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Summary 69 

Tropical forest root characteristics and resource acquisition strategies are underrepresented in 70 

vegetation and global models, hampering prediction of forest-climate feedbacks for these carbon-71 

rich ecosystems. Lowland tropical forests often have globally unique combinations of high 72 

taxonomic and functional biodiversity, rainfall seasonality, and strongly weathered infertile soils, 73 

giving rise to distinct patterns in root traits and functions compared with higher latitude 74 

ecosystems. We provide a roadmap for integrating recent advances in our understanding of tropical 75 

forest belowground function into vegetation models, focusing on water and nutrient acquisition. 76 

We offer comparisons of recent advances in empirical and model understanding of root 77 

characteristics that represent important functional processes in tropical forests. We focus on: 1) 78 

fine-root strategies for soil resource exploration, 2) coupling and tradeoffs in fine root water versus 79 

nutrient acquisition, and 3) above-belowground linkages in plant resource acquisition and use. We 80 

suggest avenues for representing these extremely diverse plant communities in computationally 81 

manageable and ecologically meaningful groups in models for above- and belowground hydro-82 

nutrient functions. Tropical forests are undergoing warming, shifting rainfall regimes, and 83 

exacerbation of soil nutrient scarcity caused by elevated atmospheric CO2. Accurate model 84 

representation of tropical forest functions is crucial for understanding interactions of this biome 85 

with climate.  86 

 87 

Key Words 88 

Fine roots, tropical forests, ecosystem vegetation models, plant functional types, root trait clusters, 89 

hydraulics, nutrient acquisition, phosphorus uptake   90 
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Introduction  91 

Tropical forests are poorly characterized in vegetation models relative to other ecosystems, and 92 

representation of root function lags that of aboveground function (Warren et al., 2015; Bonan & 93 

Doney, 2018). Tropical forests have the highest rates of net primary production (NPP) on Earth 94 

and contain ~30% of terrestrial carbon (C) stocks (Field et al., 1998; Jobbágy & Jackson, 2000; 95 

Hengl et al., 2017), with at least 36% of tropical forest NPP allocated belowground (Aragao et al., 96 

2009; Malhi et al., 2011; Huasco et al., 2021). Fine roots are typically considered the absorptive 97 

portion of the root structure, which absorb nutrients and water (Guo et al., 2008; McCormack et 98 

al., 2015, Table 1). These are typically classified as <2 mm diameter and include branching orders 99 

1 – 3 (e.g., root tips are first order, e.g., https://youtu.be/q_ICrIL62qg, (Freschet et al., 2021a). 100 

Understanding and representing tropical forests’ water and nutrient cycling is of particular 101 

importance in the context of changing tropical forest rainfall regimes and warming (IPCC 2021) 102 

and increased relative nutrient scarcity brought on by accelerated photosynthesis of plants grown 103 

under elevated atmospheric carbon dioxide (CO2) concentrations (i.e., CO2 fertilization) (Hungate 104 

et al., 2003; Fisher et al., 2012; Fleischer et al., 2019). 105 

 106 

Tropical forests in particular are distinct from higher latitude ecosystems across several abiotic 107 

and biotic dimensions, giving rise to unique patterns of root traits and functions. The unique 108 

aspects of tropical forests include combinations of high plant diversity (Eiserhardt et al., 2017), 109 

seasonality dominated by rainfall rather than temperature changes, and the predominance of 110 

lowland tropical forests on strongly weathered soils poor in phosphorus (P) and base cations, which 111 

represent >50% of tropical forests (Holzman, 2008), and commonly leads to P or multi-nutrient 112 

limitation to NPP (Vitousek & Sanford, 1986; Cunha et al., 2022). Tropical forests also have large 113 
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variation in ecosystem characteristics, including exceptions to the above trends such as 114 

monodominant stands of particular species or families (e.g., Dipterocarpaceae) (Janzen, 1974; Hart 115 

et al., 1989; Peh et al., 2011), high-fertility soils (e.g., Quesada et al., 2011; Cusack et al., 2018), 116 

a lack of marked seasonality in rainfall, and/or strong sunlight seasonality because of changes in 117 

cloud cover (Yang et al., 2021). Thus, tropical forests have high alpha and beta diversity (Condit 118 

et al., 2002), both for organisms and ecosystem characteristics, which create empirical and 119 

modeling challenges for characterizing and condensing species into meaningful groups.  120 

 121 

Large-scale models have often worked well with only rudimentary root system functionality or 122 

none at all (Matamala & Stover 2013), but this functionality can break down when models are 123 

confronted with global change factors that alter relationships among soil, plants, and atmosphere 124 

(e.g., Zaehle et al., 2014). To address these challenges, vegetation models typically group plants 125 

according to common characteristics and functions to simplify the diversity in natural ecosystems 126 

(Walker et al., 2014; Medlyn et al., 2015; Fer et al., 2021; Kyker-Snowman et al., 2022), using 127 

plant functional type (PFT) groupings. These have generally focused on aboveground traits and 128 

temperate ecosystems (Wullschleger et al., 2014; Warren et al., 2015). Several leading vegetation 129 

models are now increasing the representation of root functions and inclusion of root characteristics 130 

as part of PFTs (Table 2). Model comparisons for tropical forests indicate that including P 131 

availability, which has been excluded for representation of temperate ecosystems, can improve 132 

representation of outcomes like NPP (Fleischer et al., 2019; Yang et al., 2019; Braghiere et al., 133 

2022; Nakhavali et al., 2022). The time is now ripe to bring together these areas of model 134 

development to improve representation of tropical forests: root functional representation, and 135 

inclusion of key resource constraints in tropical forests.  136 
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 137 

An alternative to the PFT approach is "trait-flexible" models, in which traits are re-assigned at 138 

every generation to new individuals recruiting into the population, rather than being fixed up-front 139 

at the beginning of a simulation as in PFT-based models. Hence, such approaches allow for models 140 

to dynamically consider the full trait spaces in a more flexible way (Scheiter et al., 2013; 141 

Sakschewski et al., 2015). For example, trait-flexible modeling for the Amazon basin provided 142 

greater diversity of belowground trait combinations in response to water scarcity than with PFT 143 

approaches (Rius et al., 2023), making this approach attractive for application to these high 144 

diversity ecosystems where empirical knowledge about trait combinations is limited. However, 145 

most vegetation models representing hydro-biogeochemical functions use the PFT approach. Both 146 

the PFT and the trait-flexible modeling approaches would benefit from more accurate 147 

representation of critical belowground functions in tropical forests, improving outcomes like NPP 148 

and responses to global change. 149 

 150 

This Viewpoint provides a roadmap for strengthening our empirical understanding and model 151 

representation of the unique root functional characteristics of tropical forests (Fig. 1). We focus on 152 

fine roots, including biomass and other traits, with attention to coarse roots (>2 mm diameter) 153 

when relevant. We present: 1) an overview of unique root characteristics in tropical forests in 154 

relation to resource acquisition (reviewed in depth in Cusack et al., 2021). 2) A comparison of our 155 

empirical understanding of tropical fine-root function versus root representation in a sampling of 156 

leading vegetation models, including the topics: a) soil exploration, b) coordination and tradeoffs 157 

in nutrient vs. water acquisition, and c) above-belowground functional linkages for nutrient and 158 

water uptake and use. 3) An assessment of commonly measured tropical root characteristics that 159 
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are not yet enough understood or are not functionally relevant for model inclusion. Based on this 160 

assessment, we call for the development of more balanced above-belowground whole-plant 161 

functional types and trait clusters to represent key functions of tropical forests, particularly in 162 

relation to P and multi-nutrient acquisition, as well as drought resistance.  163 

 164 

How are fine-root strategies and functions different in tropical forests? 165 

Tropical forests have distinct belowground characteristics relative to other ecosystems, in part 166 

because of the unique resource constraints common in tropical forests. First, tropical evergreen 167 

forests have the largest stocks of fine-root biomass globally (Jackson et al., 1996). Fine-root 168 

production rates are also higher and turnover times are faster in tropical forests versus other forests 169 

(Cusack et al., 2021), following trends for tropical forest NPP. For example, tropical forest fine-170 

root productivity in surface soils averaged 596 g m-2 y-1 versus 428 g m-2 y-1 in temperate forests 171 

and 311 g m-2 y-1 in boreal forests, and annual root turnover times averaged 1.4 y-1 in tropical 172 

forests versus 1.2 y-1 in temperate forests and 0.8 y-1 in boreal forests (Finer et al., 2011). The large 173 

and dynamic stocks of root biomass in tropical forests make them important in the global C cycle, 174 

since root turnover provides a principal input to the very large soil C stocks in tropical forests 175 

(Rasse et al., 2005). The outsized importance of tropical forests in the global C cycle provides 176 

further motivation for accurately understanding tropical forest belowground function and 177 

representation in vegetation models. 178 

 179 

Second, tropical forest roots are more diverse than in other ecosystems across several axes. Similar 180 

to the high plant species diversity common in tropical lowland forests, these ecosystems have the 181 

highest diversity in fine-root morphological traits (Ma et al., 2018, but see Carmona et al., 2021). 182 
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Fewer plant species have been characterized for root traits in tropical forests compared with other 183 

biomes (Fig. 2), in part because of the sheer diversity of co-existing species with entangled root 184 

systems per unit area. Still, evidence using global databases  suggests that tropical species 185 

contribute at least 23% of the unique root trait combinations globally (Guerrero-Ramirez et al., 186 

2021). Related to high species diversity, fine-root traits are less phylogenetically constrained 187 

within taxonomic levels compared to other ecosystems globally (Valverde-Barrantes et al., 2021; 188 

Weemstra et al., 2023), Asefa et al., 2022). An example in these studies is the "magnoliid" type of 189 

root (i.e., thick, fleshy roots) that is largely limited to Magnoleaceae in temperate ecosystems, but 190 

is found across multiple families in the tropics (e.g., Moraceae, Malvaceae, and Sapotaceae). Root 191 

traits can also be diverse over small spatial scales in tropical forests, with high variation in fine-192 

root traits found within and among individuals of the species, as well as among species (in Box 1), 193 

even while the large bioregions of the tropics have some separation in root traits (Addo-Danso et 194 

al., 2020). Overall, tropical forests appear to have greater variation and more unique combinations 195 

of root traits, both at species and community scales, compared with temperate ecosystems, 196 

presenting a special challenge to vegetation modelers. 197 

 198 

Third, fine-root strategies are organized around different resources in many tropical forests 199 

compared with temperate biomes. Specifically, soil moisture variation and P scarcity appear to 200 

drive tropical forest root dynamics and traits (reviewed in Dallstream et al., 2023; Cusack et al., 201 

2021), rather than temperature fluctuations and N scarcity as in many higher latitude ecosystems. 202 

Associations with mycorrhizal symbionts in tropical forests are broadly linked to P and water 203 

acquisition and include both arbuscular mycorrhizal fungi (AMF) and ectomycorrhizal fungi 204 

(ECM). Rather than the temperate-ecosystem paradigm of AMF promoting fast decomposition 205 
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and nutrient cycling versus ECM promoting slow nutrient cycling (Cornelissen et al., 2001; 206 

Phillips et al., 2013; Read et al., 2017; Averill et al., 2019; but see Weemstra et al., 2016), in 207 

tropical forests, both types of mycorrhizal association have been related to fast and slow nutrient 208 

cycling (Chuyong et al., 2000; Keller & Phillips, 2019; Weemstra et al., 2020). Also, in contrast 209 

to obligate N fixation by actinorhizal N-fixing trees dominant in temperate and boreal biomes, 210 

rhizobial N-fixing trees common in tropical forests can down-regulate N fixation (facultative 211 

fixation) (Barron et al., 2011; Menge et al., 2014). Thus, tropical forest root symbionts respond to 212 

different types of nutrient limitation with distinct strategies compared with root symbionts in 213 

higher latitude ecosystems.   214 

 215 

Integrating multi-functional tropical root representation into vegetation models  216 

We now compare and synthesize current empirical and model understandings of tropical root 217 

functions. We organize this section around: 1) root characteristics with strong empirical support 218 

for a functional role, and which thus should be prioritized for model integration, versus 2) root 219 

traits that are commonly measured but do not yet clearly indicate a root function, or which lack 220 

clear relationships to resource availability, and thus are not (yet) suited for model integration. The 221 

first part highlights three important functional aspects of roots: a) general soil exploration for 222 

resource acquisition, b) coordination and tradeoffs for root nutrient versus water acquisition, and 223 

c) above-belowground functional linkages in water and nutrient uptake and use. We consider both 224 

the quantity and spatial deployment of roots as well as their activity (Zhang et al. 2023). For each 225 

of these three areas we describe i.) empirical advances and understanding, ii.) current model 226 

representation, and iii.) avenues for model improvement and data needs. We do not advocate that 227 

models incorporate all root traits and functions, which would unnecessarily complicate them and 228 
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increase uncertainty. Rather, we attempt to identify data that is promising for improving functional 229 

representation, and model components that are confirmed or at odds with field data following 230 

Medlyn et al. (2015). 231 

 232 

We summarize empirically measured root characteristics (Table 1) alongside an assessment of root 233 

function representation in 15 leading vegetation models (Table 2). These models include examples 234 

linked to global Earth System Models (ESMs), demographically resolved vegetation models (e.g., 235 

representing forest age and structure), and individual-based models. We compare how root 236 

characteristics are emphasized in empirical and modeling research (Table 3), showing that some 237 

functional root characteristics are understudied relative to their representation in models, while 238 

other well-characterized tropical root functions are under-developed in models.  239 

 240 

Root traits strongly linked to tropical forest function – Ripe for models 241 

 242 

Dynamic soil exploration: empirical advances 243 

 244 

Root characteristics like biomass and depth distribution are clearly linked to soil exploration for 245 

resources (Fig. 1), with the largest availability of species-level data from the wet tropics for root 246 

biomass, production, turnover, and specific root length (SRL, length/mass) (Fig. 2, Guerrero-247 

Ramírez et al., 2021). Higher SRL increases the volume of soil explored per unit of root biomass 248 

(McCormack et al., 2015; demonstrated in https://youtu.be/uHZqG5eKShI). The most prevalent 249 

patterns of allocation to root biomass for soil exploration in tropical forests (recently reviewed by 250 

Cusack et al., 2021) are: 1) relatively greater root biomass and root production rates in infertile 251 
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surface soils versus fertile surface soils, likely for rapid uptake of scarce mineral nutrients released 252 

from litter decomposition; 2) relatively greater root biomass in surface soils in wetter versus drier 253 

conditions, likely because extreme drying in tropical forests causes surface root death; 3) faster 254 

fine-root turnover in wetter versus drier conditions and in fertile versus infertile soils, likely 255 

indicating a less conservative plant life strategy when resources are abundant; 4) greater fine-root 256 

SRL under resource scarcity, both for dry versus wet conditions and infertile versus fertile soils, 257 

likely indicating maximization of soil explored per unit biomass; 5) greater root production rates 258 

in the subsoil versus surface soils under dry conditions, likely for deep water acquisition. These 259 

comparisons were true both across biogeographic gradients and experimental treatments that 260 

varied the availability of rock-derived nutrients like P and potassium (K) (e.g., Wurzburger & 261 

Wright, 2015; Cusack & Turner, 2021; Reichert et al., 2022), and across seasonal or drought-262 

induced soil moisture variation (e.g., Kummerow et al., 1990; Janos et al., 2008; Metcalfe et al., 263 

2008). These soil exploration patterns of root biomass, production, turnover, and SRL are the best 264 

supported by the literature for tropical forests. 265 

 266 

Dynamic soil exploration: model representation 267 

 268 

Among the 15 models reviewed here (Table 2), root representation was generally implemented as 269 

less dynamic in response to moisture or nutrient availability than suggested by the empirical 270 

research synthesized above. For example, root turnover was a constant value in the models we 271 

assessed. Only two of the models allowed maximum rooting depths to change with tree size (i.e., 272 

size-dependent rooting depth), even though 13 of the models had the capacity to resolve tree size 273 
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(Table 2). None of the models allowed vertical root depth distributions to respond to changes in 274 

soil moisture or nutrient availability.  275 

 276 

Dynamic soil exploration: avenues for model improvement 277 

 278 

Enabling individual-, cohort-, or PFT-specific rooting distributions and depths, and related 279 

resource partitioning is a forefront for model development, which could build on the vertically 280 

variable root allocation scheme of Drewniak (2019). Under this type of representation, different 281 

plant groups in the community would have different strategies in accordance with some defined 282 

resource strategy, which could include coordination between above- and below-ground traits (see 283 

section above). Incorporating belowground resource partitioning would allow for a more holistic 284 

differentiation between resource-acquisitive vs. -conservative strategies, as well as contrasting 285 

strategies for nutrient vs. water acquisition and drought tolerance (see section above). In addition 286 

to variable rooting depth by PFTs, increasing model capacity for root systems and functions to 287 

respond dynamically to resource changes is an ongoing challenge for vegetation models (Wang et 288 

al., 2023). A particular challenge is posed by model structures that are not spatially explicit within 289 

grid cells and a given soil layer (Table 2; the gap models reviewed are only spatially explicit 290 

aboveground), such that resource partitioning is not possible belowground and resources are shared 291 

by all members of the community. Innovative model approaches, which allow for incomplete 292 

resource sharing across individuals, cohorts, and/or PFTs while still maintaining mass balance 293 

would enable resource-conservative strategies as PFTs to emerge through trait filtering (Scheiter 294 

et al. 2013). For example, a fraction of the total resource pool could be allocated as PFT-specific 295 

(non-shared) and the remainder as shared across the community. Such model developments could 296 
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be complemented with empirical research, such as species responses to nutrient additions in the 297 

field using identification approaches (e.g., DNA barcoding; Jones et al., 2011). This would help 298 

assess root exploration patterns and flexibility across species, and could inform the creation of 299 

species clustering or PFTs in models.  300 

 301 

Coupled hydro-biogeochemical strategies: empirical advances 302 

 303 

There are very few empirical data linking root water and nutrient acquisition strategies in tropical 304 

forests, but there have been advances to identify clusters of root traits for nutrient acquisition. This 305 

recent work could be built on to include clusters of belowground hydraulic traits (as identified 306 

above, e.g., rooting depth, root embolism vulnerability). Much of the nutrient acquisition trait work 307 

in tropical forests has been for P, developing clusters of traits, or “syndromes,” targeted at P 308 

acquisition. Plant P acquisition strategies include different combinations of root phosphatase 309 

production, root branching ratios, SRL, mycorrhizal symbioses, root hair length and density, and 310 

organic exudates to promote mineralization by decomposers (Ushio et al., 2015; Weemstra et al., 311 

2016; Freschet et al., 2021b, exudate measurement demonstration: 312 

https://www.youtube.com/watch?v=n0CQ0lo7pbs). A framework grouped these P acquisition 313 

strategies into broader root P “syndromes” for tropical forests, identifying sets of root 314 

morphological traits and mycorrhizal types that are often found together, and provide unique 315 

strategies for P acquisition from mineral and organic forms (Dallstream et al., 2023). For example, 316 

one tropical forest study identified clear tradeoffs in P acquisition strategies among tree species, 317 

such as high fine-root phosphatase activity versus increased mycorrhizal hyphal length (Zhu et al., 318 

2023), although morphological tradeoffs were less clearly linked to P acquisition. We have yet to 319 
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formulate mathematical response surfaces defining which traits are expressed under what nutrient 320 

conditions, which would be most useful for models. Such frameworks could be expanded to 321 

include strategies for acquisition of other nutrients and water to develop holistic hydro-322 

biogeochemical functional types.  323 

 324 

Some work in the tropics has explored plant tradeoffs for the acquisition of different nutrients. It 325 

was proposed that N fixation and P acquisition are coordinated in P-scarce tropical forests, because 326 

phosphatase enzymes are N-rich proteins (Houlton et al., 2008). Studies in Costa Rica (Nasto et 327 

al., 2014; Soper et al., 2019) and Panama (Nasto et al., 2014; Batterman et al., 2018) found mixed 328 

support for a relationship between N fixation and root phosphatase activity, indicating that other 329 

P acquisition strategies such as mycorrhizal symbiosis and fine-root production should also be 330 

assessed for coordination with N acquisition (Lugli et al., 2020; Allen et al., 2020; Braghiere et 331 

al., 2022; Reichert et al., 2022). New data presented here from Panama and Singapore demonstrate 332 

variation in nutrient uptake rates for different nutrients, with some links to root morphological 333 

traits that could be used to further develop resource acquisition syndromes (Box 3, method 334 

demonstration (https://youtu.be/4atZ3E0NrX4). Because direct nutrient uptake measures at the 335 

root system level are destructive and difficult to scale up (e.g., Cornelissen et al., 2001), more 336 

work is needed to explore if they can be related to surrogates, such as lab observations linking P 337 

uptake rates to root phosphatase activity (Lee, 1988), and root phosphatase relationships with 338 

mycorrhizal colonization, root branching ratio (Yaffar et al., 2021), SRL, and other root 339 

morphological traits (Lugli et al., 2020; Cabugao et al., 2021; Han et al., 2022, Box 3), as well as 340 

responsiveness of these traits to soil P availability (Ushio et al., 2015; Guilbeault-Mayers et al., 341 

2020; Cabugao et al., 2021; Lugli et al., 2021).  342 
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 343 

Coupled hydro-biogeochemical strategies: model representation 344 

 345 

Among the root traits included in the 15 models assessed here (Table 2), water stress or water 346 

uptake was represented in 13 models versus only five models that represented nutrient acquisition 347 

(N or P), with representation of P dynamics particularly lacking. Similar to the empirical 348 

disconnect between nutrient and water acquisition research (discussed above), none of the models 349 

explicitly represented coupled hydro-biogeochemical cycling, so we summarize water and nutrient 350 

acquisition separately, and generally call for greater coordination of these two areas of model 351 

development. 352 

 353 

Overall, 13 of the 15 models represented plant hydraulic traits (Table 2). The most common trait 354 

representing plant hydraulic function was maximum rooting depth (in 12 of 15 models, Table 2), 355 

which was either a constant (four models) or a PFT characteristic and was not responsive to 356 

changes in moisture. The next most common hydraulic parameters were “water stress factor” 357 

(related to soil moisture, in 10 models), followed by water uptake rate (six models, Table 2). The 358 

model with the broadest representation of plant hydraulic traits was FATES-Hydro (with PARTEH 359 

module), which additionally represents root hydraulic resistance, embolism vulnerability, fine-root 360 

radius, and permeability. Comparing the models with plant hydraulic traits emphasized by 361 

empiricists, root phenology, root hair length and density, and mycorrhizal symbiosis were not used 362 

to represent plant hydraulics in the models reviewed here (Table 3).  363 

 364 
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Nutrient uptake processes were represented in fewer models compared with plant hydraulics, with 365 

only six of the models representing some aspect of nutrient uptake (Table 2). Root exudation of 366 

non-structural carbohydrates was linked to priming and nutrient availability in three of the models, 367 

and two models had some representation of symbiotic nutrient uptake, including BNF and 368 

mycorrhizal nutrient uptake (Table 2). Representation of N acquisition processes was more 369 

developed than P acquisition (Table 2). The most common nutrient parameter functionally related 370 

to nutrient uptake in the models was the rate of N uptake, which was responsive to changes in soil 371 

nutrient availability (five models), followed by the rate of P uptake (four models, Table 2). Some 372 

of the models employed constant nutrient uptake parameters based on diffusion and kinetics, and 373 

others accounted for chemical interactions of soil nutrients with minerals and soil microorganisms 374 

(Thum et al., 2020; Yu et al., 2020). For example, LM4.1-BNF included many parameters for 375 

modeling N uptake (Table 2), including passive nutrient uptake (via transpiration stream), active 376 

uptake (via a C cost and Michaelis-Menten dynamics), and symbiotic nutrient acquisition. 377 

Meanwhile, P uptake was represented only in four of the models using just one parameter (P uptake 378 

rate). Some root characteristics that are empirically related to resource acquisition were included 379 

in the models, but without nutrient functionality. For example, vertical root biomass distribution 380 

was in 12 of the 15 models (Table 2); however, this parameter was a PFT characteristic and not 381 

responsive to changes in resource availability. Of the root characteristics commonly related to 382 

plant nutrient acquisition by empiricists (Table 1), SRL, root phenology, root hair length and 383 

density, root order distribution, root phosphatase and protease enzyme activities were not 384 

represented at all or were not directly linked to nutrient acquisition in the models (Table 3). Based 385 

on the empirical advances above, more models could consider implementing coordinated strategies 386 

for N and P acquisition, together with plant hydraulics. 387 
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 388 

Coupled hydro-biogeochemical strategies: avenues for model improvement 389 

 390 

Integrating hydraulic and nutrient model components is a forefront for model development. Model 391 

development of root dynamics has proceeded on almost entirely independent paths for plant 392 

hydraulics versus nutrient acquisition, even within the same model (via separate modules e.g., 393 

FATES, LM, LPJ, Table 2), such that coordinated responses to resource changes and C costs for 394 

water versus nutrient acquisition are not represented. And, within these parallel model 395 

developments, little attention has been given to the unique characteristics of tropical forests (e.g., 396 

moisture seasonality, drought, and P scarcity). Model advances have: 1) vertically resolved both 397 

water and nutrient transport between layers (e.g., ELM-CNP; Yang et al. 2019), 2) represented the 398 

C cost of coarse and fine-root allocation across depths (e.g., Sakschewski et al. 2021), and 3) 399 

represented water and nutrient foraging functions of roots across depths (Christoffersen et al., 400 

2016; Xu et al., 2016; Kennedy et al., 2019; Langan et al., 2017; Joshi et al., 2022, Knox et al. 401 

2023). Hydro-biogeochemical model integration would allow better representation of the fast-slow 402 

plant lifestyle continuum (Reich 2014) by including trade-offs in nutrient-acquisition (shallow 403 

rooted) vs. stable water supply (deep roots). Oliveira et al. (2021) argued that the fast-slow 404 

continuum maps onto variation in soil fertility, and the risky-safe hydraulic safety tradeoff occurs 405 

across moisture gradients. Hydro-biogeochemical integration would follow in the spirit of 406 

allowing ecosystem function and community traits to emerge from competitive ecological 407 

interactions (Scheiter et al. 2013; Fisher et al. 2015). This integration would also enable models 408 

to better represent “trait filtering” of plant groups across multiple gradients, such as the sorting of 409 

tropical tree species that is observed according to both moisture and P affinities across the Isthmus 410 
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of Panama (Condit et al., 2013). We argue that the next step in this line of model development to 411 

represent tropical forests is to integrate hydraulic and nutrient model components. 412 

 413 

Coupled above-belowground resource strategies: empirical advances 414 

 415 

While leaves and fine roots are somewhat analogous as aboveground/belowground resource 416 

acquisition plant structures, there is variation in the degree to which analogous traits like specific 417 

leaf area (SLA) vs. SRL, and leaf vs. root lifespans correlate across biomes (Withington et al., 418 

2006; Jiang et al., 2021).  419 

 420 

Very few studies have focused on above-belowground functional linkages in tropical forests, with 421 

most attention to plant hydraulics. For example, maximum rooting depth of different species 422 

(usually measured for coarse roots), has been linked to deciduousness in tropical forests, 423 

particularly in regions with distinct dry seasons and mixed communities of deciduous, semi-424 

deciduous, and evergreen species (Sobrado & Cuenca, 1979; Sampaio, 1995; Smith-Martin et al., 425 

2020). In Amazonian forests designations have been identified for: 1) deep-rooted, evergreen 426 

drought avoiders, 2) shallow-rooted, deciduous drought avoiders, and 3) shallow-rooted, evergreen 427 

drought tolerators with embolism-resistant vascular systems (Brum et al., 2019; Chitra-Tarak et 428 

al., 2021). Interestingly, hydraulic above-belowground linkages appear to be strongest under 429 

stressful conditions. In the Amazon, only under dry conditions were there linkages among stem 430 

embolism vulnerability and rooting depth (e.g., Oliveira et al., 2019; Laughlin et al., 2021), with 431 

these linkages lacking in wet conditions. While these hydraulic groupings are helpful, there can 432 

also be large variation in maximum rooting depth among coexisting species of similar lifeform 433 
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and deciduousness, as demonstrated here for a Costa Rican dry forest (Box 2). To explore this, 434 

aboveground hydraulic traits could be linked to belowground traits beyond maximum rooting 435 

depth, which is very difficult to measure, including overall root biomass depth distributions, vessel 436 

diameter, root embolism vulnerability root embolism vulnerability, and seasonal changes in root 437 

production (i.e., phenology) (Germon et al., 2020). Data on the embolism resistance of roots is 438 

particularly scarce (e.g., Domec et al., 2006), and could be a focus area for future research to link 439 

to aboveground hydraulic vulnerability. 440 

 441 

For nutrient above-belowground coordination, a recent global review indicated greater 442 

coordination of leaf with root N:P ratios in tropical forests relative to most other biomes, likely 443 

related to widespread tropical soil P scarcity and conservation of P in plant tissues (Wang et al., 444 

2022). A broad-scale paper linking remotely-sense canopy traits in Panama with soil data found 445 

that canopy greenness (a surrogate for NPP) corresponded to variations in soil fertility and toxicity 446 

(Fisher et al., 2020). Also, AMF vs. ECM association has been linked to canopy reflectance 447 

properties in tropical forests in Hawai’i (as well as in many temperate sites), likely also indicating 448 

plant nutrition linkages (Sousa et al., 2021). While these root-canopy linkages are suggestive, we 449 

lack more functional measurements of coordinated root and canopy nutrition in tropical forests.  450 

 451 

Coupled above-belowground resource strategies: model representation  452 

 453 

Of the 15 vegetation models, several linked aboveground deciduousness with root traits, and most 454 

had uneven representation of belowground versus aboveground traits and functions, with an 455 

average of ~30 aboveground traits compared to only about eight root traits represented per model 456 
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(Table 2). Of the models with explicit linkages, Ecosystem Demography model 2 (ED2) included 457 

a trait-driven plant hydraulic module that represents drought deciduousness and plant water stress 458 

(Medvigy et al., 2009; Medvigy & Moorcroft, 2012). ED2 also uses three PFTs with different 459 

rooting depths: a deeper-rooted evergreen PFT, a shallower-rooted deciduous PFT (Xu et al., 2016; 460 

Smith-Martin et al., 2020), and a liana PFT with a different rooting depth from trees (Meunier et 461 

al., 2021). The different rooting depths per PFT are linked to data on deciduous and evergreen 462 

phenologies for tropical forests (Xu et al., 2016; Smith-Martin et al., 2020). Similarly, LPJmL4.0-463 

VR has adapted a traditional PFT-based model using deciduousness in the Amazon and defined a 464 

spectrum of PFTs from shallow to deep-rooted, which are dependent on tree size, including 465 

vertically resolved coarse roots (Sakschewski et al., 2021). These groupings follow the empirical 466 

data described above. Overall, above-belowground links in plant hydraulics are still in the early 467 

stages of development, but these could form the foundation for more integrative plant function in 468 

PFTs or trait clusters for tropical forests, with support from the empirical data. 469 

 470 

For nutrient acquisition, above-belowground coupling in vegetation models is less developed, and 471 

most commonly represented as photosynthate (i.e., C) expenditure for the acquisition of soil 472 

nutrients based on plant N demand, including representation of physiological limits to nutrient 473 

uptake and efficient optimization of C allocation (reviewed in Davies-Barnard et al., 2022). For 474 

example, in the representation of nutrient uptake in the Fixation & Uptake of Nutrients (FUN) 475 

model, GPP drives nutrient uptake demand and supplies the C for expenditure (Fisher et al., 2010, 476 

Allen et al., 2020). The Davies-Barnard et al. (2022) review illustrates that C allocation for nutrient 477 

uptake represents a significant advance over older representations, such as biological nitrogen 478 

fixation (BNF) as a function of evapotranspiration. Key to the C expenditure approach are the 479 
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concepts of nutrient limitation and photosynthetic downregulation, which occur when there is not 480 

enough C to grow new leaves because of high C costs for soil exploration for scarce nutrients.  481 

 482 

Coupled above-belowground resource strategies: avenues for model improvement 483 

 484 

Integrating more of the hydraulic function of fine and coarse roots into existing above-485 

belowground hydraulic PFTs is an important next step for model development (Fig. 1). In 486 

particular, above-belowground linkages for plant hydraulics could be expanded, including the 487 

hydraulic function of coarse roots, which are rare in vegetation models and were in only four of 488 

the models we assessed (Table 2). Coarse roots in the models were generally represented as 489 

support, biomass storage, and root depth distribution, but they were not directly related to water 490 

uptake or transport. Moreover, while models sometimes represent the C cost of fine roots, the C 491 

cost of coarse roots is only implicitly embedded within an allocation to stem production. Here we 492 

advocate that models explicitly represent the C cost of coarse roots that have a direct link to 493 

function. This would allow modeled C assimilated aboveground and allocated to coarse roots 494 

(investment cost) to be more directly linked to water uptake, following the approach of 495 

Sakschewski et al. (2021). With the cost of both fine and coarse root production explicitly modeled 496 

by soil depth, and the returns of such investment represented in terms of water uptake (see plant 497 

hydraulic-enabled models, Table 2), models would be in a position to represent the three-way 498 

tradeoff presented by Oliveira et al. (2021) among 1) embolism resistance (P50), 2) water table 499 

access (deep roots), and 3) water loss control (deciduousness and stomata regulation). An early 500 

advance has been made in this direction; the aDGVM2 model has shown how this three-way 501 

tradeoff can emerge from variable rooting depth and tradeoffs with P50 and deciduousness 502 



23 

 

(Langan et al. 2017). Given the empirical support for this three-way tradeoff, and recent advances 503 

in the modeling of variable rooting depths and plant hydraulics, we argue that this is a well-justified 504 

avenue for data-model integration and development using the small but growing availability of 505 

data. Focused collection of data on root hydraulics, such as root embolism resistance, would help 506 

to clarify above-belowground coordination of this three-way trade-off.  507 

 508 

For above-belowground nutrient coordination in models, there remain outstanding empirical 509 

questions—and hypotheses that can be tested in models—of how C allocation and nutrient 510 

acquisition interact. For example, what is an accurate tradeoff between C expenditure above versus 511 

belowground under nutrient scarcity? To what extent can stoichiometric flexibility of different 512 

plant tissues mediate or exacerbate nutrient limitations? How do these individual plant-level 513 

processes manifest in larger model grid cells of multiple plants, cohorts, traits, or other plant 514 

functional types? Investigations into these types of above-belowground nutrient acquisition 515 

questions could then be combined with hydraulic above-belowground linkages to get more coupled 516 

hydro-biogeochemical PFTs. 517 

 518 

Tropical root traits not clearly linked to function -- Not ripe for models 519 

It is important to note a set of root traits that are commonly measured and comprise a large portion 520 

of our empirical tropical data (Fig. 2), but which thus far have not been demonstrated to link clearly 521 

to root function (Table 1). These traits include: root tissue nutrient content and C:N:P 522 

stoichiometry, aspects of root morphology (e.g., root tissue density), and mycorrhizal biomass or 523 

colonization rates in the absence of functional characterization. Root nutrient content and 524 

morphology have been used as proxies for resource acquisition and symbiotic strategies (Addo-525 



24 

 

Danso et al., 2018; Bergmann et al., 2020); however, the functional roles of root nutrient content 526 

and morphological traits like RDT for resource acquisition are not clear or consistent (Freschet et 527 

al, 2021b).  528 

 529 

Recently, an expanded global database including root C:N:P and morphology was published as the 530 

Global Root Trait (GRooT) database (Guerrero-Ramirez et al., 2021, Fig. 2), which may be useful 531 

for further exploration of functional linkages to stoichiometry. To increase the functional utility of 532 

this database, these commonly measured traits are being compared and related to smaller data sets 533 

for tropical nutrient uptake rates, phosphatase and protease activities. We present an example of 534 

this type of exercise using new data, highlighting the difficulty of relating fine-root stoichiometry 535 

to functional groupings like N-fixation or mycorrhizal association (Box 4), particularly in the 536 

absence of direct measures of N-fixation, such as using 15N2 labeling experiments (e.g., 537 

https://www.youtube.com/watch?v=7jxM1KZ0f3Q) or direct measures of mycorrhizal-plant C 538 

exchange (e.g., https://youtu.be/mNq8eQxDCqM). Given the large availability of root nutrient 539 

content data relative to other more functional traits (Fig. 2), it is worth pursuing these comparisons 540 

to see if and when we can infer root functionality from stoichiometry, noting that root 541 

stoichiometry in models plays an important role for determining nutrient storage and stocks of 542 

biomass (Table 2). 543 

 544 

Root morphology has been used as an indicator of nutrient acquisition strategies, but there have 545 

been very few direct demonstrations of these relationships. Highlighting the difficulty of using 546 

morphological root traits to infer function, fine-root traits (diameter, SRL, root tissue density, 547 

branching) for 1,467 Amazonian tree species had no significant association with landscape-scale 548 
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shifts in bulk soil fertility (Vleminckx et al., 2021). This is in contrast to some aboveground 549 

tropical forest traits, like canopy greenness and nutrient content, which often covary with soil 550 

fertility and soil texture (Fyllas et al., 2012; Fortunel et al., 2014; Fisher et al., 2020). Root 551 

diameter, which is functionally most closely related to water conductivity, has been used as a proxy 552 

for AMF colonization rate, even though this relationship has not been consistently demonstrated 553 

for tropical forests (Kong et al., 2014; Lugli et al., 2020; Yaffar et al., 2021). We present new data 554 

from Panama where some root morphological characteristics were strongly correlated to paired 555 

measurements of nutrient uptake for two canopy tree species, and nutrient uptake rates were 556 

different among nutrients for one different canopy species. However, these relationships were not 557 

apparent in similar new data for two species from Singapore, possibly because the Panama data 558 

were characterized according to root order (only root tips – 1st order – used, or roots separated for 559 

the first three absorptive root orders for morphology, Box 3). Thus, further exploration of if, how, 560 

and under what conditions morphological traits are related to nutrient (and water) uptake is 561 

warranted, and there appear to be promising relationships if roots are assessed at a scale relevant 562 

to absorptive activity.  563 

 564 

For mycorrhizae, assessments of colonization, presence, or biomass are the most commonly used 565 

methods (Sheldrake et al., 2018; Olsson & Lekberg, 2022), but these measures do not necessarily 566 

indicate functional activity since fungal biomass can be present but not active. These measures 567 

could be improved if they were related to direct measurements of C or nutrient transfers between 568 

tree and fungal symbionts, such as 13CO2 pulse labeling of plants and subsequent transfer of 13C-569 

enriched C to symbionts (Lekberg et al., 2013; Chaudhary et al., 2022, Kaiser et al., 2015; e.g., 570 
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https://youtu.be/mNq8eQxDCqM), which would allow a better assessment of the functional value 571 

of colonization data.  572 

 573 

Clarifying the utility of these commonly measured fine-root traits for inferring functions in tropical 574 

forests would be useful, given the relatively large quantity of fine-root nutrient, morphological, 575 

and colonization data. Absent this, empirical research should shift toward root traits more clearly 576 

linked to specific root functions, as described above.  577 

 578 

Achieving data-model integration for a better understanding of tropical root function 579 

We have identified opportunities for improving our understanding of fine-root function in tropical 580 

forests, and for integrating key root functions into vegetation models as applied to tropical 581 

ecosystems. Our surveys of empirical and modeling approaches to utilizing root data (Table 1-3) 582 

demonstrate several broad trends: 1) There are some root characteristics for water acquisition (e.g.,  583 

root biomass and maximum rooting depth) that are being implemented in models according to our 584 

empirical understanding. 2) There have been numerous recent advances in characterization of root 585 

traits and functions in tropical forests, but many of these are missing in vegetation models. 3) 586 

Models represent some characteristics that are not easily measured and for which there are few 587 

data (e.g., nutrient uptake kinetics, water transport by coarse roots). 4) Functional characterization 588 

of fine roots is often different in models versus our empirical understanding (Table 3). For 589 

example, SRL is used in some models as a PFT characteristic which is unresponsive to resource 590 

changes, yet recent data indicate that only ~50% of variation in SRL might be explained by species 591 

differences (Box 1), and SRL can be very responsive to resource changes in tropical forests (see 592 

discussion above). 5) There are some root characteristics that are well linked to functions in limited 593 
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empirical studies, such as phosphatase activity, but which have not yet been sufficiently 594 

characterized in tropical forests to implement response functions in vegetation models. 6) Some of 595 

the most-measured root traits have not been clearly linked to function, and therefore are not 596 

immediately useful for representing resource acquisition processes in models (e.g., root nutrient 597 

content and diameter). Overall, there is much work left to be done to bring together empirical and 598 

modeling research on tropical forest belowground functions, with a need for greater integration 599 

going forward. 600 

 601 

There are existing frameworks for advancing model-data integration and for comparing models 602 

with different modalities (Walker et al., 2014; Medlyn et al., 2015; Kyker-Snowman et al., 2022), 603 

but the computational cost of increasing model complexity must be justified by improved model 604 

performance. More model ensemble experiments for tropical forest biomes would be useful to test 605 

the level of improvement achieved by representing expanded root function (e.g., Koven et al., 606 

2020; Caldararu et al., 2023, Fleischer et al., 2019). New experiments could also test model-607 

derived hypotheses prior to inclusion of a new process in models. For example, the AmazonFACE 608 

experiment (https://amazonface.unicamp.br/) will test hypotheses about P dynamics under 609 

elevated CO2 that were developed by using a model inter-comparison (Fleischer et al., 2019). 610 

Some key questions that arose from these modeling activities are: will CO2 enrichment stimulate 611 

root phosphatase activity sufficiently to alleviate P limitation to growth (Yang et al., 2019)? And, 612 

will including phosphatase production in models improve predictions of tropical forest 613 

productivity and responses to elevated CO2? 614 

 615 
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Close interactions between empiricists and modelers over the course of research projects are 616 

essential to meet the challenges we have identified in this research agenda. Model-data integration 617 

for tropical forests has improved in the past decade, including efforts such as the U.S. Department 618 

of Energy Next Generation Ecological Experiments–Tropics (NGEE-Tropics, https://ngee-619 

tropics.lbl.gov/), the AmazonFACE, the TropiRoot network 620 

(https://tropiroottrait.github.io/TropiRootTrait/, described in https://youtu.be/oT2lgeGDnjI), and 621 

the Landscape Evolution Observatory at Biosphere 2 622 

(https://www.science.org/doi/full/10.1126/science.abj6789), which bring together field research 623 

questions and modeling objectives. Nonetheless, support for these endeavors remains limited. We 624 

urge that these collaborations be widespread and supported by funding agencies in order to 625 

improve our understanding and prediction of tropical forest function and feedbacks to a changing 626 

world. 627 
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Figure 1. A conceptual representation depicts the root traits recommended for further tropical 700 

forest research and representation in vegetation models as part of PFTs or trait-clusters. The panels 701 

include: (a.) a graphical depiction of the root system with a subset of suggested priority root traits 702 

for the tropics (see also Table 1), (b.) multidimensional trait space and trait distributions that could 703 

be used to inform more balanced above-belowground whole-plant functional types (here signaled 704 

as wPFTs) for the tropics, and (c.) representation of different combinations of belowground trait 705 

clusters mixed and matched with aboveground PFTs to test in vegetation models and guide 706 

empirical research. Details are as follows: (a.) a graphical depiction of root system traits including 707 

nutrient uptake traits (in yellow, N-fixation, nutrient uptake rates, carbon exudation), water uptake 708 

and drought resistance traits (in blue, hydraulic conductance and embolism sensitivity), and 709 

general soil exploration traits (in green, e.g., mycorrhizal type, specific root length (SRL), root 710 

turnover). Also shown are hypothetical depth distributions for coarse roots (CR, blue), and fine 711 

roots (FR, green, inset). (b.) A multidimensional trait space is linked to hypothetical distributions 712 

for the root traits depicted in panel (a.), indicating how ranges of the different trait distributions 713 

could be selected to form multi-trait belowground functional types (B1, B2, etc.). (c.) 714 

Belowground and aboveground groupings could be matched to create wPFTs, and then tested in 715 

different combinations in vegetation models to assess improvement in predictions of NPP and 716 

other emergent properties of ecosystems depicted in vegetation models.  717 

 718 

 719 

  720 
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Figure 2.  721 

722 

Fig. 2. The total number of species for which fine-root traits data are currently available across 723 

climatic biomes is shown (left) relative to the total number of known species in each biome (right). 724 

Despite much higher species numbers present in wet tropical forests, the highest percentage of 725 

available data comes from temperate plant species. Within the tropics, most data are from wet 726 

tropical forests (shown in yellow, “wet tropical”). Overall, SRL has been the most commonly 727 

measured root trait, while traits particularly important in tropical forests like P uptake are virtually 728 

uncharacterized. Left panel: the species number in the updated version of the GRooT database 729 

(Guerrero-Ramirez et al., 2021) are shown by trait and biome description (colors); traits included 730 

are specific root length (SRL, m g-1), mean root diameter (Diameter, mm), root tissue density 731 

(RTD, g cm-3), root nitrogen concentration (N, mg g-1), maximum rooting depth (Rooting depth, 732 

m), root phosphorus concentration (P, mg g-1), root branching density (Branching density, number 733 

cm-1), root nitrogen to phosphorus ratio (N:P), root mycorrhizal colonization intensity (M. 734 

colonization, %), the net uptake rate of nitrogen (N uptake, μmol g-1 day-1), coarse-to-fine root 735 

mass ratio (Coarse:fine), root hair length (Hair length, μm), root production (Production, g m-2 736 
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year-1), root turnover rate (Turnover, year-1). Data were filtered to include only fine roots for most 737 

of the traits, except coarse-to-fine root mass ratio, maximum rooting depth, and root hair length. 738 

Right panel: estimate total species number by climate biome from the World Checklist of 739 

Vascular Plants (WCVP, Govaerts et al., 2021, POWO 2023). Data sources, climate zone 740 

descriptions, and processing details are in SI.741 
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Table 1. Root characteristics and trait functions as understood empirically and represented in models  742 

Root Trait Units Function in Nature Function in Models 

Fine Root Function: Soil Exploration for Water & Nutrient Acquisition 

Fine-root biomass  Mg ha-1 Absorptive tissue Absorptive tissue 

Fine-root productivity  Mg ha-1 y-1 Absorptive tissue productivity Absorptive tissue productivity 

Fine-root turnover 

(inverse of lifespan) 

y-1 Absorptive tissue turnover Absorptive tissue turnover 

Specific root length 

(SRL) 

cm g-1 Soil volume explored per cost Conversion factor (fine root 

biomass to fine root length), 

Calculate absorptive area as 

biomass×SRL×2πr 

Root growth timing 

(e.g., 

phenology/seasonality) 

growth or 

death timing 

Align root production & 

mortality with resource 

availability 

ABSENT 

Root hair length  µm Absorptive tissue ABSENT 

Root hair density  hairs cm-1 Absorptive tissue ABSENT 
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Depth distribution  Distribution 

parameter(e.g., 

β) 

Distribute absorptive and 

transportive tissues 

Locate absorptive tissue, 

characteristic of PFTs in some 

models 

Root order distribution 

(i.e., branching density) 

(1+2+3 order) : 

(4 order)  

Absorption per transport ABSENT (except where vertical 

distribution of coarse and fine roots 

are treated separately) 

Mycorrhizae Colonization 

rate, hyphal 

length, 

material 

transfer rate 

Exchange C for water, Ps or 

other nutrients 

Exchange C for N and phosphorus 

Fine Root Function: Water Acquisition & Drought Resistance 

Maximum depth  m Define vertical root domain Define vertical root domain, 

characteristic of PFTs in some 

models 
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Root hydraulic 

conductivity 

LP; m sec-1 

MPa-1 

Water transport Water transport 

P50; pressure at 50% 

embolism 

MPa Embolism resistance Embolism resistance 

Root radius (or 

diameter) 

mm Possibly related to water c or 

AMF colonization, function 

poorly constrained 

Soil-root water conductance 

Root membrane 

permeability 

Mass 

pressure-1 

area-1 time-1 

Water uptake Water uptake 

Water uptake rate mg-H2O 

length-1 time-1 

Water uptake Water uptake 

Fine-Root Function: Nutrient Acquisition 

Root enzyme activities 

(e.g., phosphatase, 

protease) 

Degradation 

rate of 

Release organic phosphorus Release organic phosphorus 
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synthetic 

substrate 

Organic exudate 

production 

C root mass-1 

(or length-1) 

time-1 

Release mineral phosphorus Release mineral phosphorus, 

present in few models where it 

responds to nutrient availability 

N fixation (nodule 

biomass and nitrogen 

fixation rate) 

Nodule 

biomass area-1, 

and fixation 

rate - mg N2 

nodule 

biomass-1 

time-1 

Acquires N from atmosphere 

and converts to biologically 

available forms 

Exchange C for N, modeled as C 

cost, maintenance respiration, or 

nodule turnover time in response to 

nutrient availability. Or, modeled 

as a function of evapotranspiration 

or NPP. Present in few models, 

often as a characteristic of PFTs  

 

Phosphorus uptake rate µg P length-1 

(or root mass-1) 

time-1 

Realized phosphorus uptake by 

root or AMF/ECM symbiont 

Realized P uptake, present in few 

models and varies with nutrient 

availability 
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Nitrogen uptake rate µgN length-1 

(or root mass-1) 

time-1 

Realized nitrogen uptake by root 

or AMF/ECM symbiont 

Realized nitrogen uptake, present 

in few models and varies with 

nutrient availability 

Traits without a clear relationship to root resource acquisition 

Tissue N concentration % Unclear if correlated with 

function 

 

Tissue P concentration % Unclear if correlated with 

function 

 

Tissue N-to-P ratio Ratio Stoichiometry ABSENT 

Tissue C-to-N ratio Ratio Stoichiometry Control N demand, present in most 

models, part of PFTs 

Tissue C-to-P ratio Ratio Stoichiometry Control P demand, present in most 

models, part of PFTs 

Root tissue density g cm-1 Defense, possible relation to 

AMF colonization rate (volume 

available for colonization) 

ABSENT 
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Coarse Root Function: Support & Transport 

Coarse root biomass  Mg ha-1 Support & Water Transport Track elements in tissues, present 

in some models as part of PFTs 

Coarse root productivity  Mg ha-1 yr-1 Support Track elements in tissues 

Coarse root hydraulic 

resistance  

MPa s-1 kg-1 

H2O 

Water transport Water transport, present in some 

models 

 743 

Table 1. Root characteristics and traits indicated in this Viewpoint as most relevant to tropical forest function are given, grouped by 744 

main function, with common units, and specific function as understood empirically (Function in Nature). Functions in vegetation models 745 

are then given, followed by categorical description of how these are included in models (details in Table 2).  746 

 747 
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Table 2. Inclusion of root traits in combination with aboveground traits and parameters in a suite of vegetation models. 748 

 749 

 750 

Table 2. (Table available as Excel file). Root traits as represented in a sample of 15 vegetation models varying in scope (capability of 751 

coupling to Earth system models) and sub-grid resolution (trait assignment and spatial resolution). In general, these models predict plant 752 

productivity and other emergent properties of ecosystems depending on changing conditions over time. “Spatially explicit” refers to 753 

aboveground processes only (e.g., ray tracing and light competition). Root traits (columns) are grouped by main functions (colors). As 754 

an indicator of model complexity in above vs. belowground plant processes, a tally of unique aboveground vs belowground root traits 755 

for each model is given. Cells in the table denote where a given root trait varies by PFT or individual (p), size (s), is a global constant 756 

(c), is dynamic with moisture (m), is dynamic with nutrients (n), or if it is implicitly considered through other means (i). Blank cells 757 

denote traits not represented for a given model. Parentheses with numbers indicate multiple sub-traits or parameters associated with a 758 

particular trait. Representative citations for each model are given. Hydraulic-enabled models explicitly represent water transport within 759 

plants and include models #4, #5, #6, #7, and #12. Nutrient-enabled models explicitly model N and/or P uptake through direct or 760 

symbiotic means and include #1, #5, #7, #9, and #10. Root traits associated with C or biomass storage are not considered here. For a 761 

complete description of methods used to construct this table, including definitions of terms and acronyms, and the file or table within 762 

each citation that was the specific source for trait information, see the SI. 763 

 764 



43 

 

 765 

 766 

 767 
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Table 3. A tabulation is presented of the root characteristics present in Table 1 (“1. Empirical 768 

research focus”), present in Table 2 (“2. Model focus”), and 3. Common to both models and 769 

empirical research, with Caveats when the trait is understood or used differently in empirical work 770 

compared with model applications. Note that information is organized in columns such that 771 

columns 1, 2 and 3 do not correspond horizontally. 772 

1. Empirical 
research focus 
(lacking model 
representation) 

2. Model focus 
(lacking 
empirical 
focus or 
understandin
g) 

3. Common to 
models and 
empirical 
research 

Caveats for commonalities 
between models and 
empirical research 

Root phenology 
(seasonality of 
production/mortali
ty) 

Root:Leaf 
biomass ratio 

Root biomass Models emphasize coarse root 
biomass as a stock, empirical 
research emphasizes fine root 
biomass for resource 
acquisition 

Root hair 
abundance and 
length 

Water stress 
factor 

Max rooting 
depth and root 
depth 
distributions 

Models emphasize for water 
uptake, empirical research 
combines with root depth 
distributions for nutrient uptake 

Root order 
distributions 

Fraction of tree 
hydraulic 
resistance in 
roots 

Root tissue 
CN(P) 

Stoichiometry is not clearly 
functionally important in 
empirical studies. In models 
this is commonly used for 
nutrient accounting and to drive 
nutrient demand, so in neither 
case is this a functional trait 

Root enzyme 
production (e.g. 
phosphatase) 

Root 
membrane 
permeability 

Root production 
and turnover 
rates 

Root turnover rates poorly 
characterized in tropical 
empirical data 

Root tissue 
density 

C cost of N 
fixation and C 
cost of 
mycorrhizal 
nutrient 
acquisition 

Fine-root SRL 
(specific root 
length) 

Used as a PFT trait in some 
models or as a global constant, 
in empirical work this is 
responsive more to resource 
availability and is not clearly 
distinct among species 
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  N fix nodule 
turnover rates 

 
 
 
Water and 
nutrient uptake 
rates 

 
 
 
Poorly characterized for the 
tropics 

  Maintenance 
respiration C 
cost of nodules 

Root diameter Related to uptake and transport 
in both models and empirical 
research 

  Nutrient 
uptake rates of 
AMF vs ECM 
associations 

Root 
conductance 
rates and 
embolism 
vulnerability 
(P50) 

Very poorly characterized in 
roots overall, especially in the 
tropics 

  

 

Root organic 
exudate 
production 

Poorly characterized in tropical 
empirical data, linked to 
nutrient uptake 

    N fixation rates 
and nodule 
biomass 

Good empirical understanding 
of fixation and its function 
relative to other root traits and 
represented in most models 
with improvement needed 

     
Mycorrhizal 
type 

 
Type (AMF vs. ECM) related 
to N uptake rates in models, not 
supported by tropical data, 
likely more related to P uptake 
in tropics but this not in models 

773 
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Box 1. High fine-root trait variation within and among individuals suggests morphological 774 

trait flexibility within species in tropical forests  775 

New data from two tropical forests indicate large intra-specific and individual-scale variation in 776 

morphological traits for absorptive roots (orders 1 – 4), comparing the proportion of variation 777 

explained by species, individual trees, individual root segments (multiple per individual), and 778 

residual (unexplained) variance. The Panama data include 10 replicate individuals for each of two 779 

species, and Puerto Rico data include two to three replicate individuals for each of six species to 780 

assess inter- and intra-specific variation, with details given in Notes S1. Overall, root segment 781 

within individual contributed a large portion of the variance when there was replication at the 782 

individual scale (Panama data), When individuals were not well replicated but more species were 783 

measured, individual and species contributed similarly to variance for fine-root morphology 784 

(Puerto Rico data). Data are provided as Datasets S2 and S3. These data support recent publications 785 

indicating that root traits are less phylogenetically conserved in tropical forests (see main text) and 786 

suggest that tropical forest community-scale root characteristics are likely dynamic in response to 787 

resource shifts. More work must be done to directly link these commonly-measured fine-root 788 

morphological traits to functional root activities like nutrient and water uptake and transfer. 789 

 790 

 791 

 792 

 793 
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Box 2: Tropical forest maximum rooting depth linked to life form and deciduousness, but 795 

much variation remains  796 

Deep roots are particularly important for water uptake and redistribution to support transpiration 797 

demands during dry periods (Markesteijn & Poorter, 2009), and aboveground phenology has been 798 

linked to rooting depths in dry tropical forests (Smith-Martin et al., 2020). Here, a new analysis of 799 

data from a dry tropical forest in Costa Rica show relationships between aboveground life form 800 

and rooting depth for juvenile and mature trees. This analysis shows that mature evergreen trees 801 

had c. 2x the maximum rooting depth of co-occurring mature deciduous lianas and trees, indicating 802 

above-belowground trait coordination.Letters show means separations using Tukey HSD tests, 803 

boxes show means and quartiles. Details are in Notes S1 and data are provided as Dataset S4. 804 

These patterns were not present in juvenile trees (top panels), suggesting that belowground niche 805 

partitioning develops over time. At the same time, there was substantial variation in maximum 806 

rooting depth among mature species that were classified as the same functional type using 807 

aboveground deciduousness, suggesting that a more refined understanding of belowground 808 

hydraulic strategies within these groups could help separate species into more functionally explicit 809 

groupings. Such a holistic below-aboveground representation of water acquisition strategies could 810 

contribute to improved tropical forest PFTs or trait clusters, which could then be combined with 811 

nutrient acquisition types to improve tropical plant representation in vegetation models.  812 
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 813 

 814 

  815 
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Box 3: Fine-root nutrient uptake rates and relationships to morphology for tropical trees  816 

Direct measures of nutrient uptake rates by tropical trees are rare and rarely linked to broader 817 

nutrient limitation to NPP studies or to fine root morphological root traits. Here, we present new 818 

data for fine-root nutrient uptake rates in a well-characterized lowland Panamanian forest and show 819 

relationship between uptake rates and fine-root morphology, with similar data available for two 820 

tree species in Singapore. Details are in Notes S1 and data are provided as Datasets S5 and S6.  821 

Across 33 mature individuals of a relatively abundant Panamanian lowland species Protium 822 

picramnioides, there was significantly greater nutrient uptake rates for potassium (K) versus 823 

ammonium (NH4+), nitrate (NO3-), and phosphate (PO43-). Figure means are shown with quantiles 824 

(F3,87=6.78; P=0.022), letters indicate significant differences using Tukey HSD tests. This result 825 

supports data from a long-term nutrient fertilization experiment in the same site showing that K 826 

addition reduced fine-root biomass, length, RDT, and increased SRL (Wurzburger & Wright, 827 

2015), suggesting K limitation to root processes and fine-root dynamic responsiveness to changes 828 

in K availability. Data for two other Panamanian species and two species in Singapore also showed 829 

variation in uptake rates among nutrients (Notes S1). The Panamanian species had strong 830 

correlations between nutrient uptake rates and root morphology, including positive correlations of 831 

NO3- and PO43- with SRL (r2 = 0.83 and 0.88, respectively), negative correlations of uptake with 832 

RTD (r2 = 0.99 and 0.71, respectively), and a negative correlation of PO43- with root biomass (r2 833 

= 0.75, see Notes S1). This result supports the idea in Box 1 that tropical forest fine-root 834 

morphology is responsive to changes in nutrient availability, and that morphology is related to 835 

nutrient uptake. Methodological details and raw data are in Notes S1and shown at 836 

https://youtu.be/4atZ3E0NrX4). Dynamic nutrient uptake rate measurements within and among 837 

sites could be related to fine-root morphological characterization, which could help inform 838 
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dynamic root responses to changing resources in vegetation models, but considerably more data 839 

are required.  840 

 841 

 842 

 843 

  844 
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Box 4: Using fine-root stoichiometry as a surrogate for functional traits  845 

Plant tissue stoichiometry could be a relatively easy way to start constraining nutrient acquisition 846 

in functional groupings since fine-root C:N:P content is relatively more available than functional 847 

trait measurements. However, there remains a knowledge gap across tropical sites linking root 848 

stoichiometry directly to nutrient or water acquisition. Fine-root P and N concentrations could 849 

reflect fine-root P and N acquisition rates, either directly or via symbiosis. For example, fine-root 850 

P is strongly correlated to leaf P concentration (Holdaway et al., 2011), soil inorganic and total P 851 

(Holdaway et al., 2011; Schreeg et al., 2014; Freschet et al., 2021b), and soil extractable P (Yaffar 852 

et al., 2021). Here we present new data on fine-root N and P content for Panamanian trees with 853 

three root symbiont types (arbuscular mycorrhizal (AM), ectomycorrhizal (EM), and N-fixing 854 

(Nfix) to explore functional relationships. While N fixers tended to have higher root N content, 855 

there were no significant differences in root stiochiometry across these three functional types. 856 

Figure showsmeans and quantiles shown for nine tree species (n = 3 individuals per functional 857 

type). Details are in Notes S1 and data for each tree species are provided as Dataset S7.. These 858 

data highlight the problems with using root stoichiometry to assess symbiotic activity or nutrient 859 

uptake rates without additional measurements. Further investigation to confirm whether root 860 

stiochiometry is indicative of tropical plant fine-root functional activity would be useful, since root 861 

stoichiometry is one of the most abundant types of tropical root data (Fig. 2). 862 

 863 

 864 
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SI_NotesS1_NewPhytViewpoint_Cusack_Final.pdf Notes S1 contains 

methodological details and 

results for main text and boxes 

Dataset S2_Box1data_RootTraits_Panama.csv Dataset S2 provides raw data for 

Panama roots used in Box 1 

Dataset S3_Box1data_RootTraits_PuertoRico.csv Dataset S3 provides raw data for 

Puerto Rico roots used in Box 1 

Dataset 

S4_Box2data_MaximumRootingDepthData_CostaRica.csv 

Dataset S4 provides raw data for 

Costa Rica roots used in Box 2 

Dataset S5_Box3data_uptake_Panama.csv Dataset S5 provides raw data for 

Panama roots used in Box 3 

Dataset S6_Box3data_uptake_Singapore.csv Dataset S6 provides raw data for 

Singapore roots referenced in 

Box 3 and in Notes S1 

Dataset S7_Box4data_Panama_stoich.csv Dataset S7 provides raw data for 

Panama root stoichiometry used 

in Box 4 
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