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Reducing uncertainties in greenhouse gas 
emissions from chemical production

Luke Cullen    1,4, Fanran Meng    2,4 , Rick Lupton    3 & Jonathan M. Cullen    1 

Uncertainties in greenhouse gas emissions estimates for petrochemical 

production have lacked quantification globally, impacting emissions 

reporting and decarbonization policymaking. Here we analyze cradle-to-

gate emissions of 81 chemicals at 37,000 facilities worldwide, assessing 

6 uncertainty sources. The results estimate a 34% uncertainty in total 

global emissions of 1.9 ± 0.6 Gt of CO2-equivalent emissions for 2020, 

and 15–40% uncertainties across most petrochemicals analyzed. The 

largest uncertainties stem from the inability to assign specific production 

processes to facilities owing to data limitations. Uncertain data on feedstock 

production and off-site energy generation contribute substantially, 

while on-site fuel combustion and chemical reactions have smaller roles. 

Allocation method choices for co-products are generally insignificant. 

Prioritizing facility-level process specification in data collection for just 

20% of facilities could reduce global uncertainty by 80%. This underscores 

the necessity of quantifying uncertainty in petrochemical greenhouse 

gas emissions globally and outlines priorities for improved reporting. The 

dataset generated offers independent emissions factor estimates based on 

facility-specific information for 81 chemicals, supporting future analyses.

The petrochemical industry outputs nearly 1 billion tonnes of products 

annually1, contributing to approximately 7% of global gross domestic 

product2. Products include 420 ± 40 Mt of plastics and 190 ± 20 Mt of 

fertilizers1,3. Petrochemical production is energy intensive, requiring 

30% of final industrial energy use, including 14% of global oil demand 

and 9% of global natural gas demand4. Therefore, petrochemical pro-

duction is a major cause of greenhouse gas (GHG) emissions, with the 

International Energy Agency (IEA) estimating annual GHGs emitted dur-

ing petrochemical production, excluding external energy generation, at 

1.30 Gt of CO2-equivalent emissions (CO2e) in 20205. This is equivalent 

to approximately 14% of global industrial GHG emissions and 2.5% of 

all anthropogenic GHG emissions6,7. Summary environmental assess-

ments providing industry-wide figures describe the scale of action 

required to reduce GHG emissions in line with climate change mitiga-

tion goals. This sector substantially influences global GHG emissions 

and poses substantial challenges in decarbonization efforts. These have 

motivated the industry to consider decarbonization as a priority8–15, 

yet GHG emissions continue to rise year on year7. Given the complex-

ity of decarbonizing petrochemical production, complete, accurate 

and detailed GHG emissions quantification is crucial to identifying 

opportunities for interventions, assessing their implications and set-

ting credible emissions targets. However, the difficulty of monitoring 

the operations and emissions of the global petrochemical sector means 

this cannot be done precisely, and so quantifying the uncertainty of 

emission estimates is an essential component of a complete and trans-

parent emission inventory16.

Existing environmental assessments use emission intensity factors 

(EFs) to convert material and energy flow data for individual materials 

or processes into GHG emissions estimates, which are used in compil-

ing life-cycle analyses (LCA) and emissions-inventory databases17. EFs 

can be either obtained directly from commercial LCA databases18,19, or 

calculated from reliable primary inventory data derived from rigorous 
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and aggregated globally. Finally, we propose pathways to improve 

future emissions reporting through uncertainty reduction.

Results
To frame our discussion of uncertainty, Fig. 1 shows a schematic of 

emissions sources in the petrochemical industry and how emissions 

are embodied through upstream petrochemical production to final 

downstream products. We follow the naming conventions for chemical 

classification used by the IEA and refs. 35,36.

The first part of the results section addresses the two model 

uncertainty sources in estimating the EF of a production facility: the 

practitioner’s choice of allocation method and the availability of data 

allowing for process specificity.

Uncertainties in EF estimation
Model uncertainty due to allocation. In the petrochemical industry, 

production processes often result in co-products. To measure the 

emissions due to any individual product, the total EF for a process must 

be split between the co-products. This can be done according to the 

output mass, economic or energy value of the co-products known as 

mass-, cost- and energy-based allocation, respectively. Although in the 

context of specific LCA studies there is often reason to choose a particu-

lar allocation method37, in general, the appropriate choice is not always 

unambiguous or possible, and so the impact of different possible  

choices creates a source of modeling uncertainty38. It is important 

to understand how important this choice is to the overall results, in 

aggregate and compared with other sources of uncertainty. Figure 2  

shows the difference in EFs for a process resulting from different  

allocation methods.

Figure 2a shows that for most processes, the allocation method 

used makes little difference in the final EF calculated. Differences are 

seen between mass- and cost-based allocation for some processes for 

producing methanol, phenol and high-density polyethylene, shown by 

the black line. This is supported by Fig. 2b, with the case of methanol 

produced as a co-product of pure oxygen, where mass-based allocation 

yields an EF of 2.6 ± 0.5 kgCO2e per kg, but cost-based allocation yields 

a higher EF of 5.3 ± 1.9 kgCO2e per kg. The lower half of Fig. 2b shows 

that even the processes with the greatest difference between mass- and 

energy-based show little variation between these allocations. In general, 

the impact of uncertainty from allocation method choice is low, but in 

circumstances where co-products of significantly different economic 

values are produced, uncertainty stems from the difference between 

cost-based allocation on one side and mass- and energy-based allocation 

on the other. In practice, the chosen method for allocation between co-

products is often based on available data37,39 and the bias this produces 

in emissions estimates should be considered in the allocation step.

process simulations20 or proxy data21. These data present two main 

problems in the context of robustly quantifying global petrochemical  

sector emissions. Most obviously, uncertainties are often ignored or 

not recorded when reporting LCA results22–24. The second problem 

is the diversity of manufacturing processes, feedstocks, plant loca-

tions or supply-chain routes for a product in the real world25,26. Relying 

on generic or exemplar EFs may hide large differences in emissions 

between different manufacturing processes for the same product and 

can lead to large errors in emissions estimations.

Although previous studies have delved into the uncertainty of 

impact estimates resulting from practitioner choices in LCAs concern-

ing global upstream crude oil refining27–29 or specific chemicals such 

as ethylene30,31 and ammonia32,33 at the country level, they have been 

limited in scope. These studies have not provided a comprehensive 

understanding of how to quantify and reduce uncertainty across the 

entire petrochemical supply chain. Effective policymaking, scenario 

mapping and assessment of decarbonization progress are dependent 

on reliable emissions estimates for the petrochemical sector. There-

fore, there arises a critical need for a more extensive exploration that 

encompasses a comprehensive quantification of uncertainties and 

a deep-dive analysis of the diverse sources of uncertainty across all 

petrochemical production processes. Only then can the reliability of 

current estimates be judged, with suggestions on prioritization for 

future data collection to reduce emissions uncertainties leading to 

more accurate assessments.

Here we aim to quantify the extent of uncertainty at an aggre-

gated (global) level in estimates of emissions from production of all 

widely-used petrochemicals, and what the most important sources of 

uncertainty are for each. In this Analysis, uncertainty reflects imperfect 

knowledge about the varied real operations of the world’s petrochemi-

cal facilities, as well as ambiguity about how impacts should be calcu-

lated. To do this, we develop a process-based LCA model to produce 

all possible EFs and associated uncertainties for 81 chemicals, based 

on 2,043 types of chemical manufacturing process, informed by the 

IHS (now belongs to S&P Global) Process Economics Program (PEP) 

Yearbook34. The model ensures mass and energy balances across pro-

cesses. We then use data from the Independent Commodity Intelligence 

Services (ICIS) Supply and Demand Database1 to assign possible EFs to 

37,379 petrochemical plants worldwide.

We consider two sources of uncertainty arising from the most 

impactful modeling choices made by LCA practitioners. First, the 

choice of the allocation method used to divide the total EF calculated 

for a process between the co-products produced, referred to as ‘alloca-

tion’. Second, several processes often exist for manufacturing the same 

product, and the precise process used at individual facilities is often 

not known, meaning that a unique match cannot be made between the 

facility and the relevant EF. This leads to a model uncertainty source 

referred to as ‘process specificity’. Then, additional uncertainty arises 

owing to uncertainty in the data themselves. We split this uncertainty 

based on four types of emissions source, which taken together describe 

the cradle-to-gate EF for each process type: embedded in upstream 

feedstocks (referred to as ‘feedstock’), off-site energy generation 

(‘indirect energy use’), on-site fuel consumption (‘direct energy use’) 

and chemical reactions (‘direct processes’). Although the ‘allocation 

uncertainty’ represents a different type of uncertainty from the other 

sources, resulting from practitioner choice rather than lack of knowl-

edge or imprecise data, the ‘correct’ choice is often unclear and it 

valuable to know to what extent the choice is important, compared 

with other sources of uncertainty. We therefore include it here in the 

category of ‘model uncertainty’.

First, this paper explores the two model uncertainty sources, 

allocation and process specificity, with case studies of ethylene and 

methanol production. Second, we incorporate the four data uncer-

tainty sources to assess the overall impact of all six uncertainty sources 

on total emissions estimates, both at a process level for individual LCAs 

Intermediate
chemicals (IN)

Primary
chemicals (PR)

Emissions sources

Direct energy use (DE)

Direct processes (DP)

Feedstocks (FS)

Indirect energy use (IE)

Upstream

Downstream

Nitrogen fertilizers (NF)

Thermoplastics (TP)

Thermosets, fibers
and elastomers (TS)

Solvents, additives
and explosives (SV)

Other (OT)

Fig. 1 | Schematic diagram of the four sources of emissions that apply directly 

to both upstream and downstream petrochemical production. Upstream 

products are used as input materials both for other types of upstream product 

and for downstream products as depicted by the black arrows. A collapsed 

version of this diagram is used as a key for other figures. See Supplementary 

Section 1.1 for product aggregation into groups.
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Model uncertainty due to lack of process specificity. A range of 

processes, and therefore possible EFs, exist for the production of 

each product in the petrochemical industry. To accurately estimate 

emissions, each facility should be allocated the appropriate EF for the 

process being used. In practice, knowledge of the specific process being 

used at a facility is limited owing to data availability and the data can 

often be subject to industrial secrecy. Consequently, a range of EFs can 

be possible for a facility, resulting in ‘process specificity’ uncertainty. 

Figure 3 illustrates the range of possible EFs found using our model for 

primary chemicals and plastics, and hence the magnitude of possible 

process specificity uncertainties if the only information known about 

a facility is the product being produced.

Figure 3 shows that each product is subject to a wide range of 

possible EFs dependent on the production process used. The range 

of 0.2–11 kgCO2e per kg for butadiene EFs is large compared with the 

standard global values of 1.20 kgCO2e per kg and 1.56 kgCO2e per kg 

offered by the LCA databases18,19. It should be noted that not all pos-

sible process methods are commonly used, for instance, butadiene  

production through the N-methylpyrrolidone process, with an 

EF of 1.5 ± 0.3 kgCO2e per kg through mass allocation, is far more 

widespread than the bio-based version indirectly produced via 1,3- 

butanediol with an EF of 11 ± 2 kgCO2e per kg through mass allocation. 

An unweighted mean of possible EFs may therefore not reflect the 

true mean for global production. However, the wide range of possible 

EFs leaves room for considerable uncertainty in using generic LCA 

database values for the emissions estimation of a particular product 

or facility. Overall, Fig. 3 shows that primary chemicals are subject to a 

larger variety of processing methods than downstream thermoplastic 

production.

To understand the reasons for differences in EFs from differ-

ent process methods in primary chemical production, we can look 

more closely at the contribution of each emissions source. Ethylene  

and methanol are two major chemicals with considerable variabil-

ity and are taken as an example shown in Fig. 4. See Supplementary  

Section 2.3 for a breakdown of other primary chemicals and plastics  

and a summary of minimum and maximum EFs calculated for all  

products considered in this study.

Processes that mainly use coal for ethylene production have  

cradle-to-gate EFs ranging from 6.0 ± 1.1 to 7.3 ± 1.3 kgCO2e per kg, 

which is substantially higher than those of processes mainly using naph-

tha, which range from 0.6 ± 0.1 to 1.3 ± 0.2 kgCO2e per kg. Emissions 

from feedstocks can vary between processes with the same principal 

feedstock due to the quantities used in each process recipe, but overall 

processing technologies that share their primary feedstocks tend to 

have similar EFs. This shows the importance of knowing the embed-

ded feedstock emissions when determining the final EF and presents 

an opportunity for limiting process specificity uncertainty through 

knowledge of a facility’s primary feedstock, which will be quantified 

below. Exceptions occur in some cases such as electric arc processing 

via acetylene, with feedstock emissions of 0.47 ± 0.07 kgCO2e per kg, 

similar to other acetylene-based processes, but an indirect energy 

use EF of 5.0 ± 0.8 kgCO2 per kg renders this an emission intensive 

process with a total EF of 5.5 ± 0.9 kgCO2e per kg, much higher than 

other acetylene-based processes in the 0.3–0.5 kgCO2e per kg range. 

Contrasting EFs between feedstock types supports a transition of 

ethylene production away from coal and methanol towards ethane 

and naphtha. However, the case of acetylene-based processes shows 

that a thorough LCA of the chosen process must be conducted to avoid 

a

Ammonia

DE DP FS IE PR IN NF TP TS SV OT

Product differences Largest process differences

Polyarylate

Toluene
diisocyanate

Liquid crystal
polymer

Methanol

Hydrogen

Acetic
acid

Methyl
methacrylate

Dimethyl
terephthalate

Phenol

Ethylene
glycol

Butadiene

Methanol

Propylene

Acetic
acid

Phenol

HDPE

LLDPE

Polypropylene

Polystyrene
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(kgCO2e per kg product)
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b

Fig. 2 | EFs from mass-, cost- and energy-based allocation. Each point 

represents the EF for one process using the allocation method specified by the 

point’s color. Points representing EFs for the same process but with different 

allocation methods are linked by a black line to show the variation due to 

allocation methods. The key at the top of the figure refers to Fig. 1. a, The range 

of possible EFs for a set of primary chemicals, intermediate chemicals and 

thermoplastics. b, Processes, corresponding to the products on the y axis, with 

the greatest difference due to allocation out of all processes considered. The  

top half shows those with the greatest difference between mass-based and  

cost-based, and the bottom half shows those with the greatest difference 

between mass-based and energy-based. HDPE: high density polyethylene,  

LLDPE: linear low density polyethylene. See Supplementary Section 2.1 for 

comparisons for other product groups.
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undermining the gains from reducing embedded feedstock emissions 

with losses from an increase in emissions from other sources including 

electricity use.

Lack of process specificity compared with data uncertainty.  

Figure 4 shows that when specific processes are not known, the pro-

cess specificity uncertainty is larger than the sum of the four data 

uncertainty sources seen in the error bars for each process. When the 

specific process for a facility is defined, process specificity uncertainty 

is eliminated and only uncertainty from the four data sources and allo-

cation methods remain. Extended Data Table 1 breaks down the average 

contribution of emissions from each source, the average uncertainty 

associated with the data source and the implied contribution of each 

data uncertainty source to the sum of data uncertainty for a process. 

On average, data uncertainties from feedstocks (56%) and indirect 

energy use (40%) are more significant than those from direct energy 

use (2.0%) and direct processes (1.5%).

This section has shown that process specificity, feedstocks and 

indirect energy use are the largest sources of uncertainty in calculat-

ing EFs in the petrochemical industry. Direct energy use, direct pro-

cess and allocation uncertainties are less significant overall but can 

be important in some specific cases. The next section quantifies the 

average impact of EF uncertainties on process LCAs across different 

products and aggregated global estimates of GHG emissions from 

petrochemical production.

Aggregated impact of EF uncertainties
Uncertainties in EFs impact process emissions estimates for each petro-

chemical facility, as discussed in the previous section. To understand the 

average impact across different products in current LCAs, we propagate 

uncertainties through to global emissions estimates. To quantify 

uncertainties at a global scale, we use facility-level data from the ICIS 

Supply and Demand Database1 and associate every petrochemical  

manufacturing plant with EFs for possible specific processes used. 

Given the small impact of allocation uncertainty, we use mass-based 

allocation for all EFs. Where a facility may be employing one of multiple 

possible processes, process specificity uncertainty is assigned to each 

emissions source as discussed in Methods. Combining the assigned EFs 

for each facility with estimated facility-level production data derived 

from the United Nation Food and Agriculture Organization40, the 

International Fertilizer Association (IFA)3 and the ICIS1 databases, we 

estimate total global petrochemical cradle-to-gate emissions for 2020 

as 1.9 ± 0.6 GtCO2e. Emission uncertainties from upstream production 

are propagated to downstream products when primary or intermediate 

chemicals are used as inputs for the downstream production process. 

Figure 5 shows the average EF uncertainty for a process in each product 

group. The impact on global emissions uncertainty is shown at the 

top of each plot by multiplying the average EF uncertainty of product 

groups with their production mass.

At a process level, the highest average EF uncertainty amongst the 

primary chemicals seen in Fig. 5c is for butadiene at 2.45 kgCO2e per kg, 

reflecting the wide range seen in Fig. 3. Together with the ‘thermosets’ 

downstream group, this suggests that fewer produced products are 

often associated with the highest level of average EF uncertainty. The dis-

tribution of inputs, and therefore data uncertainty, for low-production 

products is similar to high-production products, hence the increased 

uncertainty originates from the process specificity source where facility 

processes cannot be specified beyond a range of processes with large 

differences in EFs. Less produced products are therefore more liable 

to large uncertainties in process LCAs. The average uncertainties seen 
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Fig. 3 | Cradle-to-gate EFs for selected chemicals and products using 

mass-based allocation. a, Primary chemicals. b, Thermoplastics. The gray bar 

indicates the range of possible EFs for each product due to different process 

types. Individual EFs are shown along the bottom of each bar with the mean value 

shown by the vertical black bar. In b, to isolate the impact of process specificity 

in downstream processes, uncertainty from process specificity in upstream 

chemicals is not propagated to downstream EFs. Comparisons with the ecoinvent 

and CarbonMinds LCA databases18,19 and IFA EFs are shown where available. 

The key at the top of the figure refers to Fig. 1. ABS: acrylonitrile butadiene 

styrene, LDPE: low density polyethylene, PET: polyethylene terephthalate, PVC: 

polyvinyl chloride. See Supplementary Section 2.2 for other product groups and 

Supplementary Table 4 in Supplementary Section 2.3 for the EF ranges for all 

chemical products.
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a dataset containing all calculated EFs is available at https://doi.org/10.5281/

zenodo.10532625. Note that the numbers at the top of each figure represent the 

number of chemical manufacturing processes.
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at the petrochemical production stage significantly affect LCA results 

for downstream products. For example, ref. 41 estimated the total emis-

sions due to a 7.7 g high-density polyethylene grocery bag is 14.5 gCO2e. 

If the uncertainty in ethylene production emissions of 0.5 kgCO2e per 

kg is propagated through to high-density polyethylene, the actual emis-

sions could be up to 35% higher, resulting in 14 ± 5 gCO2e. For a car tire 

made of just 25% butadiene-based rubber, the production emissions of 

334 kgCO2e calculated in ref. 42 should incorporate an uncertainty of 

31 kgCO2e solely due to butadiene production. In line with results from 

Extended Data Table 1, data uncertainties originating from feedstocks 

and indirect energy use are more significant as a proportion of total 

uncertainties than those from direct energy use and direct processes 

for most products. An exception is ammonia where on average 55%  

of emissions are due to direct processes and therefore a higher propor-

tion of uncertainty is due to direct processes.

Figure 5a shows that the total uncertainty for annual global pri-

mary chemical production is 459 MtCO2e, which corresponds to 24% of 

total GHG emissions from the petrochemical industry. This significant 

uncertainty propagates downstream to intermediate chemicals and 

downstream products seen in Fig. 5b. Figure 5b shows that thermoplas-

tics are the downstream product group with the largest uncertainty 

with 238 MtCO2e, largely due to high production volume. For down-

stream products, 85% of uncertainty originates from uncertainties 

in upstream production emissions, which propagate downstream to 

their use as inputs to downstream processes. To reduce uncertain-

ties throughout the industry, the most valuable target is therefore 

upstream chemicals and in particular primary chemicals, where owing 

to high production volumes, ethylene, propylene and ammonia have 

the largest absolute uncertainties.

The first two results sections have explored the origins and impacts 

of uncertainty in EFs in the petrochemical industry. At a process level, 

low-production-volume products, including butadiene and thermo-

sets, are the most susceptible to high uncertainties. At a global level, 

primary chemicals including propylene, ethylene and ammonia have 
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Fig. 5 | Impact of uncertainty in EFs on different product groups. a–c, Total 

emissions estimates are calculated by multiplying average EF uncertainties on 

the left axis with the output product mass on the x axis. The resulting absolute 

uncertainty in emissions estimates is represented by the area of the boxes and 

labeled in the plot of total emissions above each figure on the right axis. This 

uncertainty quantification represents the 95% confidence interval as defined 

in Methods. For upstream product groups (a), downstream product groups (b) 

and primary chemicals (c). Full country-level EF data are available at https://doi.

org/10.5281/zenodo.10532625. AM, ammonia; BU, butadiene; BE, benzene; ET, 

ethylene; ME, methanol; MI, mixed xylenes; OR, ortho-xylene; PA, para-xylene; 

PR, propylene; TO, toluene.
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the highest absolute uncertainty and a knock-on effect on downstream 

product uncertainties, making them the priority targets for uncertainty 

reduction. To understand the potential gains from future data collec-

tion across the four sources of data uncertainty and process specificity 

we will now establish uncertainty-reduction scenarios.

Uncertainty-reduction scenarios
Emissions uncertainty can be reduced by collecting additional data, 

via either LCAs or simply defining which exact process among a range 

of possible processes is being used at a facility. This section quantifies 

the potential of reducing uncertainty by considering the drop in uncer-

tainty that would result from the collection of data to the point that an 

uncertainty source is eliminated for a given number of facilities. We 

consider the four data uncertainty sources and process specificity, as 

allocation uncertainty is less significant and cannot be directly targeted 

through further data collection. Figure 6a details the effects of reduc-

ing process specificity uncertainty for 100% of facilities by showing the 

average uncertainty ratio of process LCA emissions estimates at one 

facility and the equivalent absolute uncertainty when aggregated to the 

global level. Four levels of process specificity are considered: ‘product 

only’, where only the product of the facility is known and the mean EF 

of all processes is used; ‘facility data’, where details of the facility from 

the ICIS Supply and Demand Database are used to filter possible pro-

cesses, and the mean EF of the remaining processes is used; ‘feedstock 

data’, where a weighted mean of possible processes is taken according 

to feedstock information for ethylene and ammonia, as described in 

Methods; and ‘specific process’, where hypothetical uncertainty if a 

specific process is known for the facility. Figure 6b shows the drop 

in total uncertainty given the elimination of each uncertainty source 

individually at a given number of facilities. Facilities are ranked by the 

highest level of uncertainty and prioritized accordingly. Figure 6c,d 

shows the drop in uncertainty when combining data collection efforts 

across multiple uncertainty sources.

Figure 6a shows the significant uncertainty reduction that can 

be achieved through improving the specific knowledge of the facil-

ity process. In this study, we have used the ICIS Supply and Demand 

Database to improve uncertainties from the level of ‘product only’ to 

‘facility data’ and furthered this by using feedstock weightings from 

the ICIS and the IFA to achieve an average facility-level uncertainty of 

34% as denoted by the ‘feedstock data’ column. First, these data are 

not readily available in the public realm, which makes uncertainty 

reduction challenging. Second, we are still well above the hypotheti-

cally possible average uncertainty of 4% in a scenario where specific 

processes are known for all facilities. In the ‘specific process’ scenario, 

the remaining uncertainty is due to data uncertainties and alloca-

tion only. Third, weighting EFs by feedstock is effective for reducing 

uncertainty for ethylene and ammonia where processes can be easily 

grouped into types and data concerning input feedstocks exist, but it 

is not implementable for all products.

Figure 6b shows that by targeting the facilities with the highest 

overall uncertainty for future data collection, global uncertainty could 

be reduced by 80% by assigning specific processes to just 20% of facili-

ties, for example, total uncertainty from yearly ethylene production 

emissions could be reduced from 217 Mt to 44 Mt by making the specific 
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process data available from 217 facilities. Other important opportuni-

ties lie in improving feedstock and indirect energy use uncertainty 

values which, leaving all other uncertainties constant, offer global 

uncertainty reductions of 36% and 34% respectively, with improved 

data from just 20% of facilities. Although this is promising, we must 

note that over 37,000 production facilities exist globally so covering 

20% of plants is no trivial endeavor. Combining data gathering of pro-

cess specificity and feedstock EFs would be the most efficient way to 

reduce overall uncertainty, as seen in Fig. 6c. However, specific process 

information can be sensitive data and may be challenging to obtain in 

some cases. Figure 6d shows the improvement to uncertainties that 

could be made independent of process specification, with a maximum 

uncertainty reduction of 61% if precise information is obtained for the 

feedstock and indirect energy use inputs to 25% of plants.

Emissions uncertainty at individual plants is not only an issue for 

process LCAs but also accumulates to create considerable uncertainty 

at a global scale. This section shows that there is potential to signifi-

cantly reduce emissions uncertainty across the petrochemical industry 

through data collection and improved transparency, which would allow 

for process specification.

Discussion
EFs, essential in LCA and mandated by the United Nations Framework 

Convention on Climate Change framework43, form the foundational 

basis for credible emissions reporting. Assigning accurate EFs to pet-

rochemical production processes is challenging owing to the com-

plexity of the industry, with numerous production processes for each 

type of product. The average uncertainty in process-level emissions 

estimates is 34% of total emissions, which aggregates to 0.6 GtCO2e 

of the 1.9 ± 0.6 GtCO2e annual global emissions from petrochemical 

production. LCA studies of common petrochemical products, including 

plastic bags, bottles and films, could be regularly inaccurate by up to 

40% due to primary chemical production uncertainties and over 100% 

inaccurate if supply chains include uncommon production methods. 

Average uncertainties across downstream petrochemical EFs range 

from 15% to 40%. Therefore, while initial estimates facilitated by generic 

LCA database factors can be useful as policy guidance, they fall short in 

detailed comparative studies and decarbonization scenario analyses.

This study critically examines the origins of uncertainties, urg-

ing a move toward precision at the facility level in emissions assess-

ments. The foremost source of uncertainty emerging in this study is the 

detail of specific production methods employed at individual facilities, 

which are largely unavailable in the public domain. This highlights the 

challenges posed by industrial confidentiality, which is a hurdle to 

comprehensive emissions estimation. While the choice of allocation 

method is the least impactful of the six uncertainty sources evaluated, 

inconsistent practices can hinder cross-study emissions comparisons. 

Proposing a standardized LCA allocation method for petrochemical 

emissions similar to encouraged practices in other industries, such as 

construction44, can foster uniformity and transparency in emissions 

accounting.

Data inputs are responsible for the remainder of uncertainty, after 

process specificity and allocation. Upstream emissions from the pro-

duction of feedstocks and off-site energy generation each contribute 

about half of the remaining uncertainty, with on-site fuel combustion 

and chemical reaction emissions making small contributions. Precise 

knowledge of emissions from chemical reactions reduces uncertainties 

related to direct process emissions. Previous studies have shown that 

variability in upstream feedstock sources can lead to large uncertain-

ties30. Planned improvements to the material-specific uncertainty 

quantification in ecoinvent will allow for more detailed uncertainty 

assessment of specific products but this is unlikely to significantly 

impact the results detailed in this study, across the industry as a whole. 

Indirect energy use uncertainties stem largely from electricity pro-

duction and may be the easiest source of uncertainty reduction given 

widespread data availability in this sector. Additional granularity for 

both upstream feedstock and indirect energy use sources could be 

combined with this study to provide a more holistic life-cycle uncer-

tainty assessment, which could extend to use and end-of-life phases.

Uncertainties due to primary chemicals account for 70% of total 

uncertainties in petrochemical production emissions, which propa-

gates throughout downstream products owing to the widespread use 

of primary chemicals as inputs. Addressing uncertainties linked to 

primary chemicals such as propylene, ethylene and ammonia emerges 

as a priority for researchers aiming to reduce overall emissions uncer-

tainty. Strategic data collection is key for effective uncertainty reduc-

tion and Fig. 6 shows that global uncertainty in emissions can be 

substantially reduced by targeting just 20% of production facilities. 

Although this is a considerable challenge given the scale of the global 

petrochemical industry across over 37,000 facilities, the reward for 

implementing such a data-driven strategy could be effective decar-

bonization strategies grounded in a reliable assessment of current and 

future GHG emissions. To implement this, the meticulous perform-

ing of LCAs must become an intrinsic part of a chemical engineer’s 

education.

In the era of intensified scrutiny of GHG emissions and the rapid 

growth of net-zero commitments, recalibrating the approach to uncer-

tainties within the petrochemical sector is crucial. Generic EFs, while 

convenient, inadequately capture the diversity of processes and pro-

duction methods used. Through enhanced data transparency, techno-

logical innovation and the pursuit of facility-level precision, chemical 

engineers have the potential to lead the push for accurate GHG emis-

sions estimation. Engineers dedicated to uncertainty reduction should 

prioritize primary chemical production and facilities that account for 

the largest uncertainties. Subsequent investigations should build on 

this foundation, incorporating uncertainties from petrochemical use-

phase and end-of-life scenarios to establish a comprehensive life-cycle 

understanding, thereby pinpointing the targets for GHG emissions 

uncertainty reduction.

Methods
This study develops a process-based LCA model to generate a cradle-to-

gate EF estimate for 2,043 petrochemical production processes broken 

down into four sources of emissions: feedstocks, indirect energy use, 

direct energy use and direct processes. Emissions are also released 

from the use phase of some petrochemicals (for example, fertilizers) 

and from end-of-life product treatment, both of which are excluded 

from this study. Other environmental impacts can occur from sources 

other than GHGs, including fertilizer run-off contributing to eutrophi-

cation, bioaccumulation of toxic chemicals in organisms, and plastic 

waste in the world’s oceans harming sea life, but are outside the scope 

of this study. In this section, we first discuss the calculation process 

and allocation methods applied to obtain process cradle-to-gate EFs. 

Second, we discuss the uncertainty sources and the propagation of 

uncertainties through each step of our calculations. Finally, we dis-

cuss the disaggregation of country-level production mass data to the 

inventory of facilities to establish the overall impact of uncertainties 

on industry-wide emissions estimates.

EF calculation
EFs are estimated for 2,043 petrochemical production processes 

using the mass–energy balances between inputs and outputs for 

each type of process, known as the ‘process recipes’, obtained from 

the IHS PEP yearbook34. The IHS database contains process simula-

tions and datasets that have been verified by industrial experts. From 

the output of individual GHGs, CO2e global warming potentials are 

calculated following the 100-year horizon published by the Intergov-

ernmental Panel on Climate Change (IPCC)45. Given the cradle-to-gate 

focus, biogenic emissions are not distinguished and are included as 

part of overall emissions. The overall EF for an individual process is 
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calculated as an addition of the four emissions sources following 

equation (1).

EF

process

= EF

feedstocks

+ EF

indirect energyuse

+ EF

direct energyuse

+ EF

direct process

(1)

Upstream chemicals can be used as inputs to downstream chemi-

cal production, in which case the emission factor EFintermediate is added 

to equation (1) for the calculation of the downstream processes’ EF. 

Ignoring uncertainty propagation, which is covered above, the EFs for 

each emissions source are calculated as follows:

 (1) ‘Feedstock’ emissions, defined in equation (2), originate from 

the sum of GHG emissions embedded in the supply chains of 

each feedstock f for a total of F feedstocks used for a particular 

process. This is dependent on the EF of each feedstock, specific 

to the region of use extracted from ecoinvent 3.818, the quantity 

Q of each feedstock used according to IHS process recipes and 

the total mass m of all output products produced following the 

recipe, typically 1 kg.

EF

feedstocks

=

F

∑

f=1

EF

f

×Q

f

m

(2)

 (2) ‘Indirect energy use’ includes any emissions embodied in energy 

generation, including electricity, undertaken off-site. This is 

region specific, depending on the energy mix in each region when 

attributed to individual facilities. This is taken into account by 

employing the relevant EFe coefficients from ecoinvent 3.8  

(ref. 18), with Q defined in units of energy for each energy source e 

from all energy sources E, and total mass m of all output products.

EF

indirect energyuse

=

E

∑

e=1

EF

e

×Q

e

m

(3)

 (3) ‘Direct energy use’ represents any CO2e emissions that originate 

from the on-site combustion of fuels to generate heat. This is 

calculated as the sum of combustion emission factors, sourced 

from the IPCC and US Department of Energy46,47 for each energy 

source e and calculated according to equation (4) with factors 

as defined for equation (3).

EF

direct energyuse

=

E

∑

e=1

EF

e

×Q

e

m

(4)

 (4) ‘Direct process’ emissions originate from the chemical reac-

tions involved in production. Stoichiometric ratios determine 

the output quantity of GHG molecules released from a reac-

tion compared with the output quantity of the desired atoms 

used in a process products (for example, carbon and nitrogen). 

These are based on equations obtained from the IPCC48 and 

are a combination of the molecular masses M of the GHG being 

analyzed and the chemical product. Direct process emissions 

resulting from the oxidation of input chemicals are calculated 

on a stoichiometric basis assuming all carbon is fully oxidized 

to CO2 and all nitrogen is emitted as NO2. Data on other poten-

tial GHG emissions (methane) are not available and are assumed 

to be negligible. In equation (5), the stoichiometric ratio is 

C = MGHG/Mproduct.

EF

direct process

=

m

input

m

product

C (5)

Chemical production processes often yield co-products alongside 

the product under consideration. To avoid double counting of emis-

sions, total process emissions are allocated between co-products. To 

investigate the effect of the choice of allocation method on overall 

emissions, we calculate three separate EFs for each process by using 

mass, energy and economic allocation. In each case, the emissions 

allocated to a product from a facility are proportional to its ratio of 

the mass, energy or cost relative to the entirety of the co-products (see 

illustration in Supplementary Fig. 2). Equation (6) defines the EF of a 

co-product c the following allocation according to property X from 

the total process EF.

EF

co-product

=

X

c

∑

C

c=1

X

c

EF

process

(6)

Process recipes are defined by the IHS as mass balances; therefore, 

for energy allocation, product masses are converted to equivalent 

energy using conversion factors from the 1996 IPCC guidelines36. 

Similarly, mass is converted to cost by using cost factors published by 

the IHS for the year 202049. Energy and economic allocation are only 

calculated for co-products where the conversion data are available. 

After allocation, we have EFproduct values across the four emissions 

sources for every process, following each allocation method. The mean 

of values from each allocation method is taken to obtain a single EF for 

each emission source corresponding to each process.

To calculate facility-specific EFs, we implement an automated 

algorithm matching each of 37,379 facilities to possible production 

processes based on each facility’s product, route and technology infor-

mation from the ICIS5. In instances when a unique match was not found 

and multiple possible processes p exist for a facility, the mean of EFs of 

all possible processes for that facility is used as stated in equation (7) 

where P is the total number of matching processes.

EF

facility

=

∑

P

p=1

EF

p

P

(7)

In the exceptional cases of ethylene and ammonia production, we 

go beyond attribution using the facility data alone, by incorporating 

additional feedstock ratio information from the ICIS5 and the IFA3. The 

feedstock ratios are used to improve accuracy by taking a weighted 

mean of possible processes. Processes p are grouped into their prin-

cipal feedstock categories (for example, naphtha and methanol), and 

weighted according to ratio r of each input feedstock category f, as 

shown in equation (8).

EF

facility

=

F

∑

f=1

(r

f

×

∑

P

p=1

EF

p

P

) (8)

The output of the facility attribution step leads to individual  

cradle-to-gate EFs for each facility broken down into the four emissions 

sources for each product. These EFs can be combined with production 

statistics to estimate total GHG emissions as seen above. The next sec-

tion details the aggregation and propagation of uncertainties through 

the calculations in this section.

Uncertainty in EF calculations
In this study, we use an analytical approach to uncertainty estimation 

for a fully transparent and exhaustive quantification of the contribu-

tions from different uncertainty sources. Equations (2)–(5) define four 

emissions sources that correspond to four sources of data uncertainty. 

We follow the intermediate recommendation of ref. 50, by character-

izing data uncertainty for each term in equations (2)–(5) as a normal 

probability distribution. Uncertainties throughout the study will there-

fore be expressed as the extent of the 95% confidence interval (CI) of 

the distribution, equivalent to 1.96 times the standard deviation of the 

distribution. Uncertainty associated with each data source is summa-

rized in Extended Data Table 2 where CIs are written as a percentage 

of the mean value.
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In most cases, uncertainty is unspecified from ecoinvent and in 

that case, we follow the basic uncertainty variance for CO2 emissions 

of 0.0006 proposed in ref. 51. Following the uncertainty estimation 

methodology in ref. 52, and assuming their default pedigree matrix 

rankings (2, 2, 1, 5, 1), this results in a CI of 10% attributed to the unit EFf 

or EFe. The values in IHS process recipes are subject to up to a 5% CI49, 

which is attributed to the quantities Qf, Qe and m. Molecular masses are 

known precisely, and uncertainty is deemed negligible for Mproduct and 

MGHG. Similarly, chemical reactions are well understood, and combus-

tion is optimized in industry, but a 1% CI is attributed to C to account 

for process losses, following optimal yield rates for primary chemicals 

in ref. 36. Where uncertainty is not explicitly stated, a 1% CI is assumed 

for the conversion from mass to energy in Xi as these ratios are consist-

ent and well established. Finally, uncertainty is not published for the 

source of economic value to mass ratios Xi, but as IHS records indicate 

that product prices can vary by up to 10% within a year49, we use 10% 

as a CI for cost values.

Uncertainty is propagated through each calculation following 

the standard Taylor series method for uncertainty propagation53. 

Hence, for a value V calculated from variables A, B, ..., N, the posterior 

distribution of V is obtained from calculating the posterior standard 

deviation σ(V) according to equation (9) for multiplications, such as 

equations (2)–(5), and according to equation (10) for additions such 

as equation (1).

σ (V) =

|

V

|

×

√

(

σ(A)

A

)

2

+ (

σ(B)

B

)

2

+…+ (

σ(N)

N

)

2

(9)

σ (V) =

√

σ(A)

2

+ σ(B)

2

+…+ σ(N)

2

(10)

Therefore, the data uncertainties considered in equations (2)–(5) 

for each process are:

•	 The uncertainty in feedstock EFs σ(EFf), the uncertainty in the 

quantity of each feedstock used during the process in question 

to make the mass m of the product σ(Qf).

•	 The uncertainty in indirect energy EFs σ(EFe), the uncertainty 

in the quantity of indirect energy (that is, primarily electricity) 

used during the process in question to make the mass m of the 

product σ(Qe).

•	 The uncertainty in direct EFs σ(EFe), the uncertainty in the quan-

tity of direct energy (that is, natural gas and oil combusted for 

energy) used during the process in question to make the mass m 

of the product σ(Qe).

•	 The uncertainty in the stoichiometric ratio σ(C).

Beyond the four sources of data uncertainty introduced in equa-

tions (2)–(5) and propagated through subsequent calculations, an 

element of model uncertainty is introduced due to the three choices 

of allocation method possible; this is the fifth uncertainty source and 

will be known as ‘allocation uncertainty’. Where economic or energy 

conversions are available, two or three values with associated uncer-

tainty distributions result from equation (6). To take into account the 

uncertainty distributions associated with the results of each allocation, 

we compare two values: (1) the mean of the standard deviations associ-

ated with the EFs from each allocation method, and (2) the standard 

deviation of the means for the EFs from each allocation method. The 

greater of the two values is taken as the standard deviation for EFproduct. 

Equation (6), therefore, requires the input of the uncertainty associ-

ated with the total of the data uncertainties resulting from equation (1)  

σ(EFprocess), and the uncertainties σ(XC) corresponding to each co-prod-

uct for each allocation method considered.

A second element of model uncertainty is introduced during the 

averaging of possible processes attributed to each facility; this is the 

sixth uncertainty source and will be known as ‘process non-specificity’. 

If the exact process used at a facility is known this step is avoided and 

only five sources of uncertainty exist. The method for uncertainty 

propagation in this step is the same as with allocation uncertainty, 

where the greater of the mean of the standard deviations, and the 

standard deviation of the means is used as the standard deviation of 

EFfacility. The only difference is in the calculation of the standard devia-

tion of the means. When more than three types of process are possible 

at a facility, processes with EFs lying beyond three standard deviations 

of the mean were flagged. We proceeded to research these processes 

individually and excluded them from the sample if they had not yet been 

rolled out beyond demonstration plants that did not correspond to 

the facility in question. This is a measure that avoids bias in facility EFs 

from very new low-emission bio-based processes. As a result, the only 

input uncertainty to equations (7) and (8) is the uncertainty associated 

with the EF calculated for each process σ(EFP). The identification of six 

uncertainty sources, four data uncertainties and two model uncertain-

ties allows us to analyze the impact on overall emissions uncertainties 

of different parts of emissions calculations and to identify the greatest 

opportunities for uncertainty reduction.

GHG emission estimation
Production mass data for 81 large-volume chemicals and fertilizers in 

2020 were obtained from the ICIS5 and the IFA3. Capacity data for the 

37,379 petrochemical manufacturing facilities were extracted from the 

ICIS Supply and Demand Database5. To attribute country-level produc-

tion to individual facilities, an equal capacity utilization ratio is assumed 

per country and product; see Supplementary Section 1.2 for a diagram of 

this attribution. Uncertainties for facility capacity and regional produc-

tion are not explicitly stated from the data sources, but the ICIS meth-

odology states that uncertainties can be up to 10% for facility capacity5. 

Previous carbon budget studies and the IPCC guidelines for activity data 

suggest 7% uncertainty48,54 for production data. Combining these with 

the assumption of a uniform utilization rate, we define a 95% CI of 10%  

for overall facility production. This source of uncertainty is not part of 

the EF calculation process but must be considered when considering 

total emissions quantities rather than emissions intensity factors.

Given the production mass at each facility and the EF from above 

of each facility and product, the corresponding GHG emissions can 

be simply calculated according to equation (11), with uncertainties 

propagated according to equation (9).

emissions

facility,product

= m

production

× EF

facility,product

(11)

In the chemical industry, downstream processes often use 

upstream products as inputs. To avoid double counting in considering 

the emissions of the whole petrochemical industry, emissions from the 

production of upstream chemicals that are then used in downstream 

processes are deducted from the total.

Overview and limitations. This study considers six sources of uncer-

tainty in EF estimation: feedstocks, indirect energy use, direct energy 

use, direct processes, allocation and process specificity. Further uncer-

tainties from production estimates are incorporated when calculating 

total GHG emissions estimates. Another source of uncertainty not 

explicitly included is the choice of model boundaries including: a 

system boundary other than cradle-to-gate used for EFs in this study 

could be considered, the temporal resolution of data, the technology 

readiness level of processes considered and the presence of paywalls 

for industrial data that may lead to missing parts of the industry. Dis-

placement (system expansion) is an alternative system boundary but 

might not be a suitable option for well-established industries and 

products that are unlikely to replace chemical production elsewhere. 

This practice is also observed in commercial databases19 and existing 

literature10. In the next stage of this analysis, adopting the system 

expansion method could be considered.

http://www.nature.com/natchemeng


Nature Chemical Engineering | Volume 1 | April 2024 | 311–322 321

Analysis https://doi.org/10.1038/s44286-024-00047-z

This study is limited by the scope of analyzing 81 chemicals, which 

does not cover all petrochemical products. The analysis focuses on 

the largest volume of petrochemicals and any chemicals excluded are 

likely to be associated with higher levels of uncertainty than reported in 

this paper due to the variability of production at small scale. A further 

limitation is the omission of uncertainties from manufacturing pro-

cesses further downstream than those considered, the use phase and 

end-of-life emissions. Future studies could address these limitations 

and provide a full life-cycle understanding of the impact of uncertain-

ties on petrochemical emissions. Nonetheless, the major conclusions 

about the largest sources of emissions and prioritization should not 

be significantly affected by this. First, missing smaller products should 

have a small overall effect on absolute uncertainty. Second, issues that 

affect the whole system, such as the system boundary, will tend to have 

a similar effect on all results and a smaller effect on comparisons.

Reporting summary
Further information on research design is available in the Nature 

Portfolio Reporting Summary linked to this article.

Data availability
All data are publicly available. However, some cases require a user 

license from IHS Markit to access the underlying process recipes. To 

gain access, IHS Markit (now belonging to S&P Global) can be contacted 

via the following website: https://www.spglobal.com/commodity-

insights/en/ci/products/chemical-technology-pep-index.html. The 

data shown in the figures are available at https://doi.org/10.6084/

m9.figshare.23618862.v3 (ref. 55) and full versions of calculated 

emissions intensity factors for each process and per country are 

available at https://doi.org/10.5281/zenodo.10532626 (ref. 56). An 

interactive beta version dashboard detailing the full global emissions 

and uncertainties from this study can be accessed at https://9e4z.short.

gy/c-thru-petrochemical-emissions.

Code availability
The code used for the analysis was generated using Python and is avail-

able at https://github.com/Resource-Efficiency-Collective/chemical-

uncertainties (ref. 57).
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Extended Data Table 1 | Emissions sources ranked by average contribution to EF uncertainty across all petrochemical 
production processes

Emissions source Contribution to EF Data uncertainty Contribution to EF uncertainty

Feedstock 51% 15% 56%

Indirect energy use 35% 16% 40%

Direct energy use 2.9% 9.7% 2.0%

Direct process 11% 2.0% 1.5%

Contribution to EF and data uncertainty are also an average across all processes used in this study.

http://www.nature.com/natchemeng
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Extended Data Table 2 | Input parameters for all emissions sources and associated uncertainties

Input parameters Data Type Source Uncertainty

EFf, EFe (FS, IE, DE) Emission factors (kg CO2e/kg) ecoinvent & IPCC18,45 10%

Qf, Qe (FS, IE, DE) Quantity of input (kg/kg product) IHS49 5%

m, minput (FS, IE, DE, DP) Masses of output product and input gas for DP (kg) IHS49 5%

MGHG, Mproduct (DP) Molecular masses (kg/mol) Lide et al.55 0%

C (DP) Process reaction equations (kg GHG/kg) Levi and Cullen36 1%

Xi - energy (Allocation) Energy intensities (kJ/kg) Levi and Cullen36 1%

Xi - economic (Allocation) Cost values($/kg) IHS49 10%

The sources in which each parameter are involved are in brackets in the left column: FS – Feedstock, IE – Indirect energy use, DE – Direct energy use, DP – Direct process.
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Blinding Describe whether the investigators were blinded to group allocation during data collection and/or analysis. If blinding was not possible, 

describe why OR explain why blinding was not relevant to your study.

Behavioural & social sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description Briefly describe the study type including whether data are quantitative, qualitative, or mixed-methods (e.g. qualitative cross-sectional, 

quantitative experimental, mixed-methods case study). 

Research sample State the research sample (e.g. Harvard university undergraduates, villagers in rural India) and provide relevant demographic 
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Research sample information (e.g. age, sex) and indicate whether the sample is representative. Provide a rationale for the study sample chosen. For 

studies involving existing datasets, please describe the dataset and source.

Sampling strategy Describe the sampling procedure (e.g. random, snowball, stratified, convenience). Describe the statistical methods that were used to 

predetermine sample size OR if no sample-size calculation was performed, describe how sample sizes were chosen and provide a 

rationale for why these sample sizes are sufficient. For qualitative data, please indicate whether data saturation was considered, and 

what criteria were used to decide that no further sampling was needed.

Data collection Provide details about the data collection procedure, including the instruments or devices used to record the data (e.g. pen and paper, 

computer, eye tracker, video or audio equipment) whether anyone was present besides the participant(s) and the researcher, and 

whether the researcher was blind to experimental condition and/or the study hypothesis during data collection.

Timing Indicate the start and stop dates of data collection. If there is a gap between collection periods, state the dates for each sample 

cohort.

Data exclusions If no data were excluded from the analyses, state so OR if data were excluded, provide the exact number of exclusions and the 

rationale behind them, indicating whether exclusion criteria were pre-established.

Non-participation State how many participants dropped out/declined participation and the reason(s) given OR provide response rate OR state that no 

participants dropped out/declined participation.

Randomization If participants were not allocated into experimental groups, state so OR describe how participants were allocated to groups, and if 

allocation was not random, describe how covariates were controlled.

Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description Briefly describe the study. For quantitative data include treatment factors and interactions, design structure (e.g. factorial, nested, 

hierarchical), nature and number of experimental units and replicates.

Research sample Describe the research sample (e.g. a group of tagged Passer domesticus, all Stenocereus thurberi within Organ Pipe Cactus National 

Monument), and provide a rationale for the sample choice. When relevant, describe the organism taxa, source, sex, age range and 

any manipulations. State what population the sample is meant to represent when applicable. For studies involving existing datasets, 

describe the data and its source.

Sampling strategy Note the sampling procedure. Describe the statistical methods that were used to predetermine sample size OR if no sample-size 

calculation was performed, describe how sample sizes were chosen and provide a rationale for why these sample sizes are sufficient.

Data collection Describe the data collection procedure, including who recorded the data and how.

Timing and spatial scale Indicate the start and stop dates of data collection, noting the frequency and periodicity of sampling and providing a rationale for 

these choices. If there is a gap between collection periods, state the dates for each sample cohort. Specify the spatial scale from which 

the data are taken

Data exclusions If no data were excluded from the analyses, state so OR if data were excluded, describe the exclusions and the rationale behind them, 

indicating whether exclusion criteria were pre-established.

Reproducibility Describe the measures taken to verify the reproducibility of experimental findings. For each experiment, note whether any attempts to 

repeat the experiment failed OR state that all attempts to repeat the experiment were successful.

Randomization Describe how samples/organisms/participants were allocated into groups. If allocation was not random, describe how covariates were 

controlled. If this is not relevant to your study, explain why.

Blinding Describe the extent of blinding used during data acquisition and analysis. If blinding was not possible, describe why OR explain why 

blinding was not relevant to your study.

Did the study involve field work? Yes No

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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Materials & experimental systems

n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Novel plant genotypes Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches, 

gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the 

number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe 

the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor 

was applied.

Seed stocks Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If 

plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Authentication Describe any authentication procedures for each seed stock used or novel genotype generated. Describe any experiments used to 

assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism, 

off-target gene editing) were examined.

Plants
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