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Lightweight Multiperson Pose Estimation with

Staggered Alignment Self-distillation
Zhenkun Fan, Zhuoxu Huang, Zhixiang Chen, Tao Xu, Jungong Han, Senior Member, IEEE, and

Josef Kittler Fellow, IEEE

Abstract—Accurate 2D human pose estimation from images is
vital for understanding human actions. However, deploying the
latest models, e.g., regression-based models, on resource-limited
devices remains challenging due to their high computational
requirements. In this paper, we address the resolution dilemma
in regression-based multiperson pose estimation, where low-
resolution inputs cause performance degradation, while high-
resolution inputs drastically increase computational costs. To
achieve a lightweight regression approach, it becomes crucial
to enhance the model’s capabilities in low-resolution scenarios.
We propose the staggered alignment self-distillation (SASD)
method and a corresponding network architecture. Our approach
involves training two twin networks with shared weights: a high-
resolution network and a low-resolution network. The high-
resolution network serves as a teacher, guiding the learning pro-
cess of the low-resolution network through feature map staggered
alignment. The knowledge from the high-resolution network
enhances the performance of the low-resolution network during
low-resolution inference. Additionally, we employ a normalized
skeleton loss to capture the loss of bone-related structure during
training. Through extensive experiments on the MS-COCO and
CrowdPose datasets, we demonstrate the superiority of our pro-
posed method over state-of-the-art, lightweight multiperson pose
estimation techniques, achieving much better performance with
lower computational costs. Furthermore, our method achieves
comparable performance to recent advanced regression-based
pose estimation methods but with only 1/4 of the computational
cost.

Index Terms—2D pose estimation, lightweight neural networks

I. INTRODUCTION

POSE estimation, a fundamental task in computer vision,

accurately predicts the coordinates of the key points

for individuals in an image. This critical task has gained

significant prominence in recent years due to its wide range of
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Fig. 1. We adopt a multiscale regression network structure for training
and testing, where each scale in the PAN structure is treated as a level. (a)
Model training and testing are performed with different resolutions and the
output proportions from different levels after NMS. (b) Feature map-level
contribution analysis is conducted. Pij indicates that the model uses both the

ith level and jth level for prediction.

applications, such as action recognition and motion analysis.

As a result, pose estimation has become an indispensable

component in various computer vision systems and contributes

to advancements in diverse fields.

Multiperson pose estimation can be divided into two types:

top-down methods and single-stage methods. Top-down meth-

ods [41, 39] rely on a person detector to detect people

in an image. The detected instances are then cropped and

passed onto a single-person pose estimation network. Despite

their high performance, the required human detectors are

computationally expensive for lightweight multiperson pose

estimation tasks. Single-stage methods can directly infer the

coordinates of the keypoints for each person in an image with-

out the need for additional models. Most of the current single-

stage, multiperson pose estimation methods are heatmap-

based approaches [8, 4], which involve learning the heatmaps

of keypoints and subsequently determining their coordinates

by finding the location of the extreme value points in the

heatmaps. This approach is adopted by popular lightweight

multiperson pose estimation methods [29, 38]. However, the

limited computational resources available for lightweight mod-

els prevent them from producing large heatmaps. Therefore,

the overall estimation accuracy of this type of algorithm is

often unsatisfactory.

In contrast, regression-based multiperson pose estimation

methods [24, 48] offer a promising approach for designing

lightweight models. These approaches completely discard the
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heatmap but directly regress the keypoint coordinates. With the

widespread adoption of mature object detection networks[24,

25, 5, 22], the regression-based method from the YOLO series

[37] has become increasingly prevalent for pose estimation.

Leveraging these well-established object detection networks

has led to promising results in the field of pose estimation.

Although regression-based methods show great potential for

lightweight models due to their ability to bypass the need

for generating large heatmaps, they have not yet been de-

ployed to build lightweight pose estimation models primarily

due to the ’resolution dilemma’. More specifically, training

an accurate regression-based pose estimation model requires

high-resolution images as input. It is evident from the latest

regression-based works [25, 24] in which the use of high res-

olutions, e.g., 1280 ×1280 and 960 ×960, at both the training

and testing stages is necessary. However, when we switch

to low-resolution images, the performance of such models

dramatically drops. On the other hand, in the context of the

lightweight model, where computational resources are limited,

the use of high-resolution images, especially at inference, does

not seem practical. This finding raises a fundamental research

question: How can we avoid performance decline when using

low-resolution images within the constraints of a lightweight

model?

To investigate the underlying reasons behind the perfor-

mance degradation of the pose estimation model as the reso-

lution decreases, we further explore into this issue. We believe

that gaining insights into these factors will pave the way for

effective solutions. With this aim, we conduct an extensive

experiment employing a multiscale regression network archi-

tecture, wherein the PAN [21] structure encompasses three

distinct feature map levels, each corresponding to a different

output scale. Additionally, we train and evaluate this model

using varying resolutions. During the evaluation, we examine

the proportion of nonmaximum suppression (NMS) results that

fall into each feature map level. Specifically, we designate

the coarsest feature map level (P3) as the coarse level, while

the remaining levels (P4 and P5) are considered fine levels.

As illustrated in Figure 1(a), we observe a distinct trend

of the model favoring the use of the coarse level as the

input resolution decreases. This phenomenon can be attributed

to the varying receptive fields of the various feature map

levels. When confronted with high-resolution inputs, the model

demonstrates a preference for the finer level, which possesses

a larger receptive field. However, in the case of low-resolution

inputs, the model tends to rely more on the coarser level, which

is characterized by a smaller receptive field.

In our investigation of feature map level performance, as

depicted in Figure 1(b), we conduct a systematic analysis

by selectively disregarding output feature maps from different

levels during inference to assess their respective impacts on

model performance. Through our experiments, we observe

notable performance disparities among the feature map lev-

els when employing regression networks for pose estimation

tasks. Specifically, it became apparent that the performance

contribution of the coarse level (P3) consistently lagged be-

hind that of the fine levels (P4 and P5). This discrepancy

in performance is further amplified by the model’s inherent

Fig. 2. Overview of our staggered alignment self-distillation method, which
is designed to improve the performance of regression networks under low-
resolution inputs. Our approach leverages self-distillation, wherein a high-
resolution trained model, denoted as φ′, serves as a teacher to guide a shared-
weight model, φ, that is trained at a lower resolution. To ensure supervision
between networks of different resolutions, we employ our staggered alignment
strategy.

tendency to favor higher-performing fine levels during high-

resolution training and lower-performing coarse levels during

low-resolution training.

To counteract the performance degradation stemming from

low-resolution inputs and to rectify observed performance

discrepancies arising from resolutions, the concept of self-

knowledge distillation has emerged as an auspicious solu-

tion. This technique serves as a conduit for harnessing the

knowledge acquired from training the network with high-

resolution inputs to inform the training of the same network

using low-resolution inputs, thereby enhancing its performance

in low-resolution inference scenarios. Furthermore, the self-

distillation approach shares a single network as both the

teacher and the student, which eliminates the need for an extra

teacher network and multiple training steps. Additionally, we

aim to exploit the superior performance exhibited by fine-level

feature maps to guide the learning of coarse-level feature maps

and to eventually alleviate performance disparities between

them.

Nevertheless, self-distillation encounters two primary chal-

lenges. First, when introducing distillation learning from in-

puts of disparate resolutions, the disparity in feature map

sizes resulting from high-resolution and low-resolution inputs

complicates the direct distillation learning process. Second,

because the network assigns distinct scale targets to different

levels, the fine and coarse levels pursue separate learning

objectives, rendering it impractical for the fine level to directly

teach the coarse level learning process.

To address these two challenges, we propose our stag-

gered alignment self-distillation (SASD) training method. As
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shown in 2, we adopt two identical networks with shared

weights. These two networks use the same images but different

resolutions as input. The high-resolution network uses an

input that is upsampled by 2 times the base-resolution input.

Consequently, each feature map in the high-resolution network

is twice the size of the feature map in the base-resolution

network at the same level, so the feature map size of the

ith level in the base-resolution network aligns with the more

refined (i+1)th level in the high-resolution network. Existing

multiscale learning methods dictate distinct learning objectives

for different levels of the PAN network. In the training process,

if the same target assignment approach is applied between

networks φ and φ′, the learning targets for Pi and P ′
i would

be identical, resulting in disparate objectives for Pi and P ′
i+1.

Considering that our previously introduced staggered align-

ment matching method has already matched P ′
i+1 to Pi for

distillation, a discrepancy in learning objectives would degrade

or even reverse the effectiveness of distillation. To address

this issue, we adopted distinct label assignment strategies for

networks φ and φ′ during the implementation of staggered

alignment self-distillation, and we assigned identical learning

targets to Pi and P ′
i+1. However, this approach introduces a

complication in which the last level of the base resolution

loses its matching counterpart. Thus, we introduce an auxiliary

training level when using high resolution and align it with

the last level of base resolution to allocate identical learning

objectives.

Notably, this auxiliary level independently operates within

the PAN structure and is exclusively utilized during high-

resolution training. As a result, during the inference stage,

the auxiliary level can be safely discarded without adversely

affecting the overall performance. We refer to this approach

as pruned inference, which allows for more efficient use of

resources and improved performance.

In addition to our SASD method, we also tend to im-

prove the regression-based pose estimation in the regression

loss function. Traditionally, keypoint coordinate regression

loss functions only calculate losses for individual keypoint

positions, commonly utilizing L1 or L2 loss functions. Re-

cent works such as YOLO-Pose [24] and YOLOv8 [36]

have introduced the object keypoint similarity (OKS) loss

function, which builds upon L2 loss by assigning different

weights to each keypoint based on their importance. This

weighted approach significantly enhances the training of re-

gression methods. However, existing regression loss functions

fundamentally focus on the distance between the predicted

values and the ground truth on a point-by-point basis. For

the human body, each keypoint is not isolated; therefore,

capturing this correlation in the loss function could positively

impact training. To address this issue, we propose a novel

skeleton loss function that considers the difference in skeleton

lengths between the predicted values and the GT as the

loss. This skeleton loss function is designed to model the

interdependency between two keypoints. Each adjacent pair of

keypoints in the human body structure is considered to form a

skeleton, and by using this loss function, the model learns the

interdependency information between the keypoints connected

by these skeletons. However, our current skeleton loss function

is solely used to determine the length of each skeleton between

the model outputs and labels without directly supervising

the relative positions of each keypoint. This supervision of

relative keypoint positions is enforced through the OKS (object

keypoint similarity) loss function. During network training,

both the OKS loss function and the skeleton loss function

are jointly utilized to ensure simultaneous learning of both

keypoint position information and the relationships among

keypoints through the skeleton modeling process. In such

scenarios, images contain targets of varying sizes, which

leads to inherent imbalances in the differences. Larger objects

naturally yield larger differences, which causes an imbalance

in the loss between different-sized objects. To mitigate this

imbalance, we normalize the loss function by the scale of

the object, providing a solution to the size-related imbalance

phenomenon, which we refer to as the normalized skeleton

loss function.

Overall, we make the following contributions:

• First, we conduct an in-depth analysis of the reso-

lution dilemma faced by regression-based multiperson

pose estimation methods. To address this issue, we pro-

pose a novel training method, staggered alignment self-

distillation training, and a dedicated network structure

for distillation. This is the first attempt to employ self-

distillation to address the resolution dilemma in pose

estimation. Our approach effectively improves the per-

formance of the regression model during low-resolution

inference while maintaining computational efficiency.

• Second, diverging from conventional keypoint coordinate

regression loss functions, which solely compute losses for

individual keypoint positions, we introduce a normalized

skeleton loss function. This innovation allows our model

to grasp the interconnections among different key points

of the human body, enhancing the precision of pose

estimation.

• Last, we present experimental results on the MS-COCO

[20] and CrowdPose [16] datasets, which demonstrate

the effectiveness of our proposed method. Notably, our

method outperforms current popular lightweight pose

estimation methods. We achieve comparable performance

to recent regression-based methods with only 1/4 of the

computational cost.

II. RELATED WORKS

A. Top-Down Multiperson Pose Estimation

Top-down methods [17, 41, 6, 28, 34, 11, 15] are also

described as two-stage approaches, in which an object detec-

tion network is employed to detect people in the image, and

then each person is cropped and sent to a single-person pose

estimation network to obtain their keypoints. SimpleBaseline

[41] proposes a simple yet effective baseline network for

top-down pose estimation by learning heatmaps of the body

keypoints in each person and using deconvolution to increase

the size of the output heatmap. Alternatively, Mask R-CNN

[11] proposes a novel approach that solves the pose estimation

problem through segmentation by predicting body keypoints

using masks. In recent studies, the PCT [9] method has
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Fig. 3. Network architectures. (a) The baseline network architecture. The network used for training is denoted as (b). We introduce an additional finest P6

as an auxiliary training level, which is subsequently discarded after training. As a result, the network structure during inference remains unchanged from the
baseline, which ensures that no additional computational cost is introduced.

pioneered a new structured representation, which learns the

presentation between body poses and tokens. Human pose

estimation is transformed into a classification task that predicts

token categories. Additionally, the BUCTD [47] introduces a

hybrid top-down approach, which is distinct from previous

top-down methods in which the first stage utilizes a bounding

box detector. In contrast, the first stage of the BUCTD [47]

method applies a single-stage pose estimation model to pro-

vide prior information for the second stage, thereby enhancing

the model’s performance in crowded scenarios. ICON [42]

introduces an interimage contrastive consistency method that

leverages contrastive learning to enhance the consistency of

keypoint features between two images in the pose estimation

task. This approach can be applied to improve the performance

of various top-down methods. While top-down methods gener-

ally achieve superior performance, they require two different

models and cannot be trained end-to-end. Additionally, the

inference time of such methods increases linearly with the

number of human bodies in the image, making them unsuitable

for lightweight multiperson pose estimation.

B. Single-stage multiperson Pose Estimation

Single-stage multiperson pose estimation approaches can

be divided into two categories: bottom-up methods and

regression-based methods. The mainstream approach is

bottom-up, which was originally proposed by Pishchulin in

Deepcut [31] and was greatly improved in OpenPose [4]

by Cao. These methods detect all human keypoints in an

image at once and cluster them into persons. Most bottom-

up methods [4, 27, 7, 14, 3] are based on heatmaps, where

OpenPose generates heatmaps of the targets of each keypoint.

OpenPole[4] uses Part Affinity Fields for keypoint clustering.

Associative embedding [27] proposes additional vector embed-

ding as a grouping method for keypoints, while HigherHRNet

[7] improves model performance by producing high-quality

and high-resolution heatmaps.

Recently, regression-based methods have gained popular-

ity, with CenterNet [48] proposing a hybrid approach that

regresses the center point of the human body using a heatmap

and then regresses the coordinates of keypoints by the center

point of the human body in feature maps. Due to the similar-

ities between object detection and pose estimation tasks and

significant advancements in object detection networks, recent

works [24, 25] have attempted to use YOLO series object

detection networks for pose estimation. These approaches

discard the heatmap from the bottom-up method and use

regression models to directly regress the keypoint coordinates,

achieving particularly good results. While YOLO-like meth-

ods offer lightweight models, maintaining high performance

necessitates higher input resolutions, thereby substantially in-

creasing computational requirements. In recent research within

the field of single-stage regression-based multiperson pose

estimation, methods based on transformers have also begun

to be widely applied. PETR [33] was the first to introduce

the transformer into the domain of single-stage, regression-

based multiperson pose estimation. This method incorporates

the concept of object queries from the object detection domain,

enabling NMS (nonmaximum suppression)-free methods in

multiperson pose estimation. ED-Pose [45] employs a query

selection approach. Initially, numerous coarse humans with a

substantial number of object queries are generated, and then

those with high confidence are filtered out for the next round of

iterative local keypoint refinement, significantly enhancing the

network’s performance. Although transformer-based methods

do not rely on high-resolution input, these transformer-based

multiperson pose estimation methods face notable challenges,

primarily due to the substantial computational complexity of

the transformer structure, which results in slow processing

speeds, making it challenging to achieve lightweight modi-

fications.

Our proposed method can effectively address the main

shortcomings of regression-based multiperson pose estima-

tion models. Our staggered alignment self-distillation (SASD)

method enhances the performance of lightweight models

at lower resolutions through interlevel displacement self-

distillation between different resolution inputs, thus enabling
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superior performance with reduced computational demands.

C. Lightweight Multiperson Pose Estimation

In the context of lightweight multiperson pose estimation,

most current methods are lightweight versions of large bottom-

up models. For instance, Lightweight OpenPose [29] proposes

a lightweight backbone network and a lightweight head archi-

tecture to reduce the computational costs of OpenPose [4].

Moreover, EfficientHRNet [26] extends the EfficientNet [35]

approach to HRNet [13] by combining reduced input reso-

lution, a high-resolution network, and a heatmap prediction

network. To further reduce the complexity of HRNet [13],

LitePose [38] employed a network architecture search method

to optimize the HRNet model. While regression-based meth-

ods have shown promising results on large models [24, 25],

their applicability in lightweight multiperson pose estimation

is constrained by the high input resolution necessary to achieve

high performance. Thus, this paper addresses the challenges

of applying regression-based methods to the lightweight pose

estimation field.

D. Self-distillation

Knowledge distillation, which was initially proposed by

Hinton [12], refers to the technique of transferring knowledge

from a better-performing teacher model to a low-performance

student model. Knowledge distillation can be categorized

into three distinct types: offline distillation [12, 32], online

distillation [1, 43], and self-distillation [46, 2, 44]. In offline

distillation, the student model undergoes distillation learning

by leveraging a pretrained teacher model. Conversely, online

distillation entails a training paradigm in which both the

teacher model and student model actively participate, facilitat-

ing concurrent parameter updates. Notably, self-distillation is

a specific form of knowledge distillation in which the teacher

and student models comprise the same network, eliminating

the need for a separate, larger teacher model. Zhang [46]

first proposed the self-distillation method, which enables the

distillation of knowledge from the deeper parts of the network

to the shallow parts of the network. Snapshot distillation [44],

a variation of self-distillation, involves transferring knowledge

from earlier epochs (teachers) to later epochs (students) within

the same network, enabling a supervised training process.

OKDHP [19] employs a self-distillation approach to utilize

the knowledge aggregated from multibranch learning to guide

the learning of each individual branch. The authors propose

a feature aggregation unit (FAU) to aggregate the heatmaps

generated by each branch of the multibranch network and

use the aggregated heatmap to supervise each single branch.

DSKD [40] employs a densely guided self-knowledge dis-

tillation framework to solve the error avalanche problem

in multiteacher distillation, which enhances the quality of

heatmaps in the scenario of multiteacher distillation.

Previous self-distillation approaches primarily focus on self-

supervised learning across different stages or various outputs

of the model, typically utilizing the same input resolution dur-

ing training. In contrast, our self-distillation method addresses

the performance gap during training with varying resolutions.

By aligning feature maps generated at different levels from

high-resolution inputs with those from low-resolution inputs,

our method effectively addresses the challenge of guiding

learning from high-resolution inputs to low-resolution inputs,

consequently enhancing model performance at low resolutions.

Remarkably, self-distillation methods have yet to be applied to

enhance model performance in low-resolution inference. Thus,

in this study, we employ, for the first time, self-distillation as

a means to address this challenge.

III. METHODOLOGY

In this section, we present our lightweight regression-based

pose estimation network. First, we introduce an additional

finest auxiliary training level that operates independent of other

levels, ensuring its autonomy and effectiveness in our self-

distillation training.

Second, to address the challenge of low-resolution infer-

ence, we present our new SASD method. This approach

involves utilizing two networks with varying resolution inputs

that share weights, with the high-resolution network serving as

a guide for the learning process of the base-resolution network.

Subsequently, we apply the pruned inference, which allows us

to discard the auxiliary level during low-resolution inference.

By doing so, we effectively maintain the model the same as

the baseline model, eliminating any redundant computational

burden associated with the auxiliary training level.

Last, we introduce the comprehensive loss function in our

training approach, which incorporates our novel normalized

skeleton loss. This loss function effectively captures the

correlation between human keypoints, leading to improved

performance of our network.

A. Network Architecture

Our baseline lightweight pose estimation network architec-

ture is built upon the YOLO-style architecture, as shown in

Figure 3 (a). ShuffleNetV2 [23] is employed as the backbone

network, followed by three PAN [21] layers with 3 different

scales for effective multiscale feature fusion. These features

are then passed through three regression heads to estimate

the coordinates of the bounding boxes and keypoints, as well

as the confidence scores for each keypoint. We use 1 × 1
convolution and C3 layers from YOLOv5 in the PAN layers

and 3× 3 convolution in the heads.

In our PAN structure, we denote the three different level

scales as P3, P4, and P5. We limit the number of channels and

layers in our model to ensure its lightweight nature, resulting

in a total of only 1.6 M parameters. This design makes

our model suitable for real-time applications on resource-

constrained mobile devices or embedded systems. Further-

more, this parameter count allows for a fair comparison with

recent lightweight pose estimation methods [38].

During the training process, we introduce an auxiliary

training level, which consists of a ShuffleBlock and two C3

layers, which are denoted as P6, as shown in Figure 3 (b), in

our baseline model for SASD training. Unlike the other feature

map levels, P6 remains decoupled from the other levels within

the feature pyramid structure. For the distillation training,
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Fig. 4. Staggered alignment self-distillation. P3 − P6 represents three different feature map levels with different scales. We utilize feature maps of P ′

obtained from high-resolution inputs to supervise the feature maps P obtained from low-resolution inputs. LossP , which represents the L2 loss, is computed
between P and P ′. LossT represents the combination of OKS loss and the normalized skeleton loss function.

we ensure that P3, P4, P5, and P6 have the same channel

dimensions.

After training, P6 is discarded to maintain the original

network structure during inference, thereby avoiding any ad-

ditional computational cost. We name this approach pruned

inference.

B. Staggered Alignment Self-distillation

Here, we explain we adopt self-distillation, namely, stag-

gered alignment self-distillation, to improve the performance

of our model during low-resolution inference. We present

a novel training method called staggered alignment self-

distillation. Basically, this method utilizes two twin networks

with shared weights but operates at different resolution inputs.

The high-resolution network provides supervision to guide the

learning process of the low-resolution network.

As illustrated in Figure 4, network φ operates at the base

resolution and shares its weights with network φ′ operating

at the high resolution. During the learning process, we adopt

the label assignment strategy from YOLOv5 to assign targets

of varying scales to the P3, P4, and P5 levels of network φ.

Simultaneously, we apply the same label assignment strategy

to the P ′
4, P ′

5, and P ′
6 levels of network φ′, ensuring consistent

target assignments between the Pi level and the P ′
i+1 level.

Due to the utilization of weight sharing in our approach, both

P4 and P ′
4, as well as P5 and P ′

5, receive supervision from

two distinct target scales. This approach augments the training

samples for P4 and P5. The auxiliary training level P6 does not

engage in the training of base-resolution inputs, but P ′
6, which

shares weights with it, participates in the training process for

high-resolution inputs.

The input I ′ of network φ′ is derived from the original

input I through bilinear upsampling, which results in the

feature maps of network φ′ always being twice the size of

the corresponding feature maps in φ. Additionally, owing to

the identical channel configuration across all these levels, the

feature map P ′
i+1 of network φ′ and the feature map Pi of

network φ possess identical spatial dimensions.

Our previous analysis revealed that networks trained at

higher resolutions outperform those trained at lower reso-

lutions. Additionally, finer levels have already demonstrated

superior performance compared to coarser levels. To address

this issue, we leverage feature map supervision, which is com-

monly employed in knowledge distillation. In particular, we

employ the feature map P ′
i+1 of the high-resolution network φ′

to supervise the feature map Pi of the base resolution network

φ. The loss function is expressed as follows:

LP (P, P
′) =

5∑

i=3

∥P ′
i+1 − Pi∥2. (1)

In this equation, we compute the L2 distance between P ′
i+1

and Pi.

In addition to learning between feature maps, we also

apply the OKS loss function LOKS and normalized skeleton

loss LSK function for keypoint regression at both the base

resolution and higher resolution. The object predictions of

the base-resolution network φ are learned through its P3,

P4, and P5 levels, while the high-resolution network learns

predictions through its P ′
4, P ′

5, and P ′
6 levels. This finding can

be represented by the following equation.

O = H(P3, P4, P5), (2)

O′ = H ′(P ′
4, P

′
5, P

′
6), (3)
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TABLE I
RESULTS ON THE MS-COCO [20] VAL/TEST-DEV SET AND CROWPOSE [16] TEST SET. COMPARED TO OTHER LIGHTWEIGHT POSE ESTIMATION

METHODS, WE HAVE ADVANTAGES IN TERMS OF THE NUMBER OF PARAMETERS, COMPUTATIONAL COST (MACS), AND LATENCY. ALL LATENCIES ARE

TESTED ON THE QUALCOMM SNAPDRAGON 855. FOR FAIR COMPARISONS, WE KEEP OUR MACS AT THE SAME LEVEL AS LITEPOSE BY ADJUSTING

INFERENCE RESOLUTION.

Method Params ↓ MACs ↓ Latency(ms) ↓ APval ↑ APtest−dev ↑

MS-COCO

PersonLab [30] 68.7M 206.9G - - 56.6
HigherHRNet-W48 [7] 63.8M 155.1G 1532 69.9 68.4

SRPose [10] 23.5M 30.86G - 48.4 -
Lightweight OpenPose [29] 4.1M 9.0G 97 42.8 -
EfficientHRNet-H−2[26] 8.3M 7.9G 182 52.9 52.8
LitePose-S [38] 2.7M 5.0G 76 56.8 56.7
YOLOv8-N [36] 3.3M 4.35G 66 50.5 -
ours-E 2.4M 5.0G 78 57.2 56.9

EfficientHRNet-H−4[29] 2.8M 2.2G 78 35.7 35.5
LitePose-XS [38] 1.7M 1.2G 27 40.6 37.8
MFite-HRNet [18] 1.8M 2.43G - 41.4 -
ours-XS 1.6M 1.2G 24 44.1 43.7

CrowdPose

Scaled-HigherHRNet-W16 [7] 7.2M 12.5G 170 - 50.4
EfficientHRNet-H−3[29] 5.3M 4.3G 132 - 46.1
LitePose-XS [38] 1.7M 1.2G 27 - 49.5
ours-XS 1.6M 1.2G 24 - 50.4

Fig. 5. Calculation of the normalized skeleton loss function, where o denotes
the network’s output for keypoint coordinates, gt represents the ground truth
labels for keypoint coordinates, and s signifies the scaling factor utilized for
normalization, as computed by the x and y in the bounding box of the human
body.

where H and H ′ represent the head structures in networks φ

and φ′, O and O′ correspondingly represent the output results

of φ and φ′, utilized for the computation of the loss func-

tion. Notably, we obtain high-resolution images using bilinear

interpolation from the original input without acquiring high-

resolution images from the dataset during training. This step

is important because high-resolution images can be difficult

or expensive to obtain, and our approach avoids this need.

Moreover, during our interfeature map supervision training

process, the performance of our network’s feature maps is

not good enough at the beginning of the training. To avoid

the adverse impact of low-quality feature maps on network

performance during training from scratch, we need to perform

a warm-up phase for a certain number of epochs before using

interfeature map supervision. Next, we can continue with

SASD on our model.

C. Loss Function

In the training phase, we employed the OKS loss function

[24] for keypoint regression, which is defined in the following

equation.

LOKS = 1−

∑Nkpts−1
i=0 exp( (∥oi−gti∥2)

2

2s2k2
n

)δ(vn > 0)
∑Nkpts−1

i=0 δ(vn > 0)
, (4)

kn represents the weight of keypoints; s represents the scale

of the person; Nkpts represents the number of keypoints in

the human body; oi and gti denote the output result and

corresponding label for the coordinate of the ith keypoint,

respectively; and δ(vn > 0) is the visibility flag for each

keypoint.

In addition, we propose a novel normalized skeleton loss

function that calculates the normalized skeleton distance be-

tween the predicted result and the ground truth (i.e., L2

distances between keypoints) to learn the interdependence re-

lation of the keypoints. The normalized skeleton loss function

is represented by the following equation:

LSK =

∑
i,j∈setsk

∥∥oi − oj∥2 − ∥gti − gtj∥2∥2

s
, (5)

where setsk denotes the set of all adjacent keypoints of the

human body. To maintain similar loss distributions for objects

of different sizes, we divided the results by the scale of the

object s, as depicted in Figure 5.

In addition, we use LP to calculate the distance between the

feature maps for different input sizes, as shown in equation

1. The loss function for training can be represented by the

following equation.

L = α(LOKS(O
′, GT ′) + LOKS(O,GT ))

+β(LSK(O′, GT ′) + LSK(O,GT ))

+γLP (P, P
′),

(6)

O and GT denote the output prediction and ground truth,

respectively, for images of the base resolution. Conversely,
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TABLE II
COMPARISON WITH OTHER REGRESSION-BASED MULTI-PERSON POSE ESTIMATION METHODS ON MS-COCO [20] VAL/TEST-DEV SET. COMPARED TO

OTHER REGRESSION-BASED METHODS, WE HAVE GREAT ADVANTAGES IN COMPUTATIONAL COST (MACS) AND LATENCY. ALL LATENCIES ARE

MEASURED USING AN NVIDIA RTX3090TI GPU. *THE MULTI-SCALE INFERENCE STRATEGY IS EMPLOYED IN THE TESTING OF KAPAO [25].

Method Input size MACs ↓ Latency(ms) ↓ APval ↑ APtest−dev ↑

YOLOPose-S [24] 640 10.2G 5.5 57.0 -
YOLOPose-S[24] 960 22.8G 11.9 63.8 62.9
Kapao-S [25] 1280 40.5G 21.7 63.0 63.8*
YOLOv8-S [36] 640 15.1G 7.8 60.2 -
ours-S 640 10.1G 5.3 63.5 62.2

YOLOPose-M [24] 960 66.3G 23.0 67.4 66.6
Kapao-M [25] 1280 117G 43.5 68.5 68.8*
YOLOv8-M [36] 640 40.5G 20.0 65.0 -
ours-M 640 27.7G 10.6 68.6 67.0

YOLOPose-L [24] 960 145.6G 34.0 69.4 68.5
Kapao-L [25] 1280 258.7G 63.3 70.6 70.3*
YOLOv8-L [36] 640 84.3G 18.7 67.6 -
ED-Pose [45] 1066 144.6G - 69.9 -
ours-L 640 61.7G 16.4 70.1 68.8

O′ and GT ′ represent the prediction value and ground truth

value, respectively, for upsampled images. The ground truth

GT ′ is obtained by scaling up GT using the upsampling rate

as the magnification factor. The variables α, β, and γ are the

balance parameters of the equation. In our experiments, we

set α = 0.1, β = 0.1, and γ = 0.02.

IV. EXPERIMENTS

We evaluate our model on the MSCOCO [20] and Crowd-

Pose [16] datasets.

MS COCO [20]. The MS COCO dataset comprises more

than 200,000 images of the human body, each of which

contains 17 keypoints. The dataset is segregated into three

subsets: a training set, a validation set, and a test set, consisting

of 57K, 5K, and 20K images, respectively. We trained our

experiments on the MS COCO dataset exclusively using the

training set. Our paper reports the performances of the models

on the validation set and test set.

CrowdPose [16]. The CrowdPose dataset encompasses

more than 20,000 images of the human body, annotated with

14 keypoints. We follow the preceding methodologies [7, 38]

and train our models on both the training set and validation

set to showcase the results obtained on the test set.

Metrics. Our test metrics are based on the object keypoint

similarity (OKS), and the results we report in the paper are

the mean accuracy (mAP) of the OKS.

A. Experiment Settings

During the training stage, we employ augmentation strate-

gies similar to those used in [24]. Specifically, we utilize ran-

dom translation in the range of [-10, 10], random flipping with

a probability of 0.5, mosaic augmentation with a probability

of 1, and an array of color augmentations. We use the SGD

optimizer with a cosine scheduler. Our base learning rate is

set to 1e-2. In the training process, first, we conduct a warm-

up process by training the model for 100 epochs at the base

resolution. Second, we train each model for 300 epochs using

our SASD approach. For testing, first, we resize the larger side

of the input images to the desired size while maintaining the

aspect ratio. Second, we pad the lower side of the image to

generate a square image, ensuring that all the input images are

of the same size; we also use the flip test of LitePose [38].

B. Main Results

Table I presents the experimental results of our model on

the MS-COCO and CrowdPose datasets. We report our XS

version as shown in Figure 3. Additionally, to ensure a fair

comparison with other methods, we increase the number of

feature map levels to 4 to enlarge our model to our E version.

Our experimental results show a significant reduction in

computational cost and the number of parameters while

achieving much better performance than other lightweight

pose estimation methods, such as Lightweight OpenPose [29],

EfficientHRNet [26] and SRPose[10]. Notably, our proposed

model demonstrates a substantial performance advantage over

the LitePose [38] approach, achieving 5.3 mAP higher results

on the Ms-COCO test set. Remarkably, our model maintains

fewer parameters, has lower computational costs, and enables

faster inference on mobile devices. Furthermore, our method

also outperforms MFite-HRNet[18] by 2.7 mAP on the MS-

COCO validation dataset with fewer parameters and MACs.

Additionally, we compare our method with recent

regression-based multiperson pose estimation methods, includ-

ing YOLOPose[24], KAPAO[25] and YOLOv8 [36]. Similar

to YOLOPose[24], KAPAO[25] and YOLOv8[36], we design

three network versions based on YOLOv5S, YOLOv5M, and

YOLOv5L, respectively, and train them using our staggered

alignment self-distillation. As shown in Table II, when using

the same resolution of 640, our approach outperforms the

YOLO-pose[24] method by a significant margin, with a 5-

point increase in the mAP. Our method also achieves better

results than YOLOPose, which is trained at a higher resolution

of 960×960 and performs comparably to KAPAO[25], which

is trained at a higher resolution of 1280 × 1280. Despite

our usage of a lower resolution of 640 × 640 for training,

our method also achieves these results with only 1/4 of the

computational cost of KAPAO[25]. In addition, our model

outperforms the recent YOLOv8[36] method in terms of both
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TABLE III
ABLATION EXPERIMENTS OF DIFFERENT TRAINING STRATEGIES

Method Training Resolution Inference Resolution Result (mAP)

Baseline 512 512 40.3
Random Scale [0.5,1.5]×512 512 39.5
High Resolution 1024 512 40.5
SASD 512,1024 512 44.1
SASD w/o weight sharing 512,1024 512 42.3
SASD w/o auxiliary training level 512,1024 512 43.2
Direct Distillation 512,1024 512 39.3

computational complexity and performance when operating at

the same resolution of 640. Furthermore, we also conduct

a comparison with the latest ED-Pose [45], which applies

the transformer architecture for single-stage, multiperson pose

estimation. The experimental results indicate that our model

achieves better performance with a lower computational cost.

This comparison validates the effectiveness of our approach.

C. Ablation Experiments

To evaluate the effectiveness of our proposed techniques,

we conducted comprehensive ablation experiments on the

MS-COCO dataset. These experiments involved training our

network on the training set of the MS-COCO dataset and the

performance of different methods evaluated on the validation

set. The purpose of these ablation experiments is to isolate

and analyze the impact of each individual component in our

approach, enabling us to gain a deeper understanding of how

they collectively contribute to improvement.

1) Ablation Experiments of Different Training Strategies:

To evaluate the efficacy of different training strategies, we

conducted a comparative experiment among various methods,

as depicted in Table III. The baseline method employs a fixed

resolution of 512×512 as the input during training. In contrast,

the random scale method employs a random resolution ranging

from 0.5 to 1.5 times the 512 × 512 resolution for training.

The high-resolution method, on the other hand, adheres to a

fixed resolution of 1024×1024 during the training phase. Our

proposed staggered alignment self-distillation (SASD) method

utilizes 512 × 512 resolution and incorporates an upscale to

1024 × 1024 resolution as input during training. To establish

the necessity of weight sharing in our SASD approach, we

conduct experiments wherein the SASD algorithm is em-

ployed without weight sharing. In this experimental setting,

two networks trained with different resolutions are decoupled

and no longer share weights. During the inference phase,

the inference is performed solely using the network trained

on low-resolution images. To verify the effectiveness of the

auxiliary training level, we remove both the auxiliary training

levels P6 and P ′
6 while keeping other settings similar to those

of the SASD experiment in our SASD experiments w/o the

auxiliary training level. In the direct distillation experiment,

we did not employ the staggered alignment matching method

for distillation. Instead, we perform distillation by using the

network trained at high resolution to supervise the correspond-

ing layer of a network trained at low resolution, i.e., using

P ′
i to supervise Pi. Due to mismatched feature map sizes, we

downsample the feature maps generated by the high-resolution

network by a factor of 2 to align with the low-resolution

network. We present the results of all methods tested using a

consistent 512 × 512 resolution on the MS-COCO validation

set.

Moreover, during the inference stage, all methods employ

identical model architectures, ensuring a fair comparison.

The experimental outcomes illustrated in Table III indicate

that adopting multiple random resolutions during training

does not yield any performance improvements. Additionally,

training with high-resolution data and subsequently testing

on lower resolutions only results in marginal performance

gains, as evidenced by the reported results. Remarkably, our

proposed SASD method outperforms single-resolution and

high-resolution methods, underscoring its effectiveness in en-

hancing performance.

Furthermore, our experiments highlighted the synergistic

impact of weight sharing within networks, as evidenced by the

noticeable decrease in performance of 1.8 mAP when weight

sharing is omitted in the SASD experiment. This finding

underscores the critical importance of weight sharing in our

SASD approach. We attribute this phenomenon to the notion

that weight sharing leads to different sample distributions

for the network when addressing base-resolution and high-

resolution inputs. Essentially, this approach provides more

training samples for P4 and P5, effectively acting as data

augmentation. Moreover, when examining the experimental

results of the SASD without auxiliary training, we observe

a performance decrease of 0.9 mAP compared to that in the

experiments with auxiliary training. This observation confirms

the significant positive influence that auxiliary training levels

have on the model’s performance and their effectiveness in

enhancing the overall performance of the model. The exper-

imental results of the direct distillation indicate that using

downsampled high-resolution feature maps for direct distilling

does not yield positive gains for the network; in contrast, it

leads to a slight degradation in performance. This decline is

attributed to the substantial loss of information incurred during

the downsampling of high-resolution feature maps, which is

detrimental to the distillation learning process. This finding

indirectly validates the necessity of employing the SASD

algorithm in our approach.

2) Ablation Experiments of Loss Functions: To further

explore the impact of different loss functions on performance

during staggered alignment self-distillation training, we con-

duct comprehensive experimentation by employing various

combinations of loss functions. The corresponding model

performance under different loss function combinations is



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 10

Fig. 6. Visualization of the prediction results: (a) shows the predictions of our model and (b) shows the predictions of litepose[38]

TABLE IV
ABLATION EXPERIMENTS OF DIFFERENT LOSS FUNCTIONS

Methods Result (mAP)

OKS Loss Skeleton Loss Distillation Loss -

✓ 40.6
✓ ✓ 41.7
✓ ✓ 43.6
✓ ✓ ✓ 44.1

carefully evaluated and analyzed.

During the experiments, we apply staggered alignment self-

distillation training and pruned inference for all the models,

where a base resolution of 512×512 is employed as the input,

and two upsamplings are applied to obtain the high-resolution

input. The performance evaluation is conducted on the MS

COCO validation dataset at a resolution of 512× 512.

The results presented in Table IV clearly indicate that

our proposed skeleton loss significantly enhances the model’s

performance, exhibiting a substantial increase of 0.9 mAP

compared to models solely relying on the OKS loss. Addition-

ally, our distillation loss demonstrates its pivotal role, resulting

in an impressive increase of 2.8 mAP when combined with

the OKS loss. The synergistic combination of skeleton loss

and distillation loss yields a remarkable improvement in the

model’s performance, highlighting their collective effective-

ness in achieving superior results.

TABLE V
ABLATION EXPERIMENTS OF NORMALIZED SKELETON LOSS.

Method Result(mAP)

Baseline 40.6
Normalized Skeleton Loss 41.7
Skeleton Loss w/o normalization 38.8

TABLE VI
ABLATION EXPERIMENTS ON DIFFERENT ALGORITHMIC COMPONENTS.

Methods Result (mAP) MACs Latency(ms)

SASD Pruned Inference - - -

40.3 1.2G 24
✓ 43.8 1.9G 32
✓ ✓ 44.1 1.2G 24

3) Ablation Experiments of the Normalized Skeleton Loss:

We conducted experiments as an ablation study to investigate

the influence of normalization on the skeleton loss function,

as shown in Table V. These experiments are conducted with

the same experimental setup, using our skeleton loss function

in the baseline network architecture. The key distinction lies

in the absence of the normalization step in the final set of

experiments. This deliberate variation allowed us to discern

the impact of normalization on our proposed loss function.

By incorporating normalization, the skeleton loss exhibits

a 1.1 mAP improvement compared to that of the baseline.

Conversely, in the absence of normalization, the skeleton loss

decreases by 1.8 mAP compared with the baseline. The exper-

imental results indicate that the absence of normalization has

a detrimental effect on model performance when the skeleton

loss function is used. This finding confirms that skeleton loss

contributes to network performance only when normalization

is applied. Although calculating the loss between skeletons

can capture the relationship between key points, addressing

the imbalance in loss due to varying target sizes is a crucial

aspect where skeletal loss can be effective in multiperson pose

estimation.

4) Ablation Experiments on Different Algorithmic Compo-

nents: In the final phase of our research, we conduct a series of

ablation experiments to empirically evaluate the effectiveness

of each component in our proposed methodology, as shown in

Table VI. Specifically, we investigate the impact of the SASD

method and the pruned inference technique by comparing

combinations of these methods with the baseline network.

Throughout our experiments, we maintain a fixed resolution

of 512× 512 for all models and report their inference results

at this resolution.

The comprehensive results demonstrate that each proposed

method significantly contributes to the overall performance im-

provement. Notably, when solely employing the SASD method

without incorporating the pruned inference technique, the

computational cost of the model increased to 1.9 G due to the

introduction of an auxiliary training level, and the performance

increased by 3.5 mAP. The effectiveness of the SASD method

stems from our base resolution network, which can acquire

knowledge from networks trained at higher resolutions. In

addition, the coarse level of our network is also supervised

by the fine level with higher performance, thereby achieving

more precise recognition of small and medium-sized targets.
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However, upon integrating the pruned inference technique, we

successfully restored the model size to be on par with that

of the baseline model. We introduced the auxiliary training

level in the SASD network architecture for training. This level

is exclusively utilized during training with high-resolution

inputs. However, when operating at the base resolution, the

corresponding level remains structurally present but inactive.

During the inference phase, where the base resolution is used,

the features generated by the auxiliary training branch not only

fail to positively contribute but also may impede the network’s

operation. Given that the auxiliary training level is designed

as an independent module during network architecture, other

levels do not depend on its feature maps. Therefore, we employ

the pruned inference method during inference to trim the

auxiliary training level, enhancing network performance while

reducing the computational cost.

D. Visualization of the predicted results

In this section, we present the visualization results of our

method on the MS-COCO dataset and compare them with

those of the lite-pose [38] method. As shown in Figure 6,

our model performs consistently well in sparse multiperson

scenarios, similar to lite pose, but we exhibit a significant

advantage in dense crowd scenarios. This is attributed to the

advantage that our regression model directly predicts the 17

keypoint coordinates for each person without the need for

keypoint matching, as required by bottom-up methods. We

eliminate the problem of incorrect keypoint matching from

the source.

E. Inference time on the edge computing device

To assess the effectiveness of our model on edge com-

puting devices, we conduct rigorous tests on an ARM A53

architecture-based CPU, which is a widely adopted low-power,

low-computational-capacity CPU architecture. Our evaluation

primarily focuses on the inference speed under varying core

configurations.

For inference, we employ NCNN as our framework, en-

suring compatibility with standard deep-learning libraries and

facilitating seamless deployment across diverse platforms.

Our experiments shown in Table VII demonstrate remark-

able performance even with a single core, achieving an im-

pressive inference rate that exceeds 6 frames per second.

Leveraging the power of four cores, our algorithm achieves

a threefold speed improvement compared to the single-core

setup, thereby enabling smooth and real-time pose estimation.

TABLE VII
EXPERIMENTS OF INFERENCE TIME ON THE EDGE COMPUTING DEVICE

Method MACs Inference Time(1xCore) Inference Time(4xCore)

XS 1.2G 161.1ms 54.7ms
E 5G 308.6ms 97.3ms

V. CONCLUSION

In this paper, we analyzed the challenges faced by apply-

ing regression-based multiperson pose estimation methods to

lightweight architecture, focusing on the resolution dilemma

in regression-based networks when used for pose estima-

tion tasks. To address these issues, we propose not only a

staggered alignment self-distillation approach and its corre-

sponding network architecture to improve the low-resolution

inference performance of the network but also a normalized

skeleton loss function to enhance the keypoint relationships

and improve model performance. Our experiments on the MS-

COCO and CrowdPose datasets demonstrated the merits of our

proposed methods compared to recent lightweight pose esti-

mation techniques, which achieved superior performance with

fewer computational requirements. Additionally, our ablation

experiments confirmed the efficacy of each of our proposed

components, which validates their importance in achieving our

overall results.
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