biomarker for confirmation of infection. Here, we report the design of a proof-of-concept cell–based
fluorescent serology assay (termed C19-S-I-IFA) to detect SARS-CoV-2 infection. The assay is based
on the capture of IgG antibodies in the serum of COVID-19-positive patients using cells exogenously
expressing SARS-CoV-2-Spike and their subsequent fluorescent detection. We validate the assay in 30
blood samples collected in Oxford, UK, in 2020 during the height of the pandemic. Importantly, the
assay can be modified to express emerging Spike-variants to permit assessments of the cross-reactivity
of patient sera to emerging SARS-CoV-2 strains.
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1. Introduction

In December 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-
2) emerged in Wuhan, China, causing coronavirus disease 2019 (COVID-19), a highly
contagious respiratory illness [1,2]. Since its initial identification in patients with severe
pneumonia in Wuhan, infections have rapidly spread across the globe, and the disease was
declared a pandemic by the World Health Organization (WHO) on 11 March 2020. As of
April 2021, there are 132,004,796 confirmed COVID-19 cases, and total deaths have reached
over 2.9 million globally. Current estimates suggest that 568,777 individuals have died from
COVID-19 in the United States alone, and more than 126,836 deaths have occurred in the
UK. Airborne infection remains the major route of transmission [3,4], and age, male gender,
smoking, hypertension, diabetes and cardiovascular disease have been identified as risk
factors for severe infections [5–7]. For as yet unknown reasons, paediatric patients are at a
lower risk of severe COVID-19 disease, accounting for ~90% of all diagnosed asymptomatic
or mild cases [8–10].

Despite the extreme measures taken to restrain the pandemic, the transmission of
SARS-COV-2 has continued at an alarming rate [1,11–14]. A number of European countries
are now experiencing a third wave of COVID-19 infections, including Germany, France and
Poland. In late 2020 to early 2021, new variants of SARS-CoV-2 with increased transmissi-
bility emerged in the UK (linage B.1.1.7: Variant of Concern 202012/01) and several other
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countries, including South Africa (linage B.1.351, 501Y.V2) and Brazil (P.1 20J/501Y.V3
variants) [15–18]. However, their pathogenicity and ability to escape from pre-existing or
vaccine-induced antibody-induced immunity still requires investigation.

In the absence of effective anti-viral therapies for COVID-19, the prevention of human-
to-human transmission requires extensive testing, quarantine and contact tracing [3,19].
Although daily rates of new infections in many European countries have declined, regional
variability remains an issue. As an example, the reproduction number (R) for SARS-CoV-2
in the North East and Yorkshire, UK, ranges from 0.8 to 1 (as of 5 April 2021) compared
to 0.7–1 in the East of England (https://www.gov.uk/guidance/the-r-number-in-the-uk;
accessed on 5 April 2021). However, given the low numbers of cases and high degree
of variability in regional transmission, these estimates lack the robustness required to
inform policy decisions. In addition, the immunization status of individuals to future
SARS-CoV-2 variants remains largely unknown, despite the successful implementation of
mass vaccination campaigns.

Whilst predictions of the COVID-19 outcome are complex, the identification of indi-
viduals previously infected with SARS-CoV-2 can provide knowledge on the degree of
immunisation and the individual risk of future infections to emerging variants. In this
context, current clinical diagnostic tools (including PCR-based methods) fail to detect
immune status [20,21], revealing only those currently infected with the virus. Serological
tests can detect IgG, IgA, or IgM anti-SARS-CoV-2 in blood samples and are key to disease
surveillance [22–24]. Previous studies have confirmed the presence of anti-SARS-CoV-2
IgG/IgM in clinically confirmed COVID-19 cases, even in situations when RT-PCR results
were negative [25]. The number of serological tests to detect antibodies against COVID-19
have rapidly increased since the start of the pandemic. These now include enzyme-linked
immunosorbent assays (ELISA) [26,27], lateral flow immunoassays (LFIAs), and chemilu-
minescent immunoassays (CLIAs) [12]. However, commercially available and validated
tests would be challenging to upscale if new SARS-CoV-2 variants emerge that can escape
patient SARS-CoV-2 antibodies [24,28].

In this study, we report the development of a proof-of-concept cell-based fluorescent
serological assay validated for the detection of SARS-CoV-2 status. Using the assay, samples
from blood donors collected in Oxford, UK, in March 2020 were assessed for current or
previous SARS-CoV-2 infection. We confirm the effectiveness of the immunofluorescence
detection method and highlight its applicability for large-scale serological surveillance.
Importantly, the assay can be easily modified to express spike protein mutants, permitting
predictions of the cross-reactivity of patient sera to emerging SARS-CoV-2 variants, thereby
fully informing the immunization status of patients.

2. Methods
2.1. Patient Samples

Plasma samples (n = 30) were collected in March 2020 during the COVID-19 pan-
demic in Oxford (UK). Participants had unknown SARS-CoV-2 infection status and were
recruited using the Oxford Translational Gastrointestinal Unit GI Biobank Study ethics,
code 16/YH/0247 (REC at Yorkshire and the Humber, Sheffield). As negative controls,
100 blood donor samples were collected from the Scottish National Blood Transfusion
Service (SNBTS) anonymous archive from September 2018 to December 2019 (IRAS Project
No. 18005), prior to the first reports of SARS-CoV-2 in Wuhan. SNBTS blood donors
provided informed consent to virological testing. Donations were made under the SNBTS
Blood Establishment Authorisation. The study was approved by the SNBTS Research and
Sample Governance Committee. Excluded samples included those positive for HIV-1, HCV,
HBV or syphilis.

As positive controls, seven samples from contact-traced individuals were compared
(PCR-confirmed as SARS-CoV-2 infected). All infected individuals had asymptomatic
COVID-19 and were recruited through the ISARIC WHO Clinical Characterisation Protocol
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UK (CCP-UK) at the discharge plus 28 day time-point. Samples were heat inactivated prior
to serological analysis through incubation at 56 ◦C for 30 min.

2.2. SARS-CoV-2 Expression Constructs

Full-length synthetic codon optimised SARS-CoV-2 spike protein (Accession number:
YP_009724390.1: Supplementary Figure S2) was cloned into pcDNA3.1 (+) for mammalian
expression under a CMV promoter. pTK-Ren (Promega, Southampton, UK) expressing
Renilla luciferase (RLuc) was linearized with XbaI and co-transfected as an expression
control. DNA quantity and quality were confirmed through Qubit fluorometric quantitation
(ThermoFisher Scientific, Waltham, MA, USA).

2.3. Production of the SARS-CoV-2 Spike A549 Cell System

A549 cells were maintained in DMEM (Life Technologies, Warrington, UK) supple-
mented with 10% heat-inactivated FCS (Gibco), 100 U/mL penicillin and 100 µg/mL
streptomycin (Life Technologies, Warrington, UK). Cells were seeded at 1.5 × 105 cells per
well in 96-well plates (n = 6; n = 3 for IFA and n = 3 for Luciferase assay) and transfected
with SARS-CoV-2-spike-pcDNA3.1 (+) plasmid (50 ng/well) and 10 ng of pTK-Ren using
Lipofectamine 2000 transfection reagent (ThermoFisher Scientific, Waltham, MA, USA).
Transfected SARS-CoV-2 spike cells were selected in G418 (Sigma-Aldrich, Steinheim, Ger-
many: 1 mg/mL) and passaged (1:5) every 3 days in 0.5 mg/mL G418 for the generation of
stable cell lines.

2.4. SARS-CoV-2-Spike IgG Immunofluorescence Assays (C19-S-I-IFA)

Serial 2-fold dilutions of each serum sample (1:8 to 1:128 dilutions) were added to
A549-SARS-CoV-2-spike cells in 96-well plates for 1 h. Cells were then washed in PBS,
fixed in acetone at −20 ◦C for 15 min, and blocked in PBS-T containing 5% (wt/vol)
BSA prior to incubation with anti-human (Hu)-IgG-FITC antibodies (Merck, Darmstadt,
Germany; F3512; 1:00 dilution) for 1 h to label bound SARS-CoV-2 spike IgG. Nuclei were
counterstained with DAPI (Life Technology, Warrington, UK). Microplates were analysed
using a Leica DMIRE2 microscope and Q capture pro 7 software.

For confocal analysis, A549-SARS-CoV-2-spike cells (5 × 10 5) cells were seeded into
35 mm glass-bottomed culture dishes (MatTek Corporation, MA, USA) and incubated
with serum samples at a dilution of 1:40. Cells were then fixed, blocked and labelled with
anti-Hu-IgG-FITC antibodies. Confocal images were acquired on a Zeiss LSM880 upright
microscope with Airyscan or using an automated Evos FL Auto 2 microscopic system.

2.5. Image Analysis

Post-acquisition analysis was performed using Zen (version 2015 black edition 2.3;
Zeiss) or Fiji (version 1.49, software 54). Cells were scored for fluorescence intensity
to indicate the presence of IgG against the SARs-CoV2-spike. Test plates included the
following controls: (i) PCR-confirmed samples of known COVID-19 status (1/8 and 1:16
dilutions; Table 1); (ii) COVID-19-positive samples added to untransfected cells to rule out
non-specific binding; (iii) untransfected and A549-SARS-CoV-2-spike cells labelled with
anti-human-IgG-FITC to ensure virus IgG specific fluorescence.
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Table 1. Assay validation. Levels of type-specific anti-coronavirus antibodies detected in the human
sera of COVID-19-positive or -negative patients.

Method validation and Acceptance Criteria

Row Mixture
Antigen dilution # Cell Controls

1/8 1/16 1/24 1/32 1/40 1/48 1/56

# 1 +Ab +Ag 4 4 3 3 3 2 1 0

6= 2 +Ab +Ag 1 0 0 0 0 0 0 0

� 3 +Ab ?Ag 1 1 0 0 0 0 0 0

6= 4 −Ab +Ag 0 0 0 0 0 0 0 0

◦ 5 −Ab −Ag 0 0 0 0 0 0 0 0

♦ 6 −Ab ?Ag 0 0 0 0 0 0 0 0
# Fluorescence intensity scores: 0 = no FITC, 1 = ≤ 25%, 2 = ≥ 26%–≤ 50%, 3 = ≥ 49%–≤ 75%, 4 = ≥ 76 %–≤
100% FITC.; 6= PCR confirmed positive samples; � Post-pandemic unknown sample (sample ID:1); ◦ Cell control;
♦ Pre-pandemic controls.

2.6. Luciferase Transfection Control Assays

Cells were assayed for pTK-Ren activity at 24 h post-transfection to ensure comparable
levels of exogenous protein expression in A549 cells. Renilla activity was measured using
Dual Luciferase reagent kits (50 µL/well, n = 3). Total light emission was monitored using
the GloMax multi detection system (Promega, Southampton, UK).

2.7. Fluorescence Intensity Scoring (FIS)

FIS was performed based on the overall staining intensity and percentage of stained
cells. Average staining intensities were assigned a value of 0 (no detectable signal) to 4
(highest detectable signal; ≤76% FITC). Staining patterns were not administered a numeri-
cal score. Validation criteria are shown in Table 1.

2.8. Statistical Analyses

Statistical significance was determined in GraphPad Prism using a Student’s t-test with
Welch’s correction or a One-Way ANOVA with Bonferroni’s correction. p-values ≤ 0.05
were deemed significant.

3. Results
3.1. Validation of the C19-S-I-IFA Assay

To establish antigen detection, samples were compared from patients negative for
SARS-CoV-2 infection (collected prior to the pandemic; n = 100) and from PCR-confirmed
COVID-19-positive individuals (n = 5). A549 cells transfected with SARS-CoV-2 Spike
(Supplementary Figure S2)-pcDNA3.1/pTK-Ren were exposed to 2-fold serial dilutions
of each serum sample, with the presence of SARS-CoV2 spike IgG in the serum expected
to lead to cell labelling, detected following incubation with FITC-conjugated anti-human-
IgG (Figure 1). Microscopy was performed rather than flow cytometry as it permitted
the more rapid analysis of high sample numbers. Upon analysis, FITC fluorescence was
observed in cells treated with serum from COVID-19-positive patients, but was absent in
cells incubated with uninfected control samples, confirming specificity (Figure 2). In FITC
positive samples, fluorescent labelling was evident at 1:8 and 1:56 fold dilutions of sera,
with weaker staining observed at 1:128 (Figure 2A). Positive samples were further analysed
by high-resolution Airyscan confocal microscopy (Figure 2B), showing specific cytoplasmic
puncta in cells treated with COVID-19-positive sera. Cells exposed to COVID-19-negative
sera showed no staining (Figure 2C-D). Upon quantification, the intensity of fluorescence
correlated with the serum concentration (Figure 2E). Importantly, the levels of Rluc were
comparable in all transfected cell samples, suggestive of reproducible levels of spike protein
expression (Figure 2F). Following the exposure of untransfected cells to COVID-19 sera,
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no fluorescence was observed, confirming the specificity of SARS-CoV-2 spike labelling
(Figure 3). We also validated the ability of the assay to be up-scaled through the generation
of stable cell lines expressing the SARS-CoV-2 spike and the verification of fluorescent
staining using an automated Evos FL Auto 2 microscope system containing an automated
multichannel fluorescence counting function (Supplementary Figure S1). Taken together,
these data confirmed the accuracy of the assay for further high-throughput assessments of
SARS-CoV-2 positivity and spike protein antibody reactivity.
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Figure 1. Schematic of the C19-S-I-IFA assay. Serum samples were added to A549-SARS-CoV-2-spike
expressing cells. Bound anti-COVID-19-IgG were detected with anti-human-IgG-FITC. Positive cells
were indicative of virus-infected sera.

3.2. Serological Detection of Serum Samples Collected during the 2020 COVID-19 Pandemic

We next determined the reactivity of unknown samples to determine COVID-19 status
(n = 30). Fluorescence intensity (Figure 4A) and the percentage of fluorescent-positive cells
(Figure 4B) were assessed in cells exposed to 2-fold serial dilutions of each sample. Only
a single donor showed reactivity to anti-SARS-CoV-2 spike, with a fluorescence intensity
score of 1 at a dilution factor of 1:16, (lower level, ≤25% FITC detection), suggestive of
COVID-19 positivity. The positive sample showed no fluorescent labelling in untransfected
cells, again ruling out non-specific binding. All other assayed samples were seronegative,
with no detectable levels of fluorescence, suggestive of a COVID-19-negative status. These
samples were evaluated in parallel by ELISA and showed an identical outcome (data
not shown).
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images for (A) at a dilution of 1:40. (C) Negative controls; (i) serum from a PCR confirmed negative donor sample, (ii) 
spike-expressing cells without serum; (iii) cell-only controls. (D) Serum from a pre-SARS-CoV-2 pandemic donor. Nuclei 
were stained with DAPI (blue). Scale bar: 100 µm and 10 µm. (E) Dose–response detection from PCR-confirmed positive 
donor serum. A two-fold dilution series from 1:8 – 1:56 was assessed. Bars (green): mean fluorescence intensity; connected 
circles (blue): % of positive fluorescent cells. Data are from 10 cells per-dilution and were quantified using Fuji. Data are 
means ± SEM (F) pRL-TK Renilla luc (RLuc) was included as an internal transfection control. Bar heights represent the 
mean of two biological replicates; error bars: SEM. 
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Figure 2. Immunofluorescence characterization of anti-SARS-CoV-2 IgG. (A) Indirect staining of A549 cells incubated with
serum from a SARS-CoV-2 positive patient and FITC-conjugated antibodies against human IgG. (B) Confocal Airyscan
images for (A) at a dilution of 1:40. (C) Negative controls; (i) serum from a PCR confirmed negative donor sample,
(ii) spike-expressing cells without serum; (iii) cell-only controls. (D) Serum from a pre-SARS-CoV-2 pandemic donor. Nuclei
were stained with DAPI (blue). Scale bar: 100 µm and 10 µm. (E) Dose–response detection from PCR-confirmed positive
donor serum. A two-fold dilution series from 1:8–1:56 was assessed. Bars (green): mean fluorescence intensity; connected
circles (blue): % of positive fluorescent cells. Data are from 10 cells per-dilution and were quantified using Fuji. Data are
means ± SEM (F) pRL-TK Renilla luc (RLuc) was included as an internal transfection control. Bar heights represent the
mean of two biological replicates; error bars: SEM.
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control. Bar heights represent the mean of two biological replicates: error bars show SEMs.

4. Discussion

The accurate and timely diagnosis of patients with asymptomatic and symptomatic
SARS-CoV-2 infections remains crucial to limiting current SARS-CoV-2 human-to-human
transmission. However, standard nucleic acid-based molecular diagnosis tools such as
RT-PCR and loop-mediated isothermal amplification (LAMP) are dependent on the pres-
ence of a sufficient viral load in the upper respiratory tract of infected patients, and are
strongly influenced by sample quality. The structural proteins of SARS-CoV-2 are highly
immunogenic and lead to the generation of IgM and IgG antibodies [29]. These proteins
can be exploited for the development of serological assays such as the enzyme-linked
immunosorbent assay (ELISA), the availability of which still fails to meet the global de-
mand. In-house assays that are more scalable are essential to the effective management of
the pandemic. Those that can be designed to predict the protection status of previously
infected or immunized individuals to emerging SARS-CoV-2 variants are also crucial if the
pandemic is to be truly controlled.

In this study, we report the design of a fluorescent-based cell culture assay using
SARS-CoV-2 spike as an antigen for the specific detection of IgG against SARS-CoV-2. A
total of 137 serum samples were analysed. We included pre-COVID-19 serum samples
(n = 100), and seven control samples from contact-traced individuals PCR-confirmed as
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SARS-CoV-2 positive for assay validation. Thirty of the samples were collected in Oxford
(UK), and were of an unknown COVID-19 status. In agreement with clinical PCR findings,
the assay accurately detected the presence of SARS-CoV-2 IgG in all seven COVID-19
confirmed cases. As expected, pre-COVID-19 sera (n = 100) were negative for anti-spike IgG
(Figure 1). Assay positivity also correlated with the serum IgG concentration (Figure 2D,E).
Following its validation, the assay identified a single infected patient in the Oxford cohort
(Figure 4), revealing its potential as a COVID-19 diagnostic. Importantly, the assay could
easily be modified to increase capacity using stable SARS-CoV-2 cell lines and automated
high throughput fluorescent analysis (Supplementary Figure S1).

Recent variants of SARS-CoV-2, including UK variant B.1.1.7 and South African variant
501Y.V2, show clusters of mutations in the spike region that enhance virus transmissibility.
The generation of these variants means that new commercial ELISA spike-based serological
kits are required to accurately detect infection status. The assay described here provides a
proof-of-concept system by which synthetic codon-optimised SARS-CoV-2 spike can be ex-
pressed in cultured mammalian cells, which can be expanded through simple Quikchange
mutagenesis for rapid adaptation to emerging SARS-CoV-2 variants. This highlights the
utility of the assay to supplement current ELISA assessments as new variants emerge and
the inevitable global demand for more rapid serological tests grows. The data provided are
an accurate representation of that which occurred from February to March 2020 in the UK.
We now plan to test the assay for the new circulating variants using mutant cell lines and
new patient serum banks.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/v13050747/s1, Figure S1: Nucleotide sequence of SARS-CoV-2, Figure S2: Nucleotide sequence
of SARS-CoV-2.
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