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The classical causal relations between a set of variables, some observed and some latent, can induce both

equality constraints (typically conditional independencies) as well as inequality constraints (Instrumental and

Bell inequalities being prototypical examples) on their compatible distribution over the observed variables.

Enumerating a causal structure’s implied inequality constraints is generally far more difficult than enumerating

its equalities. Furthermore, only inequality constraints ever admit violation by quantum correlations. For both

those reasons, it is important to classify causal scenarios into those which impose inequality constraints versus

those which do not. Here we develop methods for detecting such scenarios by appealing to d separation, e

separation, and incompatible supports. Many (perhaps all?) scenarios with exclusively equality constraints can

be detected via a condition articulated by Henson, Lal, and Pusey (HLP). Considering all scenarios with up to

four observed variables, which number in the thousands, we are able to resolve all but three causal scenarios,

providing evidence that the HLP condition is, in fact, exhaustive.

DOI: 10.1103/PhysRevResearch.6.023038

I. INTRODUCTION

Many times in science we are not only interested in the ob-

served correlations between events, but also in the underlying

causal explanations that govern such observed phenomena. In

the mathematical framework for causal inference [1–5], the

candidates for these causal explanations are represented by

directed acyclic graphs (DAGs), where each node is associ-

ated with a variable and each edge represents a direct causal

influence.

A DAG imposes causal compatibility constraints on the

probability distributions that can be causally explained by

it. For example, a probability distribution over variables

{A, B,C} where A and C remain correlated even after a value

of B is conditioned upon cannot be causally explained by

the DAG of Fig. 1. All of the distributions over {A, B,C}
that can be explained by Fig. 1 need to satisfy P(AC|B) =
P(A|B)P(C|B). [6]

The causal compatibility constraint described above, de-

noted by A ⊥⊥CI C|B, is a conditional independence relation.

That is, it says that one set of variables becomes independent

of a second set of variables when conditioning on a third. In

general, however, a DAG can impose more complicated types

of constraints on the compatible probability distributions. This

only happens for DAGs that have latent nodes, i.e., nodes
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Creative Commons Attribution 4.0 International license. Further

distribution of this work must maintain attribution to the author(s)

and the published article’s title, journal citation, and DOI.

associated with variables that do not appear in the probability

distributions of interest.

From now on, the variables that do appear in the probability

distributions of interest will be called observed variables,

while the ones that do not will be called latent variables.

Nodes associated with observed variables will be called ob-

served nodes and will be depicted by triangles, while nodes

associated with latent variables will be called latent nodes and

will be depicted by circles.

An example of a DAG that imposes more complicated

types of constraints on the compatible distributions over ob-

served variables is the Bell DAG, presented in Fig. 2. This

DAG is of interest to physicists, as it encompasses the causal

assumptions of Bell’s theorem.

Bell’s theorem [7,8] is central to the foundations of quan-

tum mechanics [9–12], as it says that no locally causal

hidden-variable theory in which the observers can choose their

measurements independently of the source can ever be capa-

ble of reproducing all the operational predictions of quantum

theory [13–17]. These assumptions are encoded in the Bell

DAG, as there the settings X as Y are not causally connected

to the source �, as well as the setting in one wing does not

causally influence the outcome in the other wing.

As it turns out, the Bell DAG imposes causal compatibility

constraints on the compatible distributions over {A, B, X,Y }
that take the form of inequalities, which are precisely the

Bell inequalities. This means that all the distributions, which

violate Bell’s inequalities, including some of the quantum

predictions for this scenario, cannot be causally explained by

the Bell DAG.

With the goal of causally explaining the violation of

Bell’s inequalities without changing the causal assumptions

2643-1564/2024/6(2)/023038(25) 023038-1 Published by the American Physical Society
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FIG. 1. Example of DAG.

embedded in the structure of the Bell DAG, Henson, Lal, and

Pusey (HLP) [18] developed a generalization of Pearl’s causal

inference. In this generalized framework, the latent nodes can

be associated with quantum or other generalized probabilistic

theory (GPT) systems. HLP also proved that the conditional

independence constraints remain the same independently

of the theory that describes the latent nodes; other types of

constraints, like Bell’s inequalities, can be violated.

The Bell DAG is just one of the many causal structures for

which inequality constraints can be violated when the latent

nodes are associated with nonclassical systems [18–22]. In

the Bell scenario, correlations that violate Bell inequalities

have cryptographic applications precisely because of their

nonclassicality, so it seems reasonable to hope that other

scenarios allowing nonclassical correlations will have similar

applications. Finding which causal structures imply inequal-

ities, which potentially admit quantum violation is a critical

step towards such potential applications.

In HLP, the concept of NON-ALGEBRAICNESS of a causal

structure was defined. There, this concept was called interest-

ingness [23]. A causal structure is said to be ALGEBRAIC when

all of its causal compatibility constraints are of the form of

conditional independence relations, even in the classical case.

Conversely, if the causal structure imposes more complicated

constraints on the compatible probability distributions, it is

said to be NON-ALGEBRAIC. As proven in HLP, only the

NON-ALGEBRAIC scenarios are passive of witnessing a differ-

ence between the sets of classically and quantumly achievable

probability distributions.

In HLP, a sufficient condition for ALGEBRAICNESS of a

causal structure was developed; it is referred to here as the

HLP criterion. A central motivation behind this paper is that,

at present, it is not known whether the HLP criterion is also

necessary for ALGEBRAICNESS. That is, if a DAG cannot be

proven ALGEBRAIC by virtue of the HLP criterion, is the

DAG necessarily NON-ALGEBRAIC? The conjecture that the

HLP criterion is indeed necessary for ALGEBRAICNESS will

be referred to as the HLP conjecture.

How might we evaluate the HLP conjecture? To disprove

it, we need to find only one DAG for which the HLP cri-

terion does not apply, but which can be proven ALGEBRAIC

by some other method. We did not pursue a search for such

a counterexample, simply because we are unaware of any

means to prove ALGEBRAICNESS when the HLP criterion does

not apply. We therefore concentrate on providing evidence in

support of the conjecture being true. Namely, we show that as

one considers “larger and larger” DAGs, we can still certify

the NON-ALGEBRAICNESS of (almost) all DAGs for which the

HLP criterion does not apply.

To accomplish these goals we must clarify two preliminary

questions. Firstly, how should we enumerate over DAGs?

One enumeration style—the original enumeration choice

employed by HLP—is to count DAGs by their total number

of nodes. We can thus consider DAGs with five total nodes,

with six total nodes, with seven total nodes, etc. While

FIG. 2. The Bell DAG. It encompasses the assumptions of Bell’s

theorem for a Bell scenario where X and Y are the measurement

settings of Alice and Bob, A and B are their outcomes and � is

a classical hidden variable. The probability distributions that are

classically compatible with this DAG are those that decompose as

in Eq. (3).

this enumeration style has the advantage of simplicity, the

arguably more natural enumeration, which will be used here

is to count by the total number of observed nodes. We can

thus consider DAGs with two observed nodes, three observed

nodes, four observed nodes, etc. From naive structural

considerations alone, however, one might imagine that there

are infinitely many DAGs with any fixed number of observed

nodes. Motivated in part by avoiding such infinities, when

enumerating by the number of observed nodes we elect

to work within Evans’ framework of marginalized DAGs

(mDAGs) [24], which will be explained in Sec. III A.

The second preliminary question is how to prove that

a DAG for which the HLP criterion does not apply is

indeed NON-ALGEBRAIC? Since we here seek to consider

hundreds if not thousands of such DAGs, we are heavily

invested in identifying algorithmic techniques for proving

NON-ALGEBRAICNESS, within which we deprioritize

computationally expensive methods. In stark contrast to the

approach of HLP, we extensively leverage a new result due

to Evans [25], who has shown that a DAG G is ALGEBRAIC if

and only if it is observationally equivalent to some DAG that

does not have latent variables—where two DAGs are said to

be (classically) observationally equivalent when their sets of

(classically) compatible probability distributions are the same.

As such, we herein primarily exploit necessary conditions for

a graph to be observationally inequivalent to every latent-free

graph.

One such condition is that when the DAG is nonmaxi-

mal, i.e., when it has a pair of nodes that are not adjacent

(not connected by an arrow nor by a shared latent common

cause) but are nevertheless not d separated by any set of

observed nodes, then the DAG is not observationally equiv-

alent to any latent-free DAG. Another condition says that for

two DAGs to be observationally equivalent, they must admit

the same e-separation relations over their observed nodes. A

third condition says that for two DAGs to be observationally

equivalent, they must admit the same set of compatible sup-

ports. Although the latter condition subsumes the two former

ones (as discussed in Sec. IV E), the former conditions can

be evaluated more efficiently. The latter condition involving

supports (remarkably!) can be assessed using Fraser’s algo-

rithm [26], which generally requires higher computational

overhead. All of these conditions can be utilized to prove
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TABLE I. A summary of our findings. Apart from the HLP criterion, which shows ALGEBRAICNESS, all of the other conditions listed

show NON-ALGEBRAICNESS. Note that here we are counting by unlabelled DAGs. That is, two labeled DAGs. which are equivalent under a

relabelling of the observed nodes and/or a relabelling of the hidden nodes are represented by a single unlabelled DAG in these enumerations.

mDAGs with three mDAGs with four

Category observed nodes observed nodes

Total count 46 2809

remaining # for which the HLP criterion does not apply 5 996

remaining # for which our nonmaximality condition does not apply 1 186

remaining # for which our setwise nonmaximality condition does not apply 0 78

remaining # for which our d-separation condition does not apply 0 60

remaining # not resolved by our use of Fraser’s algorithm 0 3

the NON-ALGEBRAICNESS of a given DAG, via proving the

classical observational inequivalence of said DAG with every

latent-free graph, which has the same number of observed

nodes.

It is worth contrasting the tools we employ here to certify

NON-ALGEBRAICNESS with those employed in prior literature

by HLP and Pienaar [27,28]. HLP themselves attempted to

explore all DAGs with six total nodes for which their suf-

ficient condition for ALGEBRAICNESS did not apply. For all

but five of these DAGs, HLP proved NON-ALGEBRAICNESS

by means of deriving DAG-specific entropic inequalities and

showing that those entropic inequalities could be violated by

a DAG-specific distribution, which nevertheless satisfied the

conditional independence constraints of the DAG. One of the

remaining five cases is the Bell DAG, which is long-since

established as NON-ALGEBRAIC. Another one of the five is

the so-called triangle scenario, whose NON-ALGEBRAICNESS

was proven using a one-off proof technique, which HLP did

not generalize. The remaining three DAGs with six total nodes

were eventually established as NON-ALGEBRAIC in a separate

work by Pienaar [27], who employed a proof technique using

fine-grained entropic inequalities.

At first glance, the algorithmic proofs of NON-

ALGEBRAICNESS we employ here may seem unrelated to

those utilized by HLP or Pienaar. However, our theorem

relating e separation to NON-ALGEBRAICNESS turns out to

recover all but one of the NON-ALGEBRAICNESS results

that HLP achieved by appealing to entropic inequalities.

Additionally, our application of Fraser’s algorithm further

witnesses the NON-ALGEBRAICNESS of every other DAG

conjectured by HLP to be NON-ALGEBRAIC, including the

three of which were only proven NON-ALGEBRAIC in the

later study of Pienaar [27]. We are therefore confident

that our plethora of techniques likely supersede those

earlier employed by HLP and Pienaar [27], despite not

having a formal proof yet. We have made the Python code

implementing the filters for NON-ALGEBRAICNESS proposed

throughout this manuscript publicly available [29], although

without accompanying documentation at this time.

We summarize our ultimate findings in Table I. We inter-

pret these results as evidence in favor of the HLP conjecture:

among the thousands of analyzed mDAGs, there are only three

potential counterexamples.

As discussed, this paper is of interest to quantum

physicists because the NON-ALGEBRAIC DAGs are the pos-

sible candidates to explore quantum advantages in device

independent information processing protocols [30,31]. These

DAGs are also the ones that should be looked into to com-

pare quantum theory to more general probabilistic theories

(GPTs) [32,33].

On the other hand, our problem is also of central interest for

purely classical causal inference. The set of probability distri-

butions, which are classically compatible with an ALGEBRAIC

DAG is constrained only by conditional independence rela-

tions, which can be obtained from the d-separation relations

of the DAG. Isolating a sufficient set of d-separation relations

in a graph [34] is a well-studied problem. It is of paramount

value to a classical data scientist, therefore, to know if the

causal hypothesis encoded in a DAG may or may not be

falsified by accounting for nontrivial inequality constraints.

Such inequality constraints, when present, are often difficult

to explicitly characterize.

Structure of the paper

In Sec. II A we present an introduction to the formalism

used in causal inference, and proceed to explain what NON-

ALGEBRAIC and ALGEBRAIC precisely mean in this context

in Sec. III. We state and prove our e-separation condition

in Sec. IV. In Sec. V we present our computational results

and also discuss the methods we tried to confirm the NON-

ALGEBRAICNESS of the three left mDAGs of four observed

nodes. Our conclusions can be found in Sec. VI.

II. PRELIMINARIES

A. Causal Explanations of Observational Data

The area of causal inference is concerned with finding po-

tential causal explanations for observed events. For example,

imagine that we want to find out what is the causal relationship

between three events: a cloudy sky, rain, and the floor being

wet. Figure 3 depicts two possible causal structures between

these three events; in 3(a) we hypothesize that the clouds

cause the rain and the rain makes the floor wet. In 3(b), on

the other hand, we hypothesize that the wet floor causes the

rain, and the rain makes the sky cloudy.

There is an easy way we can check that Fig. 3(b) is not the

correct causal hypotheses: if we pour water on the floor in a

sunny day, it will not start raining.

Note that this method presupposes that we can intervene

on our experiment, meaning that we can force one of the

variables of the experiment (wet floor) to assume the value we
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FIG. 3. Two hypothesis for the causal relationships between ob-

serving clouds, rain, and wet floor. By intervening on the experiment

we can attest that (a) is the correct explanation, but we cannot attest

that if we only passively look at the correlations between those

events.

want. However, it is not always possible to do that; sometimes

it is unethical or there are technical or fundamental limitations

to do so.

If the experimenter cannot make interventions on the

variables of interest, it is still possible for them to draw

some conclusions from a passive observation of the cor-

relations between the events of interest. As we will see,

each causal structure imposes constraints on which proba-

bility distributions obtained from passive observations can

be classically explained by it. These constraints can be

tested against the observed probability distribution to see if

the given causal structure is a valid causal hypothesis for

the observed phenomena. In Fig. 3 it happens that both

causal structures impose the same constraints on probabil-

ity distributions, so they are not distinguishable by passive

observations.

In this paper we will be mainly concerned with passive

observations. The sets defined in Sec. III that are of relevance

to us make reference to distributions obtained from passive

observations only.

B. Directed Acyclic Graphs

In the framework we use here, the mathematical object that

describes a causal structure is a directed acyclic graph (DAG).

A directed graph G is a pair (A, E ), where A is a set of nodes

and E ⊆ A × A is a set of directed edges. A directed acyclic

graph (DAG) is a directed graph that has no directed cycles.

Below, we introduce some definitions regarding DAGs that

will be useful later.

Definition 1 (Children, parents, descendants, ancestors).

Let X be a node of a DAG G. If Y is another node of G such

that there is a directed edge X → Y , then Y is called a “child”

of X , and X is called a “parent” of Y . The set of all children

of X is denoted as CHG(X ), and the set of all parents of X is

denoted as PAG(X ).

A directed path is a sequence of nodes X 1, X 2, X 3......X n

such that X i → X i+1 for i = 1, . . . , n. The “descendants”

of X in G are all the nodes in G that can be reached

from X by a directed path. Conversely, all the nodes that

have X as a descendant are called “ancestors” of X . The

set of all ancestors of X is denoted as ANCG(X ), mean-

while the set of all descendants of X can be denoted as

DESG(X ) [35].

For example, in the DAG of Fig. 4 we have that PAG(B) =
{A, D}, and that E is a descendant of D, even if it is not

its child.

FIG. 4. Example of a directed acyclic graph (DAG). The proba-

bility distributions that are classically compatible with this DAG are

those that can be decomposed as in Eq. (2).

C. DAGs as Causal Structures

When we associate each node of a DAG with an event of

interest, the DAG is a representation of a causal structure: an

edge X → Y shows a possibility of a direct causal influence

of X on Y . Here, we will indicate the variable associated with

a node by the same capital letter as the node itself. If all the

events of interest are described by classical random variables,

the idea that a probability distribution “can be causally ex-

plained” by a certain DAG is formalized through the Markov

condition:

Definition 2 (Markov condition). Let G be a DAG with

nodes A. A probability distribution P over the variables A is

said to be Markov with respect to G if it can be factorized as

P(A) =
∏

i

P(X i|PAG(X i )) (1)

Where A = {X 1, . . . , X n} and PAG(X i ) is the set of parents

of the node X i in G.

If P is Markov with respect to G, we also say that it is

“classically compatible” with G.

As an example of this definition, a joint probability dis-

tribution PABCDE over the random variables A, B, C, D, and

E is Markov with respect to the DAG of Fig. 4 if it can be

decomposed as

P(ABCDE ) = P(A|D)P(B|A, D)P(C|D)P(D)P(E |C). (2)

Therefore, through the Markov condition, each DAG im-

poses constraints on the probability distributions that are

classically compatible with it. A DAG, which is classically

compatible with every probability distribution, that is, a DAG

that does not impose any constraint on the classically compat-

ible distributions, is said to be a saturated DAG.

D. d Separation: A Graphical Criterion

for Conditional Independence

If P is a probability distribution over a certain set of random

variables A, we say that the variables of the subset X ⊆ A are

conditionally independent of the variables of the subset Y ⊆ A

given the subset Z ⊆ A if P can be factorized as P(X ,Y |Z) =
P(X |Z)P(Y |Z). This is denoted by X ⊥⊥CI Y |Z.

Some of the constraints that a DAG imposes on the prob-

ability distributions that are classically compatible with it

are of the form of conditional independence: If a probability

distribution P cannot be factorized according to a certain

conditional independence that is imposed by the DAG, then

it is not classically compatible with the DAG. As it turns out,

there exists a graphical algorithm to obtain all the conditional
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independence constraints that are imposed by a DAG. This al-

gorithm is called “d separation”, and we will now describe it.

If G is a DAG with nodes A and X ,Y , Z ⊆ A are sets of

nodes in G, the d-separation algorithm says whether X and

Y are “d separated” by Z. This happens if all the undirected

paths (paths that ignore the direction of the arrows) from X to

Y are blocked by Z. A path is blocked if one or more of the

following is true:

(1) There is a chain of nodes along the path: i → m → j

such that m ∈ Z .

(2) There is a fork along the path: i ← m → j such that

m ∈ Z .

(3) There is a collider along the path: i → m ← j such

that m /∈ Z and d /∈ Z for all the descendants d of m.

If X is d separated of Y given Z in the DAG under consid-

eration, we denote it as X ⊥d Y |Z .

For example, for the DAG of Fig. 1 the d-separation crite-

rion says that A ⊥d C|B. This means that the event A should

become independent of the event C upon knowledge of B; if

your distribution P does not satisfy the constraint P(AC|B) =
P(A|B)P(C|B), Fig. 1 is not a valid causal explanation for it.

Interpreting the variables {A, B,C} as respectively the clouds,

rain and wet floor [such as in Fig. 3(a)], this d-separation rela-

tion says that the occurrence of clouds becomes independent

of the floor being wet if we already know whether it is raining.

The following theorem, proven in Ref. [2], makes explicit

the connection between d- separation relations and condi-

tional independence relations:

Theorem 1 (d separation and conditional independence).

Let G be a DAG with nodes A, and let X ⊆ A, Y ⊆ A and

Z ⊆ A be three disjoint subsets of A. Then

(1) If G has the d-separation relation X ⊥d Y |Z, then all

of the probability distributions over the variables A, which are

Markov with respect to G need to satisfy X ⊥⊥CI Y |Z.

(2) If G does not have the d-separation relation X ⊥d Y |Z,

then there exists some probability distribution over the vari-

ables A, which is Markov with respect to G and does not

satisfy X ⊥⊥CI Y |Z.

When a DAG does not have latent nodes, the only con-

straints that it imposes on the compatible distributions are

the conditional independence relations associated with the

d-separation relations of the DAG [[39], Theorem 3]:

Theorem 2 (d separation is complete for DAGs without

latent nodes). Let G be a DAG with nodes A. A probability

distribution over the variables A is Markov with respect to G

if and only if it satisfies all of the conditional independence

relations associated with the d-separation relations of G.

Importantly, in general this is not true for DAGs that in-

clude latent nodes, as we will see now.

E. Latent-Permitting DAGs

As discussed in the introduction, sometimes we want to

allow for causal explanations that include latent variables, i.e.,

variables that do not appear in the final probability distribution

we are trying to explain. When our DAG of interest can have

latent nodes, we call it a latent-permitting DAG, as opposed to

the latent-free DAGs that only have observed nodes.

Let G be a DAG that has the set of nodes A = V ∪ L, V

and L disjoint, where V are the observed nodes and L are the

latent nodes. Mimicking the terminology used for the latent-

free case, we will say that a probability distribution P(V ) over

the observed variables is classically compatible with G if there

exists some probability distribution P(V , L) over V ∪ L such

that

(i) P(V , L) is Markov with respect to G.

(ii) The marginal of P(V , L) over V is the original proba-

bility distribution that we are interested in, i.e.,
∑

L P(V , L) =
∑

L P(V |L)P(L) = P(V ).

As an example, a probability distribution PABXY over the

random variables A, B, X , and Y is classically compatible with

the Bell DAG (Fig. 2) if it can be decomposed as

P(ABXY ) =
∑

�

P(A|X,�)P(B|Y,�)P(X )P(Y )P(�). (3)

When dealing with latent-permitting DAGs, we will call

the conditional independence relations that only involve

observed variables the observed conditional independence

relations, and similarly the d-separation relations that only

involve observed nodes will be called observed d-separation

relations. From the definition of classical compatibility with

a latent-permitting DAG, we can see that the conclusions of

Theorem 1 are also valid for latent-permitting DAGs:

Theorem 3 (Observed d-separation in latent-permitting

DAGs). Let G be a DAG with nodes A = V ∪ L, where V are

observed nodes and L are latent nodes. Let X ⊆ V , Y ⊆ V and

Z ⊆ V be three disjoint sets of observed nodes of G. Then

(1) If G has the d-separation relation X ⊥d Y |Z, then all

of the probability distributions over the variables V , which are

classically compatible with G need to satisfy X ⊥⊥CI Y |Z.

(2) If G does not have the d-separation relation X ⊥d Y |Z,

then there exists some probability distribution over the vari-

ables V , which is classically compatible with G and does not

satisfy X ⊥⊥CI Y |Z.

As seen in Theorem 2, the only constraints that latent-free

DAGs impose on the compatible probability distributions are

the conditional independence relations, that can be obtained

from d separation. Consequently, if a DAG G has nodes A =
V ∪ L, all the constraints that it imposes on the compatible

joint probability distributions P(A) = P(V , L) are the condi-

tional independence relations. However, if we are interested

only on distributions over the observed variables V , some-

times the conditional independence constraints that involve

the latent variables L might induce more complicated extra

constraints on the distributions over the observed variables V .

If a probability distribution P(V ) over the observed variables

satisfies both the observed conditional independence relations

(obtained from d separation) and the extra constraints derived

from the conditional independence relations that involve the

latent variables L, then it is classically compatible with G.

Therefore, in principle one could find all the d-separation

relations of a DAG (involving both observed and latent nodes),

thus getting conditional independence constraints on P(V , L),

and from there infer the constraints on the probability distri-

bution over the observed variables, P(V ). This process will be

exemplified with the Bell DAG in the beginning of the next

section. Inferring constraints on P(V ) from the conditional

independence relations of P(V , L), however, is in general very

complicated.
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III. THE PROBLEM: LOOKING

FOR NON-ALGEBRAIC SCENARIOS

The goal of this paper is to classify DAGs as ALGEBRAIC

or not, following the concept introduced in HLP. Before es-

tablishing this concept in full generality, we will explore the

example of the Bell DAG (Fig. 2).

As discussed in Sec. II E, the d-separation criterion gives

us all the classical compatibility constraints imposed on the

probability distribution over all the nodes, P(V , L). In the

case of the Bell DAG, we have P(V , L) = P(ABXY �), while

P(V ) = P(ABXY ).

The conditional independence relations of P(ABXY �),

that come from the d-separation relations of the Bell

DAG, are

P(�|XY ) = P(�), (4)

P(AB|XY �) = P(A|X�)P(B|Y �), (5)

P(A|XY ) = P(A|X )

P(B|XY ) = P(B|Y )

P(XY ) = P(X )P(Y ). (6)

These equations will give rise to the constraints imposed

by the Bell DAG on P(ABXY ) through the marginalization

of �. Equations (6) that do not involve �, are automatically

transported as observed conditional independence constraints

imposed by the Bell DAG on P(ABXY ). Equations (4) and

(5) that do involve the latent variable �, will give rise to

another type of constraint on P(ABXY ): the Bell’s inequality.

In fact, Eq. (4) encodes the no-superdeterminism assumption

and Eq. (5) encodes the local causality assumption that are

used to derive Bell’s inequality.

Therefore, to study the Bell DAG, it is not enough to

just look at the conditional independence constraints on the

compatible distributions P(ABXY ) [Eqs. (6)]. If one does

that, they would miss important information that is encoded

in Bell’s inequality. This is so because the set of probabil-

ity distributions P(ABXY ) that satisfy only the conditional

independence relations of Eqs. (6) is strictly larger than the

set of probability distributions that satisfies these conditional

independence relations and Bell’s inequality. In other words,

Bell’s inequality is not implied by Eqs. (6).

This is the core of the concept of NON-ALGEBRAICNESS:

a NON-ALGEBRAIC DAG imposes nontrivial inequality con-

straints on the classically compatible distributions. A “non-

trivial” inequality constraint is an inequality that is not implied

by the observed conditional independence relations of the

DAG, along with nonnegativity of all probabilities and nor-

malization [40]. Note that an ALGEBRAIC DAG can impose

trivial inequality constraints on the compatible distributions:

For example, if the node � in the Bell DAG was treated as

an observed node, then the Bell inequalities would still be

satisfied by the compatible distributions P(ABXY �). How-

ever, in this case the Bell inequalities would be trivial, because

they would be implied by observed conditional independence

relations [Eqs. (4) and (5)].

To formalize the idea of NON-ALGEBRAICNESS, we will

introduce a few definitions:

Definition 3. Let G be a DAG. The sets CG and and IG of

probability distributions over observed variables are defined

as follows:

(1) CG: Set of probability distributions that are classically

compatible with G.

(2) IG: Set of probability distributions that satisfy all the

conditional independence constraints that follow from the ob-

served d-separation relations of G.

For the case of the Bell DAG, IBell represents the set of

distributions that obey the Eqs. (6). By contrast, CBell consists

of a strict subset of IBell, where we additionally restrict the

conditional probabilities P(AB|XY ) to satisfy Bell’s inequali-

ties and thus lie in the local polytope.

Theorem 3 shows that CG ⊆ IG for every DAG G. This is

so because all the probability distributions that are classically

compatible with G have to satisfy the conditional indepen-

dence constraints that come from its observed d-separation

relations. When the observed conditional independence re-

lations are the only constraints imposed by a DAG on the

compatible probability distributions over observed variables,

the DAG is said to be ALGEBRAIC:

Definition 4 (ALGEBRAICNESS). Let G be a DAG. If CG =
IG, then G is said to be ALGEBRAIC. Conversely, if CG � IG,

then G is said to be NON-ALGEBRAIC.

We borrow the terminology of NON-ALGEBRAIC and

ALGEBRAIC from algebraic geometry: An algebraic set is

defined by polynomial equalities (or more generally, by

some finite union of sets each of which is defined by

polynomial equalities). Semialgebraic sets, by contrast, are

characterized by both polynomial equalities and polynomial

inequalities. To emphasise that a DAG’s set of (classi-

cally) compatible distributions is defined by more that

just the conditional independence (notably, equality) con-

straints, we therefore elect to speak of such a DAG as

NON-ALGEBRAIC.

As proven by HLP, the observed conditional independence

constraints imposed by a DAG on the compatible probability

distributions do not change when the latent variables of the

DAG are associated with quantum systems or other GPT

systems. Therefore, if one is interested in studying causal

structures that provide any quantum or GPT observational ad-

vantage, then there is only hope among the NON-ALGEBRAIC

scenarios. If a DAG is ALGEBRAIC, then all the probability

distributions that exhibit the conditional independence rela-

tions associated with its observed d-separation relations can

be explained by this DAG classically.

Theorem 2 implies that every latent-free DAG is ALGE-

BRAIC. In HLP, a stronger sufficient condition for ALGE-

BRAICNESS is provided, together with an algorithmic strategy

to check it. This condition, called the HLP criterion, will

be discussed in Sec. III B. It is still not known whether the

HLP criterion is also necessary for ALGEBRAICNESS; its possi-

ble outcomes for a given DAG are either that it is ALGEBRAIC

or that it is “unresolved”. The unresolved DAGs thus need to

be assessed by some other method.

Based on the HLP criterion and certain types of entropic

inequalities, HLP and Pienaar [27] classified the ALGEBRAIC-

NESS or NON-ALGEBRAICNESS of all DAGs of up to six total

nodes (observed and latent), thus leaving no DAGs of six

total nodes with inconclusive status. In this paper, however,
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FIG. 5. The DAGs (a) and (b) are classically observationally equivalent to the mDAG of (c). The step (a)→(b) can be shown by Lemma 1,

and the step (b)→(c) can be shown by Lemma 2.

we elect to count DAGs not by their total node count but

rather by their number of observed nodes. It turns out that

HLP ’s complete classification of DAGs with total node count

up to six meant that they resolved all DAGs with three ob-

served nodes, a few DAGs with four observed nodes, and

no DAGs with five or more observed nodes. Here we at-

tempt to tackle the ALGEBRAICNESS classification of all causal

structures with up to fpir observed nodes [41]. To do so,

we will utilize the mDAG formalism introduced by Evans

in Ref. [24].

A. Simplifying the Problem by Using mDAG Formalism

Two DAGs G and H are said to be classically observation-

ally equivalent when CG = CH . Note that CG = CH implies that

IG = IH : by Theorem 3, if a certain d-separation relation is

not present in a DAG, it is always possible to find a proba-

bility distribution that violates the conditional independence

corresponding to this d-separation relation and is classically

compatible with the DAG. In other words, if two DAGs are

classically compatible with the same sets of distributions, they

have to present the same d-separation relations [42].

In short,

CG = CH ⇒ IG = IH , (7)

with contrapositive

IG 	= IH ⇒ CG 	= CH . (8)

In particular, this means that if a DAG G is ALGEBRAIC

(NON-ALGEBRAIC), then all of the DAGs H that are compati-

ble with it are also ALGEBRAIC (NON-ALGEBRAIC).

In this section, we will present two results of [24] that

prove classical observational equivalence, thus reducing the

number of DAGs that have to be examined for ALGEBRAIC-

NESS. After presenting the two results, we will show that they

allow for a definition of a new object, called mDAG, that

encompasses this simplification.

To do so, we start with the definition of exogenization.

It might be easier to understand this definition by following

Fig. 5, where DAG 5(b) is obtained from DAG 5(a) by exoge-

nizing node B.

Definition 5 (Exogenized DAG). Let G be a DAG and let

λ be a latent variable of G. We define the exogenized DAG

E (G, λ) as follows: take the vertices and edges of G and (1)

add an edge m → n from every m ∈ PAG(λ) to every n ∈
CHG(λ) and (2) delete edges m → λ for every l ∈ PAG(λ).

All other edges remain the same.

With this definition at hand, we state the Lemma

3.7 of [24]:

Lemma 1 (Exogenization). Let G be DAG with observed

nodes V and latent nodes L, and let λ ∈ L be a latent node of

G. Furthermore, let G̃ = E (G, λ). Then, CG = CG̃.

Now, we state the Lemma 3.8 of [24]. This Lemma is also

illustrated in Fig. 5, where it is applied to go from 5(b) to 5(c).

Lemma 2 (No redundant latents). Let G be a DAG with

observed nodes V and latent nodes L. Let λ ∈ L and μ ∈ L

be latent nodes of G such that λ 	= μ, PAG(λ) = PAG(μ) = ∅
and CHG(λ) ⊆ CHG(μ). In this case, we say that the node λ

is “redundant”. Let G′ be the DAG obtained after deleting the

node λ. Then, CG = CG′ .

Like Lemma 1, Lemma 2 also shows conditions un-

der which proving the NON-ALGEBRAICNESS of one

DAG automatically gives you the NON-ALGEBRAICNESS of

another.

For example, Lemmas 1 and 2 show that all the three DAGs

of Fig. 5 have the same sets C and I. Thus, we need only to

examine one DAG out of the these. It makes sense to pick the

DAG of Fig. 5(c), as it is the simpler.

Following this same idea, we can work with the concept of

an mDAG, first defined in Ref. [24]. The definition below is

different than, but equivalent to the one presented in Ref. [24].

Definition 6 (mDAG). An mDAG is a DAG where none of

the latent nodes is redundant (as defined in Lemma 2) nor has

any parents.

For example, the DAG of Fig. 5(c) is an mDAG. For a

fixed number of observed nodes, there is a finite number

of mDAGs. In particular, for three observed nodes there are

46 mDAGs, while for four observed nodes there are 2809

mDAGs. Lemmas 1 and 2 show that the mDAG encodes all

the necessary information of the DAG if you only want to talk

about the sets C and I.

The Lemmas here presented also give an argument in favor

of counting the causal structures in terms of the number of

observed nodes instead of in terms of the total number of

nodes; Lemma 2 shows that DAGs 5(a) and 5(b), that have

six total nodes, actually do not have to be analyzed; their

NON-ALGEBRAICNESS can be examined by looking at 5(c),

that has five total nodes.
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FIG. 6. An example of the application of the HLP criterion. All of these three mDAGs have the same set of d-separation relations: A ⊥d E ,

A ⊥d E |C, A ⊥d C and A ⊥d C|D. Since (c) is latent-free, we can conclude that (a) is ALGEBRAIC.

B. The HLP Criterion

In this section, we describe the sufficient criterion for AL-

GEBRAICNESS that was developed in HLP. The criterion gives

some transformations that take a DAG G to another DAG H

such that CH ⊆ CG while IH = IG. If the final DAG H is

known to be ALGEBRAIC (for example, by being latent-free),

then the original DAG G is also ALGEBRAIC.

These transformations, adjusted to the language of

mDAGs, are presented in Theorem 4.

Theorem 4. Let G and H be two mDAGs. Suppose that H

can be obtained by starting from G and applying one or more

of the following transformations:

(1) Removal of an edge.

(2) Addition of an edge X → Y , where previously

PA(X ) ⊆ PA(Y ) and PA(X ) contained at least one latent node.

Then, CH ⊆ CG.

Now we state the HLP criterion as a corollary:

Corollary 1 (HLP criterion). Let G be an mDAG. Suppose

that by a sequence of the transformations defined in Theorem

4 it is possible to start from G and reach another mDAG H

such that

(1) H does not have latent nodes.

(2) The set of observed d-separation relations of H and G

is the same, i.e., IH = IG.

Then, the original mDAG G is ALGEBRAIC.

Proof. From Theorem 4, CH ⊆ CG. Since H is latent-free,

by Theorem 2 it is ALGEBRAIC, i.e., CH = IH . Therefore, we

have IG = IH = CH ⊆ CG. As noted before, C ⊆ I is valid

for any DAG, due to Theorem 3. Therefore, CG = IG, mean-

ing that G is ALGEBRAIC. �

Figure 6(a) exemplifies an mDAG that can be shown ALGE-

BRAIC by the HLP criterion: by a sequence of transformations

defined in Theorem 4 we can obtain the mDAG shown in

Fig. 6(c), that obeys the conditions presented in Corollary 1.

The natural question to ask here is whether the HLP crite-

rion is also necessary for an mDAG to be ALGEBRAIC. The

conjecture that the HLP criterion is also necessary will be

called the HLP conjecture:

Conjecture 1 (HLP conjecture). Let G be an ALGEBRAIC

mDAG. Then, by a sequence of transformations defined in

Theorem 4, it is possible to start from G and reach another

mDAG H such that

(1) H does not have latent nodes.

(2) The set of observed d-separation relations of H and G

is the same, i.e., IH = IG.

As we will see, our current results do not prove this con-

jecture, but give hints towards its validity.

In Ref. [25], Evans has shown that:

Theorem 5. A latent-permitting DAG G is ALGEBRAIC if

and only if it is classically observationally equivalent to a

latent-free DAG H .

This result allows us to restate the HLP conjecture in a

different manner:

Conjecture 2 (Reformulation of the HLP conjecture). Let

G be an mDAG. G is classically observationally equivalent to

a latent-free mDAG H if and only if

(1) The set of observed d-separation relations of H and G

is the same, i.e., IH = IG.

(2) Through the transformations defined in Theorem 4, it

is possible to go from G to some latent-free mDAG H ′, which

has the same set of observed d-separation relations as G and

H , i.e., IH ′ = IH = IG.

Therefore, proving the HLP conjecture would also be of

relevance to the problem of classifying causal structures into

classical observational equivalence classes.

IV. METHODS TO DETERMINE NON-ALGEBRAICNESS

In this section we discuss the methods we used to prove the

NON-ALGEBRAICNESS of a large number of DAGs that do not

respect the HLP criterion.

A. Using Nonmaximality to Prove NON-ALGEBRAICNESS

The first method to show ALGEBRAICNESS that we will

present relies on the concept of maximality [25,43]. To define

this, we will first define what are adjacent and d-separable

pairs of nodes.

Definition 7 (Adjacency). Let G be an mDAG, and let A

and B be a pair of observed nodes of G. We say that A and B

are adjacent in G if A is a parent of B, or B is a parent of A, or

A and B share a common latent parent [44].

Definition 8 (d-(un)separable pair of observed nodes).

Let G be a DAG with nodes A = V ∪ L, where V are

observed nodes and L are latent nodes. A pair of observed
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FIG. 7. (a) An example of maximal DAG, which so happens to be NON-ALGEBRAIC. (b) An example of an nonmaximal DAG, namely, The

Unrelated Confounders scenario introduced in Ref. [45]. It is not maximal because nodes D and E are not d separable, but are nevertheless not

adjacent. Like all nonmaximal DAGs, the Unrelated Confounders scenario is NON-ALGEBRAIC.

nodes {A, B} for A ∈ V , B ∈ V is said to be d separable if

there is some subset Z ⊆ V of the remaining observed nodes

such that (A ⊥d B|Z), otherwise, A and B are said to be d

unseparable.

These two definitions are related, in that they are criteria

with relate to the compatibility of a particular distribution,

namely, perfect correlation between one pair of nodes while

all other nodes are point distributed. Consider the following

distribution:

P(A, B,C, D . . .) = 1
2
(δA,0δB,0 + δA,1δB,1)δC,0δD,0 . . . (9)

Equation (9) describes a probability distribution in which

A and B are random but perfectly correlated, and every other

observed node is point distributed at the value 0. Then,

Proposition 1 (Adjacency ⇔ P(9) ∈ CG). The distribution

in Eq. (9) is classically compatible with the graph G if and

only if A and B are adjacent nodes in G.

Proof. See Refs. [24,45]. Clearly P(9) ∈ CG when A and

B are adjacent. Whenever A and B are not adjacent, then

evidently A and B are e separated [46] upon removal of

V \ {A, B}, which also means that P(9) would violate the en-

tropic inequality in Theorem 5 of Ref. [47]. �

Proposition 2 (d unseparability ⇔ P(9) ∈ IG). The distri-

bution in Eq. (9) satisfies all the conditional independence

constraints that follow from the observed d-separation re-

lations relations of graph G if and only if A and B are d

unseparable in G.

Proof. The only conditional independence relations that

the distribution in Eq. (9) fails to satisfy are those of the form

A ⊥⊥CI B|Z. Such conditional independence relations follow

from the observed d separation relations relations of graph G

if and only if A and B are d separable in G. �

Putting Propositions 1 and 2 together, we find that P(9) ∈
IG but P(9) 	∈ CG whenever a graph has A and B nonadjacent

but also d unseparable. This leads us to the concept of maxi-

mality [25,43]:

Definition 9 (Maximal DAG). Let G be a DAG. If all of

the pairs of nodes of G, which are not d separable are also

adjacent then G is said to be maximal, otherwise G is said to

be nonmaximal.

Figure 7 shows an example of a maximal DAG [7(a)] and

an example of a nonmaximal DAG [7(b)].

Theorem 6 [Nonmaximal]. Every ALGEBRAIC DAG is

maximal, that is, every nonmaximal DAG is NON-

ALGEBRAIC.

Proof. As we have seen from Propositions 1 and 2, if a

graph G is nonmaximal, then there is some pair of observed

nodes such that the distribution given by “those two nodes

are random and perfectly correlated while all other observed

nodes are point distributed” lies in some gap between IG

and CG. Alternatively, note that nonmaximality implies NON-

ALGEBRAICNESS also follows from the fact that all latent-free

graphs are maximal [[43], Prop. 3.19]. We then simply note

that a nonmaximal graph cannot be observationally equivalent

to any maximal graph: It follows from Eq. 8 that every pair of

observationally equivalent DAGs must agree on their sets of

d-(un)separable observed-node pairs. Furthermore, pursuant

to Lemma 10 (discussed in Appendix B), agreement with

respect to adjacency structure is also a prerequisite for obser-

vational equivalence [24,45]. These facts imply that if a DAG

G is nonmaximal, then it is not going to be observationally

equivalent to any latent-free DAG (and will thus be NON-

ALGEBRAIC by Theorem 5). �

Figure 8 shows an example of a four-observed-nodes

mDAG whose NON-ALGEBRAICNESS may be shown by

Theorem 6.

FIG. 8. A DAG with four observed nodes that is shown to be

NON-ALGEBRAIC per Theorem 6. This can be seen because G and F

not d separable, i.e., none of the d-separation relations (G ⊥d F |E ),

(G ⊥d F |D) or (G ⊥d F |D, E ) hold, but they are not adjacent.
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To find out which sets of pairs of observed nodes are d

separable in G and then check whether it is maximal, is it

necessary to first obtain all the d-separation relations of G?

The following accessory lemma shows that this is not the case,

thus simplifying the application of Theorem 6 in practice.

Lemma 3 (Rapid test for d separability of pairs). A pair

of node subsets A and B of a DAG G are d separable by

some set of observed nodes if and only if they are d separable

by a particular set of observed nodes, namely, the set of all

and only those observed nodes, which are ancestors of either

A or of B. In other words, A ⊥d B | ANCG(A) ∪ ANCG(B)

whenever there exists some set Z such that A ⊥d B|Z.

Proof. This follows from Theorem 6 of Ref. [48]. In par-

ticular, it follows from the use of Ref. [48]’s Algorithm 3 to

solve Ref. [48]’s Problem 4. �

In their Appendix E, HLP effectively utilized Shannon-

type inequalities to certify the NON-ALGEBRAICNESS of many

DAGs with five or six total nodes. In particular, they found

that the Shannon-type inequalities for those DAGs could by

violated by distributions that satisfy all of the conditional in-

dependence relations imposed by the DAG: those distributions

were such that two particular variables are perfectly corre-

lated and all other observable variables are point distributed,

identical in nature to the construction of Eq. (9). From this,

note that Proposition 1 implies that the nodes corresponding

to these perfectly correlated variables are not adjacent, and

Proposition 2 implies that they are not d separable. Thus,

our Theorem 6 also certifies the NON-ALGEBRAICNESS of all

those examples. Conversely, every pair of nodes, which are

not d separable but also not adjacent generate a distribution

from Eq. (9) that violates a Shannon-type inequality; this is

a consequence Theorem 5 of Ref. [47], that says that every

e-separation relation (which will be defined in Sec. IV D)

implies on a Shannon-type inequality. This result was already

used in the proof of Proposition 1.

B. Using Setwise Nonmaximality to Prove NON-ALGEBRAICNESS

In the previous subsection we found that that membership

in IG or CG of the distribution in which pair of observed

nodes is perfectly correlated while all other observed nodes

are point distributed is directly related to the concepts of d

unseparability and adjacency, respectively. Here we formulate

analogous criteria in order to assess perfect correlation of

three-or-more variables when all other variables in the distri-

bution are point-distributed.

Definition 10 (Setwise adjacency). Let G be a DAG with

nodes A = V ∪ L, where V are observed nodes and L are

latent nodes. Then, the subset of observed nodes {V1...Vk} is

setwise adjacent in G if and only if there is some node X

(possibly but not necessarily within {V1...Vk}) such that X is

an ancestor of every node in {V1...Vk} not only in the DAG G

but also in the subgraph of G formed by deleting all nodes

V \ {V1...Vk} from G [49].

Definition 11 (Setwise d unrestriction). Let V be the set of

all observed nodes in some DAG G, and let S be some subset

of V . Then, the nodes S are setwise d unrestricted in G if

and only if there does not exist any pair of nodes {Si, S j} ⊂ S

along with some (possibly empty) set of observed nodes Z ⊂
V \ S such that (Si ⊥d S j |Z).

We next show that these definitions for setwise adjacency

and setwise d unrestriction have the desired properties. Con-

sider the following distribution:

P(V ) = 1
2

(

δV1,0δV2,0...δVk ,0 + δV1,1δV2,1...δVk ,1

)

δVk+1,0δVk+2,0...

(10)

Equation (10) describes a probability distribution in which the

first k observed variables are random but perfectly correlated

while all other observed variables are point distributed at the

value 0. Then,

Proposition 3 (Setwise adjacency ⇔ P(10) ∈ CG). The dis-

tribution in Eq. (10) is classically compatible with graph G

if and only if {V1...Vk} are setwise adjacent in G.

Proposition 3 follows from the two accessory lemmas

below.

Lemma 4 (Partial point distribution ⇒ subgraph com-

patibility). Suppose P(V ) is some distribution wherein the

variables V \ {V1...Vk} are point distributed and moreover all

the variables in {V1...Vk} have finite cardinality. Then, P(V )

is classically compatible with G if and only if P({V1...Vk})

is compatible with the subgraph of G formed be deleting all

nodes V \ {V1...Vk} from G.

Proof. This lemma is an immediate consequence of the e-

separation theorem central in Ref. [45]. �

Lemma 5 (Setwise correlation ⇒ common ancestor). Let

Pperfect correlation(A) be the distribution in which all variables in

A are random but perfectly correlated with each other. Then,

Pperfect correlation(A) is compatible with a DAG G if and only if

all the nodes in A share some common ancestor in G.

Proof. The “if” direction is trivial; the “only if” direction

follows from Ref. [[37], Theorem 2]. �

Note that Proposition 3 implies Proposition 1 as a special

case: A pair of observed nodes share a common ancestor upon

removing all other observed nodes from a DAG G if and and

only they are adjacent in G.

We likewise highlight the utility of the definition of a

setwise d-unrestricted set:

Proposition 4 (Setwise d unrestriction ⇔ P(10) ∈ IG).

The distribution in Eq. (10) satisfies all the conditional

independence constraints that follow from the observed

d-separation relations relations of graph G if and only if

{V1...Vk} are setwise d unrestricted in G.

Proof. Suppose that {V1...Vk} are not setwise d-

unrestricted in G. Then, there exists a pair of nodes

{Si, S j} ⊆ {V1...Vk} such that G exhibits the d-separation

relation (Si ⊥d S j |Z). In this case, the distribution [50]

P(V ) = 1
2
(δ{V1...Vk},�0k + δ{V1...Vk},�1k ) (11)

δV\{V1...Vk},�0(|V |−k) (12)

violates the conditional independence relation Si ⊥⊥CI S j |Z,

and therefore P(10) /∈ IG. For the other direction, note that if

(Si 	 ⊥dS j |Z) then so too (Si 	 ⊥dS j |Z) for any disjoint sets

Si and S j wherein Si ∈ Si and S j ∈ S j . Consequently, when

{V1...Vk} are setwise d unrestricted in G, there is no way

to d separate any subset of {V1...Vk} from any other subset

of {V1...Vk} by any subset of the observed nodes outside of

{V1...Vk}, which are the only d separation relations whose cor-

responding conditional independence relations would exclude
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FIG. 9. Examples of maximal DAGs, which are setwise-nonmaximal. (a) is the Triangle scenario, where the set {A, B,C} (all visible nodes)

is setwise d unrestricted but not setwise adjacent. In (b), the set {A, B,C} is setwise d unrestricted (in fact, there are no d-separation relations

between observed nodes) but not setwise adjacent; by contrast, the larger set {A, B,C, D} is both setwise d unrestricted and setwise adjacent,

despite (b) exhibiting the d-separation relation (A ⊥d D|B), as that d-separation relation involves conditioning on a node within the set. In

(c), both of the sets {A, B,C} and {A, B,C, D} are d unrestricted but not setwise adjacent. Note that {A, B,C, D} is d unrestricted in the DAG

(c) despite that DAG exhibiting the d-separation relation (A ⊥d D|B,C), as that d-separation relation involves conditioning on nodes within

the set.

the distribution of Eq. (11). This means that, in this case,

P(10) ∈ IG. �

Putting Propositions 3 and 4 together lead us to a natural

generalization of maximality, which we now define and em-

ploy in a theorem.

Definition 12 (Setwise maximal DAG). Let G be DAG. If

every subset of the observed nodes of G, which is setwise

d-unrestricted is also setwise adjacent then G is said to be set-

wise maximal, otherwise G is said to be setwise nonmaximal.

Theorem 7 [Setwise Nonmaximal]. Every ALGEBRAIC

DAG is setwise-maximal, that is, every setwise-nonmaximal

DAG is NON-ALGEBRAIC.

Proof. Theorem 7 follows immediately from Propositions

3 and 4. �

The DAGs of Fig. 9 are setwise-nonmaximal, so they

are shown NON-ALGEBRAIC by Theorem 7 (even if they

are not shown NON-ALGEBRAIC by Theorem 6). On the

other hand, the mDAG of Fig. 7(a) is both maximal and

setwise maximal, as all maximal DAGs are also setwise

maximal.

Note that there are precisely five mDAGs with three

observed nodes, which are NON-ALGEBRAIC (the Triangle

scenario, the unrelated confounders scenario and three obser-

vationally equivalent versions of the Instrumental scenario).

Theorem 7 certifies the NON-ALGEBRAICNESS of all five. In-

deed, Theorem 7 turns out to be an extremely powerful filter

for recognizing NON-ALGEBRAIC mDAGs with four or five

observed nodes as well, as discussed in Sec. V.

C. Using d Separation to Prove NON-ALGEBRAICNESS

With Eq. (8), it was noted that any two DAGs that have

different sets of observed d-separation relations are not clas-

sically observationally equivalent. In other words, imposing

the same observed conditional independence constraints on

the compatible distributions is a necessary condition for two

DAGs to be classically observationally equivalent.

This fact can be used to establish the NON-ALGEBRAICNESS

of some DAGs: If we can prove that the set of observed

d-separation relations of a latent-permitting DAG does not

match the set of d-separation relations of any latent-free DAG,

then our latent-permitting DAG is classically observationally

inequivalent to all latent-free DAGs. Via Evans’ [25] Theorem

5, then, we can conclude that our latent-permitting DAG is

NON-ALGEBRAIC.

This type of reasoning, that says that when a certain prop-

erty of a DAG G is unmatched by all latent-free DAGs then

G is NON-ALGEBRAIC, will be used a few times in this sub-

section and in the two next ones. As such, it will be useful

to define the auxiliary term Not Achievable in Latent-Free

(NALF):

Definition 13 (NALF property of a DAG). Let G be a

latent-permitting DAG. If G has a certain property that does

not match that same property of any latent-free DAG, we say

that this property of G is NALF(not achievable in latent-free).

For example, we can have a DAG G whose set of observed

d-separation relations is NALF. If there is a proof that a

DAG is observationally inequivalent to all latent-free DAGs

whenever certain property of the DAG is NALF, then this can

be used to show NON-ALGEBRAICNESS. As discussed, this is

the case for d separation.

Theorem 8 [NALF d-sep]. Let G be a DAG. Suppose that

the set of observed d-separation relations of G is NALF (as

per Definition 13). Then, G is NON-ALGEBRAIC.

Proof. From Eq. (8), G is not classically observationally

equivalent to any latent-free DAG. Thus, via Theorem 5, G is

NON-ALGEBRAIC. �

The mDAG presented in Fig. 7(a), which was not shown

NON-ALGEBRAIC by Theorem 7 due to being setwise maxi-

mal, can be shown NON-ALGEBRAIC by Theorem 8: its set

of observed d-separation relations, A ⊥d D|∅ and B ⊥d C|A,

is not matched by any latent-free DAG. This mDAG can be

considered a special case of the bilocality scenario [51] re-

stricted to have the same setting employed at both the extreme

wings. Remarkably, it can support non-classical correlations
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even though the “setting” for the extreme wings is the same

(in stark contradiction with the Bell scenario).

On the other hand, note that the Evans scenario [Fig. 7(b)],

which was shown NON-ALGEBRAIC by Theorem 6, cannot

be shown NON-ALGEBRAIC via Theorem 8: it does not have

any d-separation relation, just like the saturated latent-free

DAGs. Therefore, Theorems 6 and 8 are not redundant to

each other. Similarly, Theorems 7 and 8 are not redundant to

each other.

There are a variety of different practical methods to as-

certain whether or not Theorem 8 is satisfied for a given

latent-permitting DAG G. Naively, one could construct all the

latent-free DAGs with the same number of observed nodes as

G, and one-by-one check whether any of them have observed

d-separation relations matching those of G. Alternatively, one

could envision employing a constraint-based causal discovery

algorithm where the input to the algorithm is precisely the ob-

served d-separation relations of G: If the output of the causal

discovery algorithm fails to include any latent-free DAG as a

viable explanation given the input constraints, then evidently

G is NON-ALGEBRAIC per Theorem 8. While such “brute

force” approaches are viable for a small number of observed

nodes, as the number of observed nodes increases one would

need to contend with potential combinatorial explosion. As it

turns out, however, when the DAG is maximal (and thus not

shown NON-ALGEBRAIC by Theorem 6) there is an efficient

way to check whether or not its set of observed d-separation

relations is NALF; the efficient algorithm is presented in

Appendix C.

As well as our previous methods,Theorem 8 is only a

sufficient condition for NON-ALGEBRAICNESS, and not neces-

sary. If there exists a latent-free DAG H , which has the same

observed d-separation relations as G (i.e., IH = IG), this does

not imply that CG = CH , and as such we cannot conclude

anything about the relation between CG and IG. We will now

discuss other sufficient conditions for NON-ALGEBRAICNESS

that can be used when Theorems 6 and 8 fail.

D. Using e Separation to Prove NON-ALGEBRAICNESS

Just as the mismatch of d-separation relations is a witness

of classical observational inequivalence, we can show that

the mismatch of e-separation relations, a concept that will be

defined below, also witnesses classical observational inequiv-

alence. As such, we can mimic the same logic used in the

last section, thus showing that e-separation relations can be

used to attest NON-ALGEBRAICNESS. An e-separation relation

is defined as

Definition 14 (e separation). Let G be a DAG, and let X ,

Y , Z, and W be four disjoint sets of nodes of G. Let GdelW

be the DAG obtained by starting from G and deleting the

nodes of W . The sets X and Y are said to be e separated by Z

upon deletion ofW in G, denoted (X ⊥e Y |Z)delW , if X ⊥d Y |Z
holds in GdelW .

Note that if W = ∅, the concept of e separation reduces to

d separation. As well as for the case of d separation, we will

say that an e-separation relation is an observed e-separation

relation when the sets X , Y , Z, and W only involve observed

nodes. Matching observed e-separation relations is a prereq-

uisite for observational equivalence:

Lemma 6 . (e-separation condition for observational

equivalence) Let G and H be two DAGs. If they are classically

observationally equivalent (i.e., CG = CH ), then their sets of

observed e-separation relations must be identical.

Proof. In Ref. [47] it is shown that e-separation relations

imply in inequalities that must be satisfied by the compatible

probability distributions. In Appendix E of that same refer-

ence, it is further shown that if a DAG does not exhibit an

e-separation relation, then there must exist a compatible prob-

ability distribution, which violates the inequality associated

with that e-separation relation. This implies that, if a DAG

G exhibits an e-separation relation, which is not exhibited

by another DAG H , then it is possible to find a probability

distribution that is compatible with H but not with G. �

Using this lemma, we can derive the analog of Theorem 8

for the case of e separation,

Theorem 9 [NALF e-sep)]. Let G be a DAG. Suppose that

the set of observed e-separation relations of G is NALF (as

per Definition 13). Then, G is NON-ALGEBRAIC.

Proof. Follows directly from Lemma 6 and Theorem 5. �

To use Theorem 9 in practice, one might enumerate the

e-separation relations exhibited by every latent-free DAG with

the same number of observed nodes of G and compare them to

the observed e-separation relations of G. Far more efficiently,

one need only check against any one latent-free graph, which

matches the observed d-separation relations of G. (Such a

latent-free DAG must exist if G is not already certified as

NON-ALGEBRAIC by Theorem 8 [52]). After all, if two latent-

free graphs share the same d-separation relations, they will

also share the same e-separation relations, per Theorem 2 and

Lemma 6. We thus advise verifying that a DAG G in question

is not already certified as NON-ALGEBRAIC by Theorem 8

before invoking Theorem 9.

It is clear that every DAG that can be shown NON-

ALGEBRAIC by Theorem 8 can also be shown NON-

ALGEBRAIC by Theorem 9, since d separation is a special

case of e separation. A little less trivial, every DAG that can

be shown NON-ALGEBRAIC by Theorem 6 can also be shown

NON-ALGEBRAIC by Theorem 9: all nonmaximal DAGs have

a set of e-separation relations, which is NALF.

Proposition 5 (Theorem 9 subsumes Theorem 6). Let G be

a nonmaximal DAG. Then, the set of e-separation relations of

G is NALF.

Proof. If G is nonmaximal, then there are at least two

nodes A and B, which are not d separable, but are also not

adjacent in G. If they are not adjacent in G, it is clear that

A is e separated from B by deletion of every other observed

node of G. �

Let us make a proof by contradiction: Suppose that the

set of e-separation relations of G is not NALF. Then, there

is a latent-free DAG H , which has exactly the same set of

e-separation relations as G. This means that A should be e

separated from B by deletion of every other node of H , which

implies that A and B are not adjacent in H . In a latent-free

graph, two nodes are nonadjacent if and only if said pair of

nodes are d separable [[43], Prop. 3.19]. However, if A and

B are d separable in H but not in G, then their sets of d-

separation relations do not coincide, which is a contradiction.

It is still an open question whether the conjunction

of Theorems 6 and 8 is as good as Theorem 9 to show
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NON-ALGEBRAICNESS. We did not find any DAG that was

shown NON-ALGEBRAIC by Theorem 9 but not by any of

these two previous methods. (See Appendix E for further

discussion of this question.)

Note, however, that Theorem 9 does not subsume Theo-

rem 7. For example, the triangle scenario [Fig. 9(a)], that is

shown NON-ALGEBRAIC by Theorem 7, does not have any

e-separation relation (just like the saturated latent-free DAGs).

Appendices A and B relate Theorems 6 and 9 to results

of prior literature. In particular, in Appendix A we show that

a version of Theorem 6 in terms of e separation that was

presented in Ref. [27] is incorrect.

E. Using Incompatible Supports to Prove NON-ALGEBRAICNESS

The final method we used to prove NON-ALGEBRAICNESS

is based on the classical feasibility of supports.

Given a set of random variables {X1, . . . , Xn}, a specific set

{X1 = x1, . . . , Xn = xn} of values that these random variables

can take is called an event. The support S (PX1,...,Xn
) of a prob-

ability distribution PX1,...,Xn
over the variables {X1, . . . , Xn} is

the set of events that have nonzero probability,

S (PX1,...,Xn
) = {{x1, . . . , xn} | PX1,...,Xn

(x1, . . . , xn) > 0}. (13)

We previously defined what it means for a probability

distribution to be classically compatible with a DAG. Here, we

define what it means for a support to be classically compatible

with a DAG:

Definition 15 (Compatibility of a support with a DAG).

Let G be a DAG with observed nodes A = V ∪ L, where V

are observed nodes and L are latent nodes. Let S be a set

of events over the variables V . We say that S is a support

classically compatible with G if there exists a probability

distribution PV over V that is classically compatible with G

(i.e., PV ∈ CG) and whose support is S (PV ) = S . We say that

S is a support compatible-up-to-CI with G if there exists a

probability distribution PV over V such that PV ∈ IG) and

whose support is S (PV ) = S .

As an example, the following support is not compatible

with the Bell DAG (Fig. 2), as it corresponds to the Popescu-

Rohrlich box [53,54],

SBell =
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⎪
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⎪

⎪
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{X = 0,Y = 0, A = 0, B = 0}

{X = 0,Y = 0, A = 1, B = 1}

{X = 0,Y = 1, A = 0, B = 0}

{X = 0,Y = 1, A = 1, B = 1}

{X = 1,Y = 0, A = 0, B = 0}

{X = 1,Y = 0, A = 1, B = 1}

{X = 1,Y = 1, A = 1, B = 0}

{X = 1,Y = 1, A = 0, B = 1}
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. (14)

Note that if a support is compatible with DAG G, that

does not mean that every distribution with that support will

be compatible with G. There are countless counterexamples,

but let us simply note that the full support (the one where

all events have positive probability) is compatible with any

DAG, but at the same time we know of many incompatible

distributions, which nevertheless have full support.

Naturally, admitting the same set of compatible supports

is a prerequisite for two DAGs to admit the same set of

compatible distributions:

Lemma 7 (Supports condition for observational equiva-

lence). Let G and H be two DAGs. If they are classically

observationally equivalent (i.e., CG = CH ), then their sets of

classically compatible supports must be identical.

It remains an open question whether the condition of

Lemma 7 is also necessary for observational equivalence.

In particular, it is not known whether or not there exists a

DAG for which some distributions are incompatible (due to

inequalities) but for which all supports are compatible.

As before, this necessary condition for observational

equivalence immediately translates into a method for proving

NON-ALGEBRAICNESS:

Theorem 10 [NALF Supports]. Let G be a DAG. Suppose

the set of classically compatible supports of G is NALF (as

per Definition 13). Then, G is NON-ALGEBRAIC.

To exploit Theorem 10 in practice, we need an an algo-

rithm capable of assessing whether or not a given support is

compatible with a given DAG. Such algorithm was developed

in Ref. [26], and is referred to here as Fraser’s algorithm. We

have implemented Fraser’s algorithm in Python and scripted it

to yield all the supports that are classically incompatible with

a given DAG (for a certain assignment of the cardinalities of

the observed variables).

In general, Fraser’s algorithm is much more computation-

ally expensive than simply assessing whether or not a graph

exhibits some d-separation or e-separation relation. Conse-

quently, we consider Theorem 10 a method of last resort to

show NON-ALGEBRAICNESS.

1. Rapidly testing supports (without comparing

to any latent-free graph)

As well as for the case of e separation, Theorem 10 has the

downside that it requires one to find the supports compatible

with the DAG G and then check the compatible supports of

all the latent-free DAGs with the same number of observed

nodes (or alternatively to find the latent-free H that has the

same set of d-separation relations as G, and then check which

supports are compatible with H). Since Fraser’s algorithm

is computationally expensive, doing this in practice can be

cumbersome.

Luckily, it is possible to develop a rapid supports test where

it is not even necessary to find all of the supports compatible

with G. The idea of the rapid supports test comes from noting

that sometimes we can prove the incompatibility of a given

support with a DAG G by recognizing that the given support

conflicts with a d-separation relation exhibited by G.

Suppose, for instance, that a DAG G has the (uncondi-

tional) d-separation relation A ⊥d B. Then, the support in

Eq. (15) is clearly incompatible with G, since any probability

distribution with that support will must have PAB(1, 1) = 0 	=
PA(1)PB(1) > 0, contradicting A ⊥⊥CI B,

S10 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

{A = 0, B = 0}

{A = 0, B = 1}

{A = 1, B = 0}

⎫

⎪

⎪

⎬

⎪

⎪

⎭

. (15)
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Indeed, we can formally categorize all such “trivial” proofs

of support incompatibility through the following two defini-

tions:

Definition 16 (Support conflicting with a conditional in-

dependence relation). Let S be a support over a set V of

variables, and let A ⊆ V , B ⊆ V , and C ⊆ V be three disjoint

subsets of V . We say that S conflicts with the conditional

independence relation A ⊥⊥CI B|C if there exists a set {a, b, c}
of values of the variables in A, B, and C such that the events

{A = a,C = c} and {B = b,C = c} occur in S , but the event

{A = a, B = b,C = c} does not occur in S .

For example, the support of Eq. (15) conflicts with the

conditional independence relation A ⊥⊥CI B: both the events

A = 1 and B = 1 occur in the support, but the event {A =
1, B = 1} does not.

If a support S conflicts with a conditional independence

relation A ⊥⊥CI B|C, then there is no probability distribution

with support S that obeys A ⊥⊥CI B|C. This will be seen

explicitly in the proof of Lemma 8.

Definition17(Trivialityof support incompatibility). A sup-

port S is said to be trivially incompatible with a given DAG

whenever the DAG exhibits some d-separation relation whose

associated conditional independence relation conflicts with S

(as in Definition 16).

By generalizing the discussion made around Eq. (15), we

see that this definition indeed implies in classical incompati-

bility of the support with the DAG:

Lemma 8 (Trivial incompatibility implies incompatibility).

If a support S is trivially incompatible with a DAG G, then it

is classically incompatible with G.

Proof. Let A ⊥d B|C be a d-separation relation of G,

which is in conflict with S . Furthermore, let {a, b, c} be a

set of values of the variables in A, B, and C that witnesses

this conflict. This means that all of the probability distribu-

tions, which have the support S must have PAB|C (ab|c) = 0 	=
PA|C (a|c)PB|C (b|c) > 0. Therefore, S is not classically com-

patible with G. �

The key insight, which allows us to accelerate the appli-

cation of Theorem 10 is that for a latent-free DAG, the only

supports incompatible with it are those which are trivially

incompatible with it.

Lemma 9 (Latent-free support compatibility). Let H be a

latent-free DAG. If S is a support, which is not trivially

incompatible with H as per Definition 17, then S is classically

compatible with H as per Definition 15 [55].

Proof. Let X1, . . . , Xn be the nodes of H in some topolog-

ical order, i.e., an order where Xi is a nondescendant of Xi+1.

We will make this proof by explicitly constructing a probabil-

ity distribution P(X1, . . . , Xn), which is classically compatible

with H and has the support S .

The explicit construction is given by P(X1, . . . , Xn) =
∏

i P(Xi|PAH (Xi )), where each P(Xi|PAH (Xi )) is uniformly

distributed over the values of Xi which occur along with the

given values of PAH (Xi ) (and any value of the remaining

variables) in S . It is clear that this distribution is classi-

cally compatible with H , since it takes the form of the

Markov condition. Now, we will show that its support is

in fact S .

We will make a proof by induction on m that this dis-

tribution has the correct support on X1, . . . , Xm. For m = 1

we simply have P(X1) uniformly distributed on values of X1

that are possible under S , so the basis case is immediately

satisfied. Now, we assume that X1, . . . , Xk has the correct

support, and we will prove that X1, . . . , Xk+1 also does.

First, consider some (x1, . . . , xk, xk+1) that occurs in

S . Since we assumed that X1, . . . , Xk has the correct

support, we know that the corresponding P(X1, . . . , Xk )

is nonzero. All of the parents of Xk+1 are elements of

{X1, . . . , Xk}; therefore, by definition, the correspond-

ing P(Xk+1|PAH (Xk+1)) is also nonzero. Therefore,

P(X1, . . . , Xk+1) = P(X1, . . . , Xk )P(Xk+1|PAH (Xk+1)) is

nonzero as required.

Now, consider some (x1, . . . , xk, xk+1) that does not occur

in S . There are two possibilities: the set of values (x1, . . . , xk )

could occur or not occur in S . If (x1, . . . , xk ) also does not

occur in S , the proof is simple: by the inductive hypothesis,

the corresponding P(X1, . . . , Xk ) is zero, so P(X1, . . . , Xk+1)

has to be zero as required.

Suppose now that (x1, . . . , xk, xk+1) does not occur in

S but (x1, . . . , xk ) occurs. Let C1, . . . ,Cp denote the par-

ents of Xk+1 and B1, . . . , Bk−p the remaining variables

among X1, . . . , Xk , which we know are nondescendants of

Xk+1 in H . The DAG H must have the d-separation re-

lation Xk+1 ⊥d {B1, . . . , Bk−p}|{C1, . . . ,Cp}; since S is not

trivially incompatible with H , then it must not be in

conflict with the associated conditional independence rela-

tion. Since (x1, . . . , xk ) = (b1, . . . , bk−p, c1, . . . , cp) occurs in

S but (x1, . . . , xk, xk+1) = (b1, . . . , bk−p, c1, . . . , cp, xk + 1)

does not occur, we can then conclude that (xk+1, c1, . . . , cp)

must not occur in S . Therefore, by definition the associated

P(Xk+1|PAH (Xk+1)) = P(Xk+1|C1, . . . ,Cp) is zero and hence

so is P(X1, . . . , Xk, Xk+1), as required. �

Accordingly, we have the following upgrade to

Theorem 10:

Theorem 11 (Rapid Supports). Let G be a DAG. If there is

a support S , which is incompatible with G despite not being

trivially incompatible with G, then G is NON-ALGEBRAIC.

Proof. We start by noting that if G was ALGEBRAIC, then

it would be classically observationally equivalent to some

latent-free DAG H , per Theorem 5. If so, then H and G

would (at least!) share the same d-separation relations, and

hence a support would only not be trivially incompatible

with G if was not trivially incompatible with H . But by

Lemma 9, if a support is not trivially incompatible with

H then it must be compatible with H . Since our start-

ing premise is that this support is not compatible with G,

then by Lemma 7 it follows that CG 	= CH , and hence G is

NON-ALGEBRAIC. �

Note that Theorem 11 allows us to leverage tools distinct

from Fraser’s algorithm for assessing support incompatibil-

ity. Fraser’s algorithm is a necessary and sufficient test for

support compatibility. For the purposes of Theorem 11, how-

ever, we can instead consider variant algorithms related to

Inflation [56], which cannot certify support compatibility

but which can often efficiently detect support incompatibil-

ity. Some such algorithms are discussed in Ref [57], for

example.

It is clear that the application of Theorem 11 is much more

efficient than the application of Theorem 10. We can also

show that both theorems are equally powerful:
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Proposition 6. Let G be a NON-ALGEBRAIC DAG. If the

NON-ALGEBRAICNESS of G can be shown via Theorem 10,

then it can also be shown via Theorem 11.

Proof. First, suppose that there exists a latent-free DAG

H such that IH = IG. If G is NON-ALGEBRAIC, then CG �

CH , and hence every support, which is incompatible with G

must also be incompatible with H . If Theorem 10 shows

the NON-ALGEBRAICNESS of G, then there must be a sup-

port, which is compatible with H but not G. Since the

set of supports incompatible with H is exactly the set

of trivially incompatible supports as per Lemmas 8 and

9, it follows that the support, which is incompatible with

G but not H must not be trivially incompatible with G.

Therefore, the NON-ALGEBRAICNESS of G can be shown by

Theorem 11.

Now, suppose that there is no latent-free DAG that has

the same set of d-separation relations as G, i.e., that the

set of d-separation relations of G is NALF. If G is not

maximal, in the proof of Theorem 6 we showed a distribu-

tion, which is not compatible with G [Eq. (9)]. In reality,

all the distributions, which have the same support as this

one will be incompatible with G. Furthermore, since Eq. (9)

is an element of IG, this support is not trivially incompat-

ible with G. Therefore, the support of the distribution of

Eq. (9) is an incompatible support, which is not trivially

incompatible.

If the set of d-separation relations of G is NALF and G

is maximal, per Theorem 17 we know that G has one of the

eighteen mDAGs of Fig. 12 as a subgraph. One can explicitly

check that these eighteen mDAGs have incompatible supports

that are not trivially incompatible; therefore, G itself also must

have incompatible supports that are not trivially incompatible,

namely, by taking all its observed variables outside of the

pertinent subgraph to be point distributed. Therefore, this case

also falls under the scope of Theorem 11. �

It is also worth noting that, when there is a latent-free DAG

H with the same set of d-separation relations as G, Theorem

11 is constructive: The distribution P constructed for H in the

proof of Lemma 9 is such that P ∈ IG yet P 	∈ CG.

An example of a support, which is incompatible—but not

trivially incompatible—with the Evans scenario [Fig. 7(b)] is

the following:

SEvans =

{

{C = 0, D = 0, E = 0}

{C = 0, D = 1, E = 1}

}

. (16)

The Evans scenario does not have any d-separation re-

lation. Nevertheless, the support SEvans of Eq. (16) is not

compatible with it. This can be seen by noting that the variable

C in S is associated with a point distribution: it always takes

the value 0. Since in the Evans scenario all the correlation

between D and E is established through C, it is impossible

to have perfect correlation between D and E while C takes a

point distribution.

An example of DAG whose NON-ALGEBRAICNESS was first

certified in Ref. [26] via the discovery of an incompatible

support is presented in Fig. 10. By means of his eponymous

algorithm for compatible supports, Fraser showed that the

following support is classically incompatible with the DAG

FIG. 10. A DAG with four observed nodes and seven total nodes

whose NON-ALGEBRAICNESS can be shown by Fraser’s algorithm for

compatible supports.

of Fig. 10[58],

S10 =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

{A = 0, B = 0,C = 0, D = 0}

{A = 0, B = 0,C = 0, D = 1}

{A = 0, B = 1,C = 0, D = 0}

{A = 1, B = 0,C = 1, D = 0}

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

. (17)

When using Theorem 11 to attest NON-ALGEBRAICNESS,

we start by checking supports at binary cardinalities of the

observed variables. If such an incompatible but not trivially

incompatible support is found, we can try to search for such a

support at higher cardinalities of the observed variables.

Remark 1. We anticipated that if a DAG has any incom-

patible support (for any cardinality), then it seemed likely that

we should expect to find some incompatible support where all

variables have binary cardinality. Indeed, prior to this study,

we are not aware of any counterexample. Even the three

challenging DAGs identified in Fig. 14 of Ref. [24] were even-

tually found to have incompatible supports with merely binary

variables. However, this intuition turns out to be misplaced:

We identified four mDAGs for which the high-cardinality

support of Eq. (18) is identified as incompatible, but where

nevertheless every support over binary variables is provably

compatible. These mDAGs are depicted in Table II.

Sfor Table II =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

{A = 0, B = 0,C = 0, D = 0}

{A = 0, B = 0,C = 1, D = 0}

{A = 0, B = 1,C = 0, D = 0}

{A = 1, B = 0,C = 0, D = 0}

{A = 1, B = 1,C = 0, D = 0}

{A = 2, B = 0,C = 0, D = 1}

{A = 2, B = 1,C = 1, D = 0}

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

. (18)

2. Incompatible supports subsumes all other methods

The methods to show NON-ALGEBRAICNESS that we pre-

sented here are not independent of each other. For example, it

is clear that Theorem 9 subsumes Theorem 8, and Proposition
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TABLE II. The only four mDAGs with four observed nodes for

which every support over binary observed variables is classically

compatible but which are nevertheless provably NON-ALGEBRAIC

by virtue of the higher-cardinality support given in Eq. (18) being

incompatible with all four DAGs here.

5 shows that Theorem 9 also subsumes Theorem 6. However,

it is more efficient to start by checking maximality of the DAG

of interest or the d-separation relations of latent-free DAGs

instead of directly checking all of their e-separation relations;

this is the reason why we presented these results separately.

As it turns out, we can also show that Theorem 10

subsumes Theorem 9: every DAG that can be shown

NON-ALGEBRAIC via its e-separation relations (through

Theorem 9) can also be shown NON-ALGEBRAIC via its in-

compatible supports (through Theorem 10). This result will

be presented here as Corollary 2. All of the discussion about

e separation was made here because checking e-separation

relations is in general much faster than checking incompatible

supports.

Theorem 12 (Supports subsumes e separation for obser-

vational inequivalence). Let G and H be two DAGs. If their

sets of observed e-separation relations are different, then it

is possible to find a support over binary variables, which is

compatible with one of them but incompatible with the other.

Proof. Presented in Appendix D. �

Note that Theorem 12 is a generic result about observa-

tional equivalence between two DAGs, not restricted to the

comparison with latent-free DAGs. A direct corollary is

Corollary 2 (Supports subsumes e separation for NON-

ALGEBRAICNESS). Let G be a DAG. If there is no latent-free

DAG, which presents the same set of e-separation relations

FIG. 11. (a) Depicts a scenario characterized correctly by

Pienaar’s theorem as NON-ALGEBRAIC, whereas (b) depicts an

ALGEBRAIC scenario which Pienaar’s theorem incorrectly deems

NON-ALGEBRAIC.

as G, then there is also no latent-free DAG, which presents

the same set of classically compatible supports as G. In other

words, if G can be shown NON-ALGEBRAIC by Theorem 9,

then it can also be shown NON-ALGEBRAIC by Theorem 10.

Since Proposition 6 shows that the rapid supports test

(Theorem 11) can show NON-ALGEBRAICNESS in all the cases

covered by Theorem 10, from Corollary 2 we can conclude

that Theorem 11 is the most powerful tool we have so far

to show NON-ALGEBRAICNESS. It is still an open question

whether detection by Theorem 11 is a necessary condition for

NON-ALGEBRAICNESS.

Note that Theorem 11 also subsumes Theorem 7, as all dis-

tributions with same support of that in Eq. (10) are in I but not

C, and hence every DAG, which is provably NON-ALGEBRAIC

via Theorem 11 will also be provably NON-ALGEBRAIC via

Theorem 11. In particular, merely by considering compatible

versus incompatible supports over two events, Theorem 11

already subsumes Theorem 7.

V. COMPUTATIONAL RESULTS

We consider the problem of certifying the NON-

ALGEBRAICNESS of those mDAGs of four observed nodes,

which are not shown ALGEBRAIC by the HLP criterion (Corol-

lary 1). We start by the method described in Sec. IV A, that

says that nonmaximal DAGs are NON-ALGEBRAIC. Among

the 996 mDAGs, which are left as potentially interesting after

applying the HLP criterion, we find that 810 are nonmaximal.

Therefore, nonmaximality seems to be a powerful tool to show

NON-ALGEBRAICNESS; at this stage, we are left with only 186

unresolved mDAGs after this preliminary filtering.

We then exploit the d-separation test for NON-

ALGEBRAICNESS per Sec. IV C. That is, among those 186

remaining mDAGs we filter out any mDAGs, which possess

observed d-separation relations not matching those of some

latent-free DAG (NALF d-separation relations). We find

that 168 mDAGs remain as-yet unresolved—the 18 mDAGs

that are shown NON-ALGEBRAIC at this stage are the ones

presented in Fig. 12.

The e-separation test for NON-ALGEBRAICNESS presented

in Sec. IV D does not resolve any of these 168 unresolved

cases. As mentioned, it is still an open problem whether the

nonmaximality test and the d-separation test together will

always subsume the e-separation test. We then turn to the
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FIG. 12. A maximal DAG has a set of d-separation relations unmatched by any latent-free DAG (and is thus NON-ALGEBRAIC by Theorem

8) if and only if it has one of these eighteen patterns as a subgraph.

method of supports analysis per Sec. IV E, which ultimately

leaves us with only three remaining unresolved mDAGs.

More specifically, by considering supports with binary

cardinalities of the observed variables we were able to

certify the NON-ALGEBRAICNESS of 161 out of the 168

remaining mDAGs. We could not, however, find any classi-

cally incompatible supports for the remaining seven mDAGs

when only considering binary cardinality variables. But by

increasing the cardinality of variable A to be three we were

able to identify a support that is incompatible—but not
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trivially incompatible—with the four mDAGs in Table II,

hence certifying their NON-ALGEBRAICNESS. Said support is

explicitly reproduced in Eq. (18); it is obviously not triv-

ially incompatible with any of the mDAGs in Table II, since

none of those four mDAGs exhibits any d-separation relations

over its observed nodes. The remaining three mDAGs, which

we were unable to resolve as NON-ALGEBRAIC via supports

considerations—up to computational tractability limits—are

depicted in Table III.

The exact number of mDAGs that we are able to char-

acterize as NON-ALGEBRAIC or ALGEBRAIC at each stage is

summarized in Table I.

On the Potential NON-ALGEBRAICNESS

of the Remaining three mDAGs

The three as-yet unresolved mDAGs with four observed

nodes are depicted in Table III. For these three mDAGs

we could not find any incompatible supports [29], at least

up to the small cardinalities of the observed nodes that we

checked. Searching for incompatible supports at higher car-

dinalities of the observed nodes using Fraser’s algorithm is

computationally expensive, as the algorithm’s complexity in-

creases significantly on increasing the cardinalities. Perhaps

future acceleration of Fraser’s algorithm may allow us to

probe supports for higher cardinalities. For the present pa-

per, however, we considered one final attempt to prove [59]

the NON-ALGEBRAICNESS of these three mDAGs, namely, by

exploring entropic inequalities. For a more comprehensive

introduction to entropic inequalities and Shannon cones see

Refs. [60,61].

In particular, we attempted to isolate some Shannon-

type inequalities that constrain CG, but are not Shannon-type

inequalities for IG. This analysis is also computationally

expensive—often intractable—as generating the Shannon-

type inequalities corresponding to C is accomplished via

linear quantifier elimination. The complexity of the most

common algorithm for performing linear quantum elimi-

nation is doubly exponential in the number of eliminated

variables, although alternative algorithms have different

complexities [62].

We can nevertheless certify that the Shannon cone corre-

sponding to CG and IG are indistinguishable for these three

remaining mDAGs without explicitly constructing the Shan-

non cone for CG. We do so as follows:

(1) From all the Shannon type inequalities corresponding

to IG, generate the extremal rays of this cone.

(2) Check whether each of those extremal rays is implicitly

contained in the Shannon cone corresponding to CG by asking

if the Shannon-type inequalities over all the variables (thus

not using linear quantifier elimination) corresponding to C are

satisfiable by the given extremal ray. If every extremal ray

of the Shannon cone of IG is contained in the Shannon cone

corresponding to CG, then those two Shannon cones coincide.

For the three mDAGs in Table III we find that the Shannon

cones corresponding to CG and IG are the same. That is,

we were unable to find any valid Shannon type inequality

for CG that is not also a Shannon type inequality for IG for

these three mDAGs. Thus, entropic methods are incapable

of proving the NON-ALGEBRAICNESS of these three mDAGs,

TABLE III. The mDAGs of four observed nodes whose NON-

ALGEBRAICNESS remains unresolved.
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unless perhaps we explore non-Shannon-type inequalities or

entropic inequalities involving non-Shannon entropies.

VI. CONCLUSIONS

In this paper, we contributed to causal investigation by

categorizing which causal structures of four observed nodes

present inequality constraints or not. To do so, we developed

a plethora of techniques to prove that a causal structure is

NON-ALGEBRAIC (has inequality constraints), while we used

one single technique to prove that a causal structure is ALGE-

BRAIC: the HLP criterion.

As can be seen from Table I, out of the 2809 mDAGs

with four observed nodes, the HLP criterion shows that that

1813 are ALGEBRAIC. Out of the remaining 996 mDAGs,

our techniques showed 993 of them to be NON-ALGEBRAIC,

while we are still uncertain about the status of three mDAGs

(presented in Table III). While these three remaining mDAGs

are still potential counter-examples to the HLP conjecture

(which says that the HLP criterion is necessary and suffi-

cient for ALGEBRAICNESS), we believe that our numerical

results are a hint towards the validity of this conjecture.

A truly thorough analysis of all mDAGs with five ob-

served nodes proved to be quite computationally demanding.

Nevertheless, in Appendix E we show that—among those

five-node mDAGs, which the HLP criterion fails to certify as

NON-ALGEBRAIC—at least 99% are NON-ALGEBRAIC, which

we again elect to interpret as at least consistent with the

HLP conjecture.

It is also interesting to note that all of our techniques to

show NON-ALGEBRAICNESS give explicit constructions of

distributions, which are in IG but not in CG, i.e., respect

the conditional independence constraints of DAG G but

not its inequality constraints. Theorem 6 is related to the

construction of Eq. 9, as well as Theorem 7 is related to the

construction of Eq. 10. Theorem 11 is constructive whenever

there is a latent-free DAG H with the same set of d-separation

relations as G (such construction can then be found in the

proof of Lemma 9). If G is maximal but there is no latent-free

DAG H with the same set of d-separation relations as G, then

Theorem 17 says that G has one of the eighteen DAGs of

Fig. 12 as a subgraph. In the end of Appendix C, an explicit

distribution, which is in IG but not in CG for these eighteen

DAGs is presented: it is the uniform distribution over the

events in the Popescu-Rohrlich support presented in Eq. (14).

In particular, our Theorem 6, which showed itself to be

very powerful in proving NON-ALGEBRAICNESS, is a corrected

version of the e-separation theorem of [27] (as discussed in

Appendix A).

By showing practical tools to attest that a causal structure

presents inequality constraints, this paper simultaneously con-

tributes to purely classical causal inference and advances the

question of which causal scenarios might exhibit quantum or

post-quantum advantage.
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APPENDIX A: PIENAAR’S e-SEPARATION

THEOREM IS INCORRECT

In Ref. [[27], Lemma 2] Pienaar presented the following

claim, which we demonstrate to be incorrect:

Theorem 13 (Pienaar’s incorrect e-separation theorem).

Let G be a DAG, and let X , Y , Z and W be disjoint sets of

nodes of G such that none of the nodes of Z is a descendant of

a node in W and (X ⊥e Y |Z)delW . Then G is NON-ALGEBRAIC

if and only if the d-separation relations of G do not include

any relations of the form (X ⊥d Y |ZS), where S is a

subset of W .

If this theorem were true, then the problem of classifying

NON-ALGEBRAICNESS would be completely solved whenever

a suitable e separation is present, as Theorem 13 claims to

provides a necessary and sufficient condition for such DAGs

that is simple to check. However, the condition turns out to be

neither necessary nor sufficient.

Firstly, note that there are plenty of well-known graphs,

which are NON-ALGEBRAIC despite not satisfying the con-

ditions of Theorem 13. Examples include the Bell DAG of

Fig. 2, as well as the mDAG in Fig. 7(a), among many others.

Pienaar notably included similar examples in his own study

[27], and therefore we believe the inclusion of the “only if”

language in Theorem 13 was an oversight, in that Pienaar him-

self never actually intended to communicate that, but rather

only that the e-separation relation (X ⊥e Y |Z)delW would auto-

matically follow from the d-separation relation (X ⊥d Y |ZS)

if that d-separation relation was present in the graph and

where S is a subset of W .

Regardless, the “if” direction in Theorem 13 also turns

out to be invalid, although it is a bit more subtle. Con-

sider the DAG in Fig. 11(a); Pienaar [27] uses it as an

example of a DAG that is deemed (in this case, correctly

deemed) as NON-ALGEBRAIC pursuant to Theorem 13. In

this DAG, (F ⊥e D|C)delE
holds, and node C is not a de-

scendant of node E , and neither (F ⊥d D|C) nor (F ⊥d

D|CE ) holds true. Therefore, Theorem 13 classifies the DAG

of Fig. 11(a) as NON-ALGEBRAIC. But now consider the

DAG of Fig. 11(b), which has the same structure as the

DAG in Fig. 11(a), with the only difference being that the

DAG in Fig. 11(b) has no latent variables. All the condi-

tions of Theorem 13 are again met, however, when applied

to Fig. 11. Again, (F ⊥e D|C)delE
holds, and node C is

not a descendant of node E , and neither (F ⊥d D|C) nor

(F ⊥d D|CE ) hold true. So this DAG is again—but this time,

wrongly—characterized as NON-ALGEBRAIC by Pienaar’s

theorem. As previously discussed, all latent-free DAGs are

ALGEBRAIC!

In fact, every DAG for which the conditions of Theo-

rem 13 hold can be converted into a different latent-free

DAG for which the conditions of the theorem would
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continue to hold by making all the nodes observed.

That is, for every DAG, which is correctly classified as

NON-ALGEBRAIC by the (invalid) condition formulated as

Theorem 13 one can construct a latent-free counterexample to

Theorem 13.

The flaw with Pienaar’s proof of the “if” direction is that it

invokes a probability distribution that may not actually be in

I, in that the constructed distribution may be inconsistent with

some d-separation relation not mentioned in the statement of

Theorem 13. For example, in Fig. 11, Pienaar’s proof would

invoke a distribution, which posits perfect correlation be-

tween D and F while all other variables are point-distributed.

While such a distribution is consistent with all the observable

d-separation relations of Fig. 11(a), it is nevertheless inconsis-

tent with the d-separation relation (F ⊥d D|BCE ) exhibited

by Fig. 11(b).

This loophole in Pienaar’s proof can be closed by strength-

ening the conditions of Pienaar’s theorem, namely, to exclude

(F ⊥d D|S) for any subset S of the remaining observed nodes.

In other words,

Theorem 14 (A corrected version of Pienaar’s

e-separation theorem). Let G be a DAG, and let X , Y , Z

and W be disjoint sets of nodes of G such that none of the

nodes of Z is a descendant of a node in W and (X ⊥e Y |Z)delW .

Then G is NON-ALGEBRAIC if the d-separation relations of G

do not include any relations of the form (X ⊥d Y |S), where

S may be any subset of the observed nodes of G other than

X ∪ Y .

However, a graph can only exclude relations of the form

X ⊥d Y |S for any S if for every pair of singleton nodes {X,Y }
such that X ∈ X and Y ∈ Y it holds that (X ⊥d Y |S). On the

other hand, a pair of nodes {X,Y } can only be e separated by

Z upon the removal of W if X and Y are not adjacent. Con-

sequently, a DAG can only be certified as NON-ALGEBRAIC

by Theorem 14 if there exists a pair of d unseparable but

nevertheless non-adjacent nodes. Which is to say, Theorem

14 is ultimately equivalent [63] to Theorem 6 of the main text,

albeit obfuscated.

APPENDIX B: REVISITING THE SKELETON CONDITION

In the main test we noted (Theorem 6) that every nonmax-

imal DAG is NON-ALGEBRAIC. Here we revisit that finding,

and contrast is with a prior result due to Pienaar [27].

Firstly, we recall that the set of adjacent node pairs in a

DAG is conventionally referred to as the DAG’s skeleton.

Definition 18 (Skeleton of a DAG). The skeleton of a DAG

G is the undirected graph wherein A and B are adjacent in G’s

skeleton—denoted A B—if and only if A and B are adjacent

in G.

Notably, the skeleton of a DAG can be used to witness

observational inequivalence. In particular, Evans has shown

that if a pair of nodes is adjacent in some mDAG G but not

in some other mDAG H , then CG 	= CH [24,45]. We formally

express this idea here as:

Lemma 10 (Skeleton condition for observational equiva-

lence and dominance). For any pair of DAGs G and H , CG =
CH only if the skeletons of G and H are the same, i.e., they

agree on all observable node (non)adjacencies. Additionally,

CG ⊂ CH only if every pair of adjacent nodes in G is also

adjacent in H .

As with any necessary conditional for observational equiv-

alence, Lemma 10 can then be utilized to formulate a

sufficient condition for NON-ALGEBRAICNESS. Pienaar did ex-

actly that when he formulated the following Theorem in Ref.

[[27], Theorem 1]:

Theorem 15 (Pienaar’s skeleton condition for. NON-

ALGEBRAICNESS ) Let G be the DAG we need to check for

NON-ALGEBRAICNESS. Suppose that one can find some other

DAG H with the same observed conditional independencies

as G and which is certainly known to be ALGEBRAIC, i.e.,

IG = IH and IH = CH . Then, if the skeletons of G and H

are different, evidently CG 	= CH per Lemma 10, and hence

CG 	= IG, i.e., DAG G is NON-ALGEBRAIC.

Theorem 15 is both correct and useful. Note, however, that

it is superseded by the Theorem 6 presented in the main text.

Suppose that there does exists some latent-free DAG H that

agrees with the observed d-separation relations of G. Then,

among other things, G and H evidently agree on d unseparable

observed node pairs. Since the skeleton of H is defined by H’s

d-unseparable node pairs [[43], Prop. 3.19], the only way for

the skeletons of G and H to differ is if G contains some pair

of nonadjacent d unseparable observed nodes. Consequently,

Theorem 15 can only certify a DAG as NON-ALGEBRAIC

when the DAG’s NON-ALGEBRAICNESS is also certifiable by

Theorem 6.

Thus, both of Pienaar’s conditions for NON-

ALGEBRAICNESS are subsumed by Theorem 6 here, at

least after adjusting Pienaar’s condition based on e separation

as per Appendix A.

We know that there are DAGs for which one cannot find

any DAG H with the required properties to make use of The-

orem 15; see Appendix C for examples. In light of Theorem

5 we would want to reformulate Theorem 15 in a manner that

is clearly (strictly) more powerful, which removes the caveat

about finding such an H .

Theorem 16 (Improved skeleton condition for. NON-

ALGEBRAICNESS ) Let G be the DAG we need to check

for NON-ALGEBRAICNESS. Consider all latent-free graphs,

which share the same skeleton as that of G. If no latent-free

graph within that set furthermore matches the observed d

separations of G, then G is NON-ALGEBRAIC.

Proof. Theorem 16 follows directly from combining

Lemma 10 and Eq. (8) with Theorem 5. �

As it turns out, however, Theorem 16 is equivalent to the

conjunction of Theorems 6 and 8. First, we can see that The-

orem 6 is a special case of Theorem 16. If G is nonmaximal,

then it has at least one non-adjacent pair of observed nodes,

which is d unseparable. This implies that all the latent-free

DAGs, which have the same skeleton (same adjacency struc-

ture) as G have a different set of d-separable pairs of nodes

than that of G, because all latent-free DAGs are maximal

[[43], Prop. 3.19]. This then implies that they have a different

set of d-separation relations than those of G, so Theorem 16

witnesses all nonmaximal DAGs as NON-ALGEBRAIC. Sec-

ondly, it is easy to see that Theorem 8 is also a special case

of Theorem 16: if there are no latent-free DAGs that match

the set of d-separation relations of G, then in particular there

023038-20



CLASSIFYING CAUSAL STRUCTURES: ASCERTAINING … PHYSICAL REVIEW RESEARCH 6, 023038 (2024)

are no latent-free DAGs that match the set of d-separation

relations and the skeleton of G.

Next, we prove the inverse, that Theorems 6 and 8 together

subsume Theorem 16. Let G be a DAG, which is shown NON-

ALGEBRAIC by Theorem 16. If G is nonmaximal, then it is also

shown NON-ALGEBRAIC by Theorem 6. What remains, then,

is to show that there are no maximal DAGs, which cannot

be proven NON-ALGEBRAIC via Theorem 8 but can be seen

as NON-ALGEBRAIC via Theorem 16. But if the DAG G is

both maximal and shares the same d-separation relations as

some latent-free DAG H , it automatically follows that G and

H agree on their skeletons as well. After all, G and G are both

maximal, which means that their skeletons are dictated by

their respective d-unseparable node pairs, which are identical.

Note that Theorem 16 is also subsumed by Theorem

9, since agreeing on e-separation relations implies agreeing

on adjacencies (i.e., skeleton) as well as on d-separation

relations.

APPENDIX C: RAPID d-SEPARATION TEST

In Sec. IV C, we described a method to show the

NON-ALGEBRAICNESS of a DAG when its set of observed

d-separation relations is NALF, i.e., it does not match those of

any latent-free DAG; this is encoded in Theorem 8. To apply

this method in practice, we indicated that one can construct

all of the latent-free DAGs that have the same number of

observed nodes as the DAG in question, and then compare

their sets of d-separation relations. However, when the DAG is

maximal (as per Definition 9) there is a faster way to apply this

method, which will be described now. When the DAG is not

maximal, its NON-ALGEBRAICNESS is automatically attested

by Theorem 6.

When the DAG is maximal, to see whether its set of d-

separation relations is NALF one just needs to check whether

it has one of the DAGs of Fig. 12 as a subgraph. This was

recognized in Evans’ own proof of Theorem 5 [25], as we

argue in the proof of the following theorem:

Theorem 17 (rapid d-separation condition for. NON-

ALGEBRAICNESS) Let G be an mDAG. If G is not

maximal, then it is NON-ALGEBRAIC by Theorem 6. If

G is maximal, then it has a set of observed d-separation

relations unmatched by any latent-free DAG (NALF)—and

is therefore NON-ALGEBRAIC pursuant to Theorem 8—if and

only if it contains one of the eighteen graph patterns (up to

relabelling the nodes) presented in Fig. 12 as a subgraph.

Proof. Evans [25] has shown that if a latent-permitting

DAG G has a NALF set of observed d-separation relations,

then either its associated PAG (partial ancestral graph) con-

tains a so-called “locally unshielded collider path” of length

3, and/or it contains a so-called “discriminating path” of

length 3 [64]. This implies that the PAG associated with G

will contain a sub-PAG matching one of the four-node PAGs

depicted within Figs. 4 and 5(i) of [25] whenever the observed

d-separation relations of G are NALF.

A PAG is an abstract graphical representation of a set of

d-separation relations. In particular, two nodes are adjacent

in a PAG if and only the two nodes are d unseparable in the

original DAG. A “path of length 3” in a PAG refers to a set

X Y

Λ Γ

C

BA

FIG. 13. Nonmaximal DAG. It does not have any of the DAGs of

Fig. 12 as a subgraph, but it nevertheless has a d-separation pattern

that does not correspond to any latent-free DAG.

of four nodes {X, A, B,Y } such that {X, A}, {A, B}, {B,Y } all

constitute d-unseparable pairs.

The adjacencies of a DAG G and the adjacencies of the

PAG associated with G can, in general, differ. For maximal

DAGs, however, they must coincide: for those, adjacency is

equivalent to d unseparability. The PAG associated with a

maximal DAG G will exhibit an unshielded collider path or

a discriminating path if and only if in the original G we can

find four nodes {X, A, B,Y } such that {X, A}, {A, B}, {B,Y }
represent adjacent pairs and such that the d-separation re-

lations pertaining exclusively to {X, A, B,Y } are of one of

“unshielded collider path” type or “discriminating path” type.

We do not define these two types for brevity, but we exhibit

all such four-node mDAGs in Fig. 12. �

The set of d-separation relations of each one of the DAGs

in Fig. 12 is

(1) (A ⊥d Y |∅) and (A ⊥d Y |X ) and (B ⊥d X |∅) and

(B ⊥d X |Y ) and (X ⊥d Y ) and (X ⊥d Y |A) and (X ⊥d Y |B)

[Figs. 12(a)–12(f)]

(2) (A ⊥d Y |X ) and (B ⊥d X |Y ) [Figs. 12(g)–12(k)]

(3) (A ⊥d Y |∅) and (B ⊥d X |∅) [Fig. 12(l)]

(4) (B ⊥d X |∅) and (A ⊥d Y |X )[Figs. 12(m)–12(o)]

(5) (B ⊥d X |∅) and (X ⊥d Y |A) [Figs. 12(p)–12(r)]

By checking the d separation of all the four-observed-

node mDAGs, we know that these are the only mDAGs that

present these sets of d-separation relations. While searching

for subgraphs is computationally easy, an alternative is to

consider all four-node subsets of a given large mDAG and

ask if the d-separation relations pertaining exclusively to some

four nodes contains all and only one of the patterns listed

above, up to relabelling. If yes, and if the large mDAG G

is maximal, then G certainly contains one of the patterns of

Fig. 12 as a subgraph.

Figure 13 shows an example of a DAG that does not have

any of the DAGs of Fig. 12 as a subgraph, but nevertheless

has a NALF set of d-separation relations. However, this is

not a problem: this DAG is not maximal (X and Y are not

d separable but are e separable by the empty set), so its

NON-ALGEBRAICNESS follows from Theorem 6.

Finally, we will show an explicit construction of a distri-

bution, which is in IG but not in CG for the maximal mDAGs,

which are shown NON-ALGEBRAIC by Theorem 6. First, we

note that the Popescu-Rohrlich box support shown in Eq. (14)

is not compatible with any of the mDAGs of Fig. 12, as can

be shown using Fraser’s algorithm. This implies that the uni-

form distribution over the events of the Popescu-Rohrlich box
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support is not classically compatible with any of the mDAGs

of Fig. 12, and is thus not an element of CG for these mDAGs.

On the other hand, it is well known that said distribution obeys

all of the conditional independence relations that come from

the d-separation relations of the Bell DAG. As seen above,

all the d-separation relations of the mDAGs of Fig. 12 are

included in the d-separation relations of the Bell DAG, which

implies that such distribution is an element of IG for all the

mDAGs of Fig. 12.

APPENDIX D: SUPPORTS SUBSUMES e-SEPARATION

AS A TEST OF OBSERVATIONAL INEQUIVALENCE

Here we provide a full proof of Theorem 12, that says that

if DAGs G and H can be shown inequivalent by virtue of

having different sets of e-separation relations, then they can

be shown inequivalent by virtue of having different sets of

compatible supports at binary variables. Before proving this

more general result, we will prove the case for d-separation

relations as an auxiliary lemma:

Lemma 11 (d separation and compatible supports). Let G

be an DAG with observed nodes V , with Z ⊆ V being a subset

of V and X ∈ V and Y ∈ V being two observed nodes. If the

DAG G does not exhibit the d-separation relation (X ⊥d Y |Z),

then there is at least one support over binary variables, which

is compatible with G but at the same time is in conflict with

(X ⊥⊥CI Y |Z), i.e., is trivially incompatible with every other

DAG for which (X ⊥d Y |Z).

Proof. We explicitly construct a support such that the

marginal events {X=0, Z = 1} and {Y =1, Z = 1} both occur,

but such that the event {X=0,Y =1, Z = 1} does not occur.

Plainly such a support is trivially incompatible with any DAG

wherein (X ⊥d Y |Z) per Lemma 8. Here we show that a dis-

tribution with this support can arise in every DAG wherein

(X 	 ⊥dY |Z). We note that this construction is identical to that

which appears in Appendix E of [47].

If (X 	 ⊥dY |Z) in G, then there exists a path from X to Y

in G, which is unblocked by Z. Every node of the path has

either no parents in the path (in which case it is the base of

a fork), one parent in the path (if it is the middle node of a

chain or an end node of the path) or two parents in the path

(if it is a collider). The support is constructed by assigning the

following functional dependencies to the nodes of the path:

(i) A node F ∈ F (“F” for “Fork”) has 0 parents in the

path:

F =

{

0 with probability 1/2

1 with probability 1/2

(ii) A node M ∈ M (“M” for “Mediary”) has 1 parent PM

in the path:

M = PM with unity probability

(iii) Node C ∈ C (“C” for “Collider”) has 2 parents PC,1

and PC,2 in the path:

C =

{

0 if PC,1 	= PC,2

1 if PC,1 = PC,2

Since the path is unblocked C ∈ Z while MF 	∈ Z.

This construction leads to a probability distribution com-

patible with G wherein P(M = F = 0|Z=1) = 1/2 and

P(M = F = 1|Z=1) = 1/2. Since {X,Y } ⊂ MF, we confirm

that the marginal event {X=0, Z = 1} occurs, and such that

the marginal event {Y =2, Z = 1} occurs, yet that the event

{X=0,Y =1, Z = 1} does not occur.

Using Lemma 11, we can now proceed to proof

Theorem 12.

Theorem 12. (Supports subsumes e separation for obser-

vational inequivalence). Let G and H be two DAGs. If their

sets of observed e-separation relations are different, then it

is possible to find a support over binary variables, which is

compatible with one of them but incompatible with the other.

Proof. Suppose that G has an e-separation relation (A ⊥e

B|C)delD
that H does not have, where A, B ∈ V are observed

nodes and C, D ⊆ V are sets of observed nodes.

Proof. By the definition of e separation, we know that

GV\D, the DAG obtained by deleting the nodes D from G,

exhibits the d-separation relation A ⊥d B|C while HV\D does

not. This implies that none of the supports compatible with

GV\D are in conflict with A ⊥⊥CI B|C, while from Lemma 11

we know that there is at least one support over binary vari-

ables, which is compatible with HV\D that is in conflict with

A ⊥⊥CI B|C. This means that it is possible to find a support

SV\D over binary variables, which is compatible with HV\D

but not compatible with GV\D.

Let SV be the support over V , which coincides with SV\D

for the variables in V \ D and where the variables in D are

set to a point value. This support is incompatible with G,

because setting the variables in D to a point value has the same

effect on its children as deleting the respective nodes (and thus

reaching GV\D). Furthermore, SV is compatible with H : since

SV\D is compatible with HV\D, we can obtain SV by functional

models where the children of D in G ignore the parents in D,

as indicated in Lemma 13 of [47].

Therefore, SV is a support over binary variables that is

compatible with H but incompatible with G. �

APPENDIX E: RESULTS FOR MDAGS

OF Five OBSERVED NODES

When trying to certify the NON-ALGEBRAICNESS of

mDAGs with five or more observed nodes, a simple but im-

portant consideration should be taken into account. Namely,

Proposition 7. Consider a DAG G, as well as the subgraph

Gdel S of G, where Gdel S is formed by deleting a strict subset

of G′s observed nodes from G. If Gdel S is NON-ALGEBRAIC,

then G is NON-ALGEBRAIC as well.

Proof. Proposition 7 is an immediate consequence

of Lemma 4 from the main text. That is, Lemma

4 ensure that P(V \ S) 	∈ CGdel S
then P(V ) 	∈ CG where

P(V ) := P(V \ S)δS,0|S| . At the same time, if P(V \ S) ∈
IGdel S

then P(V ) ∈ IG where again P(V ) := P(V \ S)δS,0|S| .

That P(V ) ∈ IG follows from the fact that no new d-

separation relations are induced on V \ S by embedding the

DAG Gdel S as a subgraph of a larger DAG, namely G. �

The reader might ask why we did not employ Proposition

7 in assessing the NON-ALGEBRAICNESS of mDAGs with 4

observed nodes. After all, there are five mDAGs with three

observed nodes. However, any four-observed-nodes mDAGs,

which would be certifiable as NON-ALGEBRAIC via Propo-

sition 7 would already be picked up by Theorem 7, since
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TABLE IV. Results for mDAGs of five observed nodes.

Category mDAGs with five observed nodes

Total Count 1 718 596

remaining # for which the HLP criterion does not apply 1 009 961

remaining # for which our nonmaximality condition does not apply 278 964

remaining # for which our setwise nonmaximality condition does not apply 118 278

remaining # which do not contain an NON-ALGEBRAIC four-observed-nodes subgraph 12 834

remaining # for which our d-separation condition does not apply 12 834

remaining # for which our e-separation condition does not apply 12 834

that theorem detects 100% of the NON-ALGEBRAIC three-

observed-nodes mDAGs by itself.

The application of the conditions for NON-

ALGEBRAICNESS presented here to mDAGs of five observed

nodes gives the results shown in Table IV. Although the

application of Fraser’s algorithm on the remaining 12 834

mDAGs was computationally infeasible, nevertheless, the

application of all the other techniques provides a similar

success percentage as compared to mDAGs of four and

three observed nodes. Precisely, for mDAGs of five observed

nodes all the other techniques (apart from supports) reduce

the number of unresolved mDAGs of five observed nodes

by 99.15%, while this percentage is 99.89% and 97.8% for

mDAGs of four and three observed nodes respectively. This

result is consistent with the HLP conjecture, though whether

or not it can be considered evidence in favor of the conjecture

is debatable.

Unsurprisingly, our d-separation condition as articulated in

Theorem 8 is now effectively redundant to the conjuction of

Proposition 7 and Theorem 6, since a maximal mDAG with

five+ observed nodes will have a set of observed d-separation

relations inequivalent to any latent-free DAG only if the large

mDAG contains one of 18 particular four-observed-nodes

mDAGs, as discussed extensively in Appendix C.

The fact that the Theorem 9 does not resolve any further

mDAGs as NON-ALGEBRAIC is evidence in favor of a conjec-

ture that Theorem 9 is perhaps subsumed by the conjunction

of Theorems 6 and 8.
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