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Abstract
Transition probabilities for stochastic systems can be expressed in terms of a
functional integral over paths taken by the system. Approximately evaluat-
ing this integral by the saddle point method in the weak-noise limit leads to a
remarkable mapping between dominant stochastic paths through the potentialV
and conservative, Hamiltonian mechanics with an effective potential −|∇V|2.
The conserved ‘energy’ in this effective system has dimensions of power. We
show that this power, H, can be identified with the Laplace parameter of the
time-transformed dynamics. As H→ 0, corresponding to the long-time limit,
the equilibrium Boltzmann density is recovered. However, keeping H finite
leads to insights into the non-equilibrium behaviour of the system. Moreover,
it facilitates the explicit summation over families of trajectories, which is far
harder in the time domain, and turns out to be essential for making contact with
the long-time limit in some cases. We illustrate the validity of these results
using simple examples that can be explicitly solved by other means.

Keywords: stochastic processes, non-equilibrium dynamics, path integrals

1. Introduction

Functional- or path-integral techniques were first developed byWiener in the 1920s as a means
to study Brownian motion. Since Feynman’s seminal work in the 1950s however [1], they have
been more widely known for their use in quantum mechanics and quantum field theory. They
have also been used to great effect in classical statistical physics and field theory; see for
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example [2, 3]. Their application to the modern study of classical stochastic processes can
be traced back to the work of Onsager and Machlup [4], Stratonovich [5], and Graham [6].
Their asymptotic evaluation in the weak noise limit provides a powerful method for the study
of rare-event processes such as barrier crossing rates. In this approximation, the path integ-
ral is analogous to the ray (or eikonal, or WKB) method for the corresponding Smoluchowski
equation [7]. The generalization to correlated noise was accomplished in the 1990s byMcKane
and co-workers [8, 9], and a general field-theory based formalism was developed by Hochberg
et al [10]. For an introduction to path integral methods for stochastic processes, see Wio [11],
and for path integral methods in general Schulman [12] and Kleinert [13]. A more math-
ematical treatment in the context of large deviations theory was pioneered by Friedlin and
Wentzell [14].

For the quantum-mechanical case, in the semiclassical limit of small ℏ, the dominant sys-
tem trajectories are small fluctuations about the classical paths. In this limit, even the wholly
quantum-mechanical phenomenon of barrier penetration can be understood through classical
trajectories in the inverted potential V→−V, known as instantons [15]. An analogous cor-
respondence also exists for stochastic processes, where most-probable paths in a potential V
correspond to Hamiltonian trajectories in an effective potential −|∇V|2 [16, 17] and much of
the formalism can be carried over [18]. Action-minimization methods to find the most prob-
able path through higher-dimensional potentials have been developed [19–24]. The majority of
previous work has focused on determining the infinite-time paths, and hence average transition
rates. However, the full temporal information need not necessarily be discarded, and indeed
is required for the calculation of quantities such as first-passage densities, and for situations
where local equilibrium cannot be assumed.

In this paper, after a brief review of the formalism, we re-examine the stochastic–
deterministic correspondence, and identify the conserved quantity in the effective mechanics
as the Laplace parameter in the time-transformed diffusive dynamics. We illustrate the utility
of the approach with the simple examples of a particle confined to an interval in one dimension,
and the harmonic oscillator.

2. Formalism

The starting point is an overdamped Markovian stochastic process driven by Gaussian white
noise, defined by the Langevin equation (see e.g. [25])

γẋ(t) =−V ′ (x)+ ξ (t) ; ⟨ξ (t)ξ (t ′)⟩= 2Dδ (t− t ′) (1)

or

γdXt =−V ′ (Xt)dt+
√
2DdW, (2)

with dW the increments of the standard Wiener process. V(x) is the potential, D is the noise
strength, and γ is a dissipation parameter. Here γ represents the friction rather than the mobil-
ity, so it multiplies the ẋ term rather than the force term. The fluctuation-dissipation theorem
gives D= γkBT. The first equation above is not valid in the limit of zero correlation time, but
it suggests how to define an action based on the noise probability density functional P[ξ]:

P [ξ]∼ exp

(
− 1
4D

ˆ t

0
ξ (t ′)

2 dt ′
)
. (3)

2
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This in turn leads to the following expression for the weight P[x] attached to a stochastic path
x(t):

P [x]∼ exp

(
− 1
4D

ˆ t

0
(γẋ+V ′)

2 dt ′
)
≡ exp

(
−S [x]

4D

)
, (4)

defining the stochastic action S. This is only valid for delta-correlated white noise. Gaussian
coloured noise, with a finite correlation time, has two time integrals in the exponent of
equation (3), and hence a non-local stochastic action [8, 10]. In this work we keep D con-
stant, but a coordinate-dependent D could be introduced by changing variables to a system
with constant noise strength and a modified potential [26].

The probability density function ρ(x, t) satisfies the Fokker–Planck–Smoluchowski
equation

∂ρ

∂t
=

∂

∂x

(
ρV ′

γ
+D

∂ρ

∂x

)
; ρ(x,0) = δ (x− x0) , (5)

and ρ(x, t) corresponds to the conditional transition probability density P(x, t|x0,0). When the
initial density is a delta function, this is the Green’s function for the Smoluchowski equation.
Many approaches to solving this equation have been developed; see [26] for a thorough treat-
ment. The approach we follow here has most in common with the WKBmethod (appendix B),
as it exploits the smallness of the noise strength D. The density can be written in terms of a
functional integral:

ρ(x, t) = P(x, t|x0,0) =
ˆ

DxJ [x]exp

(
−S [x]

4D

)
, (6)

where J = exp
(

1
2γ
´ t
0 V

′ ′(x(t ′))dt ′
)

is the functional Jacobian arising from the implicit

change of variables ξ → x. This follows from the Stratonovich interpretation of (1), see e.g.
[11, 25]. If we interpreted (1) as an Itô SDE, this Jacobian would equal one. However, the cross
term in the action integral would then be an Itô integral:

ˆ t

0
2γV ′ẋdt ′ = 2γ

ˆ x

x0

V ′ dx ′ = 2γ (V(x)−V(x0))+ 2γD
ˆ t

0
V ′ ′ (x(t ′)) dt ′, (7)

resulting in an additional term exactly equivalent to the non-unit Jacobian, as given above.
A detailed discussion of this in the context of constructing a path-integral calculus is given
in [27]. The integral is taken over paths x(t ′) satisfying x(0) = x0,x(t) = x, and an infinite
normalization constant (arising from the ‘∼’ in (3) above) has been absorbed into the measure.
As D→ 0, the integral is dominated by paths lying close to the smooth minimizer of S , which
we call x∗(t). This satisfies the Euler–Lagrange equation for S:

2γ2ẍ∗ = 2V ′V ′ ′, (8)

3
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that is, the conservative Hamiltonian dynamics of a particle of mass 2γ2 moving in the effective
potential

F=−V ′2. (9)

This remarkable correspondence, whereby the most probable trajectories of an overdamped
stochastic process can be mapped onto an effective energy-conserving Hamiltonian system,
was noted in [18] and first discussed in detail in [17].

This dynamics has a conserved quantity

H= γẋ2∗ −V ′ (x∗)
2
/γ −→ ẋ2∗ −V ′2, (10)

(γ−1×) the energy of the effective system, which has dimensions of power. We set γ= 1 and
call H the path power. If we had used the Itô interpretation with J = 1, the effective potential
would be F=−V ′2 + 2DV ′ ′. Both choices have been employed in the literature cited above,
and whilst they are formally equivalent (as they must be for a constant-strength additive noise
process), the dominant paths as D→ 0 that we discuss below would be slightly different in
cases where V ′ ′ ̸= 0. Using F=−V ′2 facilitates a more straightforward interpretation of the
conserved quantity H, which we will discuss in the next section. Also, it keeps the ‘classical’
action independent of the noise strength, and so separates the orders in D in analogy with the
quantum-mechanical version.

AsD→ 0, we can approximate the expression for ρ by restricting the integral in (6) to paths
‘near’ the minimizer x∗. More precisely, quadratic fluctuations around x∗ may be integrated
over by writing a general path x(t) as x(t) = x∗(t)+ y(t) and expanding the action to second
order in y(t). This results in a Gaussian functional integral that can be performed explicitly,
and yields the following expression for ρ:

ρ(x, t) =
(
4πDdet L̂

)−1/2
J [x∗]exp

(
−S [x∗]

4D

)
, (11)

valid as D→ 0. The operator L̂ is the second variation of the action, and its determinant (the
‘fluctuation determinant’) can be evaluated by various techniques; see for example [12, 28]
and appendix A. If more than one solution for x∗ exists, ρ will contain a term similar to the
above for each of them.

According to equation (10), when ẋ∗ =−V ′, H= 0. This is the deterministic path, i.e. the
solution to the noiseless equation of motion. It corresponds to infinite-time relaxation towards
equilibrium, requires no fluctuations, and has action zero. H is also zero for ẋ∗ =+V ′, which
is the most probable hill-climbing path in the long-time limit (see next section). Minimizing
the action conditioned on a finite time results in a finite-H smooth minimizer x∗. In [17], paths
with H ̸= 0 were interpreted as having a constant excess kinetic energy, added or subtrac-
ted along the path. Such smooth paths have measure zero in the space of non-differentiable
stochastic paths over which we are integrating (almost all of which have H ̸= 0), but as D→ 0,
the stochastic paths satisfying the boundary conditions x(0) = x0,x(t) = x concentrate in a tube
around x∗ [5]. Integrating over the quadratic fluctuations around x∗ corresponds to this tube,
and approximates the path integral as D→ 0.

4
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3. H and the Laplace transform

Inserting the minimizer x∗ into the action functional S[x], and using H= ẋ2∗ −V ′(x∗)2 gives
Hamilton’s principal function S(x, t) [17]:

S(x, t) = S [x∗ (t)] =
ˆ t

0
(ẋ∗ +V ′)

2 dt ′ = 2∆V+
ˆ t

0

(
ẋ2∗ +V ′2)dt ′

= 2∆V+
ˆ t

0

(
2ẋ2∗ −H

)
dt ′ = 2∆V−Ht+ 2

ˆ t

0
ẋ∗

dx∗
dt ′

dt ′

= 2∆V−Ht+ 2
ˆ
p

√
H+V ′2 ds. (12)

The term ∆V= V(x)−V(x0) is path-independent and results from the total derivative in the
action. s is the arc length along the path p, satisfying equation (8) — for a simple direct path
in one dimension, this is simply from x0 to x1 along the x-axis [17]; for paths involving turns,
or in higher dimensions, it is more complicated. H is as above, and is defined implicitly via

0=
∂S
∂H

=−t+
ˆ
p

ds√
H+V ′2

, (13)

as can also be seen by integrating the energy equation of the effective classical mechanics
ẋ∗ =±

√
H+V ′(x∗)2. The fluctuation determinant det L̂ is given by (more details are given in

appendix A)

det L̂=

√
H+V ′ (x0)

2
√
H+V ′ (x)2

ˆ
p

ds

(H+V ′2)
3/2

=

√
H+V ′ (x0)

2
√
H+V ′ (x)2 2

∣∣∣∣ ∂2S
∂H2

∣∣∣∣ . (14)

The appearance of the derivatives of S with respect to H is highly suggestive, and leads to our
main result. Writing S as a Legendre transform

S(x, t) = −Ht+W(x,H) ,

W(x,H) = 2∆V+ 2
ˆ
p

√
H+V ′2 ds (15)

definesW (Hamilton’s characteristic function for the effective mechanics). This can be identi-
fiedwith the Hamilton–Jacobi equation of the effective classical mechanics, which was derived
in [17], but when exponentiated resembles the integrand of an inverse Laplace transform from
H to t. The Legendre transform exchanges the dependence on the conjugate variables t and H,
which for the extremal path x∗ are related by equation (13). At fixed t, ∂2S/∂H2 = ∂2W/∂H2,
and we can rewrite the D→ 0 approximation for the density in equation (11) as

ρ(x, t) = Aexp

(
+
Ht
4D

)
exp

(
−W(x,H)

4D

)√
8πD
|W ′ ′|

, (16)

where H satisfies (10) and the prefactor A(x,H) = J /
√√

H+V ′(x0)2
√
H+V ′(x)2. Now

consider

ρ̄

(
x;

h
4D

)
= A(x,h)exp

(
−W(x,h)

4D

)
, (17)

5
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with h ∈ C, as a candidate for the Laplace-transformed density. The time-domain density
would then be given by

ρ(x, t) =
1
2π i

ˆ
Br
exp

(
+
ht
4D

)
A(x,h)exp

(
−W(x,h)

4D

)
dh
4D

. (18)

Taking the Bromwich contour as h= H+ iy;H ∈ R+,y ∈ (−∞,∞) and performing the integ-
ral by steepest descents as D→ 0 gives equation (16). So, we can identify H/4D as the real
part of the Laplace parameter within the steepest descents approximation. This can be also be
recovered from a WKB analysis of the Laplace transform of (5) (see appendix B).

The identification of the (noise-scaled) path power as the Laplace parameter, the variable
conjugate to time, leads to a number of observations. Firstly, by the final value theorem, the
H→ 0 limit corresponds to t→∞. For an uphill path segment, where

√
V ′2 =+V ′, W→

4∆V, and the familiar Kramers form exp(−∆V/D) emerges—the long time average rate for
a process driven by noise of strength D to climb a potential barrier of height ∆V. This relies
on the assumption of quasi-equilibrium being reached at the bottom of the barrier, which we
identify with H→ 0. However, all the finite-time, non-equilibrium information remains when
H is left finite. The awkwardness of the implicit definition of H(t) in (10) is no longer an issue
when working in the Laplace domain. This is particularly helpful when multiple trajectories’
contributions need to be summed, as the following example demonstrates.

4. Example: free diffusion with reflecting boundaries

Consider a particle diffusing on the x-axis, with x= x0 ∈ (a,b) at t= 0, and reflecting bound-
aries at x= a,b with b> a. This situation is analogous to the ‘particle in a box’ problem from
elementary quantum mechanics. The density ρ(x, t) satisfies the diffusion equation with zero-
flux boundary conditions:

∂ρ

∂t
= D

∂2ρ

∂x2
; ρ(x,0) = δ (x− x0) ;

∂ρ

∂x
(a, t) = 0=

∂ρ

∂x
(b, t) , or (19)

sρ̄− δ (x− x0) = D
∂2ρ̄

∂x2
(20)

for the transformed density ρ̄(x;s), with Laplace parameter s identified as H/4D. Since V = 0
here, the effective potential is also 0, the Jacobian J = 1, and everything can be calculated
explicitly. A= H−1/2, and W= 2

√
H|p| where |p| is the total distance travelled, i.e. |x− x0|

for a simple direct path from x0 to x. Such a path gives

ρ̄(x;s) =
e−2

√
H|x−x0|/4D
√
H

=
e−|x−x0|

√
s/D

√
4Ds

= L.T.

(
e−(x−x0)

2/4Dt

√
4πDt

)
(21)

as expected (this can also be obtained directly from the untransformed expressions in the pre-
vious section). So, a simple direct path from x0 to x gives the expected solution for the infin-
ite region a→−∞,b→∞. With reflecting boundaries at x= a,b, however, there are four
Hamiltonian trajectories that reach reach x from x0: a bounce off x= b (which we call ‘type
1’), a bounce off x= a (‘type 2’), and a bounce off both (‘type 3’), plus the simple direct path
(‘type 0’), as shown in figure 1. These have actions, numbered by type, given by

6
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Figure 1. The four ways to reach x from x0 with reflecting boundaries at x= a,b. A
general path involving n complete circuits of the interval [a,b]must leave x0 in a certain
direction, and arrive at x from a certain direction, giving rise to the four types of path.

W0/2
√
H= |x− x0| → x0 − a, b− x0 as x→ a,b

W1/2
√
H= 2b− x0 − x→ 2b− a− x0,b− x0 as x→ a,b

W2/2
√
H= x+ x0 − 2a→ x0 − a,b− 2a+ x0 as x→ a,b

W3/2
√
H= |x0 − x|+ 2b− 2a→ 2b− a− x0,x0 + b− 2a as x→ a,b (22)

where we also give the limiting values of the actions at the boundaries. This leads to

ρ̄= H−1/2 (exp(−W0/4D)+ exp(−W1/4D)+ exp(−W2/4D)+ exp(−W3/4D)) . (23)

For x> 0, types 0 and 2 are increasing functions of x while types 1 and 3 are decreasing. This
simply corresponds to the two independent solutions of the second-order ODE, and introduces
relative sign changes in the x-derivatives. By linearity, ρ̄ as above satisfies the transformed dif-
fusion equation, and is zero-flux at x= a or b because of the way the terms in ∂ρ̄/∂x cancel in
pairs: W1(a) =W2(a);W3(a) =W4(a) and W1(b) =W3(b);W2(b) =W4(b). The initial con-
dition can be checked (without Laplace inversion) using the initial value theorem:

lim
s→∞

sρ̄(x,s) = lim
t→0

ρ(x, t) . (24)

Because W0 <W1,2,3 at fixed H, as s (or H) goes to infinity, only the first term contributes to
the limit, recovering the infinite region solution, and hence the short-time limit is correctly
captured. However, the long-time limit is incorrect: the final value theorem

lim
s→0

sρ̄(x,s) = lim
t→∞

ρ(x, t) (25)

gives

H
4D

ρ̄∼
√
H
D

as H→ 0; ρ(x, t→∞)→ 0, (26)

7
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as in the infinite region case, whereas the reflecting boundaries should give a uniform distri-
bution in this limit: ρ(x, t→∞) = 1/(b− a).

This apparent contradiction can be resolved by including the contributions of more paths.
For each of the types of path above, we can add n whole circuits from x0 to x0. Each of these
will accrue additional action n× 2

√
H× 2(b− a). In the transformed domain, we work with

a fixed H, so all these paths have the same H (in contrast to them all having the same t in the
time domain). This means that the exponentials form a geometric series, and the multi-bounce
paths can be summed over explicitly, resulting in

ρ̄=
exp(−W0/4D)+ exp(−W1/4D)+ exp(−W2/4D)+ exp(−W3/4D)√

H
(
1− exp−

√
H(b− a)/D

) ,

with lim
H→0

H
4D

ρ̄ =
1

b− a
= ρ(x, t→∞) as required. (27)

Whilst the weak noise approximation inherent in the saddle-point evaluation of path integ-
rals is exact in the V = 0 case, the preceding analysis reveals an issue at its core: the tension
between the weak-noise and long-time limits, which do not commute [23]. Indeed, the Laplace
parameter s= H/4D, and care is required with the standard Laplace transform notion of ‘small
s↔ large t’ whenD is small. A path involving multiple circuits of the interval will have a very
large W, and one might be tempted to neglect it. However, it is required for the correct eval-
uation of the long-time limit—no matter how improbable a path may be made by the weak-
ness of the noise, at sufficiently large times it will contribute. A partial explanation lies in the
time-domain action, equation (15): the term−Ht acts to compensate a large-HW value (which
∼ 2

√
H at large H), increasingly so when t becomes large as well. This suggests that, in the

H-domain, the important criteria for inclusion is that the path must satisfy the Euler–Lagrange
equations for the stochastic action, rather than be a small-action path per se.

One way to approach simple diffusion equations with finite boundary conditions is to use
the method of images, and there is a one-to-one correspondence between the bouncing paths
considered here and image terms. The paths which bounce off x= a and b can be identified
as images located just beyond the boundaries, and the series of higher-order paths are the
images of the images. The path integral approach offers considerable scope for generaliza-
tion to nonzero potentials, where the method of images does not obviously apply [29]. The
path integral approach also offers a weak-noise approximation to the Green’s function for the
Smoluchowski equation, which could be applied numerically to more complicated geometries.

5. Example: the harmonic oscillator

In this section, we apply the results above to the harmonic oscillator, with potential V= 1
2αx

2

and infinite boundary conditions ρ(x, t)→ 0 as x→±∞. We take the starting point x0 = 0 for
simplicity. The time-domain solution is the well-known Ornstein-Uhlenbeck (OU) density,

ρOU (x, t) =
√

α

2πD(1− e−2αt)
exp

(
−αx2

2D(1− e−2αt)

)
. (28)

Applying equation (17), the integrals can be performed explicitly, giving

W(x;H) = αx2 +
1
α

(
αx
√
H+α2x2 −H log

(
−αx+

√
H+α2x2√
H

))
, (29)

8
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and hence

ρ̄(x;H) = J exp

(
−W(x,H)

4D

)(
H
(
H+α2x2

))−1/4

ρ(x, t) =
1
2π i

ˆ
Br
J exp

(
+
Ht
4D

)
exp

(
−W(x,H)

4D

)(
H
(
H+α2x2

))−1/4 dH
4D

(30)

for ρ̄ and ρ, where the Laplace inversion is performed along the Bromwich contour. The
exponent is not quadratic in H, so the method of steepest descents will not give the integ-
ral exactly. Moreover, the expression ρ̄ does not solve the transformed problem exactly either
(appendix B), so even if we could perform the inversion integral exactly, we would not expect
to recover the OU solution. Proceeding optimistically with steepest descents, the stationary
point of the exponent is at H∗, defined by equation (10)

t=
∂W
∂H

∣∣∣∣
H=H∗

=

ˆ x

0

dy√
H∗ +α2y2

=
1
2α

log

[
αx+

√
H∗ +α2x2

−αx+
√
H∗ +α2x2

]
, (31)

which can be inverted to give

H∗ = α2x2 cosech2αt ∈ R+. (32)

W(H∗) = αx2 (1+ cothαt)+α2x2 tcosech2αt= αx2 (1+ cothαt)+H∗t, (33)

so

S(x, t) = αx2 (1+ cothαt) = 2αx2/
(
1− e−2αt

)
. (34)

The contour is then the line H= H∗ + iy, y ∈ R, and steepest descents gives

ρ(x, t) =
J exp(−S/4D)

(H∗ (H∗ +α2x2))1/4

√
1

8πD|W ′ ′ (H∗) |
. (35)

The integral forW ′′ (see equation (14)) can also be done explicitly (see appendix A), and after
some simple manipulations and the use of J = exp(αt/2)1, this reduces exactly to the OU
form equation (28). So, an approximate inversion of an approximate solution in the Laplace
domain results in the exact time-domain solution. Of course, it would be too much to hope
that the exactness would extend to more complicated potentials, but this does illustrate the
surprising efficacy of the semiclassical approximation. One possibility is that this surprise
stems from the underlying simplicity of the harmonic oscillator decoupling the fluctuations
from the mechanical force, as observed in section 3.2 of [17].

1 Note that within the steepest descents approximation, since J is independent of the small noise D, it is not involved
in the integral, and can be thought of simply as J (t(H∗)) in the Laplace domain, as can the 1/4 power prefactor term.
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6. Conclusions

In this paper we have revisited the path integral formulation of stochastic processes. A
closer look at the correspondence between the dominant stochastic paths and conservative
Hamiltonian mechanics in an effective potential allows the conserved ‘energy’ H (which has
dimensions of power) to be identified as the Laplace parameter of the diffusive dynamics.
H→ 0, t→∞ is interpreted as the equilibrium limit. H= 0 paths satisfy ẋ=∓V ′, and cor-
respond to either noiseless relaxation to a local potential minimum, or ‘optimal’ (probability-
maximsing) hill-climbing respectively. As might be expected from comparing the Schrödinger
equation with the Smoluchowski equation, the Laplace transform of a diffusive process plays
an analogous role to the Fourier transform in quantum mechanics. The latter is governed by
oscillatory wave-like dynamics, whereas the stochastic case has decaying relaxational modes.
Working in the Laplace domain facilitates summing over trajectories involving multiple cir-
cuits of some interval, because the series of contributing terms to the transition probability
density is geometric. Indeed, including an infinite series of such turning paths is essential
for correctly evaluating the long-time, equilibrium limit. Finally, we discussed a curious error
cancellation in the harmonic oscillator, where the approximate Laplace inversion of an approx-
imate solution in the Laplace domain led to the exact time domain solution.
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Appendix A. Fluctuation determinant

In this appendix, we derive the explicit form of det L̂, and discuss its long-time limit in the
case of the harmonic oscillator. A convenient form for the determinant is given by (see e.g.
[12, 13])

det L̂=

∣∣∣∣det ∂x∗i (t)∂ẋ∗j (0)

∣∣∣∣= ∣∣∣∣ ∂x∗ (t)∂ẋ∗ (0)

∣∣∣∣ in 1D. (A.1)

It is the derivative of the final position with respect to the initial momentum, and as such can be
thought of as a ‘density of paths’. On an extremal path x∗, H= ẋ2∗ −V ′2 is constant. Dropping
the ∗ subscript and labelling x(0) = x0,x(t) = x1, evaluating H at t= 0 gives

∂

∂ẋ0
=

∂H
∂ẋ0

∂

∂H
= 2ẋ0

∂

∂H
= 2
√
H+V ′ (x0)

2 ∂

∂H
; (A.2)

(initial momentum and position are independent). Varying H→ H+ δH, while holding t con-
stant (δt= 0),

10
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t+ δt=
ˆ x1+δx1

x0

dx√
H+ δH+V ′2

=

ˆ x1+δx1

x0

dx√
H+V ′2

(
1− 1

2
δH

H+V ′2 + . . .

)
≈ t+ δx1

1√
H+V ′ (x1)

2
− δH

2

ˆ x1

x0

dx

(H+V ′2)
3/2

, (A.3)

so to keep t constant, we require

δx1
δH

=

√
H+V ′ (x1)

2 · 1
2

ˆ x1

x0

dx

(H+V ′2)
3/2

, (A.4)

and hence

∂x1
∂ẋ0

=

√
H+V ′ (x0)

2
√
H+V ′ (x1)

2
ˆ x1

x0

dx

(H+V ′2)
3/2

. (A.5)

If V has a critical point on the path, then the integral in the above diverges as H→ 0. This is a
manifestation of the well-known zero mode problem encountered when taking the long-time
limit of fluctuation determinants (see e.g [28]). This is cancelled by the Jacobian, at least the
in case of the harmonic oscillator. Taking V= 1

2αx
2 and x0 = 0 for simplicity,

ˆ x1

0

dx

(H+V ′2)
3/2

=
x1

H
√
H+α2x21

→∞ as H→ 0, (A.6)

and equation (32) gives

H= α2x21 cosech
2αt;

√
H+α2x21 = αx1 cothαt. (A.7)

This results in

∂x1
∂ẋ0

=
sinh αt

α
; ρ=

√
α

sinh αt
J exp−(S/4D). (A.8)

Were it not for J , this would → 0 as t→∞, but the initially somewhat worrying-looking
J = exp

(
+ 1

2αt
)
means the correctly-normalised OU density equation (28) is recovered, with

the long-time limit

ρeq (x) =

√
α

2πD
exp

(
−αx2

2D

)
. (A.9)

Appendix B. WKB method

The Laplace-transformed Smoluchowksi equation is

sρ̄(x;s)− δ (x− x0) =
d
dx

(
ρ̄V ′ +D

dρ̄
dx

)
. (B.1)

11
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Inserting the WKB ansätz

ρ̄= exp

(
− 1
D

∞∑
n=0

Dnfn (x)

)
= A(x)exp

(
−W(x)

4D

)
+ h.o.t., (B.2)

and keeping the first two terms only, leads to

As≈ V ′A ′ − AV ′W ′

4D
+AV ′ ′ +DA ′ ′ − AW ′ ′

4
− A ′W ′

2
+
AW ′2

16D
. (B.3)

Identifying s= H/4D, and thus including it in the dominant balance, immediately gives

W ′ = 2V ′ ± 2
√
H+V ′2; W= 2V± 2

ˆ √
H+V ′2 dx (B.4)

exactly as with the path integral, with± corresponding to right and left-moving paths respect-
ively. If we had excluded the Laplace parameter from the dominant balance, we would have
foundW= 4V, which is only correct in the long-time, time-independent equilibrium limit. The
O(1) terms give

0= A ′
(
V ′ − W ′

2

)
+A

(
V ′ ′ − W ′ ′

4

)
;

logA= − 1
4
log
(
H+V ′2)± 1

2

ˆ x

V ′ ′ dx√
H+V ′2

A=
(
H+V ′2)−1/4

exp

(
+
1
2

ˆ t

0
V ′ ′ (x(t))dt

)
, (B.5)

where the last line follows using ẋ=±
√
H+V ′2. (Within the steepest descents approxima-

tion, since J is independent of the small noise D, it is not involved in the integral, and can
be thought of simply as J (t(H∗)) in the Laplace domain). So, the 1/4 power prefactor term
and the Jacobian emerge from a truncated WKB expansion, as expected by analogy with the
quantum-mechanical case. The path integral formula gives the correct normalizing factor, and
prescription for left and right-moving paths, whereas the full WKB solution would have to be
constructed by explicitly matching solutions,and imposing the appropriate jump condition on
ρ̄ ′ at x= x0. However, even for the harmonic potentialV= αx2/2, this is not exact at this order:
the term DA′′ is neglected. By approximately inverting the transform using steepest descents,
the exact time domain (OU) solution is recovered.
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