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Stokes-parameter representation for Compton scattering of entangled

and classically correlated two-photon systems

P. Caradonna ,* I. D’Amico, D. G. Jenkins, and D. P. Watts

School of Physics, Engineering and Technology, The University of York, YO10 5DD, York, United Kingdom

(Received 29 June 2023; accepted 28 February 2024; published 20 March 2024)

A Stokes parameter representation for two-photon systems is developed to calculate cross sections for both

entangled and classically correlated mixed states scattering off unpolarized and polarized Compton electrons.

The cross section of Compton scattering for pairs of maximally entangled annihilation photons, generated by the

disintegration of para-positronium, is compared with classical analogs. An analysis of the symmetrical properties

and basis independence of these systems is conducted to elucidate the observed differences. We propose a method

to establish an upper bound for identifying correlations influenced by entanglement. Furthermore, we calculate

the cross section for Compton scattering of annihilation photons from spin-polarized electrons. A qualitative

analysis reveals a contradiction to the contemporary assumption that Compton scattering acts as an entanglement

kill switch. These findings contribute to a broader understanding of photon systems and their behavior in various

scattering scenarios. Although the primary focus of this article is on Compton scattering, the formalism can be

adapted to other interactions, provided that the Mueller matrix representation of the interaction is available.

DOI: 10.1103/PhysRevA.109.033719

I. INTRODUCTION

In the past decade, there has been a renewed focus on

0.511-MeV polarization entangled annihilation photons, both

at a foundational level [1] and in the understanding of the

information content arising from the polarization entangle-

ment of these photons and its potential practical uses. The

latter is motivated in large part by the potential application

to the development of quantum-entangled positron emission

tomography (QE-PET) [2,3].

In practical applications, widely employed materials used

for polarization filters face limitations in their efficacy at ex-

tremely short wavelengths found in the x-ray or gamma-ray

range. Notably, gamma rays at MeV energies have wave-

lengths on the order of the Compton wavelength of the

electron. The exceptionally short wavelengths introduce phys-

ical barriers that impede the development of polarization

filters for sampling the state of polarization of both nonen-

tangled and entangled gamma rays.

As a result, polarization filters capable of sampling the

state of polarization at these wavelengths currently do not ex-

ist. In the absence of such filters, Compton scattering offers an

alternative statistical method for detecting polarization. This

approach indirectly analyzes the polarization state of incident

photons by studying the distribution of scattered photons,
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providing valuable insights into the polarization properties at

MeV energies [4–6].

For these reasons, QE-PET uses Compton polarimeters

to analyze the information content of entangled annihilation

photons. These devices fall into the category of position-

sensitive devices capable of determining the trajectory of a

scattering photon [7–9]. They achieved this by pinpointing

the locations within the device where an incoming photon

undergoes Compton scattering and photoelectric absorption.

The scattered trajectory is represented by the vector that

passes through these two interaction points. With the incident

trajectory of a photon known, the incident and scattered pho-

ton trajectories enable the determination of the orientation of

the scattering plane. In coincidence mode, two Compton po-

larimeters can be employed to indirectly measure the impact

of polarization entanglement on the scattering distributions

of two-photon systems. This is achieved by measuring the

coincident count rates as a function of the relative azimuthal

angle between the scattering planes [10,11].

However, because of the absence of a detailed theory,

the impact of Compton scattering on the entanglement be-

tween annihilation photons remains inadequately understood.

Prevailing assumptions take the conservative position that a

single Compton scattering event of an annihilation photon

results in the total loss of entanglement [2,12]. The heightened

interest in the dynamic role that Compton scattering plays

in the entanglement of annihilation photons underscores the

need for a comprehensive theory to address this fundamental

question.

In both classical and quantum optics, Stokes parameters

have proven valuable in characterizing quantum entanglement

[13–18]. Expanding on their versatile applications and build-

ing on the work of Wightman [19], Fano [20], and McMaster

[21], this article utilizes Stokes parameters to establish a
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theoretical framework for the initial stage of modeling Comp-

ton scattering involving a two-photon system in an entangled

or classically correlated state to bridge the gap between theory

and experiment.

II. PRELIMINARIES

We use the particle physics representation employed by

Schmidt and Simons [22] to derive various cross sections for

Compton scattering. This representation adopts the right cir-

cularly polarized state |R〉 and the left circularly polarized

state |L〉 as the operational basis. These bases are associated

with the σ3 Pauli matrix, which gives the spin projection

of a photon along its trajectory, taking values of ±1 units

of spin angular momentum. The definitions of the circular

polarization states |R〉 and |L〉, along with the σ3 matrix, are

as follows:

|R〉 =
[

1

0

]

, |L〉 =
[

0

1

]

, and, σ3 =
[

1 0

0 −1

]

. (1a)

By combining |R〉 and |L〉 states in different amounts and

phases we obtain other polarization basis sets such as the

vertical |V 〉 and horizontal |H〉 set, and the diagonal | + 45〉
and antidiagonal | − 45〉 basis set, where

|V 〉 =
1

√
2

[

1

1

]

, |H〉 =
1

√
2

[

1

−1

]

(1b)

and

| ± 45〉 =
1

√
2

[

1

±i

]

. (1c)

The kets |V 〉, |H〉, and | ± 45〉 are in states of indefinite

spin angular momentum since they are in a superposition

of |R〉 and |L〉 states with equal probability of one of these

operational bases being observed.

We adopt the McMaster coordinate system convention [21]

to define the kinematics of Compton scattering; see Fig. 1.

The state of polarization of an incident photon γi is defined in

the x-y plane of a coordinate system in which the direction of

travel of an incident photon is along the z axis, having the unit

vector ẑ. The Compton scatter angle θ is the angle between the

trajectory with unit vector n̂ of the scattered photon γ f and the

ẑ such that ẑ · n̂ = cos θ . The kinetic energies of the photons

are expressed in units of mc2 = 511 keV where h̄, c = 1.

This means, for example, E0 = 1 for photons with an incident

energy of 511 keV. The energy of the Compton scattering

photon E (θ ) is given by the Compton relation formula

E (θ ) =
E0

1 + E0(1 − ẑ · n̂)
=

E0

1 + E0(1 − cos θ )
. (2)

In these units, the linear momentum of γi and γ f are, respec-

tively,�ki = E0ẑ and�k f = E (θ )n̂, where

n̂ = cos φ sin θ x̂ + sin φ sin θ ŷ + cos θ ẑ,

and where φ is the azimuthal angle (refer to Fig. 1).

The spin of an incident electron in a Compton polarimeter

is defined by a unit vector Ŝ relative to a system of coordinates

associated with a Compton polarimeter and will be discussed

in more detail in Sec. III.

FIG. 1. Defining incident photon polarization and direction: The

incident photon γi is characterized by its polarization state and di-

rection, represented by the set of unit vectors {x̂, ŷ, ẑ}. The photon

scatters off a stationary electron at the origin, with the scatter angle θ

determined by the angle between the unit vector ẑ and the trajectory

of the scattered photon γ f defined by the unit vector n̂. A second

set of axes, {x̂′, ŷ′, ẑ′}, is obtained by rotating anticlockwise around

ẑ′ = ẑ by azimuthal angle φ. The unit vector x̂′ is normal to the scat-

tering plane formed by the ŷ′ − ẑ′ unit vectors. (Scattered electron

not shown.)

In this work, the scattered electron is not observed. For

this reason, we do not show the scattered electrons in any

figure that visually illustrates the scattering geometry. What

this means in terms of calculating differential cross sections is

that we have summed and averaged over the scattered electron

spin.

III. DENSITY OPERATOR FOR A PAIR

OF SPIN-POLARIZED ELECTRONS

Consider an incident photon in an arbitrary state of polar-

ization denoted by |ϕi〉 expanded in terms of the |R〉 and |L〉
basis set such that

|ϕi〉 = c1|R〉 + c2|L〉, (3)

where the probability amplitudes c1 and c2 are complex num-

bers that satisfy the normalization condition |c1|2 + |c2|2 =
1. The density matrix ρi of |ϕi〉 can be expressed in terms of

the Stokes parameters Sia (a = 0, 1, 2, 3) and Pauli matrices

such that

|ϕi〉〈ϕi| = ρi =
1

2
(Si0σ0 + Si1σ1 + Si2σ2 + Si3σ3)

=
1

2

[

Si0 + Si3 Si1 − iSi2

Si1 + iSi2 Si0 − Si3

]

, (4)

033719-2
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FIG. 2. Schematic of an ideal position-sensitive Compton po-

larimeter (CP) that outputs coordinates of Compton scattering and

scattered photoelectric absorption of the incident photon. The incli-

nation of the scattering plane is characterized by the azimuthal angle

φ. The incident trajectory and state of polarization are assumed to

be known. The angle φ is obtained by the dot product x̂′ · x̂ = cos φ,

where the x′ axis is normal to the scattering plane.

where

σ0 =
[

1 0

0 1

]

, σ1 =
[

0 1

1 0

]

, and σ2 =
[

0 −i

i 0

]

,

and σ3 is given in Eq. (1a).

It is convenient to write the Stokes parameters in the form

of a four-vector in this way:
⎡

⎢

⎢

⎢

⎢

⎣

Si0

Si1

Si2

Si3

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

〈ϕi|σ0|ϕi〉
〈ϕi|σ1|ϕi〉
〈ϕi|σ2|ϕi〉
〈ϕi|σ3|ϕi〉

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

|c1|2 + |c2|2

c1c∗
2 + c2c∗

1

i(c1c∗
2 − c2c∗

1 )

c1c∗
1 − c2c∗

2

⎤

⎥

⎥

⎥

⎥

⎦

. (5)

Figure 2 is a schematic of an ideal Compton polarimeter.

The spin Ŝ of a stationary Compton electron is defined relative

to a system of orthogonal coordinate axes labeled {xp, yp, zp}
associated with the polarimeter itself. In this example, the

plane xp-yp is parallel to the side of the polarimeter from

which a γi enters the device. The spin Ŝ of the electron is

defined as

Ŝ = cos φs sin θsx̂p + sin φs sin θsŷp + cos θsẑp.

To determine the Compton scattering cross section of an

incident photon with energy E0 and scattered energy E (θ ),

we proceed by defining a density matrix ρe for a Compton

electron, shown in Fig. 2, expressed in terms of a new set of

Stokes parameters given by

ρe =
1

2

[

S0 + S3 S1 − iS2

S1 + iS2 S0 − S3

]

, (6)

where the subscript “e” denotes electron. The Stokes param-

eters Sa of the Compton electron have units of cm2 sr−1 per

electron, unlike the Sia of the state |ϕi〉, which are unitless

quantities.

The differential cross section can be computed via the trace

operator such that

dσ

d�
= Tr(ρiρe) (cm2 sr−1 per electron), (7)

where the term on the left of the equal sign is the usual

definition for the differential scattering cross section, and the

term on the right is the trace of the matrix multiplication of

the incident photon density matrix ρi of Eq. (4) with the den-

sity matrix of a spin-polarized Compton electron of Eq. (6).

Evaluating Eq. (7) gives

Tr(ρiρe) = 1
2
(Si0S0 + Si1S1 + Si2S2 + Si3S3). (8)

The unknown parameters Sa are found using the Compton

scattering matrix formalism [21]. The Stokes parameters in

this formalism are defined in the optics representation and

are labeled P0, P1, P2, and P3. The correspondence between

the Stokes parameters expressed in the optical and particle

physics representations are P0 = S0, P1 = S1, P2 = S2,

and P3 = −S3. The appearance of the negative sign in the

third parameter P3 = −S3 occurs because the helicities of

circular polarization in the optical representation are opposite

to the particle-physics representation.

Performing the substitution Pia �→ Sia in matrix formalism

prescribed by McMaster gives the following result for the

Compton scattering cross section for a single photon:

dσ

d�
=

r2
0

2

(

E (θ )

E0

)2
[

1 0 0 0
]

×

⎡

⎢

⎢

⎣

t11 t12 0 t14

t12 2 − t12 0 t24

0 0 t33 t34

t41 t42 t43 t44

⎤

⎥

⎥

⎦

×

⎡

⎢

⎢

⎣

1 0 0 0

0 cos 2φ sin 2φ 0

0 − sin 2φ cos 2φ 0

0 0 0 1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

Si0

Si1

Si2

−Si3

⎤

⎥

⎥

⎦

, (9)

where the interpretation of the tmn matrix elements are dis-

cussed in Ref. [20]. The elements tmn given in Table I can

be separated into two groups: one dependent on and one

independent of the spin Ŝ of a Compton electron. Evaluating

Eq. (9) gives

dσ

d�
=

r2
0

2

(

E (θ )

E0

)2

× (Si0t11 + Si1t12 cos 2φ + Si2t12 sin 2φ − Si3t14).
(10)

Comparing Eqs. (8) and (10) term by term, one can obtain

the Sa parameters for a Compton electron in terms of the tmn

matrix elements. Substituting in Eq. (6) gives

ρe =
r2

0

2

(

E (θ )

E0

)2
[

t11 − t14 t12e−2iφ

t12e2iφ t11 + t14

]

. (11)
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TABLE I. Definitions of the tmn matrix elements.

(a) Spin-independent terms (b) Spin-dependent terms

t11 = 1 + cos2 θ + [E0 − E (θ )](1 − cos θ ) t14 = −(1 − cos θ )[E0 cos θ ẑ + E (θ )n̂] · Ŝ

t12 = t21 = sin2 θ t24 = E0(1 − cos θ )(n̂ × ẑ) · (ẑ × Ŝ)

t13 = t23 = t31 = t32 = 0 t34 = E0(1 − cos θ )(ẑ × n̂) · Ŝ

t22 = 2 − t12 = 2 − sin2 θ t41 = −(1 − cos θ )[E (θ ) cos θ n̂ + E0 ẑ] · Ŝ

t33 = 2 cos θ t42 = E (θ )(1 − cos θ )(ẑ × n̂) · (n̂ × Ŝ)

t44 = 2 cos θ + [E0 − E (θ )](1 − cos θ ) cos θ t43 = −E (θ )(1 − cos θ )(ẑ × n̂) · Ŝ

Let the density matrix ρ
(sp)
e denote a pair of space-like sepa-

rated Compton polarimeters operating in coincidence mode,

where the superscript “sp” labels a pair of electron Compton

polarimeters in the spin-polarized configuration. Let the den-

sity operator for electrons 1 and 2 be denoted by ρ (1)
e and ρ (2)

e ,

respectively, such that ρ
(sp)
e = ρ (1)

e ⊗ ρ (2)
e , or more concretely,

ρ (sp)
e =

r4
0

4

(

E (θ1)

E0

)2(
E (θ2)

E0

)2

×

⎡

⎢

⎢

⎢

⎢

⎢

⎣

(

t
(1)
11 − t

(1)
14

)(

t
(2)
11 − t

(2)
14

)

t
(2)
12

(

t
(1)
11 − t

(1)
14

)

e−2iφ2 t
(1)
12

(

t
(2)
11 − t

(2)
14

)

e−2iφ1 t
(1)
12 t

(2)
12 e−2i(φ1+φ2 )

t
(2)
12

(

t
(1)
11 − t

(1)
14

)

e2iφ2
(

t
(1)
11 − t

(1)
14

)(

t
(2)
11 + t

(2)
14

)

t
(1)
12 t

(2)
12 e−2i(φ1−φ2 ) t

(1)
12

(

t
(2)
11 + t

(2)
14

)

e−2iφ1

t
(1)
12

(

t
(2)
11 − t

(2)
14

)

e2iφ1 t
(1)
12 t

(2)
12 e2i(φ1−φ2 )

(

t
(1)
11 + t

(1)
14

)(

t
(2)
11 − t

(2)
14

)

t
(2)
12

(

t
(1)
11 + t

(1)
14

)

e−2iφ2

t
(1)
12 t

(2)
12 e2i(φ1+φ2 ) t

(1)
12

(

t
(2)
11 + t

(2)
14

)

e2iφ1 t
(2)
12

(

t
(1)
11 + t

(1)
14

)

e2iφ2
(

t
(1)
11 + t

(1)
14

)(

t
(2)
11 + t

(2)
14

)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (12)

where the superscript l = 1, 2 of the t (l )
mn matrix elements

labels the matrix elements associated with the Compton elec-

trons involved in the scattering of γ1 and γ2, respectively.

IV. PROPERTIES OF ANNIHILATION PHOTONS

Let |	en〉 represent the wave vector for a pair of entan-

gled annihilation photons generated by the annihilation of

an electron and a positron. Prior to their annihilation, the

electron-positron pair is assumed to be momentarily bound

together in a singlet state called para-positronium, often ab-

breviated as p-Ps. Determining |	en〉 requires an examination

of both the physical properties of the p-Ps state itself and the

conservation laws with which it must comply. In the ensuing

discussion, we work in the rest frame of the p-Ps system and

assume that it exists in a field-free environment. In the event

of annihilation, we only consider the prevalent decay channel

characterized by the emission of two maximally entangled

photons.

In the rest frame of p-Ps disintegration, both photons

are emitted with kinetic energy E0 and possess identical

magnitudes of linear momentum, denoted k. The net lin-

ear momentum of the emitted photons must sum to zero

to conserve linear momentum. Working in a global coordi-

nate system, if we detect photon 2 moving to the right with

momentum +�k, then the conservation of linear momentum

dictates that photon 1 must travel in the opposite direction

(to the left) with momentum −�k. However, it is important

to note that in the subsequent sections we adopt a specific

nomenclature in which each photon is defined within its own

local coordinate system, as depicted in Fig. 3. Consequently,

we denote the momentum of photon 1 in its local coordinate

system so that �k1 = −�k, while the momentum of photon 2

is denoted as �k2 =�k. During the initial moment of creation,

the wave functions of the two photons overlap, and at this

point, the two photons are identical and indistinguishable.

Consequently, it is equally likely that photon 1 is emitted

with momentum +�k while photon 2 carries momentum −�k,

or vice versa. This implies that the state |	en〉 must have two

degrees of freedom in linear momenta, each with an equal

probability of being observed. Thus, within the framework

of the local coordinate system, two distinct momentum basis

states arise: | − k, k〉 (that is, |k1, k2〉) and |k,−k〉 (that is,

| − k1,−k2〉). That is, the normalized linear momentum part,

denoted by |ψ±
k

〉, of the state |	en〉, can be described in one

FIG. 3. In the method used here, the basis states |R1〉 and |R2〉 of

photon 1 (γi1) and 2 (γi2), respectively, are each defined in terms

of a local coordinate system represented by the set of unit vec-

tors {x̂1, ŷ1, ẑ1} and {x̂2, ŷ2, ẑ2}, such that x̂1 = x̂2, ŷ1 = −ŷ2,

ẑ1 = −ẑ2, and�k1 = −�k2.

033719-4
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of two possible ways such that

|ψ±
k 〉 =

1
√

2
|k1, k2〉 ±

1
√

2
| − k1,−k2〉, (13)

where the subscript “k” in |ψ±
k

〉 denotes the momentum state.

The singlet state of p-Ps possesses a net spin angular mo-

mentum of zero regardless of the choice of coordinate system.

For the conservation of the angular momentum of the spin to

hold, the spin basis vectors can only be |R1, R2〉 and |L1, L2〉.
For this reason, the state |	en〉 must also have two degrees of

freedom in spin momenta. In other words, the normalized spin

angular momentum part of the state |	en〉 can be described in

one of two possible ways. Specifically,

|ψ±
c 〉 =

1
√

2
|R1, R2〉 ±

1
√

2
|L1, L2〉, (14)

where the subscript “c” denotes circular polarization basis.

Note that both |ψ±
k

〉 and |ψ±
c 〉 represent Bell state wave vec-

tors. This implies that the annihilation photons are maximally

entangled in both linear and spin angular momenta.

Considering that the disintegration of p-Ps into two pho-

tons is an electromagnetic process, where parity is a conserved

quantity, and given that p-Ps exhibit odd behavior under a

parity transformation, it follows that the state |	en〉 must also

exhibit odd behavior under such a transformation. When a par-

ity operator �̂ is applied to the linear and angular momentum

basis states, it results in the following transforms:

�̂| ± k〉 = | ∓ k〉 and �̂|R〉 = |L〉, �̂|L〉 = |R〉.

For completeness, it can be shown using the definitions for

|V 〉, |H〉, and | ± 45〉 in Eqs. (1b) and (1c) that

�̂|V 〉 = |V 〉, �̂|H〉 = −|H〉, �̂| ± 45〉 = ±i| ∓ 45〉.

By utilizing Eqs. (13) and (14), we can combine the even

parity of the linear momentum state with the odd parity of

the polarization state, and vice versa. This combination yields

two potential candidates for the state |	en〉, both of which are

normalized. Let us refer to these candidates as |	A〉 and |	B〉
such that

|	A〉 = |ψ−
c 〉 ⊗ |ψ+

k 〉 (15a)

and

|	B〉 = |ψ+
c 〉 ⊗ |ψ−

k 〉. (15b)

Upon examining |	A〉 and |	B〉 in the given equations and

referencing Eqs. (13) and (14), it becomes apparent that both

states exhibit symmetry under the exchange of photons. This

symmetry is expected since each state represents a configura-

tion of two bosons.

Furthermore, it is relatively straightforward to show that

both |	A〉 and |	B〉 are odd under a parity transform, and thus

parity is conserved in the annihilation of p-Ps into a pair of

entangled photons. That is,

�̂|	A〉 = (−|ψ−
c 〉) ⊗ |ψ+

k 〉 = −|	A〉,

and

�̂|	B〉 = |ψ+
c 〉 ⊗ (−|ψ−

k 〉) = −|	B〉.

Since 〈ψ−
k

||ψ+
k

〉 = 0 and 〈ψ−
c ||ψ+

c 〉 = 0, then |	A〉 is or-

thogonal to |	B〉, that is, 〈	A||	B〉 = 0, implying that |	A〉
and |	B〉 represent two distinct candidates for the state |	en〉.

To determine which state |	A〉 or |	B〉 is the correct solu-

tion for state |	en〉, we direct our attention to the |ψ±
c 〉 states.

Specifically, we expand the |R〉 and |L〉 in terms of the vertical

|V 〉 and |H〉 states, such that

|R〉 =
1

√
2
|V 〉 +

1
√

2
|H〉,

|L〉 =
1

√
2
|V 〉 −

1
√

2
|H〉.

(16)

Substituting into the two solutions given in Eq. (14) gives

|ψ−
c 〉 ⇒

1
√

2
|V1, H2〉 +

1
√

2
|H1,V2〉 (17)

and

|ψ+
c 〉 ⇒

1
√

2
|V1,V2〉 +

1
√

2
|H1, H2〉. (18)

The results of the linear polarization transformation of

Eqs. (17) and (18) lead to two significant conclusions. First,

the transformation from a circular to a linear polarization basis

converts a Bell state into another Bell state. Second, the linear

polarization transformation of |ψ−
c 〉 yields a cross-polarized

Bell state. This implies that if one photon is randomly po-

larized in a certain plane, the other photon, traveling in the

opposite direction, will be linearly polarized in a plane per-

pendicular to the first.

On the contrary, when the linear polarization transforma-

tion is applied to |ψ+
c 〉, it results in a coplanar polarized

Bell state in which both photons are polarized in the same

plane. Previous theoretical studies have demonstrated that the

coincidence count rates of Compton scattering differ between

photon pairs with cross- and coplanar polarization [3]. This,

coupled with experimental observations which align with co-

incidence count rates consistent with the cross-polarized Bell

state |ψ−
c 〉 [2,23–27], implies that the state |	B〉 can be ex-

cluded as a valid solution for |	en〉.
One other conceivable polarization state labeled as |φ−〉

that could serve as a potential model for describing annihila-

tion photons is given by

|φ−〉 =
1

√
2
|V1, H2〉 −

1
√

2
|H1,V2〉.

However, upon transforming |φ−〉 into the circular basis, we

obtain

|φ−〉 ⇒
1

√
2
|L1, R2〉 −

1
√

2
|R1, L2〉.

Given that the p-Ps state has a spin of zero, upon transforming

|φ−〉 into the circular polarization basis, it is crucial to note

that the resulting state has a total spin angular momentum of

two units. This observation shows that |φ−〉 cannot represent

a viable model for entangled photons from the annihilation of

p-Ps in its ground state, as it violates the conservation of the

spin angular momentum.

In summary, for a state to be considered a valid candidate

for annihilation photons represented by |	en〉, it must meet
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FIG. 4. Nomenclature for p-Ps entangled photons Compton scattering in the rest frame of p-Ps. Two 0.511-MeV photons, γ1 and γ2, move

in opposite directions along a common line. Each Compton photon scatters at a polar angle θi (i = 1, 2) with a spin-polarized stationary

electron. Photon states described in respective coordinate systems with the Compton electron at the origin. Insert: The perspective of viewer

2 shows the relative angle between the scattering planes as x̂′

1 · x̂′

2 = cos(φ1 + φ2), where φ1 and φ2 are azimuthal angles. The trajectories of

scattered photons γ f 1 and γ f 2 lie in the yellow shaded scattering plane, with unit vectors x̂′

1 and x̂′

2 perpendicular to their planes.

several requirements. First, it should exhibit rotational sym-

metry, ensuring the conservation of spin angular momentum

(for more details, see Appendix A). Second, it must con-

serve parity and linear momentum. Moreover, the state should

demonstrate Bose symmetry under the exchange of photons,

while accounting for the indistinguishable nature of the pho-

ton pair creation. Taking these constraints into account, it is

reasonable to conclude that |	A〉 satisfies all these criteria.

Therefore, we can conclude that

|	en〉 = |	A〉 = |ψ−
c 〉 ⊗ |ψ+

k 〉, (19a)

or explicitly,

|	en〉 = 1
2
(|R1, R2〉 − |L1, L2〉)(|k1, k2〉 + | − k1,−k2〉).

(19b)

V. BASIS INDEPENDENCE

The objective of this section is to demonstrate the basis

independence of the 2-Compton cross section, more com-

monly referred to as the Pryce-Ward joint differential cross

section, for Compton scattering of annihilation photons [10].

To establish this independence, we will use the Stokes vector

formalism as outlined in Refs. [21,22]. In Sec. VI, this re-

sult will be used to examine the possibility of entanglement

breaking between a pair of annihilation photons through an

intermediate Compton interaction.

For the purpose of the following proof, we only need

to consider the polarization component |ψ−
c 〉 provided in

Eq. (14), of the state vector |	en〉 given in Eq. (19). Thus,

|ψ−
c 〉 has the explicit form

|ψ−
c 〉 =

1
√

2
|R1, R2〉 −

1
√

2
|L1, L2〉. (20)

In Sec. IV, it was demonstrated that the expansion of

|ψ−
c 〉 in terms of the linear basis |V 〉 and |H〉 results in the

transformation into another Bell state, given in Eq. (17). Let

|ψl〉 represent this transformed Bell state, with the subscript

“l” indicating that it is expanded in terms of the linear basis.

Specifically, we have the following:

|ψ−
c 〉 ⇒ |ψl〉 =

1
√

2
|V1, H2〉 +

1
√

2
|H1,V2〉. (21)

Finally, one could equally have chosen to expand |R〉 and |L〉
in terms of the diagonal basis | + 45〉 and | − 45〉 (refer to

Appendix B), and performing the necessary calculations, we

find that |ψ−
c 〉 undergoes a transformation into a Bell state rep-

resented in terms of the diagonal basis, denoted as |ψd〉. Here,

the subscript “d” signifies the diagonal bases. Therefore, we

have the following:

|ψ−
c 〉 ⇒ |ψd〉 =

1
√

2
| + 451,+ 452〉 +

1
√

2
|−451,−452〉.

(22)

In the above expression, it is implied that the kets | ±
451,±452〉 are cross-polarized relative to each other. To clar-

ify, consider an example: The ket | + 451〉 represents a plane

of vibration that lies in the first and third quadrants with re-

spect to the local coordinate system {x1, y1, z1}. Similarly, the

plane of vibration of | + 452〉 lies in the first and third quad-

rants with respect to the local coordinate system {x2, y2, z2}.
However, from the perspective of the {x1, y1, z1} coordinate

033719-6



STOKES-PARAMETER REPRESENTATION FOR COMPTON … PHYSICAL REVIEW A 109, 033719 (2024)

system, the vibration plane of | + 452〉 is placed in the second

and fourth quadrants.

Let the density matrices corresponding to the polariza-

tion states |ψ−
c 〉, |ψl〉, and |ψd〉 be represented as ρ−

c =
|ψ−

c 〉〈ψ−
c |, ρl = |ψl〉〈ψl |, and ρd = |ψd〉〈ψd |, respectively.

Since |ψ−
c 〉 = |ψl〉 = |ψd〉, it follows then that

ρ−
c = ρl = ρd = ρen =

1

2

⎡

⎢

⎢

⎣

1 0 0 −1

0 0 0 0

0 0 0 0

−1 0 0 1

⎤

⎥

⎥

⎦

, (23)

where the existence of the off-diagonal elements in the density

matrix ρen is the quantum signature of an entangled superpo-

sition of product states.

The Compton scattering cross section, which describes the

scattering distributions of annihilation photons in coincidence

measurement using a pair of space-like separated spin polar-

ized electrons (as depicted in Fig. 4), can now be performed by

taking the trace of the matrix product between ρen, as defined

in Eq. (23), and ρ
(sp)
e , Eq. (12). This can be expressed as

follows:

∂2σ

∂�1∂�2

∣

∣

∣

∣

∣

sp

=
1

4
Tr

(

ρenρ
(sp)
e

)

. (24)

Expressed in terms of the matrix elements t (l )
mn, Eq. (24) evalu-

ates to

∂2σ

∂�1∂�2

∣

∣

∣

∣

∣

sp

=
r4

0

16

(

E (θ1)

E0

)2(
E (θ2)

E0

)2

×
[

t
(1)
11 t

(2)
11 + t

(1)
14 t

(2)
14 − t

(1)
12 t

(2)
12 cos 2(φ1 + φ2)

]

.

(25)

The term t
(1)
14 t

(2)
14 in Eq. (25) represents the spin-spin coupling

between the incoming annihilation photons and the spin-

polarized Compton electrons.

For experiments using unpolarized electron spin Comp-

ton polarimeters, cross sections can be computed by setting

Ŝ =�0. In this case, the spin-dependent tmn terms in Table I

evaluate to zero. Let ρ (un)
e be a density operator that describes

a pair of independent unpolarized electrons, with the subscript

“un” indicating unpolarized electrons. Consequently, Eq. (12)

simplifies to

ρ (un)
e =

r4
0

4

(

E (θ1)

E0

)2(
E (θ2)

E0

)2

⎡

⎢

⎢

⎢

⎢

⎢

⎣

t
(1)
11 t

(2)
11 t

(2)
12 t

(1)
11 e−2iφ2 t

(1)
12 t

(2)
11 e−2iφ1 t

(1)
12 t

(2)
12 e−2i(φ1+φ2 )

t
(2)
12 t

(1)
11 e2iφ2 t

(1)
11 t

(2)
11 t

(1)
12 t

(2)
12 e−2i(φ1−φ2 ) t

(1)
12 t

(2)
11 e−2iφ1

t
(1)
12 t

(2)
11 e2iφ1 t

(1)
12 t

(2)
12 e2i(φ1−φ2 ) t

(1)
11 t

(2)
11 t

(2)
12 t

(1)
11 e−2iφ2

t
(1)
12 t

(2)
12 e2i(φ1+φ2 ) t

(1)
12 t

(2)
11 e2iφ1 t

(2)
12 t

(1)
11 e2iφ2 t

(1)
11 t

(2)
11

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (26)

It follows that the Compton cross section for annihilation pho-

tons scattering off unpolarized Compton electrons evaluates to

∂2σ

∂�1∂�2

∣

∣

∣

∣

∣

un

=
r4

0

16

(

E (θ1)

E0

)2(
E (θ2)

E0

)2

×
[

t
(1)
11 t

(2)
11 − t

(1)
12 t

(2)
12 cos 2(φ1 + φ2)

]

. (27)

By substituting E0 = 1 into Eq. (27), we obtain the Pryce-

Ward differential cross section [10]. This finding emphasizes

that the cross section described in Eq. (27), i.e., the Pryce-

Ward formula itself, is not restricted to solely describing

the probability of scattering of cross-polarized annihilation

photons, defined in Eq. (21). Instead, it serves as a valid

framework for describing the scattering probability of anni-

hilation photons when employing the basis change defined in

Eqs. (20), (21), or (22).

VI. CONTRADICTION IN ENTANGLEMENT

BREAKING ASSUMPTION

When entangled particles interact with the environment,

their entanglement can be lost or significantly reduced. In a

recent experiment, it was reported that a complete loss of

entanglement of the annihilation photons was achieved by

allowing one of the annihilation photons to undergo an inter-

mediate Compton scattering event before reaching a Compton

polarimeter [12]. In these experiments, the angular correla-

tions of the maximally entangled annihilation photons were

found to be identical to those of the reported “unentangled

photons.” However, no conclusive evidence was provided

to demonstrate the production of completely unentangled

photons. In the absence of such evidence, the reported pro-

duction of unentangled annihilation photons is treated as an

assumption.

A change of basis in the initial annihilation photon state,

as part of any valid description for an entanglement-breaking

mechanism, should have no effect on the measured scattering

distributions. Using the results presented in Sec. V, partic-

ularly Eq. (23), where the density matrix, denoted ρen, can

be equivalently expressed in terms of the linear or circular

basis (ρen = ρl = ρ−
c ), we will demonstrate that the assumed

hypothesis leads to contradictory results.

The consequences of complete loss of entanglement are

investigated by first considering the density matrix ρen = ρl

associated with the state vector |ψl〉, given in Eq. (21). In

terms of the linear polarization basis, ρl is defined as follows:

ρen = ρl = |ψl〉〈ψl | = 1
2
|V1, H2〉〈V1, H2| + 1

2
|H1,V2〉〈H1,V2|

+ 1
2
|V1, H2〉〈H1,V2| + 1

2
|H1,V2〉〈V1, H2|. (28)

The density matrix ρl represents maximally entangled an-

nihilation photons before any Compton interactions have

occurred, as illustrated in Fig. 5(a). In the linear basis
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FIG. 5. Examining the consequences of the entanglement-

breaking mechanism between annihilation photons (Bell state), as

discussed in Ref. [12], in which the polarization correlations are

preserved at small scattering angles (<25◦). A pair of Compton

polarimeters operating in coincidence mode is used to measure the

scattering distributions of the resulting photons. (a) Creation of the

Bell state ρen = ρl = ρ−
c [Eq. (23)]. (b) Considering the Bell state

in the linear polarization basis, denoted by ρen = ρl , it must col-

lapse into the mixed state ρml [Eq. (29b)] in order to maintain the

cross-polarization correlations. (c) Counterscenario: The experimen-

tal setup mirrors (b) but is considered in the circular polarization

basis. To maintain the right-right or left-left polarization correlations,

the state ρen = ρ−
c must collapse into the mixed state ρmc [Eq. (31b)].

Since the setups in (b) and (c) are not physically different, the

assumption of entanglement breaking holds true only when the mea-

sured scattering distributions are identical.

representation, the polarization of the annihilation photons

exhibits cross-polarization correlations. The assumption of

complete entanglement loss holds that, to a good approxi-

mation, these cross-polarization correlations persist following

Compton scattering at small angles (<25◦). Thus, to satisfy

the condition of complete entanglement loss while preserving

cross-polarization correlations at small scattering angles, the

third and fourth terms in Eq. (28) must vanish following the

intermediate scattering, as depicted in Fig. 5(b). This results

in a density matrix denoted ρml given by

ρml = 1
2
|V1H2〉〈V1H2| + 1

2
|H1V2〉〈H1V2|, (29a)

where “ml” represents a linearly mixed cross-polarized state,

which evaluates to

ρml =
1

4

⎡

⎢

⎢

⎣

1 0 0 −1

0 1 −1 0

0 −1 1 0

−1 0 0 1

⎤

⎥

⎥

⎦

. (29b)

The density matrix ρml is the mixed state assumed to be

created in an intermediate Compton scattering interaction.

However, the entangled annihilation state can be equally

described in the circular basis represented by the state vector

|ψ−
c 〉 [refer to Eq. (14)]. In this equivalent scenario, one could

consider the entangled state in terms of the density matrix

ρen = ρ−
c , where

ρen = ρ−
c = |ψ−

c 〉〈ψ−
c |

= 1
2
|R1, R2〉〈R1, R2| + 1

2
|L1, L2〉〈L1, L2|

− 1
2
|R1, R2〉〈L1, L2| − 1

2
|L1, L2〉〈R1, R2|, (30)

In the circular basis representation, the polarization of the

annihilation photons exhibits right-right and left-left polar-

ization correlations. If we again invoke the same assumption

that the polarization correlations persist following Compton

scattering at small angles, as depicted in Fig. 5(c), then the

third and fourth terms in Eq. (30) must also vanish after the

intermediate scattering event. This leads to a density matrix

denoted by ρmc, such that

ρmc = 1
2
|R1, R2〉〈R1, R2| + 1

2
|L1, L2〉〈L1, L2|, (31a)

which evaluates to

ρmc =
1

2

⎡

⎢

⎢

⎣

1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

⎤

⎥

⎥

⎦

. (31b)

If the states ρml or ρmc are then measured using a pair of

Compton polarimeters in coincidence mode, as depicted in

Figs. 5(b) and 5(c), then the cross sections for ρml and ρmc

can be evaluated, respectively, as follows:

1

4
Tr(ρmlρ

(un)) =
r4

0

16

(

E (θ1)

E0

)2(
E (θ2)

E02

)2

×
(

t
(1)
11 t

(2)
11 − t

(1)
12 t

(2)
12 cos 2φ1 cos 2φ2

)

(32a)

and

1

4
Tr

(

ρmcρ
(un)
e

)

=
r4

0

16

(

E (θ1)

E0

)2(
E (θ2)

E02

)2

t
(1)
11 t

(2)
11 , (32b)

where E02 is the incident energy of γ2 as it enters the polarime-

ter on the right in Figs. 5(b) and 5(c) such that E02 < E0.

Upon examination of Eqs. (32a) and (32b), it becomes

evident that, in general, the proposed assumption of complete

entanglement breaking leads to nonequivalent cross sections.

Only for specific values of φ1 = φ2 = ±π/4,±3π/4 will

the assumption of breaking the entanglement, as stipulated,

not lead to contradictory experimental results. Therefore, this

qualitative line of reasoning, involving a change in basis,

demonstrates that a single intermediate Compton scattering
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event cannot, in general, completely break entanglement in the

manner adopted by the assumption, as it would lead to para-

doxical experimental outcomes. Consequently, conclusions

based on this proposition would require a reinterpretation.

VII. CLASSICAL VS QUANTUM CORRELATIONS

This section aims to address the conflicting reports [28–32]

concerning the predicted azimuthal correlations of the mixed

state ρml .

To quantify the azimuthal correlations between pairs of

photons in Compton scattering experiments, we consider the

case where both θ1 and θ2 are equal to a common value θ .

By comparing the counting rate N⊥ when the sum of the

azimuthal angles φ1 and φ2 is 90◦ with the counting rate N‖
when the sum is 0◦, we can calculate the asymmetric ratio

Z (θ ) =
N⊥

N‖
. (33)

The functions of the asymmetric ratios Zen and Zml are

defined in terms of the tmn matrix elements. These functions

can be obtained using the Compton cross sections for ρen

[Eq. (27)] and ρml [Eq. (32a)], such that

Z (θ )en =
t2
11 + t2

12

t2
11 − t2

12

(34a)

(refer to Appendix E) and

Z (θ, φ2)ml =
t2
11 + t2

12 cos2 2φ2

t2
11 − t2

12 cos2 2φ2

(34b)

(refer to Appendix F).

This analysis shows that the asymmetric ratio Z (θ, φ2)ml

has a value of 1 for any scattering angle θ only when φ2 has

values of ±π/4, ±3π/4, which is different from the reported

result in Refs. [28,33], where it is claimed that Z (θ, φ2)ml is

unity for all values of θ and azimuthal angles.

Upon further examination of the asymmetric ratios given in

Eq. (34), we find that the ratio for the annihilation photons, as

described by Eq. (34a), remains invariant with respect to the

azimuthal angle. However, setting φ2 = 0 in Eq. (34b) results

in Z (θ )en = Z (θ, φ2 = 0)ml .

Indeed, setting φ2 = 0 in the cross sections for ρen

[Eq. (27)] and ρml [Eq. (32a)], we obtain the following

identity:

∂2σ (φ2 = 0)

∂�1∂�2

∣

∣

∣

∣

∣

ml

=
∂2σ (φ2 = 0)

∂�1∂�2

∣

∣

∣

∣

∣

unp

=
r4

0

16

(

E (θ1)

E0

)2

×
(

E (θ2)

E0

)2
(

t
(1)
11 t

(2)
11 − t

(1)
12 t

(2)
12 cos 2φ1

)

.

(35)

This situation for the mixed state ρml is depicted diagrammat-

ically in Fig. 6.

Hiesmayr et al. [3] also observed a similar identity using

Kraus-type structures to calculate Compton scattering cross

sections. However, it is important to note that this identity

does not require mutually unbiased bases to distinguish be-

tween states ρml and ρen. The reason for this lies in the

FIG. 6. The scenario where the Compton cross section for the

ρml mixed state matches that of maximally entangled annihila-

tion photons represented by the density matrix ρen. A hypothetical

mixed-state photon emitter releases 0.511-MeV photon pairs, each

undergoing subsequent Compton scattering. In the case ρml , the

photon polarization is exclusively aligned along the x or y axis. The

counting rates depend on the chosen coordinate system relative to

the direction of polarization. To achieve identical coincidence rates

as annihilation photons, the x and y axes of a local coordinate system

must align with the states |V 〉 and |H〉 of the emitted pair. To achieve

this, we set φ2 = 0 and allow γ1 to scatter at any (θ1, φ1). In contrast

to annihilation photons, the counting rate remains invariant under a

rotation about the propagation axis.

conservation of the spin angular momentum during the dis-

integration of p-Ps, which prevents the production of ρml with

polarization states exclusively aligned along the x axis or the

y axis. In contrast, ρen (detailed in Appendix A) is rotationally

symmetric about the propagation axis.

VIII. WITNESSING ENTANGLEMENT

IN ANNIHILATION PHOTONS

In the previous section, it was demonstrated that the asym-

metric ratio of the state ρml lacks rotational invariance around

the axes of propagation, unlike the ratio for annihilation pho-

tons denoted as ρen. This invariance is a consequence of the

state ρml no longer representing, as it did in the original

system of coordinates, a state in which the two photons have

orthogonal directions of polarization. Instead, it can be shown

that, in a rotated frame, these directions can be orthogonal or

parallel.

Bohm and Aharonov [34] showed that the correct wave

function for the annihilation photons must ensure that the

polarization of the two photons maintains orthogonality, re-

gardless of the chosen x-y axes. To allow for this symmetry in

a classical model of the annihilation photons, where the quan-

tum superposition principle is not present, they supposed that

when the annihilation photons are created and each photon has

separated sufficiently from the other, the annihilation photons

are no longer described by the wave function |ψl〉, Eq. (21),

which has a definite phase relation between its components.

Instead, they considered a classically cross-polarized corre-

lated mixed state ρ(α)l (refer to Appendix C for more details)
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given by

ρ(α)l = 1
2
|V1(−α), H2(α)〉〈V1(−α), H2(α)|

+ 1
2
|H1(−α),V2(α)〉〈H1(−α),V2(α)|. (36)

Relative to a rotated frame about the propagation axis by an

angle α, each photon of the cross-polarized mixed state ρ(α)l

has some definite state of linear polarization, which is at right

angles to that of the other. To obtain symmetry in the final sta-

tistical results, they supposed, wherever necessary, that there

is a uniform statistical distribution over any direction that may

be favored in each individual case.

Let the density matrix ρls denote this supposed mixed state.

This state can be obtained by taking the sum of the individual

cases denoted by ρ(α)l , where the azimuthal angle α ranges

from 0 to 2π , weighted by a probability of 1/2π for each

angle α, such that

ρls =
1

2π

∫ 2π

α=0

ρ(α)lrdα =
1

4

⎡

⎢

⎢

⎣

1 0 0 −1

0 1 0 0

0 0 1 0

−1 0 0 1

⎤

⎥

⎥

⎦

, (37)

where the subscript “s” refers to a rotationally symmetric

cross-polarized mixed state.

In many cases, one obtains the same probability for an

arbitrary direction of polarization of any one of the photons.

While ρ(α)l itself does not maintain a net spin of zero under

rotation around the propagation axis, on average, the conser-

vation of angular momentum holds for ρls (for more details,

see Appendix D).

The cross section for ρls is given by

1

4
Tr

(

ρlsρ
(un)
e

)

=
r4

0

32

(

E (θ1)

E0

)2(
E (θ2)

E0

)2

×
[

2t
(1)
11 t

(2)
11 − t

(1)
12 t

(1)
12 cos 2(φ1 + φ2)

]

. (38)

The corresponding asymmetric ratio Z (θ )ls of ρls is given by

(see Appendix G for more detail)

Z (θ )ls =
2t2

11 + t2
12

2t2
11 − t2

12

. (39)

As can be seen, Eq. (39) is invariant under a rotation about

the propagation axis. The density matrix ρls serves as a suf-

ficient classical counterpart of the entangled state ρen since

it maintains similar polarization correlations and symmetrical

properties of the wave function given in Eq. (21) of the entan-

gled annihilation photon. Figure 7 plots the asymmetric ratio

for both the maximally entangled state ρen and its classical

counterpart ρls.

The analytical solution for the ratio of ρls is compared

to the QE-GEANT4 simulation of the same state provided by

Watts et al. [2]. The simulated and theoretical results for the

mixed state ρls agree well. Furthermore, the upper bound of

the mixed state ρls, found to be 1.63, aligns with the result re-

ported in Ref. [34]. The asymmetric ratio of the mixed state ρls

serves as an upper bound that delineates between azimuthal

correlations influenced by entanglement and those not. Any

experimental data falling within the shaded yellow region

signifies azimuthal correlations influenced by entanglement.

FIG. 7. Entanglement witnessing (shaded region) for annihila-

tion photons in asymmetric ratio-type measurements, as a function

of the Compton scattering angle θ1 = θ2 = θ for the ideal geometry.

The annihilation state (–), Eq. (34a), is compared to its classical

counterpart ρsl (–), Eq. (39). QE-GEANT4 generated results for state

ρsl (°) by Watts et al. [2].

An alternative approach to witnessing entanglement in an-

nihilation photons is through a quantity R(θ, η). It is defined

as

R(θ, η) = 1 +
1 − Z (θ )

1 + Z (θ )
cos 2η, (40)

where η = φ1 + φ2. The quantity R(θ, η) has several useful

properties. Firstly, deviations of R(θ, η) from unity indicate

correlations between the momenta [24]. When the momenta

of the scattered photons are uncorrelated, R(θ, η) equals unity

for all values of η. Lastly, to discern between azimuthal cor-

relations influenced by entanglement and those that are not,

a modified function denoted by R(θ, η) can be obtained by

changing R(θ, η) so that the minimum value of R(θ, η) is

unity. For an ideal geometry with θ1 = θ2 = θ = 81.7◦, we

can evaluate R(θ, η) for states ρen and ρsl as

R(θ = 81.7◦, η)en = 1.479 − 0.479 cos 2η (41a)

and

R(θ = 81.7◦, η)ls = 1.240 − 0.240 cos 2η. (41b)

For a detailed derivation of Eqs. (41a) and (41b), please refer

to Appendixes F and G, respectively.

The plots of R(θ, η)en and R(θ, η)ls are presented in

Fig. 8. The function R(θ, η)ls serves as an upper bound for

classically induced correlations. Data points above this bound

indicate correlations influenced by entanglement.
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FIG. 8. Entanglement witnessing (shaded region) for annihila-

tion photons as a function of the angle η = φ1 + φ2 between the

scattering planes in the case of an ideal geometry and where (θ1 =
θ2 = θ = 81.7◦). Annihilation photons (–), Eq. (41a), and their clas-

sical counterparts (–), Eq. (41b).

IX. CONCLUSION

We have developed a flexible theoretical framework that

serves as the foundation for a scalable program encompass-

ing the multiple scattering of spin-polarized and unpolarized

electrons, that can be also applied to various interaction types.

Our investigation reveals that the Compton cross section for

annihilation photons remains independent of the photon po-

larization basis. This finding leads us to present a qualitative

argument demonstrating that a single Compton scattering

event does not necessarily result in complete entanglement

breaking between annihilation photons.

Furthermore, we demonstrate that there is no need to

invoke the contemporary theoretical requirement of mutu-

ally unbiased bases to conduct unambiguous entanglement-

witnessing measurements on annihilation photons. Instead, a

comparison with a hypothetical classical counterpart is suffi-

cient to distinguish between azimuthal correlations influenced

by entanglement and those unaffected by it.

As part of our program, we will incorporate theory to

advance QE-GEANT4, enabling it to account for the behavior

of entangled photons involved in multiple scattering events,

and a theoretical description is currently being developed to

quantify the degree of entanglement in Compton interactions.

Indeed, the use of principles derived from x-ray quantum op-

tics in the MeV wavelength range shows substantial potential

for advancements in various domains, including quantum-

enhanced detection [35], quantum cryptography [36], ghost

imaging, quantum lithography [37], and the facilitation of

quantum coherence, as well as enabling quantum teleportation

over extensive interstellar distances [38,39]. The successful

measurement of pairs of x-ray photons with minimal back-

ground noise serves as evidence of the feasibility of observing

quantum optic phenomena using x-ray photons [37]. Con-

sequently, we anticipate that the framework outlined in this

paper will provide a basis for evaluating the practicality of

extending quantum optics into the MeV energy regime.
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APPENDIX A: ROTATIONAL SYMMETRY

OF ANNIHILATION PHOTONS

Rotating the x-y coordinate axes by an angle β is equivalent

to applying the matrix M(β ) to a Jones vector [40] such that

M(β ) =
[

eiβ 0

0 e−iβ

]

. (A1)

For state |ψ−
c 〉, Eq. (20), to conserve spin angular momen-

tum, it must be rotationally invariant under rotation of the z

axis. This article describes the quantum state of photons 1 and

2 in relation to local coordinate systems defined by the set

of axes {x1, y1, z1} and {x2, y2, z2}, respectively. If viewer 2

applies a counterclockwise rotation of the axes by an angle

β about the z2 axis, then viewer 1 must apply a clockwise

rotation by −β about the z1 axis, ensuring that both local

coordinate systems rotate in unison. Under this rotation, the

state transforms into

|ψ−
c 〉 �⇒ |ψ−

c (β )〉 = M(−β ) ⊗ M(β )|ψ−
c 〉, (A2)

which implies that

|ψ−
c (β )〉 =

1
√

2
M(−β )|R1〉 ⊗ M(β )|R2〉

−
1

√
2

M(−β )|L1〉 ⊗ M(β )|L2〉. (A3)

Evaluating gives

|ψ−
c (β )〉 =

1
√

2
e−iβ |R1〉 ⊗ eiβ |R2〉

−
1

√
2

eiβ |L1〉 ⊗ e−iβ |L2〉. (A4)

Since e±iβ are pure phases and e−iβeiβ = 1, then it follows

that

|ψ−
c (β )〉 = |ψ−

c 〉. (A5)

Therefore, this implies that the density operator ρen of |ψ−
c 〉 is

also invariant under a rotation of the coordinate system, such

that

|ψ−
c (β )〉〈ψc(β )| = |ψ−

c 〉〈ψ−
c |. (A6)
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APPENDIX B: CHANGE OF BASIS

The expansion of |R〉 and |L〉 basis in terms of the diagonal

basis | ± 45〉 is given by

|R〉 =
1

√
2
| + 45〉 +

1
√

2
| − 45〉,

|L〉 =
i

√
2
| − 45〉 −

i
√

2
| + 45〉. (B1)

APPENDIX C: BASIS ROTATION

If the SU(2) matrix M(α) in Eq. (A1) represents a rotation

of a local coordinate system around the z axis by an angle

α, then M(α)† represents a rotation of a Jones vector about

the z axis by an angle α. To clearly differentiate between the

rotation of a coordinate system and the rotation of a Jones

vector, we introduce a rotation matrix N (α), where

M(α)† = N (α) =
[

e−iα 0

0 eiα

]

. (C1)

The rotation of the vertical |V 〉 and horizontal |H〉 basis,

given in Eq. (1b), with respect to the local coordinate systems

labeled 1 and 2, can be expressed as follows:

N (−α)|V 〉 = |V1(−α)〉 =
1

√
2

[

eiα

e−iα

]

,

N (−α)|H〉 = |H1(−α)〉 =
1

√
2

[

eiα

−e−iα

]

, (C2a)

and

|V2(α)〉 = N (α)|V 〉 =
1

√
2

[

e−iα

eiα

]

,

|H2(α)〉 = N (α)|H〉 =
1

√
2

[

e−iα

−eiα

]

. (C2b)

APPENDIX D: ROTATIONAL SYMMETRY OF STATE ρsl

Using the SU(2) matrix M(α) in Eq. (A1), we can rotate

around the z axis with respect to the mixed state ρls given in

Eq. (37). This rotation yields the density matrix in the rotated

frame, denoted as ρ(β )ls, which can be expressed as

ρ(β )ls = M(−β ) ⊗ M(β )ρls[M(−β ) ⊗ M(β )]†. (D1)

Evaluating the above equation, it can be shown that

ρls(β ) = ρls. (D2)

Hence, it follows that ρls exhibits rotational symmetry.

APPENDIX E: ASYMMETRIC RATIO AND AZIMUTHAL

CORRELATION FUNCTIONS OF ρen

By utilizing the cross section presented in Sec. V, Eq. (27),

which characterizes the Compton scattering of the state ρen of

annihilation photons, we define the function

F (θ, η)en = t2
11 − t2

11 cos 2η, (E1)

where we have set θ1 = θ2 = θ and η = φ1 + φ2.

The theoretical counting rate for η = π/2 is proportional

to the function denoted as F (θ )(⊥)
en such that

F (θ )(⊥)
en = t2

11 + t2
12. (E2a)

The theoretical counting rate for η = 0◦ is proportional to the

function denoted as F (θ )(‖)
en such that

F (θ )(‖)
en = t2

11 − t2
12. (E2b)

Hence, the asymmetric ratio Z (θ )en for annihilation photons

is given by

Z (θ )en =
t2
11 + t2

12

t2
11 − t2

12

Q.E.D. (E3)

The associated azimuthal correlation function R(θ, η)en is

given by

R(θ, η)en =
F (θ, η)en

t2
11

= 1 −
t2
12

t2
11

cos 2η. (E4)

Using Eq. (E3), we can show that

t2
12

t2
11

= −
1 − Z (θ )en

1 + Z (θ )en

. (E5)

Substituting Eq. (E5) into Eq. (E4) gives

R(θ, η)en = 1 +
1 − Z (θ )en

1 + Z (θ )en

cos 2η Q.E.D. (E6)

We analyze the azimuthal correlation function at the scattering

angle of 81.7◦. The minimum of R(θ, η)en occurs at η = 0,

so that R(81.7◦, 0) = 0.521. Therefore, the shifted function

R(η)en is given by

R(η)en = R(81.7◦, η)en + (1 − 0.5214), (E7)

which evaluates to

R(η)en = 1.479 − 0.479 cos 2η Q.E.D. (E8)

APPENDIX F: ASYMMETRIC RATIO AND AZIMUTHAL

CORRELATION FUNCTIONS OF ρml

Utilizing the cross section presented in Sec. VII, Eq. (35),

which characterizes the Compton scattering of the mixed

cross polarized state ρml , we define the function

F (θ, η)ml = t2
11 − t2

12 cos 2φ1 cos 2φ2, (F1)

where we have set θ1 = θ2 = θ .

The theoretical counting rate for φ1 + φ2 = π/2 is ob-

tained by substituting φ1 = π/2 − φ2 into Eq. (F1) and is

proportional to the function denoted as F (θ )
(⊥)
ml

such that

F (θ )
(⊥)
ml

= t2
11 + t2

12 cos2 2φ2. (F2a)

The theoretical counting rate for φ1 + φ2 = 0 is obtained by

substituting φ1 = −φ2 into Eq. (F1), and is proportional to the

function denoted as F (θ )
(‖)

ml
such that

F (θ )
(‖)

ml
= t2

11 − t2
12 cos2 2φ2. (F2b)

Hence, the asymmetric ratio Z (θ )ml is given by

Z (θ )ml =
t2
11 + t2

12 cos2 2φ2

t2
11 − t2

12 cos2 2φ2

Q.E.D. (F3)
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APPENDIX G: ASYMMETRIC RATIO AND AZIMUTHAL

CORRELATION FUNCTIONS OF ρls

By employing a similar line of reasoning as described in

Appendix E, we can deduce the asymmetrical ratio Z (θ )sl for

the mixed state ρsl given in Sec. VIII [Eq. (37)]. This mixed

state, when subjected to Compton scattering, is governed by

the cross section given in Eq. (38). We define the function

F (θ, η)ls = 2t2
11 − t2

11 cos 2η, (G1)

where we have set θ1 = θ2 = θ and η = φ1 + φ2.

The theoretical counting rate for η = π/2 is proportional

to the function denoted as F (θ )
(⊥)
ls

such that

F (θ )
(⊥)
ls

= 2t2
11 + t2

12. (G2a)

The theoretical counting rate for η = 0◦ is proportional to the

function denoted as F (θ )
(‖)

ls
such that

F (θ )
(‖)

ls
= 2t2

11 − t2
12. (G2b)

Hence, the asymmetric ratio Z (θ )ls is given by

Z (θ )ls =
2t2

11 + t2
12

2t2
11 − t2

12

Q.E.D. (G3)

The associated azimuthal correlation function R(θ, η)ls is

given by

R(θ, η)ls = 1 +
1 − Z (θ )ls

1 + Z (θ )ls

cos 2η. (G4)

We analyze the azimuthal correlation function at the scattering

angle of 81.7◦ and find that the minimum value of R(θ =
81.7◦, η = 0◦)ls is equal to 0.761. Hence,

R(η)ls = R(θ, η)ls + (1 − 0.761). (G5)

Upon evaluation, we obtain

R(η)ls = 1.240 − 0.240 cos 2η Q.E.D. (G6)
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