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Abstract
Rising global demand for palm oil has created environmental pressures related to deforestation,
burning, and peat exploitation, which in turn drives increased greenhouse gas (GHG) emissions.
GHG emissions in oil palm (OP) production are known to vary spatially. However, temporal
changes across contrasting management and soil types, are less well studied. This paper quantifies
spatiotemporal GHG emissions across contrasting regions, management types, and soil types for
the period 1990–2019 to assess the potential for reducing emission. The study focusses on
Indonesia, as the biggest producer of OP, and in particular on the North Sumatra and Riau
provinces, where OP is intensively produced. GHG inventories in 5 year time steps were
constructed to investigate the change in drivers of emissions using spatial data, resampled to a
500 m grid. Total GHG emissions were found to have increased in both regions due to expanding
OP production. However, results show a reduction in emissions flux from 1.98 to
1.15 Ton Ceq. ha−1 yr−1 in North Sumatra and 9.63–2.67 Ton Ceq. ha−1 yr−1 in Riau over the study
period. This reduced flux was linked to the decreased deforestation and burning activities, together
with increased biomass increment from lower carbon stock area conversion to OP. In both
provinces, smallholder plantations emitted fewer emissions than industrial ones, and production
on organic soils resulted in consistently higher emissions than on mineral soils. In North Sumatra,
emissions under all management and soil types were found to decrease. In Riau, however, GHG
emissions on organic soils regardless of management types, remained high. Our findings
emphasise that potential for low-emissions OP production is attainable by reducing emissions per
unit area through an improved understanding of GHG emissions spatiotemporal variability and
their drivers. These contribute to reinforcing ongoing government regulations and guiding the
industry towards low-emission OP productions.

1. Introduction

Oil palm (OP) production contributed 2.3% of
global anthropogenic greenhouse gas (GHG) emis-
sions in 2020, primarily through land-use change
(Van Straaten et al 2015, Rahman et al 2018, Pendrill
et al 2019, Meijaard et al 2020) and drained peat-
land emissions (Page et al 2011, Hooijer et al 2012,
Cooper et al 2020). As the global demand for palm oil

is predicted to increase by 0.5%–3%per year (Murphy
et al 2021), there is growing pressure on Indonesia,
responsible for over 50% of the world’s palm oil pro-
duction, to produce OP in a more sustainable way.

A series of national government regulations,
sustainable palm oil certification initiatives, and
international commitments aimed at preserving
pristine forests, protecting the environment, and
reducing GHG emissions from deforestation, have
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been established (Carlson et al 2018, Oosterveer 2020,
Purnomo et al 2020). These have led to a reduction in
deforestation associated with OP expansion (Austin
et al 2019, Gaveau et al 2022, Parker 2022). However,
their impact on GHG emissions dynamics have not
been explored.

GHG emissions from OP production vary spa-
tially (Carlson et al 2013, Lam et al 2019) from 0.44 to
40.91TonCeq. ha−1 yr−1 across different systems, loc-
ations and soil types (Silalertruksa et al 2017, Alcock
et al 2022), with emissions being higher on drained
peat soils (Hooijer et al 2010, Cooper et al 2020)
and from direct forest conversion (Pendrill et al 2019,
Xu et al 2022). However, previous studies have not
explored how emissions vary across contrastingman-
agement and soil types and have examined onlymajor
changes in the 20 years after C biomass and soil
organic carbon (SOC) equilibria (Silalertruksa et al
2017, Lam et al 2019, Alcock et al 2022, Friedlingstein
et al 2022). As a result, there is a knowledge gap
over changes in GHG emissions from OP production
and the contribution of different drivers to emissions
(e.g. land use change, fire and burning, and peatland
exploitation).

To address this gap, this study explores changing
spatio-temporal patterns of GHG emissions and their
intermediate drivers across contrasting regions, man-
agement regimes, and soils. It aims to provide insights
on the spatiotemporal dynamics of emissions and
their intermediate drivers to strengthen government
policies and guide the OP industry to achieve low-
emission OP production. A robust policy commit-
ment and continued implementation of sustainable
practices are crucial for protecting the environment
and reducing emissions.

2. Methods

A GHG inventory (IPCC 2006, 2019) consisting
of 5 year periods between 1990 and 2019 was
used to quantify the spatiotemporal GHG emissions
and identify intermediate drivers in two contrasting
OP production regions in Indonesia (figure 1). It
examined land use changes to OP production in the
periods 1990–1996, 1996–2000, 2000–2006, 2006–
2011, 2011–2015, 2015–2017, and 2015–2019. These
periods were selected to match the availability of data
as described below. The overall framework for the
analysis is shown in figure 2.

2.1. Site characteristics
The study area was OP plantations in North Sumatra
and Riau province, Indonesia. North Sumatra is situ-
ated between 1◦–4◦ N and 98◦–100◦ E, covering
area of 7.29 Mha and Riau stretches 01◦31–02◦25◦ S
and 100◦–105◦ E, with an area of 8.70 Mha. Both
provinces have the largest OP plantations in the coun-
try, with Riau covering 2.40 Mha and North Sumatra

covering 1.37Mha. In Riau province, 60.2%of theOP
plantations are on organic soils and 39.8% on min-
eral soils (Tubiello et al 2016, Descals et al 2021). In
North Sumatra, the majority of the OP plantations
(0.97 Mha) are located on mineral soils (71.26%),
while 28.73% are located on organic soils. Organic
soils are composed primarily of organic material
originating from recent plant remnants (Kazemian
2018).Mineral soils contain less SOC, from1% to 6%,
while organic soils contain higher SOC, from 12%
to 18% (Troeh and Thompson 2005). Organic soils
with more than 75% SOC are classified as peat soils
(Kazemian 2018). Higher SOC on organic soils can
potentially contribute to emissions as a result of land
drainage and management.

In terms of management, OP plantations are
predominantly owned by industrial-state compan-
ies in North Sumatra (60%), with 40% owned by
smallholders, and in Riau 35% are industrial-private
owned and 65% by smallholders. In this context, an
industrial OP either state-owned or private, refers to
a large OP plantation that has complete infrastruc-
ture such as roads, drainages, labour system, hous-
ing, and mills, with planting, maintenance, harvest-
ing, transportation, and processing managed profes-
sionally. In contrast, smallholder OP plantations tend
to be managed and owned by individual farmers, do
not generally exceed 25 ha, and are managed accord-
ing to the capital available to the farmer. The life cycle
of an OP plantation is between 25 to 30 years. Many
industrial OP plantations in North Sumatra province
were established in the 1980s, withmost of the planta-
tions replanted and now in their second cycle. In Riau
province, the establishment of OP plantations began
on a large scale in the 2000s. They are still in the first
cycle and due to be replanted soon.

2.2. Datasets description
The data used in this study are described in full in
table S1. It consists of land use/cover (LULC) maps
for the period 1990–2015, OP plantation distribu-
tion maps between 1995 and 2017 (Danylo et al
2021), smallholder and industrial OP plantations dis-
tribution maps from 2019 (Descals et al 2021), car-
bon (C) biomass burning emissions between 1997
and 2016 from the Global Fire Emissions Database
(GFED, Werf et al 2017), C and nitrogen in nitrous
oxide (N2O–N) emissions from drained organic
soils (Tubiello et al 2016, Food and Agriculture
Organization of the United Nations 2018), and 2019
national average nitrogen (N) fertilizer and empty
fruit bunch compost applications (Monzon et al
2021). For ease of computation and analysis consist-
ency across scales, data were resampled and aligned
to 500 m grids using area-weighted interpolation for
vector area data and bilinear interpolation for any
gridded data.
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Figure 1. The study area (bottom) and OP plantations (top) in North Sumatra (left) and Riau province (right), separated for
visual clarity. Source: Descals et al (2021).

Figure 2.Workflow, spatiotemporal GHG emissions, and associated drivers.

LULC vector data were obtained from the
Ministry of Environment and Forestry, Indonesia at
1:25 000 scale (Tosiani 2020). The datasets included
23 categories such as forests, plantations, scrub-
land, agriculture, rice fields, etc. To assess the dis-
tribution of OP plantations, two datasets were used.
The first covered the period from 1990 to 2015 and

provided information on the extent and age of pro-
ductive OP in Indonesia, Malaysia, and Thailand
at a 30 m grid resolution (Danylo et al 2021). The
second reflected global OP distribution in 2019 at
a 10 m grid resolution classified as industrial or
smallholder closed-canopy OP plantations (Descals
et al 2021).
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C biomass burning emissions from the OP plant-
ations were derived from monthly C emissions
(g Cm−2) of GFED for 1997–2016 at 0.25◦ grid res-
olution (van der Werf et al 2017). The data were pre-
pared by converting the gridded raster data into vec-
tor polygons and adjusting the unit of measurement.
Emissions from drained organic soils were retrieved
from global datasets for C and N2O–N from 1992 to
2018 at 1 km resolution. C and N2O–N emissions
were estimated using the Tier 1 methodology based
on the presence of histosols as a proxy for organic soils
(IPCC 2006, Food and Agriculture Organization of
the United Nations 2018).

2.3. Spatiotemporal GHG emissions/removals
GHG emissions/removals (Ton Ceq. ha−1 yr−1),
∆GHG, represent the C change in biomass stock,
SOC, biomass burning, and management (IPCC
2006, 2019) as shown on the equation (1). Dead
organic matter was not included due to limited
information and its insignificant contribution
(Pardon et al 2016).∆GHG is defined as follows:

∆GHG=∆Cluc +∆Csoc −∆Cb −∆Cm . . . (1)

where ∆Cluc is the change in biomass C stock in
land use change converted to plantation and remain-
ing plantation, ∆Csoc is the change in SOC due to
land use change and emissions in drained organic
soils, ∆Cb is C emissions from biomass burning
activity and ∆Cm is the N2O–N emissions from fer-
tilizer application and organic amendment, all in
Ton Ceq. ha−1 yr−1.

The temporal analysis was not in precise 5 year
sequences 1990–2019 due to missing datasets for
LULC in some years. As a result the analysis periods
were 1990–1996, 1996–2000, 2000–2006, 2006–2011,
2011–2015, and 2015–2019. The 2019 OP distribu-
tionmap byDescals et al (2021)was the primary data-
set for distinguishing smallholder and industrial OP
plantations and the maps of Danylo et al (2021) was
then used to filter GHG for each ∼5 year period. For
instance, emissions from 1990 to 1996 were determ-
ined based on OPmaps from 1984 to 1996, and emis-
sions from 1996 to 2000 relied on maps from 1984 to
2000 and so on.

3. Results

3.1. Spatiotemporal dynamics of GHG emissions in
OP productions
The spatial distributions of GHG emissions from OP
plantations were calculated over 5 year time steps
(figure 3). These aligned with the increases in OP
areas in both provinces and identified specific hotspot
areas with high emissions, as well as locales of carbon
removal.

Overall, Riau province exhibited higher emis-
sions per unit area compared to North Sumatra.

In Riau province, most of the area emitted 3.76–
13.73 Ton Ceq. ha−1 yr−1 (0.21 Mha) in the early
period (1990–1996), which declined to 1.19–
5.71 Ton Ceq. ha−1 yr−1 (1.19 Mha) in the late period
(2015–2019). The regions with high GHG emissions
expanded in area from 0.10Mha to 0.60Mha. A fewC
removal areas only covered 0.004 Mha in 1990–1996
but increased to 0.22 Mha in 2015–2019.

In North Sumatra, most areas exhibited GHG
emissions from 1.15 to 3.5 Ton Ceq. ha−1 yr−1

(0.17 Mha) in 1990–1996. While during the later
period (2015–2019), it ranged from−0.09 (removals)
to 1.67 (emissions) Ton Ceq. ha−1 yr−1. C removal
areas were detected across the region, spread-
ing increasingly from 0.05 Mha in 1990–1996 to
0.47 Mha in 2015–2019. A few high emissions areas
(>5.20 Ton Ceq. ha−1 yr−1) were identified in the
south–east part along the border with Riau province.

The GHG emissions flux in OP plantations
under different managements and soil types in both
provinces are shown in figure 4. They indicate a
declining trend. Overall, the median value decreased
from 1.98 to 21.15 Ton Ceq. ha−1 yr−1 in North
Sumatra and from 9.63 to 2.68 Ton Ceq. ha−1 yr−1

in Riau. In both provinces, smallholder plantations
produced less GHG emissions per unit area than
industrial plantations, while emissions on organic
soils were always higher than on mineral soils. In
both provinces, GHGemissions fromdrained organic
soils under industrial management were higher than
under smallholder plantations (t-value for North
Sumatra= 33.1–117.6, t-value for Riau= 14.5–60.4,
p value < 0.001 in both cases), with this potentially
resulting onmineral soils under smallholdermanage-
ment becoming GHG sinks after 2000.

In North Sumatra, GHG emission flux from
industrial OP plantations on organic soils are higher
in magnitude between 1990 and 2000 before decreas-
ing after 2000. In Riau, this declining trend was detec-
ted only on mineral soils, while emissions on organic
soils both in smallholder and industrial remained
high.

Although GHG emissions per unit area reduced
in both regions, total emissions still increased due
to expansions in OP production area, from 0.91 to
1.74 M Ton Ceq. ha−1 yr−1 in North Sumatra and
from 4.04 to 8.84 M Ton Ceq. ha−1 yr−1 in Riau
(figure 5). However, total Ceq emissions in 2011–2015
were lower than 2000–2006 and 2006–2011 despite
OP cultivation being greater in these periods, contrib-
uting to reduced emissions flux.

3.2. Drivers of spatiotemporal dynamics in GHG
emissions in OP productions
The contributions of intermediate drivers of GHG
emissions in OP productions were analysed and were
shown to decrease GHG emission flux, as illustrated
by the changes in magnitude of C sources and sinks

4
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Figure 3. Spatiotemporal distributions of GHG emissions/removals (Ton C eq.ha−1 yr−1) within OP plantations from 1990 to
2019 in (a) North Sumatra and (b) Riau province.

in figure 6. In North Sumatra, soil N2O–N emis-
sions from fertilizer applications were consistently the
highest contributor of GHG emissions, while changes
in burning emissions and SOC driven by land use
change and drained organic soils declined overall. In
Riau province, the most important emissions sources
were burning and SOC changes in the early period
1990–2000. The contribution of burning emissions
to GHG were higher before 2011 and then reduced,
whilst the contribution of N2O–N emissions and
changes in SOC were consistently high over the same
period.

In both provinces, the contribution of biomass C
to net GHG shifted from a loss between 1990 and

1996 to a gain between 1996 and 2019. The decline
in burning emissions can be attributed to the shift
away from burning for OP land expansion, with some
emissions remaining due to natural fire, particularly
in Riau province.

The reduction in GHG emissions from biomass
C storage and SOC change was strongly affected by
shifts in land use towards OP plantations. Land use
conversion analysis (figures 7 and 8) revealed con-
trasting patterns in land use conversion to OP plant-
ation across both provinces, according to soil types.
In North Sumatra, 60%–80% of OP plantations were
established in old plantations (figure 7). From 1990–
2000–2011–2019, deforestation associated with OP

5
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Figure 4. GHG emissions/ removals (Ton C eq. ha−1 yr−1) of OP plantations in contrasting soil and management types between
1990 and 2019 (left to right) in (a) North Sumatra and (b) Riau.

decreased from 16.62% to 0.54% on organic soils and
13.53%–0.30% on mineral soils, with an associated
increase in conversion from cropland (6%–30% on
average).

In Riau province, 54.44% OP plantations on
organic soils and 36.67% on mineral soils were
directly converted from forest during 1990–2000,
decreasing to 0.40% and 1.15%, respectively in 2011–
2019.During 2000–2011, themajorityOPplantations
on both organic (89.18%) andmineral (91.19%) soils
were established in old plantations. Subsequently,
OP conversion from cropland on organic and
mineral soils increased on average from 7% to
20%.

4. Discussion

4.1. Temporal changes in GHG emissions of OP
production
Previous studies onGHGemissions inOPplantations
have primarily focused on either short-termmeasure-
ments (Hooijer et al 2010, Dariah et al 2014, Rusch
et al 2020, Agusta et al 2022) or GHG inventories
conducted in 20 year time steps (Silalertruksa et al
2017, Lam et al 2019, Alcock et al 2022), overlooking
finer grained temporal dynamics in GHG emissions
and their drivers. This study seeks to address this gap
and links the temporal changes in GHG emissions to
reduced forest conversion, aligning with recent work

6
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Figure 5. Total GHG emissions and OP expansion in North Sumatra and Riau between 1990 and 2019.

that has identified declining deforestation as a poten-
tial driver of reduced GHG emissions (Ramdani et al
2013, Austin et al 2019, Gaveau et al 2019, Meijaard
et al 2020, Parker 2022).

OP plantations were initially established around
in the early 1980s together with timber plantations
to enhance the productivity of logged and degraded
land forests which had succeeded to secondary forest
and scrubland (Barani et al 2021). National-level
OP plantations expanded gradually from 1990 to
2000 and then experienced rapid growth (Rehman
2015, Austin et al 2019, Gaveau et al 2019). On a
national level, OP plantations covered 0.29 Mha in
1980, of which 67.7% were state-owned plantations,
and increased from 2000 to 2020 (from 4.10 Mha
to 14.70 Mha), mainly privately owned plantations
(Direktorat Jenderal Perkebunan Indonesia 2018,
Barani et al 2021).

In relation to this expansion, this study showed
that the majority of direct conversion from forests
occurred before 2000 and then decreased afterwards.
This finding is reinforced by other work that has
shown that recent OP plantation expansion has
primarily originated from previous old plantations
(rubber, cocoa, tea, etc) and from scrubland (Rehman
et al 2015, Santosa et al 2020, Parker 2022) rather than
from primary and secondary forests. This decline in
deforestation can be attributed to a series of national
government regulations, the introduction of sustain-
able OP certifications, and international commit-
ments aimed at preserving pristine forests, protect-
ing the environment, and reducing GHG emissions
from deforestation (Tata et al 2014, Oosterveer 2020,
Purnomo et al 2020).

Sustainable OP certifications (ISPO since 2015
and RSPO since 2017) also promote management

practices that avoid burning (Noojipady et al 2017),
decreasing burning activities in OP plantations.
However, it is noteworthy that only 35.29% of OP
plantations were certified under ISPO in 2020, and
59% under RSPO in 2016 (RSPO 2016).

The enforcement of certifications could signific-
antly enhance the sustainability ofOPproduction and
contribute to reducing GHG emissions from burn-
ing and deforestation (Carlson et al 2018, Vadrevu
et al 2019). Despite efforts to promote zero burning
inOP plantations, the occurrence of El Niño, together
with the presence of natural fire hotspots, has led
to fires, particularly in peat areas (Noojipady et al
2017, Nurdiati et al 2022, Hayasaka 2023). Significant
fire incidents were observed in 1997, 2006, 2015, and
2019 (Wang et al 2004, Noojipady et al 2017), which
supports our findings of high burning emissions in
these periods. Policy and practice should acknow-
ledge these drivers by ensuring adequate water levels
are maintained in OP plantations to avoid irrevers-
ible drying conditions, which are known to exacer-
bate such fires (Imanudin et al 2018, Sahari et al 2020,
Barani et al 2021).

This paper quantifies the spatiotemporal dynam-
ics of GHG emissions in OP plantations and attrib-
utes them to intermediate drivers such as land use
change and burning. Decreased burning and OP con-
version related deforestation have resulted in reduced
GHG emissions flux over the period of 1990–2019.
These results are consistent with other work that has
reported a decline in deforestation associated with
OP, as well as increases in sustainable palmoil certific-
ations in Indonesia andMalaysia over the last 10 years
(Carlson et al 2018). The temporal dynamics are also
consistent with trends in annual CO2 emissions asso-
ciated with land use change in Indonesia, which have

7



Environ. Res. Lett. 19 (2024) 054045 L Safitri et al

Figure 6. The change in magnitude of C sources and sinks (Ton C eq.ha−1 yr−1) in OP plantations from 1990 to 2019 in
(a) North Sumatra and (b) Riau Province.

decreased between 1990 and 2019, with a spike occur-
ring in 1996 (Friedlingstein et al 2022).

Although GHG emissions flux reduced over the
period, total emissions were found to increase in
both provinces due to the extensive expansion of OP
plantations over the period (Meijaard et al 2020).
However, reduced emissions per unit area has poten-
tial to translate to lower overall emissions and offers
a promising pathway towards reducing emissions
in the worldwide palm oil supply. Low emission
OP production, with low emissions per unit area,
is achievable by strengthening and enforcing reg-
ulations and sustainable OP certifications, with a
focus on preventing deforestation and burning in OP

cultivations. Ongoing monitoring is imperative, par-
ticularly for smallholder OP plantations where the
risk of encroachment into forest and peatland areas
is greater (Xu et al 2022, Zhao et al 2022).

Monitoring trends in GHG emission flux of OP
is crucial to support the ambition of low emission
OP productions and this study has shown that this
can be achieved by undertaking spatiotemporal GHG
inventories using global datasets. However, uncer-
tainties are present, and analyses of these are needed
to provide a comprehensive understanding of the reli-
ability and limitations, which will facilitate a more
informeddecision-making process, ultimately aiming
to lower emissions from OP productions.
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Figure 7. Land use conversion to OP plantation from 1990 to 2019 in North Sumatra.

4.2. Geographically-based agronomic
improvement for reduced emissions in OP
productions
This study showed that OP production related GHG
emissions varied significantly. Areas of high emis-
sions and C removal were detected, consistent with
findings from other research (Lam et al 2019, Alcock
et al 2022). Land use change and burning emissions
estimates have been found to contribute significantly
to discrepancies in emissions (van derWerf et al 2017,
Carlson et al 2018).

This case study in North Sumatra and Riau show-
cased different production scenarios giving rise to low
and high emissions. Riau province was found to have
higher emissions compared to North Sumatra, sim-
ilar to Lam et al (2019), who placed OP in Riau as
the 3rd highest region in emissions nationally, after
North and South Kalimantan.

Industrial plantations on drained organic soils
had higher GHG emissions compared to smallholder
plantations on mineral soils, in both provinces. This
correlates with other studies (Cooper et al 2020,
Alcock et al 2022). The reduction of forest conver-
sion and burning emissions significantly contributed
to the reduced GHG emissions flux on mineral and
organic soils inNorth Sumatra.However, the ongoing

expansion of OP plantations in Riau on organic soils
elevated emissions from drained organic soils, while
emission flux from mineral soils decreased.

Spatial analysis revealed hotspots of high GHG
emissions, as well as sink regions which have signi-
ficant potential for carbon removals. This highlights
the need for approaches that account for spatiotem-
poral variability when mitigating GHG in OP pro-
duction. Strategies aimed at achieving more sustain-
able, low-emissions OP production, such as avoid-
ing forest conversion and peat areas (Afriyanti et al
2019, Lam et al 2019, Purnomo et al 2020, Meijide
et al 2021), as well as expanding to lower carbon stock
areas (Quezada et al 2019,Monzon et al 2021) are cru-
cial to ensure the success of current policies, partic-
ularly for high emissions areas such as Riau, North
Kalimantan, and South Kalimantan.

In low emissions areas such as North Sumatra,
further agronomic improvement can be implemen-
ted to expand the low emissions area as well as
to create areas for C removal. Agronomic improve-
ments for emissions reduction include enhancing
fertilizer application efficiency, using cover crops,
developing disease-resistant cultivars (Khatun et al
2017), integrating inorganic and organic fertilizers
(Foong et al 2019), optimizing timing and dosage
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Figure 8. Land use conversion to OP plantation from 1990 to 2019 in Riau.

of fertilization, employing enriched mulch (Rahman
et al 2019), enhancing SOC through best manage-
ment practices (Rahman et al 2021), and adopting
regenerative agriculture with intercropping and cover
crops (Khasanah et al 2020). Land protection scen-
arios and geographical agronomic improvements in
OPproductions have the capacity to result in substan-
tial reductions in global anthropogenic emissions.
Further research to examine agronomic improve-
ments for reducing emissions in OP productions can
be explored through crop modelling.

5. Conclusions

Our study examined the spatiotemporal dynamics of
GHG emissions using 5 year time steps during 1990–
2019, revealing potential for low-emissions in OP
productions in the two most productive OP regions
in Indonesia. Results show a reduced emissions flux
in both regions could be attributed to decreases in
deforestation and burning activities, together with
increases in conversion to OP from lower carbon
stock areas.

The study confirms that GHG emissions in OP
production exhibit variation across regions, manage-
ment, and soil types. OP production in Riau province
consistently emitted higher GHG compared to North

Sumatra. Extensive forest conversion and burning
led to high emissions in the beginning of OP estab-
lishment in Riau. In both provinces, smallholder
plantations emitted fewer emissions. The ongoing
large-scale OP cultivation on organic soils in this
region continues to contribute to high GHG emis-
sions. Moreover, the study identifies specific hot-
spot areas characterised by the highest emissions, as
well as regions with potential for effectively removing
carbon.

Our findings emphasise that potential for low-
emissions OP production is attainable by reducing
emissions per unit area through an improved under-
standing of the spatiotemporal variability of GHG
emissions and their drivers. However, any strategies
for sustainable OP production must also involve
ongoing regulation enforcement and certification,
alongside continued the promotion of best man-
agement practices. The exploration of geographic-
ally adapted agronomic improvement scenarios will
also support mitigation strategies. Further research is
required to investigate spatially-targeted agronomic
improvements that build on these findings to deliver
low-emissions OP production. Crop modelling is a
promising tool in this regard, which would also facil-
itate analysis of uncertainties across both models and
data.
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