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A B S T R A C T   

Simple, site-specific adsorption isotherm models, such as GAB and other generalizations of BET, 
fit strikingly well to experimental isotherms of simple shapes for glassy and rubbery polymers. 
However, the structures of dense polymers do not necessarily resemble the unrestricted layer-by- 
layer adsorption mechanism on one type of sorption site assumed by these models. Since poly-
mers contain micropores, sorptive likely (ad)sorbs on the internal surfaces of the free (accessible) 
volume voids, and dissolves in the polymer phase. While the empirical dual mode sorption model 
and its variants address this duality, other common models assume chiefly only one of the two 
mechanisms. Moreover, the simplified models do not fit complex isotherms, such as those for 
alcohols and poly[(trimethylsilyl)propyne] (PTMSP). The statistical thermodynamic fluctuation 
theory is adopted here to capture the sorption-solution duality consistently even for the complex 
isotherms. The statistical thermodynamic ABC isotherm derived from this theory involves the 
sorbate-sorbent and mono-, di-, and tri-sorbate interactions expressed by sorbate number corre-
lations. This work shows that BET, GAB, dual-mode sorption model, Flory-Huggins, and ENSIC 
models are special cases of the ABC isotherm. The isotherm multiplicativity principle has been 
derived from the number fluctuation relationship to model complex isotherms.   

1. Introduction 

In theory, the functional shape of a sorption isotherm should reflect its underlying molecular interactions [1–5]. In practice, 
however, several out of the 100+ known isotherm models [6,7], each with a different mechanistic assumption [8], can fit an 
experimental isotherm comparatively well [8,9]. Moreover, some of the most popular models, such as the dual mode sorption (DMS) 
model, BET, and GAB, are semi-empirical or have been applied beyond their original assumptions (i.e., site-specific, unrestricted 
layer-by-layer adsorption mechanism on a uniform surface) [8,10,11]. 

To bridge the gap between theory and practice, which inspired pessimism for isotherm analysis [8], the statistical thermodynamic 
fluctuation theory [12] whose tradition goes back to Kirkwood-Buff solution theory [13] and its inversion [14] can be used. The 
sorbate-sorbate interactions can be evaluated in a model-independent manner from the gradient of an isotherm [12,15–17]. Moreover, 
two simple statistical thermodynamic isotherms, the ABC isotherm (representing mono-, di-, and tri-sorbate interactions at the 
interface, Fig. 1(a)) [15,16] and the cooperative isotherm (capturing the m-sorbate cooperative sorption, Fig. 1(b)) [18,19], can, in 
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combination, fit all six IUPAC solid/vapor isotherm types [20] with a clear physical meaning of all their parameters [15,16,18,19]. The 
physically sound sorption model is clearly a prerequisite for modeling transport in dense materials using the solution-diffusion 
mechanism [21]. 

Armed with the above recent achievements, this paper focuses on a challenging topic of vapor and gas sorption on glassy and 
rubbery polymers as an essential step towards elucidating gas separation and purification through polymer membranes [22–24]. The 
isotherms for single-component sorption in polymers are already more complex than simple adsorption as they result from multiple 
simultaneous processes: adsorption on surfaces, filling of micropores (free volume voids), dissolution into the bulk polymer, and its 
swelling [20,25–28]. Therefore, the aim of this paper is twofold:  

I. to establish a universal isotherm theory that encompasses surface adsorption, formation of aggregates of sorbate molecules, and 
(dis)solution into sorbent interior that can incorporate sorbent structure changes; and  

II. to clarify and demonstrate how simple isotherm equations can be combined to model sorption isotherms with more complex 
functional shapes. 

In the following, we will articulate why our twofold aim is crucial. 
Need for an Adsorption-Solution Isotherm Theory. The vapor (gas) isotherms on glassy polymers exhibit a dual character of 

sorption and solution; vapor (gas) molecules not only adsorb onto but also dissolve into polymers [29–31]. For the glassy polymers of 
high free volume, swelling dominated by the filling of the adsorption centers was observed at low sorptive saturations [32–35]. It thus 
seems erroneous to neglect the adsorptive contribution. This has been recognized since the DMS model [36–42], which considered an 
isotherm as the sum of the “ordinary dissolution” and “hole-filling” processes, for which Henry’s law or Flory-Huggins term and 
Langmuir’s case I adsorption model were used and which captures a substantial part of Type II isotherms (Fig. 1(a)) [20,37,42,43]. 
However, this brings persistent questioning of how “immobilized” the adsorption process is [40–42,44,45] as the difference in mobility 
between the two processes has not been clarified. The duality of (ad)sorption-(dis)solution, in the language of the DMS model, has led 
to the two current strategies for modeling [27] assuming only one key mechanism and providing acceptable results for numerous 
systems. (a) Applying the BET and GAB adsorption isotherm models and their modifications [25,46], which are correlative and neglect 
dissolution. (b) The calculation of chemical potentials using equations of state via the nonequilibrium theory of glassy polymers 
[26–30], which are partially predictive (contain adjustable constants) and neglect adsorption. The duality of approaches (see Ref [27] 
for comparing some of these models) invokes the principal question of how gas and vapor isotherms on polymers can be modeled by 
combining dissolution and adsorption. The aim here is to develop a theoretically founded isotherm equation with the quality of 
quantitatively correlating not only the simple isotherm types, for which the both above strategies usually perform well, but also the 
complex ones for which these strategies do not perform well, such as those for the sorption of alcohols in poly[(trimethylsilyl)propyne] 
(PTMSP) [32]. 

In contrast to the sorption in glassy polymers, sorption isotherms for rubbery polymers and polymer solutions routinely show 
shapes following the lattice models [47–49] of dissolution without apparent hole-filling contribution. It was also reported that a glassy 
polymer undergoes solvent-induced glass transition at a particular sorbate loading and then follows the shape of an isotherm common 

Fig. 1. Schematic representation of simple (a and b) and complex (c and d) isotherms. (a) The ABC isotherm (Eq. (5a)) for IUPAC Type I (A > 0, 
B < 0, C = 0), Type II (A > 0, B < 0, C > 0), and Type III (A > 0, B > 0, C ≥ 0) isotherms [51]. (b) The cooperative isotherm for IUPAC 
Type V isotherms. (c) The additive isotherm, similar in shape to the IUPAC Type VI [20], observed for heterogeneous porous materials. Type IV also 
belongs to this category. (d) The multiplicative isotherm (solid red curve), observed for glassy polymers and powders; the behavior of IUPAC Type II 
at low a2 is shown for comparison (dotted blue curve). Both classes can be modeled by combining several isotherm equations. The theory for 
modeling (c) is founded on the statistical independence of microscopic-sized patches and can be implemented as the sum of several cooperative 
isotherms [18,19]. The theory for (d) will be developed in this paper. How to distinguish (c) and (d) will also be discussed. 
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for the rubbers [50]. Generally, “holes” decay as the thermal motions of the chains are less hindered in the plasticized polymer, and 
“dissolution” prevails. Although this interpretation is meaningful, its conversion to a model equation is not straightforward. 

Modeling Complex Isotherms. Simple isotherm equations (Fig. 1(a) and (b)) alone are insufficient for capturing complex 
isotherm shapes. The first class of complex isotherms is the multiple-stepwise isotherms (Fig. 1(c)), observed for porous materials of 
heterogenous nature (and may be considered the extension of Type VI [20], which was defined initially as “representative of 
layer-by-layer adsorption on a highly uniform nonporous surface” [20]). This class of isotherms can be modeled as the addition of 
cooperative isotherms (Fig. 1(d)) [19] when the interface is composed of statistically independent microscopic (nano-sized) patches, 
such as pores and crevices [19]. Such isotherm additivity is founded on the thermodynamics of small systems [52,53] and its statistical 
thermodynamic generalization [18,19,54]. In the context of sorption into glassy polymers, isotherm additivity has been known 
empirically and implemented in the dual-model [1,36,39,40]. 

However, additivity is not the exclusive origin of complex isotherms. The second class of complex isotherms (shown schematically 
in Fig. 1(d)) was discovered for alcohol vapor sorption in PTMSP, a glassy polymer of high free volume [31,32,55,56], which is 
different in shape from the additive isotherms (Fig. 1(c)). Isotherms with a similar functional shape have also been reported for 
graphitized carbon blacks [57,58]. 

Isotherm additivity has failed to capture this class (or anomaly), which was demonstrated by the need for an artificial threshold 
activity value above which an exponential isotherm term switches on suddenly [32,56]. Other empirical models were applied to this 
task, such as that by Fowler [32,59] and the model assuming the pore filling and formation of associates [60]. Alternatively, a suc-
cessful fitting was achieved by modifying the GAB isotherm model, making one of the GAB constants vary exponentially with sorptive 
(and sorbate) activity to capture the initial cooperative rise [55]. The approach utilizing the calculation of chemical potentials from 
equations of state also shows discernible deviations from the experimental isotherms despite containing adjustable parameters (Fig. 8 
in[26], Fig. 5 in [30]). 

The need for empirical models and the shortcomings of the models based on the chemical potential calculation point to the need for 
a rational strategy for combining several isotherm contributions systematically. 

Our Strategy. The first step is establishing a theory of isotherms that can be applied to sorption and solution. This can be achieved 
by taking advantage of the mathematical analogy between adsorption and solution that will be established in Section 2. With the 
sorption-solution analogy, the ABC [15,16,51] (Fig. 1(a)) and cooperative [18,19] (Fig. 1(b)) isotherms (see the second paragraph of 
the Introduction) will apply to glassy and rubbery polymer membranes with their dual sorption-solution character of isotherms. With 
this new advantage, the second step is to establish how complex isotherms can be constructed by combining simple vapor sorption 
isotherms, amongst which the “additive isotherms” (Fig. 1(c)) constitute a subcategory. Here, “multiplicative isotherms” (Fig. 1(d)) 
will be introduced as a new subcategory of complex isotherms. We will derive the multiplicative rule under the condition that the 
sorbate excess numbers, the measure of sorbate-sorbate interaction, can be expressed as a sum of several different contributions 
(Section 2). We will demonstrate that (i) the statistical ABC isotherm handles the sorption-solution dualism effortlessly, can be applied 
to Types II and III isotherms alike, and unifies the previous fittings using different models (such as DMS, Flory-Huggins, and ENSIC 
models), giving them universal statistical thermodynamic interpretation, and that (ii) the anomalous alcohol vapor adsorption on 
glassy polymers can be modeled by isotherm multiplicativity, thereby clarifying the underlying sorption mechanism (Section 3). We 
will also prove that the additive and multiplicative isotherms are indeed different subcategories of composite isotherms (Section 3). 

2. Theory 

2.1. Fluctuation sorption theory 

2.1.1. Notation 
Here, we briefly summarize the fundamentals of the fluctuation sorption theory [12,15,16]. Let species 1 and 2 be sorbent 

(polymer) and sorptive/penetrant, respectively. A sorption isotherm describes the dependence of 〈n2〉 (i.e., the ensemble average of the 
number of the sorbate, n2) on the activity of sorbate a2 that equals, once the phase equilibrium is attained, the relative pressure of the 
sorptive in the gas phase [12,15,16]. As explained in the following paragraphs, the fluctuation sorption theory quantifies 
sorbate-surface and sorbate-sorbate interactions from an isotherm and its gradient. 

2.1.2. Unifying adsorption and solution 
Our first aim was to establish a universal isotherm theory encompassing (a) (dis)solution into sorbent interior that can incorporate 

sorbent structure changes and (b) surface adsorption (see Section 1). This can be achieved by the mathematical analogy between (a) 
sorbate-sorbent phase equilibrium with no sorbent evaporation and (b) the generalized Gibbs adsorption isotherm (see Supporting 
Information A) [15,51]. The fundamental relationship for (a) links how the chemical potential of sorbent (μ1) depends on that of 
sorbate (μ2) to the sorbate excess number per unit sorbent quantity, 〈n2〉, via 

−

(
∂μ1
∂μ2

)

T;Ng
1=0

= 〈n2〉 (1a)  

where 〈n2〉 is defined as the sorbate surface excess (i.e., the difference in the quantities of sorbate in the system 〈N∗
2
〉 and in the gas 

reference system 〈Ng
2
〉) per the quantity of sorbent in the system 〈N∗

1
〉 as 
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〈n2〉 =

〈N∗
2
〉
− 〈Ng

2〉〈N∗
1
〉 ≃

〈N∗
2
〉

〈N∗
1
〉 (1b)  

in which the dilute 〈Ng
2
〉 can be neglected. We emphasize here that the system (*) contains the sorbent interior. This is the crucial 

difference to adsorption, whose fundamental relationship relates the dependence of interfacial free energy per unit sorbent quantity (F) 
on μ2 to the sorbate surface excess, defined as the difference between the quantities of sorbate in the system 〈N∗

2
〉 and in the reference 

states (sorbent interior 〈Ns
2
〉 and gas (vapor) 〈Ng

2
〉) as 

−

(
∂F
∂μ2

)

T
= 〈n2〉 =

〈N∗
2
〉
−
〈Ns

2
〉
− 〈Ng

2〉〈N∗
1
〉 ≃

〈N∗
2
〉

〈N∗
1
〉 (1c)  

where, again, the dilute gas (vapor) 〈Ng
2
〉 can be neglected, and under the common assumption that sorptive cannot penetrate the 

sorbent, 〈Ns
2
〉
= 0 [16]. There is no distinction between (a) and (b) from an experimental perspective. This is because both (a) and (b) 

measure the amount of sorbate per unit sorbent quantity. Consequently, Eq. (1a-c) establish a relationship between 〈n2〉 and the 
equation of states for sorption and solution isotherms. To summarize, the fluctuation sorption theory can be applied to adsorption and 
solution alike, and even to the cases when adsorption and solution take place simultaneously. In contrast, previous isotherm models are 
limited to adsorption and equation of states models are limited to the solution [27]. Note that the chemical potential in Eq. (1a) can be 
generalized straightforwardly as the pseudo-equilibrium quantities in the nonequilibrium thermodynamics for glassy polymers 
(NET-GP) approaches [25–28,30]. 

2.1.3. Sorbate-sorbate interaction 
There are two measures of sorbate-sorbate interaction based on statistical thermodynamics. The first is the excess number of 

sorbates around a probe sorbate [12,15,16], defined as 

N22 =
〈N2(N2 − 1)〉 − 〈N2〉

2

〈N2〉
(2a)  

which can be evaluated from the ln-ln gradient of an isotherm via [12,15,16] 
(

∂ln〈n2〉
∂lna2

)

T
= N22 + 1 (2b)  

Eq. (2a and b) are valid for sorption and solution isotherms. Note that the probe sorbate is included in N22 + 1. Consequently, N22 +1 is 
referred to as the excess cluster number of sorbates [15,18,19,51]. Here, we present a form equivalent to Eq. (2b), 

⎛
⎜⎜⎝

∂ln〈n2〉
a2

∂lna2

⎞
⎟⎟⎠

T

= N22 (2c)  

which will play a key role in introducing isotherm multiplicativity in the next subsection. 
The second measure is the sorbate-sorbate extended Kirkwood-Buff integral (KBI) [12], G22, defined by normalizing N22 by the 

sorbate concentration, 〈n2〉/v. Here, a careful discussion is necessary regarding the definition of v. For adsorption, v is the volume of the 
interface [15]. When absorption is involved, v represents the volume into which sorptive can penetrate [15]. When sorptive can 
dissolve into sorbent, forming a single phase, v is the volume of the entire phase. To generalize all these cases, we generalize the 
definition of v as the volume accessible to the sorbate. With this generalized definition, G22 can be introduced as [12,15,16] 

G22
v =

N22
〈n2〉

(3a)  

Just like N22, G22 can also be linked to the isotherm, which can be achieved by combining Eqs. (2c) and (3a), as [12,15,16,51] 
(

∂

∂a2

a2
〈n2〉

)

T
= −

N22
〈n2〉

= −
G22
v (3b)  

Consequently, Eq. (3b) shows that G22/v can be evaluated from the gradient of a2/〈n2〉. The sorbate-sorbate G22 has been introduced as 
a generalization of the Kirkwood-Buff solution theory to the interface. (The Kirkwood-Buff [13] and McMillan-Mayer [61] are the two 
exact theories for liquid solutions that are related to each other at the dilute solute limit (superscript o) via Go

22 = − 2B22, where B22 is 
the second osmotic virial coefficient [62].) We have adopted the Kirkwood-Buff route because it allows G22 and N22 to change with the 
sorbate activity. 

2.1.4. Sorbate-sorbent interaction 
The sorbate-sorbent interaction is also quantified in a twofold manner. The first is the sorbate-surface excess number [12,15,16], 
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from which the second measure, the sorbate-surface Kirkwood-Buff integral, can also be defined as its normalization by the con-
centration of the reference gas system, cg

2, by 

Gs2 =
〈n2〉
cg

2
=

1
co

2

〈n2〉
a2

(4)  

where co2 denotes the concentration of the saturated vapor introduced via a2 = cg
2/co2 [12,15,16]. Note that the pressure in adsorption is 

expressed relative to the saturation pressure. Hence, the sorptive gas density is measured relative to the value at saturation. Conse-
quently, 〈n2〉/a2 should practically be regarded as KBI expressed in terms of the “relative density”, a2. Both 〈n2〉 and Gs2 can be 
introduced for solution and sorption isotherms alike and will be employed to establish the multiplicative sorption theory. 

2.1.5. Simple statistical thermodynamic isotherms 
Two important isotherms can be derived straightforwardly from the excess number (Eq. (2b)) and Kirkwood-Buff integral (Eq. (3b)) 

relationships. The first is the ABC isotherm, 

〈n2〉 =
a2

A − Ba2 − C
2a2

2
(5a)  

where A, B, and C represent mono-, di-, and tri-sorbate interactions in the presence of the sorbent, which results from expanding G22/v 
into sorbate power series [15,16]. The second is the cooperative isotherm, 

〈n2〉 = N A1a2 + mAmam
2

1 + A1a2 + Amam
2

(5b)  

where A1 and Am are related via −RTlnA1 and −RTlnAm to the mono- and m-sorbate sorption-free energy into one of the N micro-
scopic (nano-sized) patches (such as pores). Under A1 = 0, Eq. (5b) can be derived directly from Eq. (2b), in combination with the 
linearly decreasing N22 +1 with coverage; A1 has been introduced to satisfy Henry’s law if m ∕= 1 [18,19]. We emphasize that 
sorbate-sorbate interactions in both isotherms take place in the presence of the sorbent [12,15,16]. Despite their simplicity, the basic 
isotherms (Eqs. 5a and 5b) can cover all six IUPAC isotherm types [51]. 

2.2. Conditional sorption 

2.2.1. Isotherm multiplicativity 
For a complex sorption phenomenon, a simple isotherm (Eq. (5a or b)) alone is insufficient; combining isotherms to account for the 

multiple sorption steps is necessary. Here, we introduce the concept of isotherm multiplicativity top-down directly from the foundation 
of the fluctuation sorption theory (Eq. (2c)) and will clarify its significance incrementally throughout this paper. Suppose that the 
excess number of sorbates around a probe molecule, N22, is expressed as the sum of two contributions, NI

22 and NII
22, as 

N22 = NI
22 +NII

22 (6a)  

Under this condition, we use Eq. (2c) for N22, as well as for NI
22 and NII

22. The additivity of N22 leads to the multiplicativity of 〈n2〉/a2, as 

〈n2〉
a2

=

〈nI
2
〉

a2

〈
ñII

2
〉

a2
(6b)  

A comparison with Eq. (2c) shows that the multiplicative rule for 〈n2〉/a2 is essential for the sorbate-surface KBI in the activity units. 
The intensive nature of 

〈
ñII2

〉
is the logical consequence of 〈nI2

〉 and 〈n2〉 being in the same unit, i.e., the amount of sorption per unit 
sorbent quantity. We have shown previously that 〈nI2

〉 can be expressed as a sum of contributions from the statistically independent 
patches (that can be macroscopic or microscopic). Consequently, 

〈
ñII2

〉
, being a conditional process following 〈nI2

〉, is an isotherm per 
patch, hence an intensive quantity. Following the terminology of conditional probability, we shall call 〈nI2

〉 the (unconditional) 
isotherm of process I and 

〈
ñII2

〉
the conditional isotherm of process II subject to the process I. In this context, 〈n2〉/a2 represents a 

composite isotherm in which the processes I and II occur together. Intuitively speaking, the sorbates sorbed in process I act as new 
sorption sites for process II, as will be clarified in Section 3. 

2.2.2. Conditional isotherm equation 
Here, we show that the ABC isotherm (Eq. (5a)) can also be used for the conditional isotherm, 

〈
ñII2

〉
. To do so, our starting rela-

tionship is 
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⎛
⎜⎜⎜⎜⎝

∂ln
〈

ñII
2
〉

a2
∂lna2

⎞
⎟⎟⎟⎟⎠

T

= NII
22 (7a)  

which can be rewritten as 
⎛
⎝ ∂

∂a2

a2〈
ñII

2
〉

⎞
⎠

T

= −
NII

22〈
ñII

2
〉 (7b)  

Because of the analogy between Eq. (3b) (from which the ABC isotherm, Eq. (5a), has been derived) and Eq. (7b), the ABC isotherm 
equation for 

〈
ñII2

〉
can be derived by repeating the same argument (Supporting Information B) [15,16,51], leading to 

〈
ñII

2
〉
=

a2
A − Ba2 − C

2a2
2

(8a)  

where A, B, and C represent the mono-, di-, and tri-sorbate interactions in the presence of the sorbent [15,16,51]. However, unlike the 
ABC isotherm for conventional (i.e., unconditional) isotherms, 

〈
ñII2

〉
is an intensive quantity, being a conditional isotherm acting on a 

statistically independent patch that constitutes 〈nI2
〉. Consequently, we can use normalized Eq. (8a) by A−1 and designate A−1 as a part 

of the unconditional process I. As will be demonstrated in Section 3, the following form (the normalized Eq. (8a) with C = 0) suffices 
for practical use as the conditional isotherm: 

〈
ñII

2
〉
=

a2
1 − Kaa2

(8b)  

where Ka = B/A. (Normalization is equivalent to removing the A−1 contribution and introducing, instead of it, the unconditional 
process I). When Ka is positive, it can be interpreted as the infinite successive sorbate-sorbate binding constant (see Section 3) [51]. 
When Ka is negative, Kp =−Ka signifies the interface/vapor partition coefficient [51]. In Section 3, we will demonstrate that Eq. (8b) 
with a positive Ka is capable of capturing the high a2 behavior of the composite isotherm illustrated by Fig. 1(d). 

2.2.3. Multiplicativity in simple isotherms 
Here, we consider the simplest case of sorption multiplicativity that is already present, albeit implicitly, in a simple isotherm for 

Types I-III. To do so, let us choose a linear isotherm, 〈nI2
〉
= a2/A, as the unconditional isotherm (i.e., the ABC isotherm with B = C =

0) for step I and Eq. (8b) as the conditional isotherm for step II, 
〈

ñII2
〉

. Consequently, the composite isotherm 〈n2〉, in which the 
processes I and II occur together, can be written down using the multiplicativity rule (Eq. (6b)) as 

〈n2〉 =
a2
A

1
1 − Kaa2

=
a2

A − Ba2
(9)  

which is identical in form to the AB isotherm (i.e., the ABC isotherm with C = 0). (Repeating the same argument, we can also consider 
the ABC isotherm as a composite isotherm.) Fig. 2 illustrates how the AB isotherm for Type I and Type II behaviors can be seen as the 
multiplicative process, in which the conditional process is responsible for sorbate-sorbate interaction in the presence of the sorbent. A 
favorable sorbate-sorbate interaction (Ka > 1) leads to 

〈
ñII2

〉
> 1, making the composite isotherm larger than 〈nI2

〉. An unfavorable 
sorbate-sorbate interaction (Ka < 1) leads to 

〈
ñII2

〉
< 1, making the composite isotherm smaller than 〈nI2

〉. Thus, conditional sorption 
can be considered present even in simple isotherms. 

Fig. 2. The simple isotherms of Type I and Type II can be understood as multiplicative isotherms (Eq. (9), with A = 1). (a) The linear isotherm (〈nI2
〉

= a2) as the initial process. (b) The conditional process, modeled via the AB isotherm (
〈

ñII2
〉

, Eq. (8b)) with favorable (red, Ka = 0.5), unfavorable 
(blue, Ka = − 0.5), and zero (green, Ka = 0) sorptive-sorptive interactions. (c) The composite isotherm via the multiplicative process from (a) 
and (b). 
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2.3. Multiplicative sorption isotherms 

2.3.1. Capturing initial cooperativity 
Here, we construct a sorption isotherm equation based on the multiplicative rule (Eq. 6b) to reproduce multiplicative composite 

isotherms illustrated in Fig. 1(d). The departure from a simple ABC isotherm is necessitated to capture the initial cooperativity [55], 
which can be incorporated by replacing the linear unconditional isotherm in the previous paragraph with the cooperative isotherm, 

〈nI
2
〉
= N A1a2 + mAmam

2
1 + A1a2 + Amam

2
(10a)  

where N is the number of independent patches per unit sorbent quantity, m is the cooperative sorbate cluster size, and −RTlnA1 and 
−RTlnAm are the free energy of sorbing one and m sorptives, respectively [18,19]. Combining Eq. (10a) with the AB conditional 
isotherm (Eq. (8b), we obtain the following composite isotherm in which the processes I and II occur together: 

〈n2〉 = N A1a2 + mAmam
2

1 + A1a2 + Amam
2

1
1 − Kaa2

(10b)  

Note that other isotherm equations may be chosen for 〈nI2
〉 and 

〈
ñII2

〉
. 

2.3.2. A graphical interpretation of cooperativity 
To facilitate interpretation and sense-check the fitting, the cooperative isotherm (Eq. (10a)) is rewritten in the following manner: 

〈nI
2
〉
= N

A1a2 + m
(

a2
am

)m

1 + A1a2 +
(

a2
am

)m (11a)  

where am = A−1/m
m was introduced, which is advantageous because it corresponds to the point at which the cooperative isotherm rises 

the steepest when A1 is negligible (Supporting Information C). Such a point can be located easily and visibly in the experimental 
isotherm, which is conducive to sense-checking the fitting result. In addition, since −RTlnAm signifies the free energy of sorbing m 
sorptive molecules, −RTlnam signifies the desorption-free energy per sorptive. Note that −RTlnam is identical in form and inter-
pretation to Polanyi’s “adsorption potential” [63–65], yet only at a2 = am. The cooperative isotherm has other intuitive in-
terpretations: Nm is the saturating capacity and m/2 is the steepest gradient at a2 = am (Supporting Information C), both can be 
examined visually in the isotherm plot (Supporting Information C). Using Eqs. (10b) and (11a), the isotherm can be expressed as 

〈n2〉 = N
A1a2 + m

(
a2
am

)m

1 + A1a2 +
(

a2
am

)m
1

1 − Kaa2
(11b)  

Eq. (11b) will be applied to fit experimental data in Section 3. This isotherm (Eq. (11b)) obeys Henry’s law at a2→0, hence we have 
〈n2〉/a2 = NA1. 

3. Results and discussion 

3.1. Systematizing isotherm models for polymer membranes 

3.1.1. Universal language across isotherm models 
Gas and vapor sorption isotherms on polymer membranes exhibit diverse functional shapes, for which isotherm models (such as the 

DMS [36–41], BET, GAB and their modifications [2–5,55,56,66], ENSIC [67–69], and models based on the lattice models of dissolution 
[47,70] while the latter two are used mainly to IUPAC Type III isotherms [20] standard for rubbery polymers) have been employed to 
reproduce their functional shapes. We demonstrate that all these models can be linked to the ABC isotherm. The benefit of adopting the 
ABC isotherm is threefold:  

• applicable to sorption and solution isotherms (aim I in Section 1, see Section 2);  
• no interpretive restrictions due to the over-idealized model assumptions; and  
• the universal applicability of its parameters signifying mono-, di-, and tri-sorbate interactions. 

3.1.2. BET and GAB models 
The GAB model [3–5], being an extension of the BET model [2,71], assumes the layer-by-layer adsorption mechanism that has been 

captured via the monolayer capacity, nm, the BET constant, CB (i.e., being related exponentially to the energy of monolayer adsorption 
[2,71]), and the GAB constant, KG (which accounts for the difference in binding between the first and outer layers), as 
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〈n2〉 =
CBnmKGa2

(1 − KGa2)[1 + (CB − 1)KGa2 ]
(12a) 

The GAB model successfully fits vapor sorption in glassy [34,46,55,56,66] and rubbery [72] polymers over wide pressure ranges. 
However, because of the gap between its multilayer assumptions and the microporous reality of the membrane polymers, the resultant 
GAB parameters had to be termed as “apparent (equivalent)” [25]. However, such a gap can be eliminated by converting the GAB 
parameters for polymer/vapor sorption to the ABC isotherm parameters (Eq. 5a, Supporting Information D) via 

A =
1

CBKGnm
, B =

2 − CB
CBnm

, C =
2KG(CB − 1)

CBnm
(12b)  

because the mono-, di- and tri-sorbate interactions are more versatile than the assumptions of the GAB model [15,16,51]. With this 
conversion, summarized in Table 1, the published GAB parameters (e.g., for PIM-1, PTMSP, or other polymers) can be interpreted via 
statistical thermodynamics without the overly idealized assumptions of the GAB model. For example, water in Table 1, contradictory to 
the normal range of the BET parameter, does not pose any problem for the ABC isotherm (see the following paragraph). 

From now onwards, we can follow the statistical thermodynamic fluctuation theory to obtain physical interpretation. The negative 
sign of B (except water) signifies the net sorbate-sorptive repulsion, whereas positive B for water indicates the net water-water 
attraction. The vapor/interface partition coefficient, Kp, is a model-free quantity that can be evaluated from the parameters of the 
ABC isotherm via Kp = − B

A. Combining this with Eq. (12b), we obtain 
Kp = (CB −2)KG ≃ CBKG (12c)  

where the approximation is valid for a large CB. The values of Kp calculated from the GAB model fitting have also been summarized in 
Table 1. (Note that water, for which CB < 2, yields an unphysical result for Kp.) We have shown in Table 1 that the previous GAB 
model fitting of the polymer/vapor isotherms [34,55,56,66,72] can be used as a fitting equation to yield the isotherms parameters with 
a clear physical interpretation (A, B, and C, as well as Kp). 

3.1.3. Estimating specific surface areas 
The BET surface area has been determined routinely for materials, including glassy polymer membranes (such as PIM-1 [73] and 

PTMSP [74]). However, applying the BET model to porous materials involving absorption (solution) and micropore filling contradicts 
their basic assumption of the BET model [16], i.e., unrestricted layer-by-layer adsorption on a uniform surface [10,11,75]. According 
to IUPAC, the so-calculated areas for porous materials should be considered apparent or effective [20]. Overcoming the involved 
contradiction requires a reconceptualization of how specific surface area should be evaluated based on the statistical thermodynamic 
fluctuation theory with broader applicability [16]. The statistical thermodynamic surface area (STSA) is calculated from the sorption 
capacity at Point M, i.e., the activity at which the sorbate-sorbate exclusion ( − N22) takes a maximum [75]. The sorption capacity at 
Point M, 〈n2〉M, agrees with the BET monolayer capacity for sufficiently large BET constant values (CB) [16], as has been recommended 
by the IUPAC [20]. The quality of the estimated surface area can be assessed by the value of (N22)M, i.e., the value of N22 at Point M. 
The IUPAC recommendation regarding the BET constant, 80 ≤ CB ≤ 150 [20], translates to − 0.84 ≤ N22 ≤ − 0.78, which is expected 
to give a good general idea about where N22 should approximately be. A larger (more positive) N22 indicates the contribution of 
sorbate-sorbate attraction to sorption, which works against monolayer coverage. A value of N22 too close to −1 indicates the 
micropore filling mechanism instead of the monolayer-multilayer mechanism (by translating the IUPAC recommendation, based on CB 
[20], to N22). Thus, STSA has generalized the BET surface area estimation beyond the restrictive BET model assumptions. 

Here, we show how STSA can be evaluated based on the GAB model fitting of PIM-1/vapor isotherms (Table 1). Such an approach is 

Table 1 
ABC isotherm parameters for PIM-1 calculated from the GAB parametersa,b.   

nm CB KG A× 102 B× 101 C× 101 Kp 

Methanol  5.45  10.75  0.63  2.71  -1.49  2.10  5.51 
Ethanol  4.44  9.23  0.63  3.87  -1.76  2.53  4.55 
Propan-1-ol  3.14  20.63  0.63  2.45  -2.88  3.82  11.7 
Tetrahydrofuran  3.51  19.85  0.76  1.89  -2.56  4.11  13.6 
n-Pentane  2.55  55.59  0.54  1.31  -3.78  4.16  28.9 
iso-Pentane  2.02  30.81  0.54  2.98  -4.63  5.17  15.6 
n-Hexane  2.26  41.94  0.54  1.95  -4.21  4.66  21.6 
1,4-Dioxane  4.16  18.73  0.69  1.86  -2.15  3.14  11.5 
Toluene  2.75  22.76  0.7  2.28  -3.32  4.87  14.5 
n-Heptane  2.04  45.22  0.56  1.94  -4.69  5.37  24.2 
Chloroform  3.59  51.95  0.76  0.706  -2.68  4.15  38.0 
Water  1.73  0.99  0.71  82.2  5.90  -0.0829  -0.717 
CO2  3.43  21.5  2.13  0.637  -2.64  11.8  41.5  
a The GAB parameters (nm, CB, and KG) have been taken from Table 1 of Ref [25] 
b The units of nm are mmol g−1, and of A, B, and C are g mmol−1. Other parameters are unitless.  
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beneficial because (i) fitting an isotherm is related to surface area estimation, and (ii) the restrictive assumptions of the GAB model can 
be eliminated when analyzing porous glassy polymer surfaces. Table 2 summarizes the 〈n2〉M and (N22)M calculated (following the 
relationships derived in Supporting Information E) from the GAB model fitting of PIM-1 [25]. Even though the monolayer capacities 
from the GAB model are close to 〈n2〉M, some of the GAB model fitting results yields a high (less negative) (N22)M, indicating the 
contribution of sorbate-sorbate attraction that interferes with monolayer coverage. Moreover, 〈n2〉M shows lower dependence on the 
composition of the actual probing compound (sorptive). 

3.1.4. ENSIC model for Type III sorption 
The Type III isotherm behavior observed previously for vapor sorption on Teflon AF 2400 [68,69] and another rubbery polymer, 

PDMS [76], differs from the GAB model and its assumed monolayer-multilayer mechanism. Consequently, the ENSIC model [67] has 
been adopted as it describes the Type III isotherms for ks > kp. This model links the volume fraction of sorbate, ϕ2, and sorptive 
activity, via 

(ks − kp
)a2 = ln

[
1+ϕ2

(ks − kp
kp

)]
(13a)  

where ks and kp are the affinity parameters expressing the interactions between the penetrating sorbate species (ks) and between the 
polymer segments and the sorbate molecules (kp) [69]. These parameters correspond to the ABC isotherm when the latter is expressed 
in terms of the volume fraction (see Supporting Information D) via 

A =
1
kp

v2
v1
, B =

ks + kp
2kp

v2
v1
, C =

1
6kp

[
4kpks −

(kp + ks
)2 ] v2

v1
(13b)  

where v2/v1 is the sorbate-to-polymer volume ratio originated in the volume fraction used in the lattice model. Thus, the ENSIC and 
GAB analysis can now be compared within the same theoretical framework of the ABC isotherm. Combining Eq. (13b) with the sta-
tistical thermodynamic interpretation of B (see Supporting Information D), we obtain, under ks ≫ kp (Table 3), the following simplified 
expressions: 

(G22
v
)

a2→0
∝

ks + kp
2kp

≃
ks

2kp
(13c)  

Ka =
B
A =

ks + kp
2 ≃

ks
2 (13d)  

where Ka is the sorbate-sorbate association constant in the presence of the sorbent. Indeed, according to, ks ≫ kp is satisfied well for 
methanol (ks/kp ∼ 103) and for ethanol, propanol and iso-propanol (ks/kp ∼ 102), and reasonably for butanol, pentanol, and hexanol 
(ks/kp ∼ 101). A correlation was reported in the previous paper between ks/kp and the average cluster size estimated from diffusion 
[69]. In the framework of the statistical thermodynamic fluctuation theory, ks/kp is related to the sorbate-sorbate Kirkwood-Buff 
integral, which justifies its interpretation as the measure of sorbate-sorbate interaction. 

3.1.5. Dual-mode sorption model 
Here, we focus on the dual-mode model’s assumptions rather than comparing its fitting capabilities with other isotherm models, 

such as GAB. The DMS model can be expressed as the sum of the “ordinary dissolution process” (the first term, below) and the “hole- 

Table 2 
Sorbate-sorbate interaction at Point M for PIM-1 calculated from the GAB parametersa,b.   

nm CB KG aM 〈n2〉M (N22)M 

Methanol  5.45  10.75  0.63 0.262 4.44 -0.419 
Ethanol  4.44  9.23  0.63 0.267 3.48 -0.378 
Propan-1-ol  3.14  20.63  0.63 0.226 2.84 -0.570 
Tetrahydrofuran  3.51  19.85  0.76 0.190 3.16 -0.563 
n-Pentane  2.55  55.59  0.54 0.191 2.46 -0.734 
iso-Pentane  2.02  30.81  0.54 0.234 1.89 -0.646 
n-Hexane  2.26  41.94  0.54 0.211 2.15 -0.695 
1,4-Dioxane  4.16  18.73  0.69 0.212 3.72 -0.550 
Toluene  2.75  22.76  0.7 0.198 2.51 -0.590 
n-Heptane  2.04  45.22  0.56 0.198 1.95 -0.706 
Chloroform  3.59  51.95  0.76 0.139 3.45 -0.725 
Water  1.73  0.99  0.71 - - - 
CO2  3.43  21.5  2.13 0.066 3.11 -0.579  
a The GAB parameters (nm, CB, and KG) have been taken from Table 1 of Ref [25]. 
b The units of nm and 〈n2〉M are mmol g−1. Other parameters are unitless.  
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filling process” (the second term) [37,42] via 

〈n2〉 = kHa2 +
nmKLa2

1 + KLa2
(14a)  

where kH is Henry’s Law coefficient of dissolution, nm is the Langmuir capacity and KL is the Langmuir constant. First, we derive Eq. 
(14a) from the statistical thermodynamic fluctuation theory. This can be achieved by postulating sorption as the sum of two statis-
tically independent processes as 

〈n2〉 =
a2

AI − BIa2 − CI
2 a2

2
+

a2
AII − BIIa2 − CII

2 a2
2

(14b)  

where we have adopted the ABC isotherms for both processes. We focus on a rather dilute range of a2; assuming that BI, CI and CII 
makes a negligible contribution, we obtain 

〈n2〉 =
a2
AI

+
a2

AII − BIIa2
(14c)  

where kH = 1/AI, KL = − BII/AII, and nm =−1/BII yields the dual-mode model (Eq. (14a)). Second, we will show that our above 
rederivation can relax some of the restrictive historic assumptions imposed by adopting the Langmuir model. The Langmuir model 
assumes that the adsorbed molecules are “immobilized”, which has long been questioned [40–42,44,45]. Our AB isotherm in Eq. (14c), 
on the other hand, is applicable both for immobilized (site-specific) and non-specific sorption mechanisms; the only underlying 
physical picture is the sorbate-sorbate repulsion or the negative sorbate-sorbate Kirkwood-Buff integral, which leads to BII < 0 [15,16, 
51]. Therefore, using the AB isotherm does not mean that immobile adsorption takes place. 

We have demonstrated (Tables 1–3) that the statistical thermodynamic ABC isotherm can unify previous isotherm fittings that 
employed a different isotherm model for each isotherm type and provide a universal interpretation via mono-, di-, and tri-sorbate 
interactions. 

Table 3  
ABC isotherm parameters calculated from the ENSIC parametersa.   

ks kp × 103 v1
v2

A  v1
v2

B  v1
v2

C  ks
2kp  

Methanol 4.80 2.78 360 863 -1380 863 
Ethanol 3.40 9.13 110 187 -210 186 
Propanol 1.82 18.77 53.2 49.0 -28.8 48.5 
iso-Propanol 1.66 4.32 231 193 -106 192 
Butanol 1.41 20.82 48.0 34.4 -15.5 33.9 
Pentanol 1.02 30.78 32.5 17.1 -5.30 16.5 
Hexanol 0.70 41.06 24.4 9.02 -1.76 8.52  
a The ENSIC parameters (ks and kp) have been taken from Table 3 of Ref [69].  

Fig. 3. Experimental sorption isotherms of methanol (at 40 ◦C, red squares) [56] and 1-butanol (37 ◦C, blue circles) [31] on poly[(trimethylsilyl) 
propyne] (PTMSP) versus sorptive activity (a2), compared to the fitting (solid curves) by the multiplicative sorption isotherm (Eq. (11b)). The fitting 
parameters are summarized in Table 4. 
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3.2. Complex sorption via multiplicative isotherms 

3.2.1. Alcohol sorption on the inner sites of a glassy polymer membrane 
A successful fitting of Eq. (10b) to the experimental methanol and 1-butanol adsorption isotherms on poly[(trimethylsilyl)propyne] 

(PTMSP) membrane [31,55] is demonstrated in Fig. 3, with the fitting parameters summarized in Table 4. Fig. 4 illustrates the 
multiplicative nature of this isotherm. The positions of am for methanol and 1-butanol (Fig. 3) are approximately at the point of the 
steepest isotherm gradient, which is consistent with the cooperative isotherm (Eq. (11a)). A larger saturation capacity for methanol 
reflects its smaller effective size than 1-butanol. Ka for methanol is slightly stronger than for 1-butanol, which may reflect its smaller 
size and stronger interactions with PTMSP. However, this partitioning coefficient appears very similar for both alcohols, although 
1-butanol shows much less pronounced multiplicativity than methanol. Thus, Ka is foreseen to be similar also for other alcohols. 

3.2.2. The physical meaning of multiplicative sorption 
In Section 2, isotherm multiplicativity was introduced top-down based on the additivity of sorbate excess numbers. Its significance 

was attributed to the multiplicative nature of the sorbate-surface Kirkwood-Buff integral. Here, our aim is to clarify the physical 
meaning of multiplicative sorption. As a first step, starting from Eq. (11b), we will provide an alternative interpretation more in line 
with the traditional way of thinking yet within the confines of the simple model. As a first step, let us rewrite Eq. (11b) as: 

〈n2〉 = N
A1a2 + m

(
a2
am

)m

1 + A1a2 +
(

a2
am

)m

(
1+

Kaa2
1 − Kaa2

)

= N
A1a2 + m

(
a2
am

)m

1 + A1a2 +
(

a2
am

)m +

⎡
⎢⎢⎢⎣KaN

A1a2 + m
(

a2
am

)m

1 + A1a2 +
(

a2
am

)m

⎤
⎥⎥⎥⎦

a2
1 − Kaa2

(15a)  

The isotherm (Eq. (15a)) is now expressed as an additive process. The first term is the cooperative isotherm. Let us compare the second 
term with the AB isotherm (Eq. (9)), focusing primarily on the following correspondence: 

1
A ↔ KaN

A1a2 + m
(

a2
am

)m

1 + A1a2 +
(

a2
am

)m (15b) 

While in Eq. (9), 1/A, a constant, is multiplied by the normalized AB isotherm (a2/(1 − Kaa2)), which signifies the interaction 
between surface and sorbate, whereas the corresponding factor in Eq. (15b) (i.e., the right-hand side) changes with the sorptive ac-
tivity. This comparison clarifies the physical picture of multiplicative sorption: the conditional process (II) is sorption to the “interface” 

consisting not only of the membrane polymer but also of the sorbates cooperatively sorbed via the initial process (I). 
A simple reinterpretation of this a2 dependence (Eq. (15b)) comes from the site-specific binding model despite being limited in 

scope compared to the generality of statistical thermodynamic theory. This is advantageous for linking isotherm multiplicity to the 
traditional way of thinking. To this end, the first step is to rederive the AB isotherm using a simple model (detailed in Supporting 
Information F), an infinite series of binding between sorbates (2), initiated by the first sorbate on the binding site (s), as [77,78] 

〈n2〉 = NsKsa2
(1+Kaa2 +Kaa2

2 +…
)
=

NsKsa2
1 − Kaa2

(16a)  

where Ks represents the initial sorbate-sorption site binding constant, with (n−1)Ka/n as the binding constant of nth sorbate molecule 
(Supporting Information F). The second step is to compare Eq. (16a) to the AB isotherm (Eq. (9)), through which A−1 = NsKs results as 
the interpretation of A−1 according to the indefinite binding model. Taking this interpretation with Eq. (15a), the multiplicative 
isotherm (Eq. (15b)) results from the indefinite binding model (Eq. (16a)) if we could modify Ns as 

Table 4 
Fitting parameters for Eq. (11b) for the sorption isotherms of methanol and 1-butanol on PTMSPa.  

Sorptive N m A1 am Ka 

Methanol 0.395b  7.71  5.73  0.260  0.823 
1-Butanol 1.35b  1.84  4.42  0.0576  0.768  
a The experimental data for methanol(at 40 ◦C) are from Ref [56] and the one for 1-butanol (at 37 ◦C) are from Ref [31]. bThe units are in mmol g−1. 

Other parameters are unitless. 
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Ns =
Ka
Ks

N
A1a2 + m

(
a2
am

)m

1 + A1a2 +
(

a2
am

)m (16b) 

The increase of sorbate binding sites (Ns), caused by cooperative sorption (the middle of Eq. (16a)), rationalizes the multiplicative 
sorption isotherm (Eq. (11b)) from a traditional perspective of the indefinite binding model. The sorbates sorbed via the initial 
cooperative process are acting as new sorbate-“surface” binding sites; the “surface” for the conditional process is the one modified by 
the sorptive molecules via the initial cooperative process. However, albeit intuitively appealing, such a reinterpretation is limited to 
site-specific binding and the fortuitous mathematical form of the AB isotherm. (Note that the reinterpretation in terms of the infinite 
successive binding will become complicated for C ∕= 0.) Clarifying the precise nature of the initial cooperative sorption (i.e., adsorption 
or dissolution) requires statistical thermodynamics rather than the binding model, because the latter can capture sorption and solution 
in the same mathematical framework (Supporting Information A) 

3.2.3. Additive versus multiplicative sorption 
Can a multiplicative sorption be expressed in terms of additive sorption without introducing constructs such as the increasing 

sorbate-surface binding site? This question can be answered straightway from the second term of Eq. (15a). Expanding the brackets of 
its denominator, we obtain 

(1−Kaa2)
[
1+A1a2 +

(a2
am

)m ]

= 1+(A1 −Ka)a2 −KaA1a2
2 +

(a2
am

)m
−Ka

am+1
2
amm

(17) 

When Ka > 0, the am+1
2 and a2

2 terms are negative, and the a2 term may also be negative when Ka > A1. However, the denominator 
of cooperative isotherm theory is a partition function that should never contain any negative terms. When Ka < 0, all the terms in Eq. 
(17) become positive. However, the factor in Eq. (15a) becomes negative and makes the second term of Eq. (15a) a negative isotherm, 
which is against the sorption additivity rule. Thus, we have shown that multiplicative sorption cannot be reduced to additive sorption. 

Additive isotherms that exhibit multiple steps (Fig. 1(c)) cannot be expressed by multiplicative isotherms either. To illustrate this 
point, let us consider the multiplicative sorption consisting of two cooperative isotherms, which can be expressed via the multiplicative 
rule (Eq. (6b)) as 

〈n2〉 =
(

NI A1a2 + mAmam
2

1 + A1a2 + Amam
2

)( A1 + nAnan−1
2

1 + A1a2 + Anan
2

)
(18a)  

Note that the second factor in Eq. (18a) was obtained by dividing Eq. (6b) by a2. Now we show that Eq. (18a) is inconsistent with the 
stepwise behavior. To do so, let us consider its behavior at large a2, in which the second factor of Eq. (18a) is dominated by 

A1 + nAnan−1
2

1 + A1a2 + Anan
2
≃

n
a2

(18b)  

which is a decreasing function with a2. This means that Eq. (18a) cannot represent a multi-stepwise isotherm that converges, at large 
a2, to a saturating capacity. Thus, we have demonstrated that additive and multiplicative isotherms belong to different classes of 
sorption phenomena. 

3.3. Connection to χ 

Since isotherms are reported per unit sorbent quantity, it is defined under the constant n1 ensemble. However, the standard 
measure of interactions in polymer science is the Flory χ, which quantifies net self-interaction, the self (i.e., segment-segment and 
sorbent-sorbent) minus mutual (segment-sorbent) interaction [47,79]. By assuming constant χ, sorption isotherms are of Type III. In 

Fig. 4. Understanding the multiplicative processes that comprise the sorption isotherms of methanol [56] (red) and 1-butanol [31] (blue) on PTMSP 
whose fitting were presented in Fig. 3 and Table 4. (a) The cooperative isotherm, 〈nI

2
〉 (Eq. (11a)) as the initial process. (b) The AB isotherm, 

〈
ñII2

〉

(Eq. (8b)) as the conditional process. (c) The composite isotherm, 〈n2〉 (Eq. (11b)), as the multiplicative isotherm comprised of (a) and (b). 
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the fluctuation theory, Flory χ can be generalized using the Kirkwood-Buff integrals, as [80] 

χ = c1
(

G(μ)
11 +G(μ)

22 − 2G(μ)
12
)

(19)  

where c1 is the concentration of species 1, and the Kirkwood-Buff integrals have been defined in the grand canonical ensemble (which 
has been emphasized by the superscript (μ)), unlike the extended interfacial Kirkwood-Buff integral G(n1)

22 , which was defined under the 
constant n1 condition in line with the practice for sorption isotherms (see Eqs. (3a) and (3b); here, the superscript was added for 
emphasis and distinction). Note that Eq. (19) is a model-free definition that does not pre-suppose the lattice model as in the case of 
Flory χ [47,81,82] and enables the calculation of this parameter even for systems out of thermodynamic equilibrium, that is for glassy 
polymers showing chiefly isotherms of Type II. 

To relate our isotherm theory to χ, we need to convert the semi-open ensembles (constant n1) to the grand canonical ensemble 
({T, v, μ1, μ2}). This necessitates a relationship between the extended G(n1)

22 (under constant n1) and χ. This can be achieved most 
straightforwardly by the statistical variable transformation (see Supporting Information G) [83,84]. which yields the following simple 
relationship: 

N22
〈n2〉

= −

(
∂

∂a2

a2
〈n2〉

)

T
= χ + 1 (20)  

How χ changes with sorptive activity can be expressed through the derivation in Supporting Information G as 

χ =
Ka2
〈nI

2〉
− (1−Ka2)

(1
N −

1
〈nI

2〉
m(m − 1)Amam−1

2
A1 + mAmam−1

2

)
− 1 (21)  

where 〈nI2
〉, defined in Eq. (5b), was introduced for simplification. Using the fitting parameters in Table 4, we can show that χ is 

positive between the threshold activity and the completion of cooperative sorption (Fig. 5(a)). The calculated χ for methanol and 1- 
butanol converges above a2 > 0.4 (Fig. 5(a)), where the isotherm rise comes exclusively from the Type III contribution (Fig. 4). The 
validity of this result is supported by the near-parallel a2/〈n2〉 in Fig. 5(b), whose gradient yields χ via Eq. (20). In the following, we 
shall refer to N22/〈n2〉−1 calculated via Eq. (21) as χ.Yet, we emphasize here that the interpretation of N22/〈n2〉−1 in terms of the χ 

with its meaning defined by the self- versus mutual-interactions (Eq. (19)) is possible only when sorbate and sorbent form a single 
phase. 

For methanol and 1-butanol, χ exhibits a peak in the range of sorptive activity in which the dominantly cooperative isotherm (Fig. 5 
(a)). Swelling measurements for methanol in PTMSP show that the relative volume change is virtually zero in this region [33]. This 
suggests that the sorbate-sorbate association is the driving force for the positive χ, which takes place to fill the free volume in the 
membrane polymer without forming a strong sorbate-sorbent interaction. Note that the behavior of χ at low a2 may be inaccurate as 
seen from Fig. 5(b), the peak of χ should stretch to lower a2. In comparison to methanol, the cooperative contribution for 1-butanol 
sorption rises and saturates at lower a2 (see Fig. 4(a)), which is consistent with the behavior of χ in Fig. 5(a). In both cases, the positive 
χ, in combination with the lack of swelling, points to the predominance of sorbate-sorbate self-association that indicate the adsorption 

Fig. 5. (a) χ for alcohol sorption on poly[(trimethylsilyl)propyne] (PTMSP) versus methanol (red curve) and 1-butanol (blue curve) activities, 
calculated from Eq. (21), using the parameters in Table 4. (b) A plot of a2/〈n2〉 versus a2, whose gradient, according to Eq. (20), is − (χ +1), 
rationalizing the convergence of the two curves in (a) at a2 > 0.4. The experimental data (red squares for methanol and blue circles for 1-butanol) 
have been calculated from the same experimental data used for Fig. 3. For methanol at low a2, Eq. (20) deviates from experimental a2/〈n2〉 which 
does not affect the fitting of the isotherm (〈n2〉) in Fig. 3. Note that the fitting inaccuracy at the lower a2 region for methanol seen in (b); the peak of 
χ for methanol in (a) should, therefore, be located at a lower a2. 
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behavior. At higher a2, where the Type III sorption takes place, χ is negative, showing the dominance of the mutual (polymer-sorptive) 
interaction over the self (polymer-polymer and sorbate-sorbate), which points to the dissolution of sorptives into the glassy membrane. 
This tendency is consistent with the swelling observed for this region for methanol in PTMSP [33]. Thus, a consistent microscopic 
picture underlying the isotherm can be derived by combining swelling and sorption measurements with the help of statistical ther-
modynamics. In this region, a combination of χ with the Kirkwood–Buff theory for binary mixtures [13,14,85] would help separate the 
three Kirkwood-Buff integrals that constitute χ. 

4. Conclusions 

Free-volume voids in polymers can be classified as micropores. Consequently, gas (vapor) molecules sorb onto the inner surfaces 
and dissolve in the polymer phase. Although simplified models neglecting either (dis)solution or (ad)sorption provide meaningful 
descriptions for simple isotherms, such traditional models do not capture the sorption-solution duality. 

The key to addressing the above difficulty comes from statistical thermodynamics. The ABC isotherm, derived directly from the 
fundamental fluctuation relationship, renders the BET and GAB parameters to the mono-, di-, and tri-sorbate interactions, capturing 
the molecular interactions underlying an isotherm. The ABC isotherm handles the sorption-solution dualism effortlessly through the 
mathematical analogy between sorption and solution at the fundamental level and can be applied to Types II and III isotherms alike. 
For instance, as we have demonstrated in Tables 1–3, Dual Mode Sorption, Flory-Huggins, and ENSIC models can be generalized and 
re-interpreted in the universal formalism of the ABC isotherm. 

Isotherms with complex functional shapes, such as the sorption of alcohols on poly[(trimethylsilyl)propyne] (PTMSP) [31,32,55, 
56], posed challenges in the past yet can be successfully interpreted by our statistical thermodynamic approach. We have derived a 
novel approach to modeling complex sorption via isotherm multiplicativity that can be derived directly from the fundamental excess 
number relationship of the statistical thermodynamic fluctuation theory. 

Thus, our statistical thermodynamic theory can provide a standard isotherm theory for sorption and solution and a strategy to 
combine simple isotherms via isotherm multiplicativity and additivity. A unified theory of sorption for both glassy and rubbery 
polymers has emerged founded on the fundamental relationship between number fluctuations and chemical potential derivatives. 
Moreover, the isotherm equations derived in this work have the form of analytic expressions that can be easily adopted. 
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