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Abstract

The Document Set Expansion (DSE) task involves identifying relevant documents from large collections based

on a limited set of example documents. Previous research has highlighted Positive and Unlabeled (PU) learning

as a promising approach for this task. However, most PU methods rely on the unrealistic assumption of

knowing the class prior for positive samples in the collection. To address this limitation, this paper introduces

a novel PU learning framework that utilizes intractable density estimation models. Experiments conducted

on PubMed and Covid datasets in a transductive setting showcase the effectiveness of the proposed method

for DSE. Code is available from https://github.com/Beautifuldog01/Document-set-expansion-puDE.

Keywords: Document set expansion, PU learning, Information retrieval, Density estimation.

1. Introduction

We focus on the scenario where a user has ac-
cess to a (possibly small) set of documents of inter-
est and wishes to identify further such documents
within a large collections, a problem known as Doc-
ument Set Expansion (DSE) (Jacovi et al., 2021;
Lee and Sun, 2018; Wang et al., 2022b). DSE is a
common information seeking problem, for example
when searching scientiĄc literature for papers that
are similar to a small set of relevant ŚseedŠ publi-
cations (Wang et al., 2022a). It can also occur in
the maintenance of curated databases of scientiĄc
literature where examples of relevant studies are
readily available but there may not be an explicit
query (Chen et al., 2021).

Query-by-document (QBD) is an approach to
DSE which involves treating the set of documents
as an extended query used to rank the documents
in the collection (Abolghasemi et al., 2022; Lee
and Sun, 2018; Yang et al., 2009). A common
QBD approach focuses on constructing an accurate
query from the seed documents, using methods
such as bag-of-word (Yang et al., 2009) or Monte-
Carlo (MC) sampling procedure (Lechtenberg et al.,
2022). However, such methods fail to capture the
local or global connections between words (Jacovi
et al., 2021). More recent work Ąne-tuned a BERT
re-ranker for the QBD retrieval task (Abolghasemi
et al., 2022), but requires a fully labelled dataset to

* denotes equal contribution.

train the neural models. In addition, the majority of
the QBD approaches only work with a single seed
document (Abolghasemi et al., 2022; Lee and Sun,
2018).

Jacovi et al. (2021) treated the DSE task as a
positive and unlabelled (PU) learning problem by
learning a binary classiĄer using only positive and
unlabelled data (Bekker and Davis, 2020; Plessis
et al., 2015; Kiryo et al., 2017). They introduce a
new PU method based on Non-negative PU (nnPU)
(Kiryo et al., 2017), and show that their methods
can outperform common information retrieval (IR)
solutions for the DSE task. However, some impor-
tant issues remain unresolved:

• PU methods that rely on misclassiĄcation risk,
such as nnPU, assumes that the class prior,
π = P (Y = 1), is known. The class prior de-
notes the proportion of positive data in the un-
labelled data and plays an important role in PU
learning. However, in practical applications, π
is usually unknown and it cannot be treated as
a trainable parameter (Chen et al., 2020). Sev-
eral studies propose to estimate the class prior
as an intermediate step for PU classiĄcation
(Christoffel et al., 2016; Chang et al., 2020).
However, such methods commonly utilize com-
plex kernel machines. Moreover, inaccurate
estimation may bring more errors in the PU
classiĄcation (Chen et al., 2020).

• DSE is essentially a transductive problem
since we aim to identify all positive documents
from the unlabelled set (U). In such a case, the
unlabelled set should be used for both training
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Figure 1: Inductive setting and transductive setting
in PU learning.

and testing. However, Jacovi et al. (2021) treat
DSE as an inductive problem, where U is split
into training and test sets, with only samples in
the test set being labelled. Such experimental
settings cannot reĆect the ground truth perfor-
mance of the model for the DSE task. The
difference between the two settings can be
found in Figure 1.

To address these issues, we propose a novel PU
learning framework based on intractable models,
which does not require a known class prior. It aims
to learn a bayesian binary classiĄer by merely mak-
ing use of the distribution of labelled and unlabelled
data, without class prior involved in training. In-
tractable models, i.e. Kernel Density Estimation
(KDE) (Wang et al., 2023) and Energy-based model
(EBM) (LeCun et al., 2006) are used to estimate
the density, as they do not restrict to the tractability
of the normalizing constant (Zhai et al., 2016). Con-
sequently, it does not require assumptions on the
form of data distribution to be Ątted. Experiments
are conducted in a transductive setting to better
reĆect the DSE task.

The contributions of this work are: 1) to identify
the limitations of previous for the DSE task (Jacovi
et al., 2021); 2) propose puDE, a new PU learning
framework by using intractable models for density
estimation that does not require any knowledge of
class prior ; 3) demonstrate that puDE outperforms
state-of-the-art PU methods for the DSE task on
real-world datasets.

2. Background

In the binary classiĄcation task, given x ∈ Rd

as the input instance and Y ∈ {1,−1} as the la-
bel of x, the goal is to learn a decision function
Φ : X → Y that can separate the positive and neg-
ative examples. In order to facilitate the training of
an accurate classiĄer, it is assumed that the train-
ing data represents an independent and identically
distributed sample of the actual underlying distribu-
tion: P(x) = πP(x|Y = 1) + (1 − π)P(x|Y = −1)
where π = P (Y = 1) is the class prior.

The setting of PU is a special scenario within the
binary classiĄcation problem, where only a small
portion of positive examples are observed (Bekker
and Davis, 2020). The training set is a combination
of the labelled positive set XLP , the unlabelled
positive set XUP , and the unlabelled negative set
XUN , such that X = XLP ∪ XUP ∪ XUN . Let
s ∈ {1, 0} present the label status of y (s = 1 if
labelled, otherwise s = 0), there will be:

XLP = {x|s = 1, Y = 1}, XUP = {x|s = 0, Y = 1}

XUN = {x|s = 0, Y = −1}, XU = {x|s = 0}

The label frequency can be represented as c =
P (s = 1|Y = 1) (Elkan and Noto, 2008). In PU
scenario, XLP are selected from a completed set
of positive examples XP under certain probabilis-
tic labeling mechanism, and the probability of an
example being labelled is deĄned as e(x) = P (s =
1|x, Y = 1), known as propensity score (Elkan and
Noto, 2008). Hence, the distribution of labelled
positives fLP ≜ P (x|s = 1, Y = 1) can be seen as
a biased version of fP ≜ P (x|Y = 1):

fLP (x) =
e(x)

c
fP (x), (1)

where c = P (s = 1|Y = 1) is the label frequency.
The goal of PU learn is to learn a binary classiĄer
Φ : X → Y that can separate the positive from
unlabelled examples. In this work, our objective
is to estimate an optimal Bayesian classiĄer under
the following assumption:

Assumption 1 The positive labelled data are ran-
domly selected from the set of positive data and are
identically distributed with the positive unlabelled
data: fLP (x) = fP (x), which is known as the Se-
lected Completely At Random (SCAR) assumption
(Bekker and Davis, 2020).

3. PU Learning with Intractable
Models

We consider the following task: we have a set of
labelled positive documents XLP on a Ąne-grained
topic and want to Ąnd more documents about that
topic from a large unlabelled collection XU . Given
XLP and XU , the objective of our method is to learn
a Bayesian classiĄer Φ to approximate P(Y = 1|x).
According to the Bayesian rule, we have:

P(Y = 1|x) =
P(x|Y = 1)P(Y = 1)

P(x)
=

fp(x)

f(x)
π (2)

where fp(x) is the positive data distribution and
f(x) is the distribution of the whole dataset. It is
intuitive to estimate the probability density of fp(x)
and f(x) respectively, so that π can be treated as a
constant for each x and not involved in the training
process. In such a way, we can learn a classiĄer
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without the need for class prior estimation which is
an intermediate step for the PU classiĄcation task
(Chang et al., 2020).

Let pθ(x) : R
d → [0, 1] and qθ(x) : R

d → [0, 1] be
the two models to estimate fp(x) and f(x), P(Y =
1|x) can be then approximated by:

P(Y = 1|x) ≈ Φ(x) =
pθ(x)

qθ(x)
π (3)

Under Assumption 1, i.e. fLP (x) = fP (x), we can
estimate fP using samples from XLP . In this paper,
we try to make less restriction on the underlying
distribution on the data we Ąt. Therefore, intractable
density estimation methods in both nonparametric
and parametric forms are adopted.

3.1. Nonparametric Density Estimation

Kernel Density Estimation (KDE) is a nonpara-
metric density estimation technique, which has
been applied in recommender systems and informa-
tion retrieval (Silverman, 2018; Chakraborty et al.,
2022). For a given dataset {x1,x2, · · ·xn}, the es-

timated density f̂ at x using KDE is deĄned as:

f̂kde(x) =
1

nh

n∑

i=1

K
(
x− xi

h

)
(4)

where h is the bandwidth hyperparameter, and K

is a non-negative kernel function. In the DSE task,
given a set of labelled documents XLP , Φ(x) esti-
mated with KDE is represented as follows:

Φ(x) =
pθ(x)

qθ(x)
π =

f̂p,kde(x)

f̂kde(x)
π (5)

where f̂p,kde is the estimated density of positive
data which can be estimated by samples from XLP ,

and f̂kde is the estimated density of the whole data

X. Gaussian density function K(x) = 1√
2π

e−
1

2
x
2

is

used as the kernel function.

3.2. Parametric Density Estimation

The parametric approach used to estimate the den-
sity is the energy-based model (EBM) (LeCun et al.,
2006), which is a powerful tool for representing com-
plex high-dimensional data distributions. It aims to
learn an energy function that assigns a low energy
value to observed data and a high energy value to
different values. Compared with other parametric
density estimation methods, such as VAE (Kingma
and Welling, 2013) and Masked Autoregressive
Density Estimators (MADE) (Papamakarios et al.,
2017), EBM does not make any assumption on the
form of data distribution they Ąt. An EBM parame-
terizes any probability density for x ∈ R

d as:

fEBM,θ(x) =
e−Eθ(x)

Zθ

Zθ =

∫
e−Eθ(x)dx (6)

where Eθ(x) is the energy function, which is a non-
linear regression function conĄgured with optimal θ,
and Zθ is the partition function, which is a function
of θ but is a constant with respect to x. For the
DSE task, we use two neural networks (gpθ

and
gqθ ) as the energy function to estimate pθ and qθ
respectively. Thus, Φ(x) is rewritten as:

Φ(x) =
pθ(x)

qθ(x)
π =

e−gpθ
(x)

Zpθ

/
e−gqθ

(x)

Zqθ

π

= e(gqθ (x)−gpθ
(x))

(
Zqθ

Zpθ

π

) (7)

where
Zqθ

Zpθ

π is a constant for each x and can be

ignored in practise. Hence, Φ(x) can be approxi-
mated by the exponent: Φ(x) := gqθ (x)− gpθ

(x).

Model Training We employ the maximum like-
lihood training with Markov Chain Monte Carlo
(MCMC) sampling to train the energy models, such
that there will be no need to calculate the constant
term

Zqθ

Zqθ

π during the training process. With maxi-

mum likelihood estimation (MLE), we can Ąt pθ to
fLP (x) and qθ to f(x) by maximizing the following
expected log-likelihood:

EXLP
[log pθ(x)] EX [log qθ(x)]

which are equivalent to minimizing the following KL
divergence:

argmin
θ

KL(fLP (x)∥pθ) argmin
θ

KL(f(x)∥qθ)

where fLP (x) = fP (x), and f(x) is the real dis-
tribution of positive data and the whole data, re-
spectively. The loss function to minimize is deĄned
as:

α (−EXLP
[log pθ(x)]) + β (−EX [log qθ(x)]) (8)

where α and β are coefficients. By using the
MCMC sampling approach, the gradient of the log-
likelihood of pθ(x) and qθ(x) are deĄned as:

∇θ log pθ(x) = −∇θgpθ (x)− E
x∼pθ(x) [−∇θgpθ (x)]

∇θ log qθ(x) = −∇θgqθ (x)− E
x∼qθ(x) [−∇θgqθ (x)]

The Ąrst terms in both equations above are straight-
forward to obtain. To approximating the second
terms, Langevin Dynamics is used to sample from
pθ(x) and qθ(x):

xt+1 = xt +
ε

2
∇ log pθ (xt) +N (0, ε)

xt+1 = xt +
ε

2
∇ log qθ (xt) +N (0, ε)

where t denotes the iteration step, N is the normal
distribution. Since Langevin dynamics can be un-
reliable in high-intensity areas for high-dimensional
datasets, which will effect the model performance.
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To address this issue, we add a risk estimator in
the loss function:

α (−EXLP
[log pθ(x)]) + β (−EX [log qθ(x)])

+ γ
(
Rℓ0−1

(Φ(x), s)
) (9)

where γ is a coefficient and it decreases as train-
ing progresses, Rℓ0−1

(Φ(x), s) represents the loss
generated by binary classiĄcation using ŚsŠ as the
label.

4. Experiment

4.1. Dataset

Experiments use PubMed datasets on three Ąne-
grained topics derived from Jacovi et al. (2021). Ad-
ditionally, we use the Covid-19 dataset that is used
for Covid-19 literature classiĄcation (Shemilt et al.,
2022) to simulate real-world literature curation. All
datasets were originally designed for inductive clas-
siĄcation, where each dataset is split into training,
validation, and testing sets. In our experiments, to
simulate real-world DSE (transductive case), we
treat the test set in original data slipt settings as
XU and use XU for both training and testing (XLP

and XU for training and XU for testing). Following
Jacovi et al. (2021), the number of labelled posi-
tives |LP| is set to {20, 50} on Pubmed datasets.
For the Covid-19 dataset, the labelled positives are
randomly sampled from their original positive train-
ing set, and the number of |LP | is set with respect
to the ratio of XLP over XU , ranging from 0.01 to
0.1 with step of 0.01, and from 0.1 to 1 with step
0.1. The statistics of each set is summarized in
Table 1.

4.2. Comparison Methods

The performance of puDE-kde and puDE-em are
compared with the following methods:

• BM25 BM25 (Robertson et al., 1995) serves
as a strong baseline in various IR tasks. In
our paper, following the method in Jacovi et al.
(2021), we vary the number of top documents
(K) to be considered as positive examples, K ∈
{i}5000|LP |, and report the F1 mean and standard

deviation across the 5000− |LP | cases.

• nnPU nnPU (Kiryo et al., 2017) is a recent
PU method that are based on unbiased risk
estimators. It is used as the baseline in various
PU studies, and is the Ąrst method being used
for DSE task (Jacovi et al., 2021).

• VPU VPU (Chen et al., 2020) is the a state-of-
the-art PU method that do not require knowl-
edge of class prior. It uses a variational prin-
ciple to modeling the error of the Bayesian
classiĄer directly from the provided data.

PU classiĄers, i.e. nnPU and VPU, were implement
them in transductive fashion to complement the
DSE task.

4.3. Settings

We use puDE-kde and puDE-em to denote our pro-
posed PU models that is based on KDE and EBM,
respectively. For puDE-kde, the bandwidth is set

to 1.9 for both f̂p,kde and f̂kde, and Gaussian func-
tion is used as the kernel. Since KDE suffers from
the curse of dimensionality, we use Variational Au-
toencoders (VAE) (Girin et al., 2020) with 50 latent
dimensions to reduce the high text dimension in this
work. For puDE-em, we use 512D 4-layer fully con-
nected neural network as the energy function for
gpθ

and gqθ . The weights for the total loss function
are set as α = 1, β = 1, and γ = 1.

nnPU is implemented using the tricks from Ja-
covi et al. (2021) but in transductive version. For
both nnPU and VPU, the classiĄers are modeled by
512D 4-layer fully connected neural network, with
Batch normalization (Ioffe and Szegedy, 2015) and
leaky ReLU (Maas et al., 2013) applied. Adam opti-
mizer with a learning rate of 1e-3 is employed. For
all methods, SciBERT is used as the pre-trained
embedding. Following Jacovi et al. (2021), F1
score is used as the evaluation metric.

4.4. Results

The F1 results across all methods are reported in
Table 2, where the best performance are shown
in bold font. Performance of nnPU is much worse
than that reported by Jacovi et al. (2021) and is
similar to BM25, which indicate that the PU solu-
tions proposed in (Jacovi et al., 2021) is not as
effective as they stated for the DSE task in trans-
ductive setting. Both puDE methods outperform
other methods, with one exception where BM25
get the best result on the last topic. It should be
noticed that result reported for BM25 is the aver-
age across 5000-|LP| cases, which is not the di-
rect classiĄcation result and it serves as references
to the state-of-the-art (Jacovi et al., 2021). Both
puDE methods show signiĄcant improvement over
nnPU and VPU, demonstrating that the proposed
PU framework based on density estimation is a
better alternative for the DSE task.

Figure 1 demonstrates the F1 score for all meth-
ods on Covid-19 dataset, with the ratio of |LP| over
|U| ranging from 0.01 to 1. It can be seen that
nnpu and VPU get stable results only when more
than 20% of labelled data is available. Both puDE
methods perform well with less data (<10%) and
consistently shown signiĄcant improvements over
other methods with the increase of labelled data.
As a state-of-the-art PU method, VPU can get sim-
ilar performance with our models when the label
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dataset |LP| NU NUP NUN

Animals+Brain+Rats
20 10012 1844 8168

50 10027 2568 7459

Adult+Middle Aged 20 10012 2881 7131

+HIV infections 50 10027 3001 7026

Renal Dialysis + Chronic 20 7198 1201 5997

Kidney Failure+ Middle Aged 50 10025 1916 8109

Covid {47..4722} 4722 2310 2412

Table 1: Statistics of XU for each set, where NU , NUP and NUN , the total number of unlabelled samples,
the number of true positive samples and true negatives in the training set.

Topic |LP| BM25 nnPU VPU puDE-
kde

puDE-
em

Animals+Brain+Rats
20 32.25± 11.6 33.03 25.62 37.31 40.59
50 32.80± 10.9 38.76 29.32 44.65 44.91

Adult+Middle Aged 20 26.75± 7.22 31.30 29.77 36.18 39.67
+HIV infections 50 31.85± 10.7 34.16 31.42 44.03 46.22

Renal Dialysis + Chronic 20 41.23 ± 8.95 27.76 21.59 36.63 35.59
Kidney Failure+ Middle Aged 50 35.78± 9.13 32.84 19.42 36.63 36.57

Table 2: F1 comparison against baseline and state-of-the-art DES methods with transductive setting.

Figure 2: F1 comparison on covid dataset with
respect to the ratio of |LP| over |U| ranging from
0.01 to 0.1 with step of 0.01 and from 0.1 to 1 with
step of 0.1.

ratio goes over 0.5. However, when the the num-
ber of labelled positives is small, the performance
is poor. This is due to its training strategy, where
equal batch size of unlabelled (U) and labelled (LP)
samples are fed into the model to calculate the vari-
ational loss. When |LP | ≪ |U |, the distribution of
LP may be different from that of U. Replicating LP,
until the size of LP equals the size of U, can lead
to instability in the model, making it difficult for the
model to converge during training and resulting in
poor prediction performance.

We further conduct experiments for ranking task
on Covid dataset to simulate screening process
in literature curation. The experiment settings are
the same as previous ones except that ranking-
based evaluation metrics for systematic reviews
(Kanoulas et al., 2019; Wang et al., 2023) are
adopted. Precision at top k% documents in U

method P@10% P@20% R@10% R@20%

BM25 54.66 52.64 11.16 21.51
nnPU 52.54 67.16 10.74 27.45
VPU 56.77 57.30 11.90 23.41

puDE-kde 70.26 72.88 16.91 28.67
puDE-em 76.91 75.11 15.71 30.69

Table 3: Performance comparison for ranking task
on Covid dataset with |LP| = 50.

(p@k%), and recall at top k% documents in U
(r@k%) are reported. Table 3 shows the ranking
effectiveness of all methods with the number of la-
belled documents equals 50. It can be seen that our
methods produces the best overall performance.

5. Conclusion

This paper addresses the limitations of previous
Positive-Unlabeled (PU)-based approaches in solv-
ing the Document Set Expansion (DSE) task (Ja-
covi et al., 2021). It demonstrates that experimental
results obtained from an inductive setting cannot
be directly transferred to a real-world transductive
DSE scenario. To overcome these challenges, we
propose a novel PU learning framework based on
intractable density estimation methods. A key ad-
vantage of our approach is that it does not rely on
prior knowledge of class proportions. Experimental
results validate the effectiveness of our proposed
methods. In conclusion, we assert that our ap-
proach represents a superior solution for the DSE
task compared to existing methods.
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