
This is a repository copy of ACCESS:Assurance Case Centric Engineering of Safety-
critical Systems.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/211554/

Version: Published Version

Article:

Wei, Ran, Foster, Simon David orcid.org/0000-0002-9889-9514, Mei, Haitao et al. (7 more 
authors) (2024) ACCESS:Assurance Case Centric Engineering of Safety-critical Systems. 
Journal of Systems and Software. 112034. ISSN 0164-1212 

https://doi.org/10.1016/j.jss.2024.112034

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



The Journal of Systems and Software 213 (2024) 112034

Available online 25 March 2024
0164-1212/© 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

ACCESS: Assurance Case Centric Engineering of Safety–critical Systems✩

Ran Wei a,b, Simon Foster c,∗, Haitao Mei c, Fang Yan c, Ruizhe Yang d, Ibrahim Habli c,
Colin O’Halloran e, Nick Tudor e, Tim Kelly c, Yakoub Nemouchi c
a Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, UK
b School of Computing and Communications, University of Lancaster, Lancaster, LA1 4WA, UK
c Department of Computer Science, University of York, York, YO10 5GH, UK
d School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, China
e D-RisQ Ltd., Malvern, WR14 3SZ, UK

A R T I C L E I N F O

Keywords:
Safety–critical systems engineering
Assurance case development
Model based systems engineering
Formal methods
Robotics and autonomous systems

A B S T R A C T

Assurance cases are used to communicate and assess confidence in critical system properties such as safety
and security. Historically, assurance cases have been manually created documents, which are evaluated by
system stakeholders through lengthy and complicated processes. In recent years, model-based system assurance
approaches have gained popularity to improve the efficiency and quality of system assurance activities.
This becomes increasingly important, as systems becomes more complex, it is a challenge to manage their
development life-cycles, including coordination of development, verification and validation activities, and
change impact analysis in inter-connected system assurance artifacts. Moreover, there is a need for assurance
cases that support evolution during the operational life of the system, to enable continuous assurance in the
face of an uncertain environment, as Robotics and Autonomous Systems (RAS) are adopted into society. In this
paper, we contribute ACCESS — Assurance Case Centric Engineering of Safety–critical Systems, an engineering
methodology, together with its tool support, for the development of safety–critical systems around evolving
model-based assurance cases. We show how model-based system assurance cases can trace to heterogeneous
engineering artifacts (e.g. system architectural models, system safety analysis, system behaviour models, etc.),
and how formal methods can be integrated during the development process. We demonstrate how assurance
cases can be automatically evaluated both at development and runtime. We apply our approach to a case study
based on an Autonomous Underwater Vehicle (AUV).

1. Introduction

Safety–critical systems require justifications that they are acceptably
safe to operate in their defined operational contexts. Assurance cases
provide an explicit means for arguing, justifying and assessing the
confidence in the safety of safety–critical systems. The submission of
an assurance case is increasingly being required during system certi-
fication in many safety–critical industries, such as aviation (European
Organisation for the Safety of Air Navigation (EUROCONTROL), 2006),
nuclear power (International Atomic Energy Agency (IAEA), 2008),
transportation (International Organization for Standardization (ISO),
2011; U.K. Rail Safety Standards Board, 2007), healthcare (Habli et al.,
2018) and defence (U.K. Ministry of Defence (MOD), 2007). Prior to

✩ Editor: Raffaela Mirandola.
∗ Corresponding author.
E-mail addresses: rw741@cam.ac.uk, r.wei5@lancaster.ac.uk (R. Wei), simon.foster@york.ac.uk (S. Foster), haitao.mei@icloud.com, haitaom@acm.org

(H. Mei), fang.yan@york.ac.uk (F. Yan), ruizheyang@mail.dlut.edu.cn (R. Yang), Ibrahim.habli@york.ac.uk (I. Habli), coh@drsq.com (C. O’Halloran),
njt@drsq.com (N. Tudor), tim.kelly@york.ac.uk (T. Kelly), y.nemouchi@gmail.com (Y. Nemouchi).

1 In this work, we use evaluation to refer to both validation and verification activities involved in the development and the assessment processes of safety–critical
systems and their assurance cases.

certification, an assurance case must be rigorously, and often indepen-
dently, evaluated1 to ensure that the arguments and evidence for safety
is coherent and convincing.

Assurance cases are not self-contained documents. They usually
depend on a variety of engineering artifacts that provide contextual and
evidential information, including requirement documents, architecture
designs, behaviour models, safety analyses, etc. These artifacts may
originate from diverse languages and tools, and can be used for pro-
totyping, analysis, formal verification, and the derivation of real-world
artifacts. Therefore, assurance case evaluation involves the evaluation
of the engineering artifacts an assurance case depends on, which is
often an informal, manual, and error-prone process. In an idealised

https://doi.org/10.1016/j.jss.2024.112034
Received 31 July 2022; Received in revised form 16 May 2023; Accepted 19 March 2024

https://www.elsevier.com/locate/jss
https://www.elsevier.com/locate/jss
mailto:rw741@cam.ac.uk
mailto:r.wei5@lancaster.ac.uk
mailto:simon.foster@york.ac.uk
mailto:haitao.mei@icloud.com
mailto:haitaom@acm.org
mailto:fang.yan@york.ac.uk
mailto:ruizheyang@mail.dlut.edu.cn
mailto:Ibrahim.habli@york.ac.uk
mailto:coh@drsq.com
mailto:njt@drsq.com
mailto:tim.kelly@york.ac.uk
mailto:y.nemouchi@gmail.com
https://doi.org/10.1016/j.jss.2024.112034


The Journal of Systems & Software 213 (2024) 112034

2

R. Wei et al.

development process, an assurance case is the central point of reference
for all system stakeholders, to allow effective communication over di-
verse engineering artifacts. In addition, changes in engineering artifacts
require the assurance case to be re-evaluated (Denney et al., 2015),
which can significantly impact development efficiency. This challenge
becomes more obvious as systems become more complex. Hence, there
is a need to automate some (if not all) of the system assurance activities
to efficiently manage assurance cases and their referenced engineering
artifacts.

Over the past few years, system assurance practitioners have begun
adopting Model Based Systems Engineering (MBSE). MBSE promises
the interoperability and management of diverse artifacts/models in
an automated manner, which provide the basis for automated, coher-
ent and self-contained assurance cases. However, existing assurance
case notations, such as the Goal Structuring Notation (GSN) (Kelly
and Weaver, 2004) and Claim-Argument-Evidence (CAE) (Bishop and
Bloomfield, 2000), do not have a sufficient model-based foundation
to systematically support this kind of integration (Wei et al., 2019).
Consequently, existing model-based assurance case approaches cannot
provide the collective and automated evaluation of an assurance case,
together with the engineering artifacts that it may depend on. The in-
spection, evaluation, and change management of engineering artifacts
still remain manual.

In recent years, new applications for Robotics and Autonomous
Systems (RAS) have emerged, which are often safety–critical. RASs
are increasingly open (they inter-connect at runtime) and adaptive
(they adapt to changing contexts at runtime), that render the current
generation of safety assurance approaches insufficient (Trapp et al.,
2013; Denney et al., 2015). Specifically, assurance cases for RAS need
to be living documents that can evolve during the operational life of
the system with minimal human intervention. As such, it is imperative
to shift some system safety assurance activities from development time
to runtime (Trapp et al., 2013; Wei et al., 2018). This is a significant
challenge, though, as it requires automation of verification and vali-
dation activities that are both crucial parts of the evaluation process.
On the one hand, we must demonstrate that each engineering artifact
meets its requirements through verification, and on the other we must
ensure that real-world system artifacts exhibit the behaviour predicted
by a model through techniques like runtime safety monitoring (Machin
et al., 2018).

To address the identified challenges, we introduce our model-based,
assurance oriented methodology — Assurance Case Centric Engineering
of Safety–critical Systems (ACCESS). ACCESS is underpinned by a com-
bination of (1) design-time automated assurance-case-and-engineering-
artifacts management and evaluation, and (2) runtime assurance case
evaluation based on runtime data. We present a tooling prototype,
Assurance Case Management Environment (ACME), which supports
the creation and the management of assurance cases based on the
Structured Assurance Case Metamodel (SACM) (Object Management
Group, 2020), an international standard.

To demonstrate our approach, we provide a case study on the as-
surance case for an Autonomous Underwater Vehicle (AUV), including
its safety requirements, arguments, and a formal model of the safety
controller in the RoboChart language (Miyazawa et al., 2019) with
formal verification evidence.

We discuss how we can apply our approach to develop critical
systems around an evolving assurance case. In addition, we also demon-
strate tool support for ACCESS at development time, so that we can:
(1) perform a collective evaluation of an assurance case, via model-
based traceability, with respect to the engineering artifacts it refers
to; (2) automatically invoke evidence from formal methods by using
Isabelle/HOL (Nipkow et al., 2002) as a verification service within
an assurance case; (3) automatically generate and machine-check for-
malisation of an assurance case to verify its logical integrity; and (4)
enable automated change impact analysis from engineering artifacts
to assurance cases. We also discuss how we can turn a development

time assurance case to a dynamic runtime assurance case and discuss
how runtime assurance case evaluation (based on runtime data) can be
achieved using our approach.

The main contributions of our paper are:

1. ACCESS — a critical systems engineering methodology around
an evolving assurance case model;

2. Automated means to evaluate an assurance case with its refer-
enced engineering artifacts at development time and runtime
(with a prototypical dynamic assurance case management sys-
tem to evaluate assurance cases based on runtime data);

3. Facilities to integrate diverse formal verification results into
an assurance case and automatic generation of a formalised
assurance case in Isabelle/SACM for analysis using theorem
proving;

4. Automated change impact analysis from engineering artifacts to
assurance cases;

5. The application of all of above to an AUV case study.

The rest of the paper is organised as follows. In Section 2 we
provide some background information on assurance cases, GSN, model-
based assurance case and formal methods. In Section 3 we describe
the generic ACCESS methodology. In Section 4 we discuss our tool
support to back the ACCESS methodology In Section 5 we evaluate the
ACCESS methodology in depth with an case study for an Autonomous
Underwater Vehicle (AUV). In Section 7 we discuss related work and in
Section 8 we conclude this paper with a discussion and point out future
research directions.

2. Preliminaries

This section provides background information on assurance cases,
assurance case notations, model-based system assurance and formal
methods, including the terminologies and concepts used in the rest of
the paper.

2.1. Assurance cases

The practice of safety certification is increasingly goal-oriented
rather than highly prescriptive (Denney et al., 2015). Goal-oriented
certification places greater emphasis on explicitly stating safety claims,
and supplying an argument along with supporting evidence to satisfy
certification goals that regulators define (McDermid, 2001). Examples
may include ‘‘All identified hazards have been mitigated’’ or ‘‘Necessary
assumptions of the physical environment have been defined’’. Such
arguments and evidence are generally organised in the form of an
assurance case. As defined in Kelly (1999), an assurance case is a
document that should communicate a clear, comprehensive and defensible
argument that a system is acceptably safe to operate in a particular context.

Conventionally, an assurance case is not a self-contained document.
Definitions of assurance case (U.K. Ministry of Defence (MOD), 1996,
1997) indicate that an assurance case is a document (either as a logical
concept or as a physical artifact) that can refer to, and pull together
information regarding system safety (such as system requirements,
system architectural design, safety analyses, etc.), to form a safety
argument. The development of an assurance case involves communi-
cations among various stakeholders, one typical scenario is illustrated
in Fig. 1. When a system concept is formed, system engineers define a
set of requirements. Based on these requirements, safety engineers may
perform safety analyses, from which hazards (and their associated risks)
are identified. Identified hazards and risks are then used to derive safety
goals, from which safety engineers can elicit safety requirements. Safety
requirements are then considered in the system design, which impose
constraints (e.g. acceptable failure rates), and mitigation measures
(e.g. redundancy and monitoring). As an assurance case is developed,
it may refer to all engineering artifacts above within its argument,
for contextual and evidential information. Therefore, the evaluation of



The Journal of Systems & Software 213 (2024) 112034

3

R. Wei et al.

Fig. 1. Assurance cases and engineering artifacts.

an assurance case typically involves the validation and verification of
engineering artifacts it refers to.

Assurance cases are subject to evolution, where engineering artifacts
and arguments need to be adapted, potentially because of new require-
ments or upgrades. Changes in the engineering artifacts may invalidate
the assurance case, and so its integrity must be checked through eval-
uation. To evaluate an assurance case, practitioners typically need to
trace, navigate to, review, validate and verify the engineering artifacts
it depends on Hawkins et al. (2015). This then informs the decision as
to whether the system is acceptably safe to deploy and operate in its
intended operational context. On the other hand, when an engineering
artifact is changed during the development process, its impact in the
assurance case needs to be identified, sometimes resulting the assurance
case to be re-evaluated. This is observed in Nair et al. (2015), the
authors of which report that evidence completeness and change impact
for assurance cases are managed mostly manually using (sometimes
even no) traceability information. Importantly, their study raises the
question of how evolution and changes are identified, assessed and
managed at the level of assurance case.

2.2. Goal structuring notation

In the current state of practice, assurance cases are typically commu-
nicated using graphical notations, among which the most widely used
notation is the Goal Structuring Notation (GSN) (Kelly and Weaver,
2004). GSN is a well established graphical argumentation notation that
is widely adopted within safety–critical industries for the presentation
of safety arguments within safety cases. The core elements of GSN are
shown in Fig. 2.

A Goal represents a safety claim within the argumentation. A Strat-
egy is used to describe the nature of the inference that exists between
a goal and its supporting goal(s). A Solution represents a reference to
an evidence item or multiple evidence items. A Context represents a
contextual artifact, which can be a statement, or a reference to con-
textual information. An Assumption represents an assumed statement
made within the argumentation. A Justification represents a statement
of rationale. An element can be Undeveloped, which means that a line

of argument has not been developed yet (meaning it being abstract and
needs to be instantiated). The Undeveloped notation can apply to Goals
and Strategies. The Undeveloped Goal in Fig. 2 is an example.

Core elements of GSN are connected with two types of connectors,
as shown in Fig. 3. The SupportedBy connector allows inferential or
evidential relationships to be documented. The InContextOf relates
contextual elements (i.e. Context, Assumption and Justification) to Goals
and Strategies.

When elements of GSN are linked together in a network, they are
often referred to as a goal structure. The purpose of a goal structure is
to show how Goals are successively broken down into sub-Goals until
a point is reached where Goals can be supported by direct reference to
available evidence (Solutions). An example of a goal structure is shown
in Fig. 14.

Goal structures can be organised in Modules. For example, for a
system that consists of two components A and B, it is possible to
organise the safety cases of component A and B in two Modules MA
and MB. Modularity promotes re-use, so that safety cases for system
components can be re-used when different components are integrated
to form a system. Fig. 4 shows the GSN elements that enable modularity
support. When integrating system safety cases, a Contract Module can
be used to bind different Modules together.
Binding is done via the use of Away Goals, Away Contexts and Away

Solution, where Goals, Contexts and Solutions from an external Module
can be referenced. Like other GSN elements, away elements can be
connected using SupportedBy and InContextOf connectors.

2.3. Model-based assurance cases

Model Based Systems Engineering (MBSE) (Brambilla et al., 2017)
is a contemporary systems engineering approach. In MBSE, models are
first class artifacts, therefore driving the development. MBSE has been
proven to improve consistency and productivity significantly due to the
automation provided by model management operations (Jaaksi, 2002;
Kärnä et al., 2009).

Over the past few years, model-based assurance case approaches
emerged due to the benefits introduced by MBSE. Studies have shown



The Journal of Systems & Software 213 (2024) 112034

4

R. Wei et al.

Fig. 2. Core GSN elements.

Fig. 3. GSN connectors.

how automated MBSE operations can be performed on model-based
assurance cases (created using GSN) to check the well-formedness of
assurance cases (Denney and Pai, 2017), generate and assemble struc-
tured argumentation within assurance cases (Hawkins et al., 2015), and
automatically generate texts for assurance case reports (Denney and
Pai, 2017). However, existing model-based assurance case approaches
(GSN and CAE - Cliams-Arguments-Evidence (Bishop and Bloomfield,
2000)) do not provide sufficient support for traceability to engineering
artifacts. This is partly caused by the fact that GSN and CAE permit only
structured arguments and not external artifact traceability. This is a
historical problem, as prior to model-based assurance case approaches,
GSN and CAE are used to create physical documents, which naturally
contain references to other (physical) engineering artifacts by their
names.

2.4. Structured assurance case metamodel

Whilst graphical assurance case notations are powerful in expressing
arguments regarding the safety of systems, they have their limitations.
As discussed previously, an assurance case is not a self-contained
document. That is, GSN elements (such as Contexts and Solutions) may
refer to engineering artifacts that provide contextual and evidential
information. Existing graphical notations (e.g. GSN and CAE) do not
support such traceability.

To address this limitation, the Object Management Group (OMG)
specified and issued the Structured Assurance Case Metamodel (SACM)
(Object Management Group, 2020). SACM is developed by the speci-
fiers of existing system assurance approaches (e.g. GSN and CAE), based
on the collective knowledge and experiences of safety and/or security
practitioners over the period of last two decades. Therefore, features
that are not previously supported by GSN and CAE have been evaluated
and included in SACM.

SACM organises model elements in Packages to promote modularity,
as shown in Fig. 5. An AssuranceCasePackage may contain a number
of TerminologyPackages (to store terms and expressions used in the
assurance case), ArtifactPackages (to store artifacts, resources, events,
etc. throughout the assurance case development process) and most
importantly ArgumentPackages (to store safety/security arguments of a
system or a component).

SACM provides essential concepts for complete model-based assur-
ance cases (although currently there has not been approaches and tools

to achieve it) in its Base component shown in Fig. 6. For a ModelElement
in SACM, it can have a number of UtilityElements, in this work, we par-
ticularly focus on the ImplementationConstraint concept, using which we
describe the validation rules against engineering models. In addition, it
can also be seen that a ModelElement can ‘‘cite’’ another SACMElement
via its CitedElement association. This is a powerful mechanism, as it
allows the users of SACM to cite any ModelElement contained within
one model.

Another SACM component worth mentioning is the Artifact compo-
nent, as shown in Fig. 7. In this work, we make use of the ArtifactAssets
(specifically, the Artifact class) to demonstrate how we could record
information (such as location, format and meta information) of ex-
ternal engineering artifacts and then use such information to perform
automated verification and validation of such artifacts.

2.5. Formal methods and RoboChart

Assurance cases can benefit from formal methods (Gleirscher et al.,
2019b). Informal safety arguments and evidence can be difficult to
automatically evaluate, and may be subject to some argumentation
fallacies (Greenwell et al., 2006). Thus, formalisation of requirements,
to allow the use of formal methods, can significantly improve both
automation and the confidence (Foster et al., 2020). At the same time,
assurance cases allow us to put formal methods results in context. For
systems assurance it is never enough to simply prove properties of a
formal model. For the results to be meaningful, the model must be
linked to its corresponding real-world artifact (Lee and Sirjani, 2018),
such as software and hardware by some form of validation argument.
Consequently, a comprehensive demonstration of safety requires both
assurance cases and formal methods.

An important development here is Isabelle (Nipkow et al., 2002),
a verification framework for integrated formal methods (Wenzel and
Wolff, 2007; Wenzel, 2019; Foster et al., 2019, 2021). Development
centres around documents called Isabelle theories, which encode graphs
of hyperlinked mathematical artifacts, such as definitions, theorems,
and proofs. Formal method integration is supported by (1) a flexible
front-end, which supports a variety of languages (Tuong and Wolff,
2019) and their translation into formal semantics; (2) an extensi-
ble plugin-oriented architecture where external tools, such as SMT
solvers (Blanchette et al., 2011), can improve automation; and (3)
incremental theory processing (Wenzel and Wolff, 2007). Moreover,
Isabelle can be installed as a server component which other tools can
make use of as a verification tool service. At the foundational level,
Isabelle can be used for mechanisation of a variety of formal seman-
tics (Nipkow and Klein, 2014), to support verification tools. A front-end
for a programming language, such as C (Tuong and Wolff, 2019), can be
developed to support concrete programme verification (Alkassar et al.,
2008). Moreover, SACM was recently implemented in Isabelle to create



The Journal of Systems & Software 213 (2024) 112034

5

R. Wei et al.

Fig. 4. Modular GSN elements.

Fig. 5. The assurance case component of SACM (Object Management Group, 2020).

Fig. 6. The base component of SACM (Object Management Group, 2020).

Fig. 7. The artifact component of SACM (Object Management Group, 2020).

Isabelle/SACM (Foster et al., 2019, 2021), which allows verification of

assurance cases, integration with formal evidence, and generation of
certification documents (Brucker and Wolff, 2019).

Formal methods can be difficult for non-experts to apply, and so
there is a desire to use model-based graphical frontends. For example,
the RoboChart language (Miyazawa et al., 2019) is a graphical language
for the architectural and behavioural description of a robotic controller.
It includes a formalised subset of the UML state machine notation
with a complete formal semantics in the CSP process algebra (Brookes
et al., 1984). The formal semantics allows RoboChart models to be
subjected to formal analysis using model checking (Miyazawa et al.,
2019) and theorem proving (Foster et al., 2018, 2020). RoboChart is
therefore both accessible to practitioners, and at the same time uses
formal methods to allow development at higher assurance levels.

A RoboChart model consists several elements:

1. a data model, consisting of data types and functions with pre-
and postconditions;

2. interfaces, which collect together variables, events, operations,
and clocks that can be used by other components;

3. robotic platforms, which abstract the hardware by providing vari-
ables and events, potentially through provided interfaces;

4. controllers, which describe different units that control the robot
and communicate with other controllers and the robotic plat-
form using required interfaces;

5. state machines, which are used to describe the behaviour of con-
trollers and can communicate using events and shared variables;

6. an architectural model, which describes the connections between
controllers and robotic platforms.

States and transitions in a RoboChart state machine can specify
actions using a formal action language inspired by CSP. It includes
primitives for receiving events 𝑐?𝑣, sending them 𝑑!𝑒, and assigning
values to variables 𝑥 ∶= 𝑒. RoboChart also has a discrete time model,
and each controller can share a number of clocks that can be used to
observe the passage of time.

In this paper, we use RoboChart for modelling an Autonomous
Underwater Vehicle (AUV). To support such languages, particularly
where there is a diversity of such notations, an integrated approach
is required. Model-based assurance cases allow such an integration of
heterogeneous models, and support justification and traceability for
these models, and any associated analysis results.

3. Approach overview

In this section, we propose the methodology of Assurance Case
Centric Engineering of Safety–critical Systems –ACCESS, which is an engi-
neering methodology for developing and assuring a system (including



The Journal of Systems & Software 213 (2024) 112034

6

R. Wei et al.

Fig. 8. ACCESS process overview. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

both its hardware and software) around an evolving Assurance Case,
adopting principles of Model Based Systems Engineering (MBSE). We
use the term ‘‘model’’ in a broad sense to encompass any structured
machine-readable artifacts, which include resources like EMF-based
models, XML files, spreadsheets, databases as well as models created
using other technologies (e.g. Simulink).

The ACCESS process is illustrated in Fig. 8. We consider activities
in both the System Development Process (boxes rendered in blue in the
upper swim lane with white background) and the System Assurance
Process (boxes rendered in green in the lower swim lane with white
background). For each kind of the processes, we identify a key set
of engineering artifacts (swim lanes with grey background), and we
discuss the relationships between the engineering artifacts and the
assurance case of the system.

There are 7 steps in the ACCESS methodology (rendered in yellow),
each step coordinates System Development activities and System Assur-
ance activities. The columns in Fig. 8 indicates the scopes of ACCESS
steps. Within each ACCESS step, activities can be iterative (this is
indicated by the circular dashed arrow lines on the left side of the swim
lanes), that is, System Development and System Assurance activities can
be repeated until each ACCESS step is deemed sufficiently executed.
Activities in both groups are interleaved, in Fig. 8, there are circles
at the bottom right corner of some of the activities, indicating that
practitioners are advised to continue the development by conducting
the activity identified in the circles (e.g. S1 to A1).

3.1. Step 1: Plan assurance case

In this step, the first task to perform is S1: Specify System Func-
tion, in which the high-level system functional requirements are de-
fined, the hardware platform is chosen, and assumptions of the envi-
ronment are specified. The function specification provides the top-level
contract for the system: provided it is deployed in an environment
satisfying the assumptions, it will perform the required functions. Once

this task is complete, the assurance process begins in task (A1: System
Safety Analysis), which includes activities such as Hazard Analysis
and Risk Assessment (HARA), using analysis approaches such as Failure
Mode and Effects Analysis, Fault Tree Analysis, etc. From the analysis,
a preliminary list of Safety Goals can be derived, forming the Safety
Concept of the system. Based on the safety concept, system develop-
ment task S2: Allocate Functions to Subsystems shall be performed,
defining subsystems, and the interface between them.

Outcome of this step may include: system definition, system require-
ments, HARA and the Safety concept.

3.2. Step 2: Create assurance case

In task S3: Architectural Modelling the architecture of the system
is modelled, including subsystem blocks, functionalities provided by the
hardware platform, and connections between the various components.
Based on this architecture model, in task A2: Assurance Case Module
Specification, corresponding assurance case modules shall be speci-
fied. This includes generation of a public claim for each requirement
that has been allocated to a particular subsystem, each of which needs
an associated argument, and also public assumptions that will need to
be satisfied by peer subsystems.

Outcome of this step may include: system architectural design,
system safety requirements and a modular assurance case model.

3.3. Step 3: Refine assurance case

The draft assurance case created in ACCESS step 2 is further refined.
In this step, the first task to perform is A3: Subsystem Safety Analysis,
in which safety analysis is performed for every subsystem identified in
the system architectural design. Next, in task S4: Refine and Allocate
Requirements, system requirements (as well as safety requirements)
are allocated to subsystems, this requirement allocation shall be prefer-
ably traceable. Then, task A4: Subsystem Assurance Argumentation



The Journal of Systems & Software 213 (2024) 112034

7

R. Wei et al.

is performed, in which safety arguments are developed for each of the
subsystem, it is to be noted that the argumentation shall correspond to
the system requirements and safety requirements, and traceability shall
be maintained. Tasks in this step shall be performed iteratively until the
refined assurance case model is deemed sufficiently mature.

Outcome of this step may include: hardware/software requirements,
architectural design, safety requirements and the refined assurance case
model.

3.4. Step 4: Validate and verify engineering artifacts

With the assurance case model in place, the next step is to inves-
tigate how it could be verified and validated, and preferably in an
automated manner. In our process, we introduce an additional task,
S5: Behavioural Modelling, which is typical for software develop-
ment process. This task can include the creation of state machines
or sequence diagrams for each of the subsystem, conforming to the
architectural model. We assume that the behavioural modelling nota-
tion will have a formal semantics, as is the case for example with the
RoboChart language (Miyazawa et al., 2019). Next, we propose the
task of A5: Model Analysis and Verification. The purpose here is
to ensure that each of the requirements is represented in or satisfied
by the behavioural model, and reflected in the assurance case. For
example, we may wish to state that a particular technical requirement
is implemented by a transition, or that a state machine satisfies a
global safety requirement. We may also wish to verify the integrity
of the model, for example by checking for the possibility of deadlock
or livelock using a model checker. This task may expose flaws in the
behavioural model, such as inadequately implemented requirements,
and so there is iteration between S5 and A5, which should in all
circumstances be carried out by separate teams.

In this step it is possible to establish traceable links from the
assurance case to its supporting models to form a self-contained assur-
ance case model repository, this is where benefits of MBSE emerge —
that some (if not all) of the verification and validation tasks can be
automated from the assurance case as an entry point.

Outcome of this step may include: System behavioural model, hard-
ware/software safety analysis and an assurance case model with trace.

3.5. Step 5: Evaluate assurance case

Once a robust behavioural model is created, where every require-
ment can be traced to a model element, or verification property, the
design can be synthesised into an implementation by task S6: Imple-
ment System. This task can invoke a variety of techniques, including
formal code and data refinement, code generation, and manual coding.
In parallel with implementation, the assurance process executes task
A6: System Verification and Validation, all hardware and software
components are verified based on the requirements (for both system
and safety) using techniques such as model-based testing and code
verification, validation activities are also performed to support the
validity of the assurance case. Again, these two tasks are iterative
as verification may expose implementation or design issues that need
addressing.

Unsuccessful verification results are reflected in the assurance case
(presumably in an automated fashion), and shall be fixed by repeating
previous ACCESS steps where necessary. The assurance case is ‘‘com-
plete’’ once no unsupported claims remain. The assurance case will also
need to be independently evaluated, though this is not shown in the
process as evaluation is cross-cutting in all activities. Presumably, as-
surance case evaluation is automated provided that an MBSE approach
is adopted and the traceablility links from the assurance case to its
supporting engineering artifacts are established.

Outcome of this step may include: implemented system, system
verification reports, system validation reports.

Fig. 9. Assurance Case Management Environment (ACME).

3.6. Step 6: Convert to dynamic assurance case

For RASs, it is becoming imperative to argue the safety at runtime.
Therefore, this (optional) step targets system operation and mainte-
nance. In task S7: System Operation and Maintenance, requirements
for the safe operation and maintenance of the system are specified, in-
cluding safety related requirements (e.g. safe operation protocols, safe
maintenance procedures). In task A7: Continuous System Assurance,
practitioners shall determine, based on system operation and mainte-
nance context, which part of the assurance case shall be converted to
dynamic (i.e. that runtime data are reflected to engineering models
at runtime) one, so that assurance can still be carried out at system
runtime.

Outcome of this step includes (but not limited to): Dynamic sys-
tem models, system environment models and dynamic assurance case
model.

3.7. Step 7: Automated runtime evaluation

Once the dynamic assurance case is obtained, in this step is to
perform automated runtime evaluation, to automatically evaluate the
parts of the assurance (and its supporting engineering artifacts) to
constantly check the validity of the assurance case. It is to be noted
that the assurance case evaluation shall be non-invasive, that it only
provides the system with the validity of the assurance case, and shall
not take control of the system in any form.

The evaluation results can be used by the system at runtime to
yield system safety status at runtime, and take measures to get back to
the safe state. Evaluation results shall also be recorded and reviewed
for continuous improvement of the system, and ACCESS steps can be
repeated for this purpose.

4. Tool support

The ACCESS methodology is backed by our tool support - Assur-
ance Case Management Environment (ACME). ACME is an integrated
model based assurance case modelling and management framework,
that supports the creation and management of assurance case models
that conform to the Structured Assurance Case Metamodel (SACM) (Ob-
ject Management Group, 2020). Since SACM is relatively new and its
graphical notations are being standardised, ACME also supports the
Goal Structuring Notation (GSN), whose current model-based imple-
mentation extends the abstract syntax of SACM, explained in detail
in Wei et al. (2019). In this way, ACME supports the creation of model-
based GSN diagrams, and at the same time provides access to all other
features of SACM.



The Journal of Systems & Software 213 (2024) 112034

8

R. Wei et al.

The architecture of ACME is illustrated in Fig. 9. We implement
SACM and GSN with the Eclipse Modelling Framework (EMF) (Stein-
berg et al., 2008), and use Graphical Modelling Framework (GMF)
(Eclipse Foundation, 2003) to create graphical editors for SACM pack-
ages and GSN modules.s To enable automated model management and
the checking of formal notations, we also integrate:

• The Eclipse Epsilon platform (Kolovos et al., 2008), which is
an integrated model management platform, that provides task
specific model management languages (model validation, model
transformations, etc.) that operate on models defined in different
modelling technologies (EMF, Excel spreadsheet, Simulink (Math-
works, 2020), UML, etc.);
• Isabelle (Nipkow et al., 2002), which is a generic proof assistant
that allows mathematical formulas to be expressed in a formal
language and provides tools for proving these formulas in a
logical calculus, with a high degree of automation. Isabelle also
provides an extensible document model which can support the
encoding of different meta-models and associated parsers.

Using SACM’s full potential and with the help of model management
frameworks, ACME currently supports (1) fine-grained traceability from
an assurance case to its referenced engineering artifacts (defined in
mainstream modelling technologies) to the level of model element(s);
(2) traceability to formal notations in Isabelle; and (3) automated
means to validate/verify traced engineering artifacts. It is to be noted
that ACME also support other high-level functionalities, but they are
not within the scope of this paper.

To enable the traceability from an assurance case to its supporting
engineering artifacts, we make use of SACM’s Artifact component (dis-
cussed in Section 2.3) in ACME. With the help of the Artifact component
of SACM, in an Artifact element, we are able to record inside it: (1)
the type of an engineering artifact (e.g. EMF model, XML document,
Excel spreadsheet, Isabelle theory file, etc.) to trace to; (2) the location
of the engineering artifact; and (3) the meta-data of the engineering
artifact (e.g. metamodel, XML metadata, etc.). To obtain a more fine-
grained traceability, we make use of the ImplementationConstraint
(discussed in Section 2.3) element, and record model querying/valida-
tion programmes written in a model querying language (in this work
we support the Epsilon Object Language (EOL) (Kolovos et al., 2006),
but any other languages can be supported) in Artifact model elements.
In this way, when the programme is executed, we are able to obtain
specific model element(s) (or information) from the engineering artifact
that an Artifact element refers to, which can be used in assurance
cases to provide contextual and evidential information. In summary,
traceability from an assurance case to external engineering artifacts
is achieved by referring to Artifact elements (organised in an Arti-
factPackage) that contain traces to engineering models, from (in GSN
terms) either an Context or an Solution element organised in a GSN
Module.

With the traceability from an assurance case to engineering artifacts,
we are also able to perform automated assurance case evaluations
(i.e. validation and verification on referenced external engineering ar-
tifacts). For validation, we refer to external engineering artifacts using
model elements defined in SACM’s Artifact component, and embed
programmes such as validation rules (which return true or false). ACME
executes the validation rules and reflects the validation results to ACME
editors so that the users can find out which part of an assurance case
failed in the evaluation. For formal verification, we refer to Isabelle the-
ory documentss. A theory document is a hierarchical structure consisting
of formal artifacts, such as data types, functions, theorems, and proofs.
Upon execution, ACME sends the theory files to the established Isabelle
server (discussed in Wenzel (2019)), which can be communicated with
using an RESTful API. When a theory file is sent to the Isabelle server,
the server processes the file and returns JSON messages conveying the
status of all artifacts contained within the theory file. If the processing
of any artifacts fail, the JSON messages contain all the problems that

Isabelle found. For example, a candidate proof could fail to prove a
theorem, and this would raise an error. In ACME, we trace to an Isabelle
theory file with an Artifact and perform formal notation checking in
an automated manner. If an Artifact cannot be verified, ACME reflects
this information in the model editor. Moreover, ACME also supports
the translation of an assurance case to an Isabelle/SACM theory (Foster
et al., 2019, 2021), which can be used for verifying its logical integrity.
If there are any errors in other assurance case nodes, these are likewise
reflected.

The support for the ACCESS methodology from ACME is illustrated
in Fig. 10. Whilst in this section we illustrate the support from ACME,
we argue that any model-based assurance case management framework
may apply the ACCESS methodology to develop safety–critical systems.

For ACCESS Step 2 and Step 3, we use ACME to create and
manage a model-based assurance case, which may contain a number
of ArgumentPackages, TerminologyPackages and ArtifactPackages.
In the figure we show how elements inside ArgumentPackages can
link to elements in ArtifactPackages.

In ACCESS Step 2, 3 and 4, various engineering artifacts (such as
requirement models, architecture models, safety analysis models, and
behavioural models) are produced, and reside alongside the assurance
case (these are shown on the bottom right corner).2

In ACCESS Step 4, the evaluation of engineering artifacts can be
automated within ACME, with the assurance case as the entry point.
With SACM’s ImplementationConstraint (IC) model element, we cre-
ate validation rules written in EOL (IC_1 and IC_2 in Fig. 10) for the
referenced artifacts. Based on the type of the engineering artifacts,
ACME determines if it should invoke Epsilon or Isabelle. The results
of the evaluations are processed by ACME, and if any problem occurs,
they will be marked on the Artifacts that contain the evaluation rules
in the ACME editor.

In ACCESS Step 5, we perform the evaluation of the entire assurance
case, which includes the verification and validation on the system level.
Using ACME, we perform two types of evaluation. The first type is
to invoke evaluation on all referenced engineering artifacts from the
assurance case. In ACME we provide an evaluate function which can
be called on an assurance case, ACME then automatically looks into
all ArgumentPackages and looks for argument elements that refer to
artifact elements in ArtifactPackages, then ACME automatically calls
Isabelle or Epsilon and determines if all evidence (that support the
assurance case) are valid. The second type is to formalise the assurance
case and check its logical integrity in an automated manner. We do this
by transforming the assurance case to Isabelle/SACM notations with
ACME’s built-in model-to-text transformation (written in the Epsilon
Generation Language (Rose et al., 2008) — EGL) and generate the
Isabelle/SACM notation representation of the assurance case in the
form of a theory file. The Isabelle/SACM notation is then sent to
the Isabelle server for machine-checking. The evaluation result will
be parsed by ACME, which then locates the model elements in the
assurance case that fail the evaluation, and displays their corresponding
error messages.

In ACCESS Step 6, elements of the assurance case can be converted
to dynamic ones, whose validity depend on runtime data. In order to do
this, ACME allows the creation of Runtime Data Drivers, which provide
connections between runtime data and engineering artifacts. In this
way, runtime data can be constantly reflected to engineering artifacts.

In ACCESS Step 7, ACME’s runtime component — Dynamic Safety
Management System (DSMS) is used to evaluate the assurance case.
DSMS performs automated periodic evaluation on the assurance case, it
does so by automatically invoking validation rules on dynamic parts of
the assurance case (which refer to Engineering Artifacts that are updated

2 In this paper we focus only on Engineering Artifacts that can be automat-
ically validated with Epsilon, and Formalisations that can be automatically
verified by Isabelle.



The Journal of Systems & Software 213 (2024) 112034

9

R. Wei et al.

Fig. 10. ACME workflow in the context of ACCESS.

by Runtime Data Drivers at runtime). In this way, we can assure the
assumptions about the system (e.g. its behaviour or its operational envi-
ronment), check dynamic evidence, and determine operation contexts,
which form the baseline for dynamic assurance case evaluation.

5. Case study

In this section, we evaluate the ACCESS methodology by applying
it to a development process of an Autonomous Underwater Vehicle
(AUV). The assurance case for the AUV is developed based on an in-
tegrated RoboChart (Miyazawa et al., 2019) model, which includes the
architecture of the AUV and the behaviour of its controllers, discussed
in Foster et al. (2020). We also show that it is possible, with the help
of ACME, to automate the evaluation of model based assurance cases
and have the assurance case drive the development of the system.

It is to be noted that due to confidentiality and the complexity of
the AUV, in this case study we only demonstrate activities in the system
development and system assurance of ACCESS where the benefits of
automation can be reflected.

5.1. ACCESS Step 1

The AUV is a portable untethered remotely operated vehicle,
equipped with a visual mapping system and verified on-board auton-
omy. The aim is to make it capable of conducting light intervention
tasks, such as cathodic protection surveys (oil and gas) and simple
coring (offshore), with potential to move to more complex interventions
in a later phase, such as valve turning. The project brings together

the UK expertise from: the National Oceanography Centre and Forth
Engineering in Underwater Robotic Development; ROVCO on sub-
sea operation, sensor development and subsea vision preception; and
D-RisQ in Software Verification.

The National Oceanography Centre engages with regulators through
their ongoing contribution to the Marine Autonomous Systems regu-
latory working group to ensure regulatory compliance. To this end,
the use of a structured assurance case is vital to communicate the
evidence of safety operation to non-specialists, especially in the aspect
of software controlled autonomous behaviour.

In ACCESS Step 1, system functions are specified (task S1) and
safety analysis on the system level is performed (task A1), and functions
of the subsystems are allocated (task S2). We do not show the outputs
of these tasks in detail due to confidentiality, but it is to be noted that
the requirements are also model-based.

5.2. ACCESS Step 2

The overall architecture of the AUV is modelled (task S3) using
the RoboChart language (Miyazawa et al., 2019), shown in Fig. 11.
The robotic platform (AUV_Platform) acts as an abstraction layer for
the hardware, and provides shared variables for sensors, actuators and
events. The operator, which can be a human or navigation system,
provides instructions to the LRE (LRE_Ctrl - Last Response Engine) to
support execution of tasks, such as requesting a particular heading
and velocity. The LRE sits between the operator (AUV_Operator) and
the autopilot component (AUV_Autopilot). The LRE’s job is to avoid
hazardous behaviours, such as getting too close to an obstacle, or



The Journal of Systems & Software 213 (2024) 112034

10

R. Wei et al.

Table 1
Fragment of the Failure Mode and Effect Diagnostic Analysis (FMEDA) for the AUV.

Component
ID

Failure
rate

Safety
related

Failure
mode

Failure mode
distribution

Safety goal
violation

Safety
mechanism

Failure mode coverage by
safety mechanism

SPF/RF

D1 10 Yes Open 30% Yes None 0% 3
Short 70%

C1 2 Yes Open 30%
Short 70%

C2 2 Yes Open 30%
Short 70%

L1 15 Yes Open 30% Yes None 0% 4.5
Short 70%

R1 1 No Open 30%
Short 70%

Lamp1 150 No Open 100%
U1 100 Yes RAM 100% Yes ECC 99% 1

Fig. 11. Overall architecture of the AUV.

entering Object Proximity Exclusion Zones (OPEZs), and engaging evasive
manoeuvres if necessary. The autopilot controls the AUV actuators, and
takes advice only from the LRE.

Based on the architectural design, we create a modular assur-
ance case (task A2) for the AUV, as shown in Fig. 12. It contains
5 argument packages (see Section 2.3), which are represented as GSN
modules. The AUV_system module contains the argument of system
level safety for the AUV, including hazard analysis and allocation of
safety requirements. It is supported by modules Platform_Argument, Op-
erator_Argument, LRE_Argument and Autopilot_Argument. This means that
the validity of AUV_System depends on the validity of all 4 modules that
support it. In addition, LRE_Argument depends on Platform_Argument

and Autopilot_Argument.

5.3. ACCESS Step 3

We then perform safety analysis on subsystems (task A3). In critical
systems development, it is often required that inductive and deductive
safety analysis to be performed. One typical analysis that is performed
frequently in the development of safety–critical systems is the Failure
Mode and Effect Diagnostic Analysis (FMEDA). FMEDA looks at the
failure mode, failure mode distribution and failure rate of system
components (from simple components such as capacitors to more com-
plex components such as Microcontrol Units), as well as the safety
mechanisms to prevent failures, in order to compute hardware design
metrics (e.g. Single Point Failure Metrics — SPFM) to determine the
safety integrity levels of components. In this case study we demonstrate
how we could establish traces to FMEDA from the assurance case in
ACME, and automatically validate the assurance case using the FMEDA
results as evidence.

ACME allows the traceability to engineering artifacts defined in
arbitrary modelling technologies. One particular type of engineering
artifact is Excel spreadsheets, which is often used in FMEDA. Table 1
shows a fragment of the FMEDA performed on the power supply of the
proximity sensor (in which D1 is a Diode, C1 and C2 are capacitors, L1
is an inductance, R1 is a resistor, Lamp1 a lamp and U1 a Microcontrol
Unit). Note that the unit of Failure Rate is Failures in Time (FIT), which
is 10−9 times/h, where SPF stands for Single Point Faults and RF stands
for Residual Faults (faults that are not covered by safety mechanisms).
With the FMEDA, it is possible to compute the SPFM of a particular
hardware component, using the formula:

𝑆𝑃𝐹𝑀 = 1 −

∑

𝑆𝑅
(𝜆𝑆𝑃𝐹 + 𝜆𝑅𝐹 )
∑

𝑆𝑅
𝜆

where 𝜆𝑆𝑃𝐹 is the failure rate associated with hardware element
single-point faults, 𝜆𝑅𝐹 is the failure rate associated with hardware
element residual faults, and 𝜆 is the failure rate associated too all faults.

1 var entries = FMEDA.all();
2 var safety_related = 0;
3 var spf_rf = 0;
4 for(e in entries) {
5 if(e.SafetyRelated = "Yes") {
6 safety_related += e.FailureRate.asReal();
7 }
8 if(e.SafetyGoalViolation = "Yes") {
9 spf_rf += e.SPF_RF.asReal();
10 }
11 }
12 var spfm = 1 − (spf_rf)/safety_related;
13 return spfm > 0.9;

Listing 1: Computing the SPFM for a hardware component.

To validate the FMEDA, we aim to achieve the target SPFM (assume
we aim to achieve 90%). In order to do this automatically in ACME,
in the assurance case, we create an ArtifactPackage (discussed in



The Journal of Systems & Software 213 (2024) 112034

11

R. Wei et al.

Fig. 12. Overall AUV safety argument structure.

Section 2.3), and in it create an Artifact, and we refer to the Excel
spreadsheet from the Artifact, which can be later used as evidence
to our safety argument in the assurance case. As shown in Fig. 13, in
the references section, we configure the ‘‘Model Type’’ (as Excel spread-
sheet), the ‘‘Document’’ (to the location of the Excel spreadsheet), and
the ‘‘Metadata’’ (empty in this example). Within ACME, we use Im-
plementationConstraints to store model validation rules in Artifact
elements so that such rules can be executed when we evaluate the
assurance case. In Fig. 13, in the ‘‘Constraint’’ section, we use the rule
in Listing 1 (written in the Epsilon Object Language — EOL (Kolovos
et al., 2006)) to check if the FMEDA fulfils our requirement for the
target SPFM value. During the development process, when the FMEDA
changes, ACME can automatically detect this change by the execution
of the query and compute the SPFM automatically, then show the users
if the hardware design fails to meet the target SPFM values.

With the safety analysis performed, we are able to further refine
our assurance case by arguing the safety of subsystems (task A4), a
fragment of the assurance case is shown in Fig. 14. However, we shall
note that in this ACCESS step, only C6_a and Autopilot in Fig. 14
are developed (other elements are defined in the next ACCESS step).
Also, at this stage, there are no traceability from the argument to the
supporting evidence yet.

5.4. ACCESS Step 4

5.4.1. The last response engine
In this paper, we focus on the development of the LRE, which

provides run-time safety assurance. We consider the case of the AUV

navigating within an enclosed pond to perform maintenance tasks.
There are two main hazards for the AUV that we consider: (1) collisions
with static and dynamic obstacles and (2) causing a splash, which can
be a hazard for workers and equipment around the pond. The AUV can
either be under operator control, or running autonomously. If operating
autonomously, the responsibility for satisfying the safety requirements
lies with the LRE, which can engage evasive manoeuvres if necessary.
There are also Object Proximity Exclusion Zones (OPEZs), which are
designated areas where the AUV may not operate autonomously, and
help with hazard mitigation. They include the area close to the pond
wall, and also the area just below the water surface.

The LRE functions in four modes: Operator Control Mode (OCM),
Main Operating Mode (MOM), High Caution Mode (HCM) and Collision
Avoidance Mode (CAM). In OCM, the LRE passes control inputs from
the operator to the autopilot. In MOM, the LRE takes control for normal
behaviour at maximum speed. HCM is for the situation when the AUV
is getting close to an obstacle, and so the LRE lowers the velocity.
Finally, CAM is the mode where a potential unavoidable collision has
been detected, and the AUV is manoeuvring away from the obstacle.

The LRE keeps an obstacle register, which stores identified obstacles,
through sensor readings. In each behavioural cycle, the LRE calculates
the closest obstacle and determines whether it should apply evasive
manoeuvres or switch into high caution mode (HCM).

There are six event inputs: reqVel, with which the operator can re-
quest a velocity; reqHdng, to request a new heading; reqOCM, reqMOM,
reqHCM, to request an operation mode; and endTask, to delineate tasks.
The two output events are advVel and advHdng, with which the LRE can
send instructions to change velocity or heading to the autopilot.



The Journal of Systems & Software 213 (2024) 112034

12

R. Wei et al.

Fig. 13. Reference to FMEDA in excel spreadsheet.

5.4.2. Behaviour model for the LRE
We now model the behaviour of the LRE (task S5). We create a

state machine for the LRE, shown in Fig. 15. It implements the LRE’s
behavioural requirements and specifies the conditions on switching
to different operation modes. The following definitions and functions
appear in the state machine (Miyazawa et al., 2019): vel (velocity
of the AUV), inOPEZ (if the AUV is in an OPEZ), CDA (Closest Dis-
tance of Approach), StaticObsHorizDist and StaticObsVertDist (shortest
distance allowed to an obstacle horizontally and vertically),MinSafeDist
(minimal overall safe distance), cdyn (closest dynamic obstacle), cstc
(closest static obstacle), hdist() (horizontal distance to an obstacle),
vdist() (vertical distance to an obstacle), odist() (overall distance to an
obstacle).

The transitions give (1) events that trigger the transition; (2) the
conditions under which they can fire, and (3) any action taken at that
point. For example, the top-left most transition in Fig. 15 is

𝑟𝑒𝑞𝑀𝑂𝑀

[

𝑣𝑒𝑙 ≤ 0.1 ∧ 𝑜𝑑𝑖𝑠𝑡(𝑐𝑑𝑦𝑛) > 7.5

∧𝑜𝑑𝑖𝑠𝑡(𝑐𝑠𝑡𝑐) > 0.3 ∧ ¬𝑖𝑛𝑂𝑃𝐸𝑍

]

It states that the LRE can move from OCM to MOM when the trigger
event 𝑟𝑒𝑞𝑀𝑂𝑀 is received from the operator, and the set of conjoined
conditions hold. Specifically, the AUV can only operate autonomously

provided it has a low velocity, a minimum distance to static and
dynamic obstacles, and the AUV is not in an OPEZ. The state𝑀𝑂𝑀 has
an entry action, 𝑎𝑑𝑣𝑉 𝑒𝑙!1, that is executed when the state is activated
from any transition, and advises the autopilot to set the velocity to the
maximum. The top-most transition from MOM to HCM has no trigger
action, and only the condition

[ℎ𝑣𝑒𝑙 ≥ 0.1 ∧ ℎ𝑑𝑖𝑠𝑡(𝑐𝑠𝑡𝑐) ≤ 𝑆𝑡𝑎𝑡𝑖𝑐𝑂𝑏𝑠𝐻𝑜𝑟𝑖𝑧𝐷𝑖𝑠𝑡]

attached, meaning that it will activate as soon as the sensor values enter
the characterised range.

5.4.3. LRE argumentation
With the behavioural model for the AUV defined, we discuss model

analysis and verification (task A5) and further refined the assurance
case (created using ACME) for the LRE,.

We focus on the scenario of static obstacle avoidance for the LRE,
the safety argument fragment of which is shown in Fig. 14. The top
level Goal C6_a states that upon detecting a close static obstacle, LRE
should advise the autopilot to switch to HCM and reduce the velocity
of the AUV to 0.1 m/s. C6_a is a public goal (indicated by the module
icon on the top right corner) as it is used by the overall safety argument
in the AUV System module, unlike other goals, which are private.



The Journal of Systems & Software 213 (2024) 112034

13

R. Wei et al.

Fig. 14. Fragment in the LRE assurance case module to argue the safety of static obstacle avoidance.

Fig. 15. LRE RoboChart state machine.

C6_a is in the context of, and thus contingent upon, Assumption
LRE_A1, and Away Goals Autopilot and Sensors. The away goals must
be supported in the Platform and Autopilot modules for the LRE module
to be valid. LRE_A1 ensures that the argument need only hold when
the operator is not in control; the alternative case is handled by the
Operator module. We support C6_a by formalisation and decomposition.
Strategy LRE_S1 states our argument strategy, which is in the context
of Context LRE_C1.

We focus on Goals C7_a, C7_b and C7_c. They use the RoboChart
model to establish that the safety requirement is indeed satisfied. They
are subject to a validation argument under LRE.Validation, which is left
undeveloped for now, but should include activities like software testing.
In C7_a, we state that the LRE should activate HCM if there are potential
collision risks. We support this Goal with Solution Sn1, which states
that transitions to HCM mode from MOM should be modelled by the
behavioural model in Fig. 15. In C7_b, we state that the LRE should

send a command to the autopilot to reduce the speed to 0.1 m/s, and
we support this with Solution Sn2, which states that the entry action
of HCM should reduce the speed to 0.1 m/s. In C7_c, we state that the
LRE is deadlock free, and support this with Solution Sn3 by formal
verification.3

At this stage, we achieve traceability to formal verifications inside
the assurance case. But the assurance case is by no means complete,
since systematic verification and validation are yet to be performed.

5.5. ACCESS Step 5

In this step, the system shall be implemented (task S6), and we
perform system verification and validation (task A6) from assurance

3 We will explain the error marker on Sn3 later.



The Journal of Systems & Software 213 (2024) 112034

14

R. Wei et al.

Fig. 16. ACME dialog to edit Artifact LRE_HCM_R1.

case. We do so by complete the traceability to all engineering artifacts
from the assurance case, and automate the evaluation from ACME.

5.5.1. Trace to EMF models
GSN elements such as Contexts and Solutions, can refer to mod-

els/documents external to the assurance case. With traditional GSN
approaches, references to external models/documents are informal and
their evaluation is often performed manually.

We illustrate traceability with Goal C7_a and its supporting Solu-
tion Sn1 (in Fig. 14), which in turn is supported by several transitions
in the RoboChart state machine. To be able to reference elements of
the RoboChart model shown in Fig. 15, we create an Artifact named
LRE_HCM_R1 (in an ArtifactPackage named LRE_Artifact), which will
be referenced by Solution Sn1. The properties of LRE_HCM_R1 are
shown in Fig. 16. In the properties view for an Artifact, we specify the
‘‘Model Type’’ (we currently support EMF models, Excel spreadsheets
and plain text files), ‘‘Document’’ (location of the model) and the

‘‘Metadata’’ (metadata of the document, which can be metamodels,
schemas, etc.), in the ‘‘References’’ section in Fig. 16 (Note that assur-
ance cases and its referenced engineering models should reside in the
same location).

We then attach the model validation rule in Listing 2 in the ‘‘Con-
straint’’ section. In this rule we check that there are at least 3 transitions
from MOM, named ‘‘t4’’, ‘‘t5’’ and ‘‘t6’’ (shown in Fig. 15), which are
triggered when there are potential collision risks. For readability we
only show the queries for Transition ‘‘t4’’. The user can evaluate the
query inside the dialog by pressing the ‘‘Query’’ button. ACME will load
the model specified in the ‘‘Reference’’ section and execute the query,
the result of which is displayed in the ‘‘Query Result’’ text field. It is to
be noted that the validation rules do not have to be specified by EOL,
in a separate publication (Wei et al., 2023b), we illustrated the use of
constraint natural language with model-based approach.

1 var result = true;



The Journal of Systems & Software 213 (2024) 112034

15

R. Wei et al.

Fig. 17. ACME dialog to edit Solution Sn1.

2 var t4 = Transition.all.selectOne(t|t.name = "t4");
3 var t5 = Transition.all.selectOne(t|t.name = "t6");
4 var t6 = Transition.all.selectOne(t|t.name = "t7");
5 var t4c = t4.condition;
6 var t4check = t4c.isTypeOf(And) and
7 t4c.left.isTypeOf(GreaterOrEqual) and
8 t4c.left.left.ref.name = "hvel" and
9 t4c.left.right.value = 0.1 and
10 t4c.right.isTypeOf(LessOrEqual) and
11 t4c.right.left.isTypeOf(CallExp) and
12 t4c.right.left.function.ref.name = "hdst" and
13 t4c.right.left.args.first.ref.name = "cstc" and
14 t4c.right.right.ref.name = "StaticObsHorizDist";
15 result = result and t4check;
16 return result;

Listing 2: Query the transitions in the RoboChart model.

Artifact LRE_HCM_R1 can then be used as a supporting evidence
for our assurance case (specifically to substantiate Solution Sn1). To do
this, within Sn1 we ‘‘cite’’ the LRE_HCM_R1 (defined in the AUV_Artifact
package) in the ‘‘Citation’’ section, shown in Fig. 17.

5.5.2. Trace to Isabelle theory files
In this work, we also support references to formal notations em-

bedded in Isabelle theory files. The process of referring to an Isabelle
theory file is the same described in Section 5.5.1, except that the users
need to select ‘‘Isabelle Theory File’’ in the ‘‘Model Type’’ drop down
menu (within the ‘‘References’’ section) in the property dialog of an
Artifact, so that ACME knows to invoke the Isabelle server to check the
referenced theory file. Upon assurance case evaluation, ACME sends the
Isabelle theory file (Formalisation) to the Isabelle Server, which checks
the theory file and returns a JSON string, ACME then parses the string
and marks the errors in the ArtifactPackage editor. We illustrates this
by injecting an error and shows this in ACME, as shown in lower part
of Fig. 10. For this work, we create an Artifact called Deadlock_Free
and refer to the theorem shown in Fig. 18. This uses automated proof

Fig. 18. Deadlock free theorem defined in Isabelle.

tactics in Isabelle to prove deadlock freedom for the LRE state machine
in Fig. 15. We then ‘‘cite’’ Deadlock_Free within Solution Sn3 in Fig. 14.

5.5.3. Automated assurance case evaluation
With engineering artifacts referenced from our assurance case, we

can evaluate the assurance case by invoking the ‘‘evaluate’’ function,
which users can select in the context menu provided by ACME. When
we evaluate the assurance case in ACME, ACME starts the evaluation
process from the assurance case diagram where the ‘‘evaluate’’ function
is invoked. ACME automatically traces to Artifacts from Solutions,
Contexts, and Assumptions. Then, depending on the types of the
engineering artifacts (this information is associated to the Artifacts),
ACME executes model queries (for model validation) or invokes the
Isabelle server (for formal verification), respectively. Fig. 14 shows an
error marker on Solution Sn3, which indicates that the Isabelle proof
in Fig. 18 referenced from Artifact Deadlock_Free was unsuccessful.

This process of evaluation can be performed at regular intervals to
ensure that updates to models and other artifacts do not invalidate
the assurance case. For example, if one of the transitions from MOM
to OCM is removed in the behavioural state machine, ACME will be
able to pick up this change and flag an error. Moreover, if a change to
the state machine introduces deadlock, this will also be flagged by the
failure of the proof in Fig. 15. This is typically the benefits by adopting
ACCESS, ACCESS assumes that model-based approaches are used in the
development process, hence boosting the efficiency of developers and
improving the correctness and coverage of assurance case evaluation
activities.



The Journal of Systems & Software 213 (2024) 112034

16

R. Wei et al.

5.5.4. Transformation to Isabelle/SACM
Once a satisfactory assurance case is developed, a further step is

to check the integrity of the overall assurance case formally using
Isabelle/SACM. This is an optional step for ACCESS, but we would
like to show that how formalism can be integrated with model-based
assurance case to form a more convincing assurance case. To do this, we
perform a model-to-text transformation to generate Isabelle/SACM no-
tations from the assurance case automatically, which can be machine-
check using the Isabelle server. In ACME, we use the Epsilon Generation
Language (EGL) (Rose et al., 2008) to implement the transforma-
tion, but the transformation can be generalised. Algorithm 1 shows
the pseudo-code for generating Isabelle/SACM notations from a GSN
module.
Algorithm 1: Generating Isabelle from GSN.

1 for element in {all Contextual Elements} ∪ {all Goals} do
2 let declarations = {‘‘’’, ‘‘axiomatic’’, ‘‘assumed’’,

‘‘needsSupport’’, ‘‘asserted’’};
3 let declaration = determined based on the

feature/type of element
4 output ‘‘Claim ’’ + element.name + declaration + ‘‘‹’’ +

element.description + ‘‘›’’
5 end
6 for element in {all Solutions} do
7 output ‘‘ArtifactReference’’ + element.name +

declaration + ‘‘‹’’ + element.description + ‘‘›’’
8 end
9 for element in {all Strategies} do
10 let target = incoming SupportedBy
11 let sources = outgoing SupportedBys
12 let source_names = ‘‘@{Claim’’ + source names

separated by ‘‘,’’ +‘‘}’’
13 output ‘‘Inference ’’ + element.name + ‘‘ src ‹{’’ +

source_names + ‘‘}› tgt ‹{@{Claim ’’ + target.name +
‘‘}}›’’ + ‘‘ ‹@{Claim ’’ + target.name + ‘‘} is supported
by ’’ + source_names + ‘‘.›’’;

14 end
15 for element in {all Relationships Not Processed} do
16 let source_name = element.target.name;
17 let target_name = element.source.name;
18 if element isTypeOf(GSN!SupportedBy) then
19 if source.isTypeOf(GSN!Solution) then

output ‘‘Inference ’’ + element.name + ‘‘src
‹{@{ArtifactReference ’’ + source_name + ‘‘}}› tgt
‹{@{Claim’’ + target_name +"}}›" + ‘‘ ‹@{Claim ’’
+ target_name + ‘‘ } is supported by
@{ArtifactReference ’’ + source_name + ‘‘}.›’’

20 else
21 output ‘‘Inference ’’ + element.name + ‘‘src

‹{@{Claim ’’ + source_name + ‘‘}}› tgt
‹{@{Claim’’ + target_name +‘‘}}›’’ + ‘‘ ‹@{Claim ’’
+ target_name + ‘‘ } is supported by
@{ArtifactReference ’’ + source_name + ‘‘}.›’’

22 end
23 else if element isTypeOf(GSN!InContextOf) then
24 output ‘‘Context ’’ + element.name + ‘‘src

‹{@{Claim ’’ + source_name + ‘‘}}› tgt
‹{@{Claim’’ + target_name + ‘‘}}›’’ + ‘‘‹@{Claim ’’
+ target_name + ‘‘ } is context for @{Claim ’’ +
source_name + ‘‘}.›’’

25 end
26 end

A fragment of transformed Isabelle/SACM argument is shown in
Fig. 19, with some elements reordered to aid readability. Context
LRE_C1 and Solution Sn3 both give rise to references to formal arti-
facts included from another Isabelle theory file (Foster et al., 2020),
including the formalised LRE state machine. Several of the claims are
left open, and so have the keyword needsSupport attached, which can

Fig. 19. LRE argument fragment in Isabelle/SACM.

be checked to ensure that all branches of the argument are developed.
An Inference, I1, connects the formalised Sn3 (the source) to the Claim
C7_c (the target). The remainder of the claims, inferences, and solutions
are similarly mapped.

The transformed Isabelle/SACM theory file is sent to the remote
Isabelle server for machine-checking. Inside ACME we parse the JSON
string returned by Isabelle and find out if there are any problems. If so
we can locate model-elements in the assurance case that cause problems
and display them in ACME editors.

5.6. ACCESS Step 6

5.6.1. Dynamic assurance case evaluation for AUV at runtime
As previously discussed, the assurance of open adaptive RAS re-

quires safety evaluation to be performed at runtime when the system
is operational. To take a first practical step in this direction, we show
how we can achieve dynamic assurance case evaluation with dynamic
runtime data, in order to support the ACCESS process.

In our LRE assurance case in Fig. 14, we state that Goal C6_a is
valid within the context of Away Goal Sensors (top right element in
Fig. 14), which is a top level Goal specified in the Platform_Argument
module (hence the SupportedBy relation in Fig. 12).

In module Platform_Argument, we define a Goal Sensor.G2.a shown
in Fig. 20 (we omit other parts of the argument in the Platform_Argument
module to aid readability), which supports the top level Goal in the
Platform_Argument module. In turn, two more Goals that support Sen-
sor.G2.a: Goal Sensor.G3.a states that sensors should be sufficiently
reliable to provide accurate readings, this is in turn supported by
Solution Sensor.Sn1, where the hardware design metrics is quantita-
tively analysed by FMEDA (we omit the details of the analysis for
readability); Goal Sensor.G3.b states that obstacle data should be in
the specified range, which is supported by Solution Sensor.Sn2, where
runtime evaluation is performed.

This is where the assurance case starts to deviate into a dynamic
assurance case. Conventionally, assurance cases have static evidence
in the argument structure, which means, Goal Sensor.G2.a needs only
to be supported by Goal Sensor.G3.a, because there was no notion
of detecting random hardware faults at runtime. In our approach, we



The Journal of Systems & Software 213 (2024) 112034

17

R. Wei et al.

Fig. 20. Goal in the Sensor Module that requires runtime evaluation.

Fig. 21. ObstacleReading in the LRE runtime assurance metamodel.

argue that runtime random hardware fault can be detected by means
of evaluating dynamic assurance cases. In this way, we can establish
our confidence in the reliability of the entire system, due to the fact
we could establish our confidence in the reliability of key components
of the system (rather than trusting their manufacture specifications
on failure rates). Therefore, Solution Sensor.Sn2 is in place for ACME
runtime component to perform dynamic validation (this corresponds to
task A7).

To determine the reliability of the sensors, we need to synchronise
their readings to models that we can refer to at runtime from our
assurance case. For this purpose, we create an LRE Runtime Assurance
metamodel. We are particularly interested in the ObstacleReading class
in the metamodel, which is shown in Fig. 21. We are interested in
6 variables in an ObstacleReading, ns_rel_dis for relative north-east dis-
tance to the obstacle, ew_rel_dist for relative east–west distance to the
obstacle, obs_depth for the depth of the obstacle, obs_ns_vel for north-
east velocity of the obstacle, obs_ew_vel for east–west velocity of the
obstacle, and then obs_roc for rate of climb of the obstacle. With the
LRE Runtime Assurance metamodel, we create an LRE Runtime Assurance
model, which contains default content before the AUV is deployed,
shown in Fig. 22.

In our ArtifactPackage, we create an Artifact Obstacle_reading,
which refers to the LRE Runtime Assurance model. Inside

Fig. 22. Example ObstacleReading in the sensor digital twin model.

Obstacle_reading, we attach the validation rule in Listing 3, which checks
that the sensor readings are within the valid ranges for the AUV. By
performing the above activities, we have converted some elements
within the model-based assurance case into runtime elements, the
validity of which would be determined by runtime data.

1 var r = M!ObstacleReading.all().first();
2 return (r.ns_rel_dist>=−50.0 and r.ns_rel_dist<=50.0)
3 and (r.ew_rel_dist>=−50.0 and r.ew_rel_dist<=50.0)
4 and (r.obs_depth>=−10.0 and r.obs_depth<=0.0)
5 and (r.obs_ns_vel>=−5.0 and r.obs_ns_vel<=5.0)
6 and (r.obs_ew_vel>=−5.0 and r.obs_ew_vel<=5.0)
7 and (r.obs_roc>=−5.0 and r.obs_roc<=5.0);

Listing 3: Evaluation rule for checking the well-formedness of
obstacle readings.

5.7. ACCESS Step 7

For each class in the LRE Runtime Assurance metamodel, we use
model-to-text transformation to generate a Java class XXXDriver (de-
tails omitted to aid readability). For example, for the ObstacleReading
class, we generate ObstacleReadingDriver. To synchronise the sensor
data, we create a Java class ObstacleReadingDriver which is a type of
Runtime Data Driver, as discussed in Fig. 10. ObstacleReadingDriver pro-
vides an API which takes 6 parameters (ns_rel_dist, ew_rel_dist, obs_depth,
obs_ns_vel, obs_ew_vel and obs_roc), for the AUV to write these values
to the AUV Sensor model at runtime. For runtime evaluation, ACME
provides a Dynamic Safety Management System (DSMS), as shown
in Fig. 10.

In terms of model evaluation, we actively evaluate the assurance
case by executing the ‘‘evaluate’’ function of the DSMS, which in turn
executes all model validation rules embedded in the Artifacts (which
support Solutions, Contexts, Assumptions and Justifications) in the
assurance case. In our prototype, the DSMS periodically evaluates the
AUV assurance case (in this work we use a 50-millisecond intervals),
which includes the evaluation of the Solution Senso.G3.b, which then
triggers the evaluation of the Artifact Obstacle_reading by executing the
evaluation rule in Listing 3 against the AUV Sensor model.

The runtime data is synchronised from the AUV to the LRE Runtime
Assurance model through ObstacleReadingDriver (through simulation, as
the AUV has not been developed for operational trials). If the readings
are not within the range defined in the evaluation rule, the periodic
evaluation of DSMS will fail, rendering the corresponding assurance
case fragment invalid. In a sense, the development time assurance case
is converted to a model@runtime with the DSMS framework. In this way,
a novel means to perform additional checks at runtime (and reflect back
to the assurance case) is proposed. A number of advantages comes with
this approach:



The Journal of Systems & Software 213 (2024) 112034

18

R. Wei et al.

• Random hardware faults is actively detected rather than analysed
and calculated, this may result in a shorter Time to Detect Fault ;
in addition, this fault is propagated back to the assurance case,
rendering it invalid immediately. At runtime, the system may
consult DSMS, if the assurance case becomes invalid, it may make
the transition to safe state (e.g. complete halt), result in shorter
Fault Reaction Time Interval;
• The LRE Runtime Assurance model can be version-controlled,
which makes it possible to accumulate history data for the corre-
sponding sensor, therefore obtaining statistics on failure rates for
the sensor, which can be further used in stochastic approaches
approximating the fault rate of the sensors.
• Consequently, the safety analysis for the sensors can be up-
dated accordingly, which we discussed in a recently published
work (Wei et al., 2022, 2023a).

It is to be noted that Contexts in the assurance case may also depend
on sensor readings. For RAS, they may operate in different contexts, the
safety arguments for such contexts may differ. Therefore, it is highly
likely that dynamic assurance cases for RAS are no longer singular
assurance case, but a repository of models, including a number of
assurance cases for different operational contexts, engineering artifacts
produced at development time, as well as models@runtime with syn-
chronised sensor data. The repository of models should be monitored
and version-controlled at runtime to aid automated assurance case
evaluation and offline retrospection. To this point, we have concluded
ACCESS Step 7. It is to be noted that ACCESS is an iterative process,
development following ACCESS can start any ACCESS step in the
development lifecycle, based on the justifications of the developers.

6. Evaluation

To evaluate the effectiveness and generality of ACCESS, we used
our methodology to engineer the UAV (hereby referred to as System
A) from Section 5, and a safety–critical autonomous robotic system
(hereby referred to as System B) for earthquake aftermath search and
rescue. The two systems were developed as described in Section 3, and
were deployed in a realistic environment with changes in environment
specific to their application domains. We examined the efficiency of
the development process for both systems, and evaluate the generality
of our methodology across different domains. In addition, we examine
the coverage and the scalability of the supporting too, which pro-
vides insights on future research directions based on ACCESS and any
model-based assurance case management environment. The aim of our
evaluation was to answer the following research questions.
RQ1 (Efficiency): Does ACCESS, supported by model-based assur-

ance case, increase efficiency of developers for safety–critical systems?
RQ2 (Generality): Does ACCESS support the development of safety–

critical systems and model-based assurance cases across application
domains?

Although the focus of research contribution is on the proposed
ACCESS methodology, we also aim to answer the following research
questions.
RQ3 (Coverage): Does ACCESS supported with ACME, cover the

types of heterogeneous models that are produced throughout the de-
velopment of safety–critical systems to achieve the highest degree of
automation?
RQ4 (Scalability): Does ACCESS supported with ACME, support the

development of complex safety–critical systems with a large number of
model elements?

As the focus of our evaluation is the ACCESS methodology (primary)
and its tool support (secondary), we necessarily made a number of
assumptions. In particular, we assumed that the development activities
identified in the ACCCESS methodology are (mostly) model based,
which produce structured models that can be processed by model
management frameworks. Secondly, we assumed that ACCESS could be

Table 2
Comparative experiment for efficiency evaluation.

Subsystem Participant No. Elements in AC WL1 (min)

A A 102 505*
A B 98 262
A C 110 87
B A 231 1143*
B B 227 502
B C 246 105

used to construct assurance cases for all aspects of the target system,
including their design, development, operation and maintenance. We
further assumed that the runtime assurance case converted from devel-
opment time assurance case, would be used by the target system as an
non-invasive service (i.e. the runtime assurance case does not interact
directly with the decision-making components of the target system),
the target system would consult the runtime evaluation results of the
assurance case and adapt accordingly.

The experiments carried out to address the above research questions
are described in Sections 6.1–6.4.

6.1. RQ1: Efficiency

For efficiency, we conducted comparative experiments on sub-
components of System A and System B due do their complexities. The
evaluation set-up is as follows;

1. Evaluation subjects. For System A, we selected a power supply
unit (Subsystem A) as the experiment subject. For System B, we
selected a navigation unit (Subsystem B) which receives sensor
data and plans the route for the system.

2. Participants. We asked three safety–critical systems engineer
(with relatively same level of expertise) to participate in the
experiments.

The experiment procedure is as follows. We asked Participant A to
engineer Subsystem A and Subsystem B by following ACCESS with a
complete manual approach with no model-based tool support (i.e. all
artifacts produced are text-based documents). We then asked Par-
ticipant B to engineer Subsystem A and Subsystem B (by following
ACCESS) with an model-based approach but without the support from
ACME, Participant B chose to use EMF (Steinberg et al., 2008) and
Robochart (Miyazawa et al., 2019) as the modelling platform and
chose Eclipse Epsilon (Kolovos et al., 2008) as the model management
framework. We then asked Participant C to engineer Subsystem A and
Subsystem B (by following ACCESS) with the tool support from ACME.
We recorded the effort it took for all three participants to engineer
Subsystem A and Subsystem B in terms of time. The experiment results
are shown in Table 2.

In the experiment for Subsystem A, Participant A required approx-
imately 505 min, and produced an assurance case with 102 elements;
Participant B required approximately 262 min, and produced an as-
surance case with 98 elements; Participant C required approximately
87 min, and produced an assurance case with 110 elements. It is to
be noted that the difference in number of elements in the assurance
case is because that creating an assurance case is highly subjective,
hence the difference in numbers were expected. It is also to be noted
that since Participant A took a complete manual process, the assurance
case produced was NOT a model-based one, therefore it could NOT
be converted to runtime assurance case and could NOT be evaluated
against runtime data. Therefore, the time taken for Participant A shown
in Table 2 only reflected time taken following ACCESS steps 1 to 5.

The time breakdown for participants to engineer Subsystem A are:

• Participant A: 45 min for Step 1; 50 min for Step 2; 30 min for
Step 3; 180 min for Step 4; 200 min for Step 5; N/A for Step 6
and 7.



The Journal of Systems & Software 213 (2024) 112034

19

R. Wei et al.

• Participant B: 47 min for Step 1; 20 min for Step 2; 19 min for
Step 3; 43 min for Step 4; 56 min for Step 5; 30 min for Step 6;
and 47 min for Step 7.
• Participant C: 40 min for Step 1; 20 min for Step 2; 19 min for
Step 3; 1 min for Step 4; 3 min for Step 5; 2 min for Step 6; and
2 min for Step 7.

We also observed that the time it took to follow ACCESS Step
1 for all participants are in the same order of magnitude, this was
due to the fact that Participants B and C chose to create modelling
languages for their system definition, system requirements and safety
concept. Although it took them about the same time as Participant A,
we argue that the creation of modelling languages is a one-off effort
— in subsequent experiments, the modelling languages are re-used,
further reducing the time taken.

We do not discuss the time taken to engineer Subsystem B in
detail, except that Participant B and C took significantly less time
in ACCESS Steps 1 and 2 due to the reuse of modelling languages
they created in engineering Subsystem A. We could therefore draw
the conclusion that by adopting ACCESS with model-based support,
it improves development efficiency comparing to manual effort, even
more so when ACME support is available.

6.2. RQ2: Generality

As previously mentioned, we used ACCESS to develop the AUV and
a safety–critical autonomous robotic system. The model-based tool sup-
port for ACCESS (either it being ACME or other model-based assurance
case management environment) is underpinned by two fundamental
aspects of Model Driven Engineering:

• Domain Specific Modelling, which allows experts in different
domains to create modelling languages that best describe their
applications;
• Model Management Operations, which enable model transforma-
tions and model validation in an automated manner.

In addition, throughout the development process using ACCESS with
model-based support, we found that it was often necessary to ‘‘link’’
models defined using different modelling technologies. In our work,
this is achieved by exploiting the facilities provided by the Structured
Assurance Case Metamodel (SACM). However, other model-based ap-
proaches, for example, the use of a weaving model (Hawkins et al., 2015)
may also be adopted to realise the links among heterogeneous models.

In addition, we would like to point out that, some components of
System B were developed in conformance to ISO 26262 as SEooCs
(Safety Element out of Context) (International Organization for Stan-
dardization (ISO), 2011) following the development process defined in
ISO 26262. From our experience the ACCCESS methodology integrated
seamlessly with the development of SEooCs which would be certified
against ISO 26262.

Hence, we draw the conclusion that the ACCESS methodology is
a generic approach across different domains in the context of safety–
critical systems, as long as an assurance case is required for the certifi-
cation of the target system.

6.3. RQ3: Coverage

During the development of systems following ACCESS, we needed
to deal with models defined using different tools and technologies. The
types of models included:

• Model defined using Eclipse Modelling Framework (EMF), EMF
models are most commonly seen as EMF is the de-facto modelling
framework for most open source tools, and are supported by most
open source modelling platforms. We also used EMF to model our
system requirements, safety concepts, system architectures, etc.;

Table 3
Normalised efficiency experiment.

Model No. of model elements Time taken for evaluation (s)

Set0 109 0.1
Set1 269 0.2
Set2 1369 0.8
Set3 5689 4.1
Set4 5 689000 48.3

Set5 568990000 N/A

• Simulink models, Simulink is a modelling environment under
MATLAB, it provides a graphical block-based modelling frame-
work that supports the design, simulation and analysis of systems;
we made use of Simulink models to design some of the schematics
of our EE systems;
• Excel spreadsheets, spreadsheets are typically used to store Fail-
ure Mode and Effect Analysis (FMEA), which is an inductive
safety analysis method used in identifying failure modes of com-
ponents and their effects in the system;
• UML models, standardised by the Object Management Group,
most UML tools (commercial or open-source) uses XMI (XML
Metadata Interchange) format to store models;
• Formal models, in our work, Isabelle models are used to verify
software behaviour;
• JSON models, structured models with no metadata for rapid
modelling.

In our work, due to the fact that we adopted Eclipse Epsilon as the
supporting model management framework, we are able to support
the above model formats by either using Epsilon’s Model Connectivity
(EMC) layer, or directly using Epsilon’s existing model driver. If there
are new types of models defined using new modelling technology, we
may also support it by extending the EMC by creating a dedicated
model driver for it. We therefore draw the conclusion that ACCESS
supported by ACME achieve a high degree of coverage in managing
heterogeneous models.

6.4. RQ4: Scalability

Our last evaluation is on the scalability of ACME, although ACME is
the secondary contribution of our work, we report our findings in the
scalability of the tools. Our evaluation was performed on the premise
that the majority of the models used in our development process are
EMF models, with a mixture of Simulink models, Excel spreadsheets,
formal models and JSON models, which are identified in Section 6.2.
To evaluate the scalability of ACME, we selected 5 data sets as shown
in Table 3. It is to be noted that the in our end result systems, the
maximum number of model elements we have in our collection of
models was 5689 (Set3). We made duplicates of our models and put
them together to form Set4 and Set5 to evaluate the scalability of ACME
in different order of magnitudes. We found that ACME suffered from
scalability issues from Set4 and would not load Set5 due to memory
overflow. This is typically caused by the fact that ACME need to load
EMF models in their entirety before any queries can be performed on
them, which is an existing issue discovered in various studies (Barmpis
and Kolovos, 2013; Wei et al., 2016; Shah et al., 2014).

7. Related work

There are a number of assurance case works and tools that promote
automation by adopting MDE, such as AdvoCATE (Denney and Pai,
2017), D-Case Editor (Matsuno et al., 2010), ASCE (Netkachova et al.,
2014), Astah GSN (Larrucea et al., 2017), and CertWare (Barry, 2011).

MDE is applied from different perspectives of Assurance Case pro-
cess including



The Journal of Systems & Software 213 (2024) 112034

20

R. Wei et al.

1. to generate AC following the process of ‘‘predefined pattern’’
and ‘‘pattern instantiation’’. The pattern can be modelled by
extending the syntax of graphical notations, and the relationship
between system data and AC elements can be modelled for
automatic instantiation.

2. to verify by formal verification for evidence generation.
3. to check the correctness of AC structure by structure modelling.

NASA has developed a powerful graphical tool AdvoCATE (Denney
and Pai, 2017) based on Eclipse EMF for AC generation, management,
and evaluation. MDE is applied in two aspects; GSN is extended with
a formal syntax to support the syntactic checks; and the evidence is
generated by exploiting FM; it also uses a formal foundation for a
lightweight semantic checking based on the metadata attached to the
nodes though it is not to encode the whole argument in a formal
machine-checkable language. The work follows the process of pattern
design, instantiation, and formal verification. The AC pattern designed
is generic without specific application constraints to the systems, and
is split into two levels, from hazard mitigation to safety requirements,
and from safety requirements down to the evidence. The claims at the
second level, i.e. the safety requirements, are formalised manually, and
verified by invoking the AUTOCERT tool (Denney and Trac, 2008). The
instantiation requires engineers to identify the logic relationship among
system data and between AC nodes and system data. The mapping is
represented as a table to facilitate the automatic instantiation.

AUTOCERT invoked by AdvoCATE further invokes an automatic
theorem prover to verify that the code satisfies the safety properties.
However, no means for evaluating the referenced engineering artifacts
has been provided. During operation, the change of the system design
and the invalidation of assumptions, etc. can be identified, then ACs
are automatically instantiated with updated system data for evolution.
However, the AC update process will be partially manual if the safety
claim is changed which requires the manual formalisation.

Hawkins et al. proposed a model-based approach for generating
Assurance Cases (Hawkins et al., 2015). Model-based GSN assurance
case patterns are used as a basis. The work exploits the concept of
weaving models (Del Fabro et al., 2006) that represent the links be-
tween metamodels. With the weaving models, the approach allows the
instantiation of GSN patterns, which automatically instantiate weaves
(by means of model transformation) system information into an assur-
ance case based on the links in the weaving models. The links between
assurance case elements and system data can be updated automatically
when the system design changes because the links are built between
the metamodels instead of specific system data. However, apart from
injecting system information into an assurance case, no traceability
support from an assurance case to engineering artifacts is provided.
Consequently, the validation and verification of assurance case is not
covered.

Lin et al. (2016) is also based on a pre-defined pattern and pre-
organised data. The software development process is modelled. The
process activities’ results are software artifacts whose relationships
are shown through the input and output of processes. For example,
the contribution of software to the hazard derives the software safety
requirements. Thus, the relationships of different classes of data can
be extracted from the development process models. The pattern is
designed specifically for software safety with consideration of software
contribution to the hazard. The work adds the syntax of GSN to allow
automatic instantiation of the software artifacts. With the help of a
relationship model, the impact of artifact change, e.g. the change of
the software contribution to a hazard, can be identified automatically
in a AC structure for a convenient review. However, since the software
is not required to be developed with MDE, the automatic verification
of AC is not considered in this work.

Utsunomiya et al. (2018) developed a tool for constructing assur-
ance cases by reading architecture models, quality properties, and risk
measurements written in Extensible Markup Language (XML). Assur-
ance cases are generated which conform to SACM v1.0 XML Metadata

Interchange schema definition. The tool does not cover the evidence
generation of assurance cases. The effectiveness of the method has been
insufficiently evaluated to show whether it can be generalised.

Prokhorova et al. (2015) provide a solution for formalising sub-
claims and verifying with formal method tools. The system properties
represented by sub-claims are categorised into eight classes such as
temporal properties, timing properties, etc. Patterns are established
for each class with different formal method verification solutions. The
combination of verification tools shows the necessity of multiple formal
methods, also referred to as integrated formal methods (Paige, 1997).

Gleirscher et al. (2019a) proposed to model assurance cases formally
for autonomous robot systems following the pattern and instantiation
process. The purpose is to cope with the AC evolution during the system
development instead of the operation. Two assurance case patterns are
designed, that cover the construction pattern for the system specifica-
tion phase, and the extension pattern for the system implementation/
refinement phase. Both are instantiated with the system models. Since
the system is required to be modelled in a formal language, there is
no need for a process of formalisation of system models, and formal
method is a natural choice for assurance case verification. However,
the two-phase patterns are specific to the assumption/guarantee (A/G)-
style reasoning, therefore not suitable for other RAS systems that do not
follow A/G-style reasoning.

Calinescu et al. (2018) proposes the dynamic verification of self-
adaptive systems at runtime, but no tool support has been provided.
The work proposed the assurance case pattern for self-adaptive sys-
tems which is instantiated with formalised system requirements, and
further verified by model checkers, which facilitates the automatic co-
evolution of system and assurance case by avoiding the manual process
of system model formalisation.

Gacek et al. (2014) proposed a new domain-specific language,
Resolute, which is also a tool for building assurance cases based on
AADL (AS5506, 2004) models. The generation of assurance cases con-
sists of two steps. Firstly, the top-level claim is defined formally by the
engineers in first-order predicates where AADL models are queried. Sec-
ondly, the engineers decompose the top-level claim quantitatively. An
example could be that the sum of message delay of threads is bounded
while the top-level claim is the message delay of the process is bounded.
Then the AADL model will be queried through the assurance case and
checked automatically by model checking. The claims and rules for
two steps are recorded in the Resolute library for reuse. The way to
integrate Resolute assurance case with AADL model is to add a ‘‘prove’’
statement within AADL models. As the assurance case is written in
the same developing environment of AADL models, system model to
support assurance case claims will be queried by Resolute models, not
transformed or instantiated. So the Resolute assurance case is directly
integrated into the system architecture model. This integration enables
the traceability and consistency between the system model and its
assurance cases, and facilitates the automatic co-evolution of system
and assurance case. But this integration on the other hand limits the
solution application to other system modelling languages. Since ACME
is based on the EMF and the Epsilon framework, it is possible to support
various modelling languages (which is demonstrated in Section 5). It
is noted that Resolute can only be applied to the system architecture
level, rather than the implementation, otherwise it will incur state
explosion. Also, the claim of the use case is security properties, where
the architectural data are sufficient as assurance case inputs. However,
it will require more data (e.g. hazard models, safety-related function
models) for safety property argumentation; and Resolute may not be
capable of describing those properties properly.

Rushby conceived of an evidential tool bus (Rushby, 2005) that
would allow integration of various verification tools to provide evi-
dence to an assurance case, an idea that was later realised by Cruanes
et al. (2013). Isabelle is also an evidential tool bus, and its connection
to ACME allows linking to formal evidence.



The Journal of Systems & Software 213 (2024) 112034

21

R. Wei et al.

8. Summary and future work

In this work, we present ACCESS, a development methodology
that promotes the development of safety–critical systems around an
evolving model-based assurance case. We present ACME, along with
ACCESS, and illustrate how ACCESS steps can be followed to develop
a critical system from the beginning.

ACME is an integrated model-based assurance case development
tool, that supports fine-grained traceability to engineering artifacts
such as EMF models, Excel spreadsheets and Isabelle theory files. For
model-based engineering artifacts, ACME provides the support that
enables the users to attach model queries to SACM elements, which
can be automatically executed to validate the engineering artifacts. For
external Isabelle theory files, we provide support which makes use of
an Isabelle server to process the theory files and reflect the result back
to ACME. In this case, assurance cases can be automatically evaluated,
which includes the traceability and validation of engineering artifacts,
that significantly reduces development time and improves development
efficiency, comparing to human efforts. In addition, assurance cases can
co-evolve with system development, for changes in the system engi-
neering artifacts can be validated by ACME and problems can be found
rapidly, to allow a rapid turn-around between system development and
system assurance. We also showed how a development time assurance
case can be converted to a dynamic assurance case, with traceability
to runtime data. With the help of Dynamic Safety Management System
and Runtime Data Drivers, we are able to monitor the validity of the
dynamic assurance case in a real time manner.

It is to be noted that we could not show activities and outcomes
in each ACCESS step entirely in this paper, due to space limitation.
As such, in the future we would continuously improve the ACCESS
methodology and perhaps publish guidelines based on ACCESS to
explain the assurance case centric development process in greater
details.

With regard to ACME, we have shown that we can trace engi-
neering artifacts such as EMF models, Excel spreadsheets and Isabelle
theory files. In the future, we plan to support models defined in other
modelling technologies such as Simulink and PTC Integrity Modeller.
Currently, ACME only support EOL for model validation rules, which
practitioners may not be acquainted with. In the future, we plan to
lower the technical barrier by providing support to Constrained Natural
Language as query language, so that it requires minimal effort to learn.
Also, the impact of system engineering artifacts to assurance case
currently requires the practitioners to evaluate the assurance case to
detect invalidities. In the future we plan to provide support for passive
impact analysis with a version control system, so that we can support
version control on both assurance cases and engineering artifacts.
Finally, we plan to support SACM’s argument notation alongside with
GSN notation, to prompt the wider adoption of SACM.

CRediT authorship contribution statement

Ran Wei: Assurance case model development, ACME develop-
ment. Simon Foster: Formal specification development, Software be-
havioural modelling. Haitao Mei: Runtime assurance case conver-
sion, FMEDA example contribution. Fang Yan: Robochart case study
creator. Ruizhe Yang: Transformation rules from Simulink models
to EMF models. Ibrahim Habli: Related work. Colin O’Halloran:
Related work, AUV use case provider. Nick Tudor: AUV use case
provider. Tim Kelly: Advisor, Assurance case model development.
Yakoub Nemouchi: Coding.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

The data that has been used is confidential.

Acknowledgments

Simon Foster’s contributions are funded by the EPSRC-UKRI project
CyPhyAssure (https://www.cs.york.ac.uk/circus/CyPhyAssure/), grant
reference EP/S001190/1. Fang Yan’s contributions are funded by the
European Union’s Horizon 2020 research and innovation programme
under the Marie Skĺodowska-Curie grant agreement No 812.788 (MSCA-
ETN SAS).

References

Alkassar, E., Hillebrand, M., Leinenbach, D., Schirmer, N., Starostin, A., 2008. The
Verisoft approach to systems verification. In: VSTTE 2008. In: LNCS, vol. 5295,
Springer, pp. 209–224.

AS5506, S., 2004. Architecture analysis and design language (AADL). Embed. Comput.
Syst. Comm. SAE.

Barmpis, K., Kolovos, D., 2013. Hawk: Towards a scalable model indexing architecture.
In: Proceedings of the Workshop on Scalability in Model Driven Engineering. pp.
1–9.

Barry, M.R., 2011. CertWare: A workbench for safety case production and analysis. In:
Aerospace Conference, 2011 IEEE. IEEE, pp. 1–10.

Bishop, P., Bloomfield, R., 2000. A methodology for safety case development. In: Safety
and Reliability. volume 20, Taylor & Francis, pp. 34–42.

Blanchette, J.C., Bulwahn, L., Nipkow, T., 2011. Automatic proof and disproof in
Isabelle/HOL. In: FroCoS. In: LNCS, vol. 6989, Springer, pp. 12–27.

Brambilla, M., Cabot, J., Wimmer, M., 2017. Model-driven software engineering in
practice. Synth. Lect. Softw. Eng. 3 (1), 1–207.

Brookes, S.D., Hoare, C.A.R., Roscoe, A.W., 1984. A theory of communicating sequential
processes. J. ACM 31 (3), 560–599.

Brucker, A., Wolff, B., 2019. Using ontologies in formal developments targeting
certification. In: Integrated Formal Methods. IFM, In: LNCS, vol. 11918, Springer,
pp. 65–82.

Calinescu, R., Weyns, D., Gerasimou, S., Iftikhar, M.U., Habli, I., Kelly, T., 2018.
Engineering trustworthy self-adaptive software with dynamic assurance cases. IEEE
Trans. Softw. Eng. 44 (11), 1039–1069.

Cruanes, S., Hamon, G., Owre, S., Shankar, N., 2013. Tool integration with the
evidential tool bus. In: VMCAI. In: LNCS, vol. 7737, Springer, pp. 275–294.

Del Fabro, M.D., Bézivin, J., Valduriez, P., 2006. Weaving models with the eclipse AMW
plugin. In: Eclipse Modeling Symposium, Eclipse Summit Europe. volume 2006, pp.
37–44.

Denney, E., Pai, G., 2017. Tool support for assurance case development. Autom. Softw.
Eng. 1–65.

Denney, E., Pai, G., Habli, I., 2015. Dynamic safety cases for through-life safety
assurance. In: 2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering. volume 2, IEEE, pp. 587–590.

Denney, E., Trac, S., 2008. A software safety certification tool for automatically
generated guidance, navigation and control code. IEEE Aerosp. Conf. Proc..

Eclipse Foundation, 2003. Eclipse modelling framework (GMF). https://www.eclipse.
org/modeling/gmp/.

European Organisation for the Safety of Air Navigation (EUROCONTROL), 2006. Safety
case development manual.

Foster, S., Baxter, J., Cavalcanti, A., Miyazawa, A., Woodcock, J., 2018. Automating
verification of state machines with reactive designs and Isabelle/UTP. In: Proc.
15th. Intl. Conf. on Formal Aspects of Component Software. In: LNCS, vol. 11222,
Springer.

Foster, S., Nemouchi, Y., Gleirscher, M., Kelly, T., 2019. Isabelle/SACM: Computer-
assisted assurance cases with integrated formal methods. In: IFM. In: LNCS 11918,
Springer, pp. 379–398.

Foster, S., Nemouchi, Y., Gleirscher, M., Wei, R., Kelly, T., 2021. Integration of formal
proof into unified assurance cases with Isabelle/SACM. Form. Asp. Comput..

Foster, S.D., Nemouchi, Y., O’Halloran, C., Tudor, N., Stephenson, K., 2020. Formal
model-based assurance cases in Isabelle/SACM: An autonomous underwater ve-
hicle case study. In: Formal Methods in Software Engineering (FormaliSE 2020):
Proceedings of the 8th International Conference. ACM.

Gacek, A., Backes, J., Cofer, D., Slind, K., Whalen, M., 2014. Resolute: an assurance
case language for architecture models. ACM SIGAda Ada Lett. 34 (3), 19–28.

Gleirscher, M., Foster, S., Nemouchi, Y., 2019a. Evolution of formal model-based
assurance cases for autonomous robots. In: International Conference on Software
Engineering and Formal Methods. Springer, pp. 87–104.

Gleirscher, M., Foster, S., Woodcock, J., 2019b. New opportunities for integrated formal
methods. ACM Comput. Surv. 52 (6).

Greenwell, W.S., Knight, J.C., Holloway, C.M., Pease, J.J., 2006. A taxonomy of fallacies
in system safety arguments.

https://www.cs.york.ac.uk/circus/CyPhyAssure/
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb1
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb1
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb1
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb1
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb1
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb2
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb2
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb2
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb3
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb3
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb3
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb3
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb3
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb4
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb4
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb4
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb5
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb5
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb5
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb6
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb6
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb6
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb7
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb7
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb7
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb8
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb8
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb8
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb9
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb9
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb9
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb9
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb9
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb10
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb10
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb10
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb10
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb10
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb11
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb11
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb11
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb12
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb12
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb12
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb12
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb12
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb13
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb13
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb13
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb14
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb14
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb14
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb14
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb14
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb15
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb15
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb15
https://www.eclipse.org/modeling/gmp/
https://www.eclipse.org/modeling/gmp/
https://www.eclipse.org/modeling/gmp/
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb17
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb17
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb17
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb18
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb18
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb18
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb18
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb18
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb18
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb18
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb19
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb19
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb19
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb19
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb19
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb20
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb20
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb20
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb21
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb21
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb21
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb21
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb21
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb21
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb21
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb22
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb22
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb22
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb23
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb23
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb23
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb23
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb23
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb24
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb24
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb24
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb25
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb25
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb25


The Journal of Systems & Software 213 (2024) 112034

22

R. Wei et al.

Habli, I., White, S., Sujan, M., Harrison, S., Ugarte, M., 2018. What is the safety case
for health IT? A study of assurance practices in England. Saf. Sci. 110, 324–335.

Hawkins, R., Habli, I., Kolovos, D., Paige, R., Kelly, T., 2015. Weaving an assurance
case from design: a model-based approach. In: High Assurance Systems Engineering
(HASE), 2015 IEEE 16th International Symposium on. IEEE, pp. 110–117.

International Atomic Energy Agency (IAEA), 2008. IAEA safety glossary: Terminology
used in nuclear safety and radiation protection.

International Organization for Standardization (ISO), 2011. ISO 26262: Road vehicles
- functional safety.

Jaaksi, A., 2002. Developing mobile browsers in a product line. IEEE Softw. 19 (4),
73–80.

Kärnä, J., Tolvanen, J.-P., Kelly, S., 2009. Evaluating the use of domain-specific model-
ing in practice. In: Proceedings of the 9th OOPSLA Workshop on Domain-Specific
Modeling.

Kelly, T.P., 1999. Arguing Safety: a Systematic Approach to Managing Safety Cases
(Ph.D. thesis). University of York York, UK.

Kelly, T., Weaver, R., 2004. The goal structuring notation–a safety argument notation.
In: Proceedings of the Dependable Systems and Networks 2004 Workshop on
Assurance Cases. Citeseer, p. 6.

Kolovos, D.S., Paige, R.F., Polack, F.A., 2006. The epsilon object language (EOL). In:
European Conference on Model Driven Architecture-Foundations and Applications.
Springer, pp. 128–142.

Kolovos, D.S., Paige, R.F., Polack, F.A., 2008. The epsilon transformation language.
In: International Conference on Theory and Practice of Model Transformations.
Springer, pp. 46–60.

Larrucea, X., Walker, A., Colomo-Palacios, R., 2017. Supporting the management of
reusable automotive software. IEEE Softw. (3), 40–47.

Lee, E.A., Sirjani, M., 2018. What good are models? In: FACS. In: LNCS, vol. 11222,
Springer.

Lin, C.-L., Shen, W., Drager, S., 2016. A framework to support generation and
maintenance of an assurance case. In: 2016 IEEE International Symposium on
Software Reliability Engineering Workshops. ISSREW, IEEE, pp. 21–24.

Machin, M., Guiochet, J., Waeselynck, H., Blanquart, J.-P., Roy, M., Masson, L., 2018.
SMOF: A safety monitoring framework for autonomous systems. IEEE Trans. Syst.
Man Cybern. 48 (5).

Mathworks, 2020. Simulink. https://www.mathworks.com/products/simulink.html.
Online; accessed 6th June, 2020.

Matsuno, Y., Takamura, H., Ishikawa, Y., 2010. A dependability case editor with
pattern library. In: High-Assurance Systems Engineering (HASE), 2010 IEEE 12th
International Symposium on. IEEE, pp. 170–171.

McDermid, J.A., 2001. Software safety: where’s the evidence? In: Proceedings of the
Sixth Australian Workshop on Safety Critical Systems and Software-Volume 3.
Australian Computer Society, Inc., pp. 1–6.

Miyazawa, A., Ribeiro, P., Li, W., Cavalcanti, A., Timmis, J., Woodcock, J., 2019.
RoboChart: modelling and verification of the functional behaviour of robotic
applications. Softw. Syst. Model..

Nair, S., de la Vara, J.L., Sabetzadeh, M., Falessi, D., 2015. Evidence management
for compliance of critical systems with safety standards: A survey on the state of
practice. Inf. Softw. Technol. 60, 1–15.

Netkachova, K., Netkachov, O., Bloomfield, R., 2014. Tool support for assurance case
building blocks. In: International Conference on Computer Safety, Reliability, and
Security. Springer, pp. 62–71.

Nipkow, T., Klein, G., 2014. Concrete Semantics with Isabelle/HOL. Springer.
Nipkow, T., Wenzel, M., Paulson, L.C., 2002. Isabelle/HOL: A proof assistant for

higher-order logic. In: LNCS, vol. 2283, Springer.
Object Management Group, 2020. Structured assurance case metamodel. https://www.

omg.org/spec/SACM. Online; accessed 6th June, 2020.
Paige, R.F., 1997. A meta-method for formal method integration. In: International

Symposium of Formal Methods Europe. Springer, pp. 473–494.
Prokhorova, Y., Laibinis, L., Troubitsyna, E., 2015. Facilitating construction of safety

cases from formal models in event-B. Inf. Softw. Technol. 60, 51–76.
Rose, L.M., Paige, R.F., Kolovos, D.S., Polack, F.A., 2008. The epsilon generation

language. In: European Conference on Model Driven Architecture-Foundations and
Applications. Springer, pp. 1–16.

Rushby, J., 2005. An evidential tool bus. In: Formal Methods and Software Engineering.
ICFEM, In: LNCS, vol. 3785, Springer.

Shah, S.M., Wei, R., Kolovos, D.S., Rose, L.M., Paige, R.F., Barmpis, K., 2014. A
framework to benchmark NoSQL data stores for large-scale model persistence. In:
International Conference on Model Driven Engineering Languages and Systems.
Springer, pp. 586–601.

Steinberg, D., Budinsky, F., Merks, E., Paternostro, M., 2008. EMF: Eclipse Modeling
Framework. Pearson Education.

Trapp, M., Schneider, D., Liggesmeyer, P., 2013. A safety roadmap to cyber-physical
systems. In: Perspectives on the Future of Software Engineering. Springer, pp.
81–94.

Tuong, F., Wolff, B., 2019. Deeply integrating C11 code support into Isabelle/PIDE.
In: Formal Integrated Development Environment (F-IDE). In: EPTCS, vol. 310, pp.
13–28.

U.K. Ministry of Defence (MOD), 1996. JSP 430 - ship safety management system
handbook.

U.K. Ministry of Defence (MOD), 1997. 00-55 Requirements of safety related software
in defence equipment.

U.K. Ministry of Defence (MOD), 2007. Safety management requirements for defence
systems.

U.K. Rail Safety Standards Board, 2007. Engineering safety management issue 4.
Utsunomiya, H., Kobayashi, N., Morisaki, S., Yamamoto, S., 2018. A tool to create

assurance case through models. Trans. Mach. Learn. Artif. Intell. 6 (2), 46.
Wei, R., Jiang, Z., Guo, X., Mei, H., Zolotas, A., Kelly, T., 2022. Designing critical

systems with iterative automated safety analysis. In: Proceedings of the 59th
ACM/IEEE Design Automation Conference. pp. 181–186.

Wei, R., Jiang, Z., Guo, X., Yang, R., Mei, H., Zolotas, A., Kelly, T., 2023a. DECISIVE:
Designing critical systems with iterative automated safety analysis. IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst..

Wei, R., Jiang, Z., Mei, H., Barmpis, K., Foster, S., Kelly, T., Zhuang, Y., 2023b.
Automated model based assurance case management using constrained natural
language. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst..

Wei, R., Kelly, T.P., Dai, X., Zhao, S., Hawkins, R., 2019. Model based system assurance
using the structured assurance case metamodel. J. Syst. Softw. 154, 211–233.

Wei, R., Kolovos, D.S., Garcia-Dominguez, A., Barmpis, K., Paige, R.F., 2016. Partial
loading of XMI models. In: Proceedings of the ACM/IEEE 19th International
Conference on Model Driven Engineering Languages and Systems. pp. 329–339.

Wei, R., Reich, J., Kelly, T., Gerasimou, S., 2018. On the transition from design
time to runtime model-based assurance cases. In: 13th International Workshop
on Models@Runtime, ACM/IEEE 21th International Conference on Model Driven
Engineering Languages and Systems (MoDELS 2018).

Wenzel, M., 2019. Interaction with formal mathematical documents in Isabelle/PIDE.
In: CICM. In: LNCS 11617, Springer, pp. 1–15.

Wenzel, M., Wolff, B., 2007. Building formal method tools in the Isabelle/Isar
framework. In: TPHOLs. In: LNCS, vol. 4732, Springer.

Ran Wei is a Senior Research Fellow in the Department of
Engineering of the University of Cambridge. His research
interests include model driven engineering, digital twins,
model-based systems assurance, high integrity systems engi-
neering, real time systems, automated assurance of robotic
and autonomous systems.

Simon Foster is a Lecturer in Computer Science at the
University of York in the UK. His interests lie in theorem
proving, formal semantics, cyber–physical systems, hybrid
systems, process algebra, denotational semantics, algebraic
methods, and functional programming.

Haitao Mei is an ACM Member. His research lie in scalable
cloud architecture, real time systems, operating systems,
high integrity systems engineering and automated assurance
of robotic and autonomous systems.

Fang Yan is a researcher in Computer Science at the
University of York, UK. Her research interests are in
the Model-based Assurance Cases process for Robotic Au-
tonomous Systems. She is currently working specifically
on the topic of AC generation and verification technical
solutions based on FM.

http://refhub.elsevier.com/S0164-1212(24)00077-3/sb26
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb26
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb26
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb27
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb27
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb27
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb27
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb27
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb28
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb28
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb28
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb29
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb29
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb29
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb30
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb30
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb30
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb31
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb31
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb31
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb31
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb31
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb32
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb32
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb32
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb33
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb33
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb33
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb33
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb33
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb34
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb34
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb34
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb34
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb34
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb35
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb35
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb35
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb35
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb35
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb36
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb36
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb36
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb37
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb37
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb37
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb38
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb38
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb38
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb38
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb38
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb39
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb39
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb39
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb39
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb39
https://www.mathworks.com/products/simulink.html
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb41
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb41
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb41
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb41
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb41
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb42
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb42
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb42
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb42
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb42
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb43
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb43
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb43
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb43
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb43
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb44
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb44
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb44
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb44
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb44
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb45
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb45
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb45
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb45
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb45
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb46
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb47
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb47
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb47
https://www.omg.org/spec/SACM
https://www.omg.org/spec/SACM
https://www.omg.org/spec/SACM
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb49
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb49
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb49
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb50
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb50
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb50
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb51
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb51
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb51
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb51
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb51
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb52
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb52
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb52
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb53
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb53
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb53
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb53
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb53
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb53
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb53
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb54
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb54
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb54
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb55
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb55
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb55
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb55
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb55
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb56
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb56
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb56
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb56
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb56
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb57
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb57
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb57
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb58
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb58
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb58
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb59
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb59
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb59
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb60
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb61
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb61
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb61
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb62
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb62
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb62
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb62
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb62
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb63
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb63
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb63
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb63
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb63
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb64
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb64
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb64
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb64
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb64
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb65
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb65
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb65
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb66
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb66
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb66
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb66
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb66
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb67
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb67
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb67
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb67
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb67
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb67
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb67
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb68
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb68
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb68
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb69
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb69
http://refhub.elsevier.com/S0164-1212(24)00077-3/sb69


The Journal of Systems & Software 213 (2024) 112034

23

R. Wei et al.

Ruizhe Yang is a MSc student in Artificial Intelligence
of Dalian University of Technology (DUT), China. His cur-
rent research interests include Model Driven Engineering,
High Integrity Systems Engineering and Model-Based Digital
Twin.

Ibrahim Habli is a professor in Computer Science at the
University of York, UK. His interests lies in the design and
assurance of safety–critical systems, with a particular focus
on AI systems (e.g. for clinical diagnosis and autonomous
and connected driving) and Digital Health (e.g. ePrescribing
and self-management apps).

Colin O’Halloran has over 30 years of experience in high
integrity systems, operating as a scientist, consultant and
business group manager with RSRE, DERA and QinetiQ. He
is also a visiting professor at the University of York and
was previously a full professor of computer science at the
University of Oxford. Colin is an internationally recognised
expert in the validation and verification of software-based
systems using formal methods.

Nick Tudor has spent nearly two further decades within the
aerospace, autonomous systems and automotive industries
in various roles in large business and SMEs. Nick is an active
supporter of the international effort to refresh DO178 and
is a member of the Forum for Aeronautical Software.

Tim Kelly is an honorary professor of Computer Science
at the University of York, UK. He was one of the main
contributors for the Goal Structuring Notation (GSN) and
the Structured Assurance Case Metamodel (SACM), both
are international standards used in arguing the safety of
high-integrity systems. His research lie in the rigorous
justification and development of safety–critical systems;
architectural and pattern-oriented approaches to software
design and development.

Yakoub Nemouchi is a former postdoctoral researcher at
the University of York. His research interests include Formal
Verfication and Model Based Testing.


	ACCESS: Assurance Case Centric Engineering of Safety–critical Systems
	Introduction
	Preliminaries
	Assurance Cases
	Goal Structuring Notation
	Model-Based Assurance Cases
	Structured Assurance Case Metamodel
	Formal Methods and RoboChart

	Approach Overview
	Step 1: Plan Assurance Case
	Step 2: Create Assurance Case
	Step 3: Refine Assurance Case
	Step 4: Validate and Verify Engineering Artifacts
	Step 5: Evaluate Assurance Case
	Step 6: Convert to Dynamic Assurance Case
	Step 7: Automated Runtime Evaluation

	Tool Support
	Case Study
	ACCESS Step 1
	ACCESS Step 2
	ACCESS Step 3
	ACCESS Step 4
	The Last Response Engine
	Behaviour model for the LRE
	LRE Argumentation

	ACCESS Step 5
	Trace to EMF models
	Trace to Isabelle Theory Files
	Automated Assurance Case Evaluation
	Transformation to Isabelle/SACM

	ACCESS Step 6
	Dynamic Assurance Case Evaluation for AUV at Runtime

	ACCESS Step 7

	Evaluation
	RQ1: Efficiency
	RQ2: Generality
	RQ3: Coverage
	RQ4: Scalability

	Related Work
	Summary and Future Work
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References


