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The determination of a concise model of a linear system when there are fewer samples 𝑚 than 
predictors 𝑛 requires the solution of the equation 𝐴𝑥 = 𝑏, where 𝐴 ∈ℝ

𝑚×𝑛 and rank𝐴 = 𝑚, such 
that the selected solution from the infinite number of solutions is sparse, that is, many of its 
components are zero. This leads to the minimisation with respect to 𝑥 of 𝑓 (𝑥, 𝜆) = ‖𝐴𝑥− 𝑏‖2

2
+

𝜆 ‖𝑥‖1, where 𝜆 is the regularisation parameter. This problem, which is called LASSO regression, 
yields a family of functions 𝑥lasso(𝜆) and it is necessary to determine the optimal value of 𝜆, that 
is, the value of 𝜆 that balances the fidelity of the model, ‖‖𝐴𝑥lasso(𝜆) − 𝑏‖‖ ≈ 0, and the satisfaction 
of the constraint that 𝑥lasso(𝜆) be sparse. The aim of this paper is an investigation of the numerical 
properties of 𝑥lasso(𝜆), and the main conclusion of this investigation is the incompatibility of 
sparsity and stability, that is, a sparse solution 𝑥lasso(𝜆) that preserves the fidelity of the model 
exists if the least squares (LS) solution 𝑥ls = 𝐴†𝑏 is unstable. Two methods, cross validation and 
the L-curve, for the computation of the optimal value of 𝜆 are compared and it is shown that the 
L-curve yields significantly better results. This difference between stable and unstable solutions 
𝑥ls of the LS problem manifests itself in the very different forms of the L-curve for these two 
solutions. The paper includes examples of stable and unstable solutions 𝑥ls that demonstrate the 
theory.

1. Introduction

Many problems yield data in which there are fewer samples 𝑚 than predictors 𝑛, and they require the computation of a solution 
𝑧 of the least squares (LS) problem2

𝑧 = arg min
𝑥∈ℝ𝑛

‖𝐴𝑥− 𝑏‖2
2
, 𝐴 ∈ℝ

𝑚×𝑛, 𝑚 < 𝑛. (1)

This is an underdetermined set of equations, and if rank𝐴 =𝑚, the minimum norm solution is

𝑥ls =𝐴†𝑏 =𝐴𝑇 (𝐴𝐴𝑇 )−1𝑏. (2)
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The general solution of (1) is 𝑧 = 𝑥ls + 𝑣 where 𝑣 is an arbitrary vector that lies in the null space of 𝐴. This problem yields, therefore, 
an infinite number of solutions and it is necessary to select one solution from this infinite number of solutions. This selection is 
made using the criterion of sparsity, that is, the number of non-zero entries in 𝑥ls + 𝑣 is minimised because it is desired to construct 
a simple, concise and computationally efficient model. This criterion is motivated by the many examples, including the analysis of 
microarray data, image processing and face recognition, in which sparsity arises.

A sparse solution of (1) is achieved by constraining ‖𝑥‖1, which leads to LASSO (Least Absolute Shrinkage and Selection Operator) 
regression [1],

𝑥lasso(𝜆) = arg min
𝑥∈ℝ𝑛

𝑓 (𝑥,𝜆) = arg min
𝑥∈ℝ𝑛

{‖𝐴𝑥− 𝑏‖2
2
+ 𝜆‖𝑥‖1

}
, (3)

where 𝜆 ≥ 0 is the regularisation parameter and

‖𝑥‖𝑝 =
(

𝑛∑
𝑖=1

||𝑥𝑖
||𝑝
) 1

𝑝

, 𝑝 = 1,2,∞, 𝑥 =
{
𝑥𝑖

}𝑛

𝑖=1
.

The solution 𝑥lasso(𝜆) is a family of functions parameterised by 𝜆, and two methods, coordinate descent [2,3] and LARS (Least Angle 
Regression) [4], are used to solve (3) for a given value of 𝜆. The methods differ because LARS provides a piecewise linear solution 
of (3) but the solution from coordinate descent is defined on a grid of points.

It is often stated that 𝑥lasso(0) is equal to 𝑥ls for 𝑚 < 𝑛, but this is incorrect because 𝑥lasso(0) is equal to the set  of the infinite 
number of solutions 𝑧 defined in (1), and 𝑥ls is the member of  that has minimum 2-norm [5, p. 16]. Coordinate descent does not 
return 𝑥ls when 𝜆 = 0 because it does not use the minimum norm criterion for the selection of a solution in  .

The aim of this paper is an investigation of the numerical properties of 𝑥lasso(𝜆), and the main result is that a necessary condition 
for the existence of an optimal sparse solution of (3), that is, a sparse solution that preserves the fidelity of the model, is that 𝑥ls be 
unstable, such that a small relative error in 𝑏 yields a much larger relative error in 𝑥ls. Furthermore, an optimal sparse solution does 
not exist if 𝑥ls is stable because there does not exist a value of 𝜆 such that ‖‖𝐴𝑥lasso(𝜆) − 𝑏‖‖2 and ‖‖𝑥lasso(𝜆)‖‖1 assume, approximately, 
their minimum values. This result requires that a refined condition number of the minimum norm solution 𝑥ls be developed, and 
this is addressed in Section 2. This refined condition number shows a difference between stable and unstable LS problems, but the 
condition number 𝜅(𝐴) of 𝐴 does not reveal this difference.

The incompatibility of sparsity and numerical stability has been established in feature selection and fMRI (functional magnetic 
resonance imaging), and its extension to LASSO regression is the main result of the work described in this paper. In particular, Xu et 
al. [6] show that an algorithm that is stable cannot identify redundant features and an algorithm that identifies redundant features is 
not stable. Also, Baldassarre et al. [7] consider fMRI for model selection in brain decoding and they show that sparse models can be 
unstable due to under sampling or slight changes in experimental conditions. The refined condition number developed in Section 2
quantifies the stability of the LS problem and it is required for the determination of the existence, or otherwise, of an optimal sparse 
solution of (3). It is also shown in Section 2 that the association between an unstable LS problem and sparsity can be motivated by 
comparison of the forms of LASSO regression and Tikhonov regularisation (ridge regression).

There does not exist, in general, a closed form expression for 𝑥lasso(𝜆), but some of its properties are considered in Section 3. In 
particular, it is shown that an optimal sparse solution that has many zero entries may not exist. The determination of the optimal 
value 𝜆∗ of 𝜆 is critical because a value that is too small may yield a model that is too complex and can be made simpler by the 
elimination of more predictors, but a value that is too large may lead to a large error because the fidelity of the model is not preserved. 
The method of cross validation (CV) [5, §6.2] is frequently used to compute the value of 𝜆∗ but it requires the determination of a 
shallow minimum of a function, which is difficult. Another method, the L-curve [8, §4.6], is discussed in Section 4 and it is shown 
that the curve has the form of an L if an optimal sparse solution that has few zero entries exists, and the value of 𝜆∗ is the value of 𝜆
in the corner of the L. Section 5 contains examples of stable and unstable LS problems that demonstrate the theoretical analysis, and 
they show that the L-curve yields better results than CV. The paper is summarised in Section 6.

2. Condition estimation

The condition number 𝜅(𝐴) = ‖𝐴‖‖‖‖𝐴†‖‖‖ of a rectangular matrix 𝐴, where 𝐴† is the pseudo-inverse of 𝐴, is a measure of the 

stability of 𝑥ls =𝐴†𝑏, but it is shown in this section that 𝜅(𝐴) may lead to an incorrect conclusion about the stability of 𝑥ls. A refined 
condition number that is a function of 𝐴 and 𝑏 is introduced and it is shown that, unlike 𝜅(𝐴), it allows discrimination between 
stable and unstable solutions 𝑥ls.

The simplest situation occurs when 𝑚 = 𝑛, in which case 𝑥 =𝐴−1𝑏 and

max
𝛿𝑏,𝑏∈ℝ𝑚

Δ𝑥

Δ𝑏
= ‖𝐴‖‖‖‖𝐴

−1‖‖‖ = 𝜅(𝐴), Δ𝑥 =
‖𝛿𝑥‖
‖𝑥‖ , Δ𝑏 =

‖𝛿𝑏‖
‖𝑏‖ . (4)

There are three points to note about 𝜅(𝐴). It is assumed that 𝐴 has full rank.

1. The expression (4) for 𝜅(𝐴) assumes 𝐴 is square and thus 𝑏 lies in the column space (𝐴) of 𝐴, and 𝜅(𝐴) and Δ𝑥∕Δ𝑏 are finite. If, 
however, 𝑏 ∉ (𝐴), then 𝜅(𝐴) = ‖𝐴‖‖‖‖𝐴†‖‖‖ is finite but Δ𝑥∕Δ𝑏 may be infinite.
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2. It is assumed in the expression (4) for 𝜅(𝐴) that there are errors in 𝑏 only and that 𝐴 is exact. A more realistic scenario requires 
that errors in 𝐴 and 𝑏 be considered, but the restriction of errors to 𝑏 allows linear perturbation analysis to be used.

3. The maximum in (4) is taken with respect to all vectors 𝛿𝑏, 𝑏 ∈ℝ
𝑚, but 𝑏 is specified in a given problem. It is therefore necessary 

to consider the maximum value of the ratio Δ𝑥ls∕Δ𝑏, where Δ𝑥ls =
‖‖𝛿𝑥ls‖‖∕‖‖𝑥ls‖‖, with respect to all perturbations 𝛿𝑏 for the given 

vector 𝑏. This leads to the effective condition number of 𝑥ls, and it is considered in Section 2.1.

2.1. The effective condition number

The condition number 𝜅(𝐴) is a function of 𝐴 only, but 𝑥ls =𝐴†𝑏 is a function of 𝐴 and 𝑏, and it is therefore necessary to develop 
a more general expression for the stability of 𝑥ls. This revised measure, which is called the effective condition number 𝜂(𝐴, 𝑏), is defined 
in Definition 2.1, and an expression for it is derived in Theorem 2.1.

Definition 2.1 (Effective condition number). The effective condition number 𝜂(𝐴, 𝑏) of 𝑥ls is

𝜂(𝐴,𝑏) = max
𝛿𝑏∈ℝ𝑚

Δ𝑥ls

Δ𝑏
, Δ𝑥ls =

‖‖𝛿𝑥ls‖‖
‖‖𝑥ls‖‖

,

where Δ𝑏 is defined in (4).

Theorem 2.1. The effective condition number 𝜂(𝐴, 𝑏) of 𝑥ls is

𝜂(𝐴,𝑏) =

‖‖‖𝐴†‖‖‖‖𝑏‖
‖‖𝑥ls‖‖

=

‖‖‖𝐴†‖‖‖‖𝑏‖
‖‖𝐴†𝑏‖‖

, (5)

where 𝐴 ∈ℝ
𝑚×𝑛.

Proof. It follows from (2) that

‖‖𝛿𝑥ls‖‖ = ‖‖‖𝐴
†𝛿𝑏

‖‖‖ ≤
‖‖‖𝐴

†‖‖‖‖𝛿𝑏‖ =
‖‖‖𝐴

†‖‖‖‖𝑏‖Δ𝑏, (6)

and division by ‖‖𝑥ls‖‖ = ‖‖‖𝐴†𝑏
‖‖‖ yields the expressions (5). Equality in (6) in the 2-norm holds when

‖‖‖𝐴
†𝛿𝑏

‖‖‖2 =
‖‖‖𝐴

†‖‖‖2 ‖𝛿𝑏‖2 =
‖‖‖Σ

†‖‖‖2 ‖𝛿𝑐‖2 , 𝛿𝑐 =𝑈𝑇 𝛿𝑏,

where the singular value decomposition (SVD) of 𝐴 is 𝑈Σ𝑉 𝑇 and the singular values 𝜎𝑖, 𝑖 = 1, … , 𝑝, 𝑝 = min(𝑚, 𝑛), are arranged in 
non-increasing order, 𝜎𝑖 ≥ 𝜎𝑖+1, 𝑖 = 1, … , 𝑝 − 1, [9, §2.4]. It follows that ‖‖‖Σ†‖‖‖2 = 1∕𝜎𝑝, and if

𝛿𝑐 =
[
0 ⋯ 0 𝛿𝑐𝑝 0 ⋯ 0

]𝑇
= 𝛿𝑐𝑝𝑒𝑝, 𝛿𝑐 ∈ℝ

𝑚,

where 𝑒𝑝 ∈ℝ
𝑚 is the 𝑝th unit basis vector, then 𝛿𝑏 =𝑈𝛿𝑐 = 𝛿𝑐𝑝

(
𝑈𝑒𝑝

)
. Thus,

‖𝛿𝑏‖2 = |||𝛿𝑐𝑝
||| and

‖‖‖𝐴
†𝛿𝑏

‖‖‖2 =
‖‖‖Σ

†𝛿𝑐
‖‖‖2 =

|||𝛿𝑐𝑝
|||

𝜎𝑝
=
‖‖‖𝐴

†‖‖‖2 ‖𝛿𝑏‖2 ,

and hence equality in (6) in the 2-norm is achieved when 𝛿𝑏 is aligned along the 𝑝th column of 𝑈 .
Equality in (6) in the 1-norm is attained when 𝛿𝑏 is aligned along the column of 𝐴† whose 1-norm is a maximum. In particular, 

if 𝐴†
𝑖
is the 𝑖th column of 𝐴†, the index 𝑡 is defined as

𝑡 = arg max
𝑖=1,…,𝑚

‖‖‖𝐴
†
𝑖

‖‖‖1 ,
‖‖‖𝐴

†‖‖‖1 =
‖‖‖𝐴

†
𝑡

‖‖‖1 ,
and 𝛿𝑏 = 𝛿𝑏𝑡𝑒𝑡, where 𝛿𝑏𝑡 ∈ℝ and 𝑒𝑡 ∈ℝ

𝑚, then

‖‖‖𝐴
†𝛿𝑏

‖‖‖1 = ||𝛿𝑏𝑡|| ‖‖‖𝐴
†𝑒𝑡

‖‖‖1 = ||𝛿𝑏𝑡|| ‖‖‖𝐴
†
𝑡

‖‖‖1 =
‖‖‖𝐴

†‖‖‖1 ‖𝛿𝑏‖1 . □

The superiority of 𝜂(𝐴, 𝑏) with respect to 𝜅(𝐴) follows because it is a function of 𝐴 and 𝑏, and thus the conditions satisfied by 𝐴
and 𝑏 such that 𝑥ls is stable, and 𝑥ls is unstable, can be deduced. The stability and instability of 𝑥ls are defined in Definitions 2.2 and 
2.3, respectively.

Definition 2.2 (Stability). The vector 𝑥ls is stable if a relative error Δ𝑏 in 𝑏 of order of magnitude 𝜖 causes a relative error Δ𝑥ls in 𝑥ls
of the same order of magnitude,

Δ𝑏 =(𝜖) and Δ𝑥ls =(𝜖).
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Definition 2.3 (Instability). The vector 𝑥ls is unstable if a relative error Δ𝑏 in 𝑏 of order of magnitude 𝜖 causes a relative error Δ𝑥ls
in 𝑥ls of much greater magnitude,

Δ𝑏 =(𝜖) and Δ𝑥ls ≫(𝜖).

It is noted that 𝑥ls may be stable for a perturbation 𝛿𝑏1 in 𝑏 = 𝑏1, and unstable for a perturbation 𝛿𝑏2 in 𝑏 = 𝑏2.
This information on the stability or instability of 𝑥ls cannot be obtained from 𝜅(𝐴), which is an advantage of 𝜂(𝐴, 𝑏), but it 

follows from (5) that 𝜂(𝐴, 𝑏) is stable (unstable) if 𝑥ls is stable (unstable) [10, §4]. In particular, it is shown in [11, §3] that a 
condition number of 𝜂(𝐴, 𝑏) in the 2-norm with respect to a perturbation in 𝑏 is

Δ𝜂2(𝐴,𝑏)

Δ𝑏
≤ 1 + 𝜂2(𝐴,𝑏), (7)

to first order in 𝛿𝑏, where, following the notation in (4) and (5),

𝜂2(𝐴,𝑏) =

‖‖‖𝐴†‖‖‖2 ‖𝑏‖2
‖‖𝐴†𝑏‖‖2

, Δ𝜂2(𝐴,𝑏) =
||𝛿𝜂2(𝐴,𝑏)||
𝜂2(𝐴,𝑏)

, Δ𝑏 =
‖𝛿𝑏‖2
‖𝑏‖2 ,

and 𝛿𝜂2(𝐴, 𝑏) is the perturbation in 𝜂2(𝐴, 𝑏).
The condition numbers 𝜅(𝐴) and 𝜂(𝐴, 𝑏) differ because 𝜅(𝐴) is finite if 𝐴 has full rank, but 𝜂(𝐴, 𝑏) is infinite if 𝑥ls does not have 

a component that lies in the column space of 𝐴, even if 𝐴 has full rank, as shown in Example 2.1.

Example 2.1. Consider the matrix 𝐴 and vector 𝑏,

𝐴 =

⎡⎢⎢⎣

2 −1

2 0

1 −1

⎤⎥⎥⎦
and 𝑏 =

⎡⎢⎢⎣

−2

1

2

⎤⎥⎥⎦
.

The condition number of 𝐴 is 𝜅2(𝐴) = 3.37 but it follows from (5) that 𝜂(𝐴, 𝑏) is infinite because 𝑥ls = 0 since 𝑏 lies in the space that 
is orthogonal to the column space of 𝐴,3

𝑏𝑇𝐴 =
[
0 0

]
, 𝑥ls =

(
𝐴𝑇𝐴

)−1
𝐴𝑇 𝑏 =

[
0

0

]
,

and thus 𝜅(𝐴) is an incorrect measure of the stability of 𝑥ls. □

Example 2.2 considers the variation of 𝜂2(𝐻, 𝑏), where 𝐻 is the Hilbert matrix of order 11, as the components of 𝑏 along the 
columns of 𝑈 , where 𝑈Σ𝑉 𝑇 is the SVD of 𝐻 , change.

Example 2.2. Consider the Hilbert matrix 𝐻 of order 11. The vectors 𝑏𝑖,

𝑏𝑖 =𝑈 (∶, 𝑖− 1) +𝑈 (∶, 𝑖) +𝑈 (∶, 𝑖+ 1), 𝑖 = 2,… ,10,

were formed and the values of 𝜂2(𝐻, 𝑏𝑖) of the solutions 𝑥𝑖 =𝐻−1𝑏𝑖 of 𝐻𝑥𝑖 = 𝑏𝑖 were computed. It follows that 𝑏𝑘 is equal to the 
sum of the (𝑘 − 1)th, 𝑘th and (𝑘 + 1)th columns of 𝑈 , or equivalently,

𝑐𝑖 = 𝑒𝑖−1 + 𝑒𝑖 + 𝑒𝑖+1, 𝑖 = 2,… ,10, 𝑐 =𝑈𝑇 𝑏.

Fig. 1 shows that 𝜂2(𝐻, 𝑏𝑖) decreases monotonically as 𝑖 increases, that is, as the space spanned by 𝑏 changes from the columns of 𝑈
associated with the large singular values of 𝐻 to the space spanned by the columns of 𝑈 associated with the small singular values of 
𝐻 . The maximum value of 𝜂2(𝐻, 𝑏𝑖) occurs when 𝑏 is a linear combination of the 1st, 2nd and 3rd columns of 𝑈 , and the minimum 
value occurs when 𝑏 is a linear combination of the 9th, 10th and 11th columns of 𝑈 . The condition number 𝜅2(𝐻) is independent of 
𝑖 and the error between it and 𝜂2(𝐻, 𝑏𝑖) increases as 𝑖 increases. □

Example 2.2 shows that if 𝑚 = 𝑛, then 𝜂2(𝐴, 𝑏) ≈ 𝜅2(𝐴) if the dominant components of 𝑏 = 𝑈𝑐 are aligned along the first few 
columns of 𝑈 , that is,

||𝑐1|| , ||𝑐2|| ,… , ||𝑐𝑟||≫ ||𝑐𝑟+1|| , ||𝑐𝑟+2|| ,… , ||𝑐𝑚|| , 𝑟 ≪ 𝑚.

Also, 𝜂2(𝐴, 𝑏) ≈ 1 if the dominant components of 𝑏 are aligned along the last few columns of 𝑈 , that is,

||𝑐1|| , ||𝑐2|| ,… , ||𝑐𝑠||≪ ||𝑐𝑠+1|| , ||𝑐𝑠+2|| ,… , ||𝑐𝑚|| , 𝑠 ≫ 1.

These results follow from (5) and the SVD 𝑈Σ𝑉 𝑇 of 𝐴 because, if 𝑚 = 𝑛,

3 A subscript to denote the norm is not assigned to 𝜂(𝐴, 𝑏) because it follows from (5) that 𝜂(𝐴, 𝑏) →∞ in the 1, 2 and ∞-norms.
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Fig. 1. The condition number log10 𝜅2(𝐻) and effective condition number log10 𝜂2(𝐻,𝑏𝑖) against 𝑖, for Example 2.2.

𝜂2(𝐴,𝑏) =

‖‖‖𝐴†‖‖‖2 ‖𝑏‖2
‖‖𝐴†𝑏‖‖2

=

(
1

𝜎𝑚

) ‖𝑐‖2
(∑𝑚

𝑖=1

(
𝑐𝑖

𝜎𝑖

)2
) 1

2

, 𝑐 =
{
𝑐𝑖
}𝑚

𝑖=1
=𝑈𝑇 𝑏.

It follows that the limiting values of 𝜂2(𝐴, 𝑏) are

𝜂2(𝐴,𝑏) ≈ 1 if ||𝑐𝑖||→∞ as 𝑖→𝑚,

𝜂2(𝐴,𝑏) ≈ 𝜅2(𝐴) if
||𝑐𝑖||
𝜎𝑖

→ 0 as 𝑖→𝑚,

where the condition ||𝑐𝑖|| → ∞ as 𝑖 → 𝑚 implies that the dominant components of 𝑐 occur for large values of 𝑖, and the condition 
||𝑐𝑖||∕𝜎𝑖 → 0 as 𝑖 →𝑚 implies that the constants ||𝑐𝑖|| decay to zero faster than the singular values decay to zero. This condition is called 
the discrete Picard condition [12].

Equation (7) has implications for LASSO regression (3) and Tikhonov regularisation,

𝑥Tikh(𝜇) = arg min
𝑥∈ℝ𝑛

{‖𝐴𝑥− 𝑏‖2
2
+ 𝜇 ‖𝑥‖2

2

}
, 𝜇 ≥ 0, (8)

because it is shown in [11,13] that an optimal value 𝜇∗ of 𝜇 exists only if the discrete Picard condition is satisfied, that is, 𝑥ls is 
unstable. It follows, however, from (7) that 𝜂(𝐴, 𝑏) cannot be determined accurately if 𝑥ls is unstable, and this problem is addressed 
by the inclusion of prior information. This is demonstrated by the application of Tikhonov regularisation (8) to image deblurring 
because exact images satisfy the discrete Picard condition, which is the prior information. Similarly, it must be known a priori that 
the LS problem (1) admits a sparse solution, in which case 𝑥ls and 𝜂(𝐴, 𝑏) are unstable.

The association between stability and sparsity in LASSO regression can be motivated by comparison of (3) with Tikhonov reg-
ularisation (8) because, as noted above, a necessary condition for a regularised solution 𝑥Tikh(𝜇

∗) to exist is that 𝑥ls is unstable. 
Furthermore, the application of Tikhonov regularisation to a stable LS problem yields a solution 𝑥Tikh(𝜇) whose error is large for all 
𝜇 > 0. Lasso regression and Tikhonov regularisation differ in the form of the constraint but similarities between them are, nonetheless, 
expected.

3. Properties of the solution of LASSO regression

A closed form expression for 𝑥lasso(𝜆) does not exist, unless the columns of 𝐴 are orthonormal, and it is therefore difficult to 
obtain theoretical results for LASSO regression. Some properties of the solution of LASSO regression can, however, be derived and 
they are considered in this section. The SVD of 𝐴 ∈ℝ

𝑚×𝑛 is

𝑈
[
Σ 0𝑚,𝑛−𝑚

]
𝑉 𝑇 =𝑈

[
Σ 0𝑚,𝑛−𝑚

] [ 𝑉 𝑇
1

𝑉 𝑇
2

]
, (9)

where Σ ∈ℝ
𝑚×𝑚 is the diagonal matrix of the singular values 𝜎𝑖, 𝑖 = 1, … , 𝑚, of 𝐴, the columns of 𝑉1 ∈ℝ

𝑛×𝑚 form an orthonormal 
basis for the row space of 𝐴 and the columns of 𝑉2 ∈ ℝ

𝑛×(𝑛−𝑚) form an orthonormal basis for the null space of 𝐴. It follows from 
𝑥ls =𝐴†𝑏 = 𝑉1Σ

−1𝑈𝑇 𝑏 that the general solution of (1) is 𝑧,

𝑧 = 𝑥ls + 𝑉2𝑑1, 𝐴𝑧 =𝐴
(
𝑥ls + 𝑉2𝑑1

)
=𝐴𝑥ls = 𝑏, (10)

where 𝑑1 ∈ℝ
𝑛−𝑚 is arbitrary. If the solution of (3) is 𝑥lasso(𝜆) and its residual is ‖𝑟(𝜆)‖2 where 𝑟(𝜆) = 𝐴𝑥lasso(𝜆) − 𝑏, then it follows 

from (10) that

𝐴
(
𝑥lasso(𝜆) − 𝑉1Σ

−1𝑈𝑇 𝑏− 𝑉2𝑑1
)
= 𝑟(𝜆),

and thus
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𝑥lasso(𝜆) − 𝑉1Σ
−1𝑈𝑇 𝑏− 𝑉2𝑑1 =𝐴†𝑟(𝜆) + 𝑉2𝑑2, 𝐴† = 𝑉1Σ

−1𝑈𝑇 ,

where 𝑑2 ∈ℝ
𝑛 is arbitrary. It follows that

𝑥lasso(𝜆) = 𝑉1Σ
−1𝑈𝑇 (𝑏+ 𝑟(𝜆)) + 𝑉2𝑑, 𝑑 = 𝑑1 + 𝑑2,

=
[
𝑉1 𝑉2

] [ Σ−1𝑈𝑇 (𝑏+ 𝑟(𝜆))

𝑑

]

= 𝑉 𝑡(𝐴,𝑏, 𝜆), (11)

where

𝑡(𝐴,𝑏, 𝜆) =

[
Σ−1𝑈𝑇 (𝑏+ 𝑟(𝜆))

𝑑

]
,

and the premultiplication of both sides of (11) by 𝑉 𝑇 yields

𝑉 𝑇
1
𝑥lasso(𝜆) = Σ−1𝑈𝑇 (𝑏+ 𝑟(𝜆)) and 𝑉 𝑇

2
𝑥lasso(𝜆) = 𝑑.

Example 3.1 shows that if a sparse solution 𝑥lasso(𝜆) that has 𝑡 zero components is desired, then the optimal value(s) of 𝜆 > 0 must 
satisfy 𝑡 homogeneous equations and thus the number of equations that must be satisfied by 𝜆 increases as 𝑡 increases. Also, if 
these 𝑡 equations do not possess a common solution, then a sparse solution, 𝑡 of whose components are zero, does not exist. Since 
𝑥lasso(𝜆) ∈ℝ

𝑛, the maximum number of forms of 𝑥lasso(𝜆) that have 𝑡 zero components is 
(𝑛
𝑡

)
, and furthermore, each of these forms 

is, in general, defined by a different value of 𝜆.

Example 3.1. Consider (11) as the number of zero entries  (𝜆) in 𝑥lasso(𝜆) increases. Let 𝑣
𝑇
𝑖
∈ℝ

𝑛, 𝑖 = 1, … , 𝑛, be the 𝑖th row of 𝑉 . 
The values  (𝜆) = 1, 2, 𝑘, 𝑛, are considered in order to show the trend in the results as  (𝜆) increases.

•  (𝜆) = 1: It follows from (11) that if the solutions of 𝑞 of the 𝑛 equations

𝑣𝑇
𝑖
𝑡(𝐴,𝑏, 𝜆) = 0, 𝑖 = 1,… , 𝑛,

are 𝜆1, 𝜆2, … , 𝜆𝑞 , assuming the solution of each of these 𝑞 equations is unique, then each solution 𝑥lasso(𝜆𝑖), 𝑖 = 1, … , 𝑞, of (3)
has only one zero entry.

•  (𝜆) = 2: The values of 𝜆 that satisfy the equations

[
𝑣𝑇
𝑖

𝑣𝑇
𝑗

]
𝑡(𝐴,𝑏, 𝜆) =

[
0

0

]
, 1 ≤ 𝑖 < 𝑗 ≤ 𝑛, (12)

for specified values of 𝑖 and 𝑗 return a solution 𝑥lasso(𝜆) that has two zero entries. There are 
(𝑛
2

)
pairs of equations (12) and the 

solutions 𝑥lasso(𝜆) of different pairs of equations, that is, different values of 𝑖 and 𝑗, differ in the predictors whose values are set 
to zero.

•  (𝜆) = 𝑘: The values of 𝜆 that satisfy the 𝑘 equations

⎡⎢⎢⎢⎢⎣

𝑣𝑇
𝑝1

𝑣𝑇
𝑝2

⋮

𝑣𝑇
𝑝𝑘

⎤⎥⎥⎥⎥⎦
𝑡(𝐴,𝑏, 𝜆) =

⎡⎢⎢⎢⎣

0

0

⋮

0

⎤⎥⎥⎥⎦
, 1 ≤ 𝑝1 < 𝑝2 <⋯ < 𝑝𝑘 ≤ 𝑛, (13)

for specified values of 𝑝1, 𝑝2, … , 𝑝𝑘, return a solution 𝑥lasso(𝜆) such that  (𝜆) = 𝑘. There are 
(𝑛
𝑘

)
sets of 𝑘 equations (13) and 

different sets of 𝑘 rows of 𝑉 yield different values of 𝜆. There may not, however, be a value of 𝜆 that satisfies any of these sets 
of equations, in which case there does not exist a solution 𝑥lasso(𝜆) that has 𝑘 zero entries.

•  (𝜆) = 𝑛: This condition implies 𝑥lasso(𝜆) = 0 and thus the only solution of (11) is the trivial solution 𝑡(𝐴, 𝑏, 𝜆) = 0. It follows 
from (3) that the condition  (𝜆) = 𝑛 is obtained when 𝜆 →∞, and thus from (11),

lim
𝜆→∞

𝑟(𝜆) = −𝑏 and lim
𝜆→∞

𝑑 = 0.

The examples in Section 5 show that the solution 𝑥lasso(𝜆) = 0 is also obtained for finite values of 𝜆. □

Example 3.1 shows that the probability that  (𝜆) homogeneous equations from the 𝑛 components of 𝑥lasso(𝜆) in (11) have an 
exact solution 𝜆 = 𝜆0 decreases as  (𝜆0) increases, and thus the probability of a non-zero residual ‖‖𝑟(𝜆0)‖‖2 increases as  (𝜆0)

increases. This confirms that an optimal sparse solution has few zero entries ( (𝜆0) is small) and it suggests that ‖‖𝑟(𝜆0)‖‖2 increases 
as 𝜆0 increases. The examples in Section 5 demonstrate these conclusions.
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Fig. 2. The L-curve for Tikhonov regularisation.

4. The L-curve and the regularisation parameter

Example 3.1 shows that the value(s) of 𝜆 that yield sparse solutions satisfy a set of homogeneous equations (13). These solutions 
do not, however, necessarily guarantee the fidelity of the model and thus an efficient method for the computation of the optimal 
value of 𝜆 that yields a sparse solution that guarantees the fidelity of the model must be developed. This section considers two 
methods, cross validation (CV) [5, §2.3] and the L-curve [8, §4.6], for the computation of the optimal value 𝜆∗ of 𝜆 that yields a 
solution 𝑥lasso(𝜆

∗) that satisfies these two criteria.
Cross validation requires that the data be divided at random into a training set and a test set, and the results from the training 

set are assessed by computing the response of the test set for a range of values of 𝜆. This process of random division of the data into 
a training set and a test set, and assessing the results of the training set, is repeated, typically ten times, which yields ten estimates 
of the prediction error. The average error, for each value of 𝜆, is calculated and it leads to 10-fold CV. The optimal value 𝜆∗ of 𝜆 is 
the value of 𝜆 for which the mean squared error (MSE), as a function of 𝜆, assumes its minimum value [5, §2.3]. The examples in 
Section 5 show that this minimum may be shallow, which makes the computation of 𝜆∗ difficult.

The L-curve is used for the computation of the optimal value of 𝜇 in Tikhonov regularisation (8) and it can be extended to LASSO 
regression for the computation of the optimal value of 𝜆. Consider initially the L-curve in Tikhonov regularisation, which is a plot of 
log10

‖‖𝑥Tikh(𝜇)‖‖2 against log10 ‖‖𝐴𝑥Tikh(𝜇) − 𝑏‖‖2 as a function of 𝜇. If the discrete Picard condition [12],
||𝑐𝑖||
𝜎𝑖

→ 0 as 𝑖→𝑚, 𝑐 =
{
𝑐𝑖
}𝑚

𝑖=1
=𝑈𝑇 𝑏, (14)

where 𝑈 is defined in (9), is satisfied and the noise is white, the curve assumes the form of an L, as shown in Fig. 2.4 As 𝜇 increases 
from zero, ‖‖𝑥Tikh(𝜇)‖‖2 decreases and ‖‖𝐴𝑥Tikh(𝜇) − 𝑏‖‖2 is approximately constant, until 𝜇 = 𝜇∗, which is the value of 𝜇 in the corner 
of the L. As 𝜇 increases from 𝜇∗, ‖‖𝑥Tikh(𝜇)‖‖2 is approximately constant and ‖‖𝐴𝑥Tikh(𝜇) − 𝑏‖‖2 increases. The value 𝜇∗ is the optimal 
value of 𝜇 because ‖‖𝐴𝑥Tikh(𝜇) − 𝑏‖‖2 and ‖‖𝑥Tikh(𝜇)‖‖2 attain, approximately, their minimum values for 𝜇 = 𝜇∗, and thus this value of 
𝜇 balances the fidelity of the model and the constraint on ‖𝑥‖2.

The discrete Picard condition (14) implies that the constants ||𝑐𝑖|| decay to zero faster than the singular values 𝜎𝑖 decay to zero, 
in which case the effective condition number 𝜂2(𝐴, 𝑏) of 𝑥ls = 𝐴†𝑏 is approximately equal to its maximum value, 𝜅2(𝐴), if 𝑏 lies in 
the column space of 𝐴 and the decay (14) is sufficiently rapid [10, §4]. Equation (14) must be satisfied in order that a parametric 
plot of log10 ‖‖𝑥Tikh(𝜇)‖‖2 against log10 ‖‖𝐴𝑥Tikh(𝜇) − 𝑏‖‖2 assume the form of an L [8, §4.6]. If, however, (14) is not satisfied, the curve 
assumes a different form.

The extension of the L-curve from Tikhonov regularisation to LASSO regression yields a plot of log10 ‖‖𝑥lasso(𝜆)‖‖1 against 
2 log10 ‖‖𝐴𝑥lasso(𝜆) − 𝑏‖‖2 as a function of 𝜆. The curve assumes the form of an L if 𝑥ls is unstable and 𝑥lasso(𝜆

∗) has few zero en-
tries, in which case the optimal value 𝜆∗ of 𝜆 is the value of 𝜆 in the corner of the L. The minimum norm solution 𝑥ls is used 
in Tikhonov regularisation but as stated in Section 1, coordinate descent does not select this solution from the infinite number of 
solutions 𝑧 in (1). Also, the solutions 𝑥ls and 𝑥Tikh(𝜇) are orthogonal to the null space of 𝐴, but this orthogonality property does 
not extend to 𝑥lasso(𝜆) because the solution from coordinate descent includes a component that lies in the null space of 𝐴. This 
difference between the solutions of LASSO regression and Tikhonov regularisation may account for differences in the L-curve for 
these problems.

5. Examples

This section contains three examples that demonstrate the theory in the preceding sections. All computations were performed 
using MATLAB R2022a, which uses coordinate descent to compute 𝑥lasso(𝜆) for given values of 𝜆. The default values for the number 
of iterations and threshold for convergence of the algorithm, 105 and 10−4 respectively, in the function lasso were used.

4 White noise is a stationary time series whose autocorrelation is zero. Thus the correlation coefficient of all pairs of values of white noise taken at different times 
is zero.
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Fig. 3. The components log10 ||𝑥ls,𝑖|| of 𝑥ls =𝐴†𝑏, with and without noise, for Example 5.1.

Fig. 4. The components log10 ||𝑥lasso,𝑖(𝜆∗)|| of 𝑥lasso(𝜆∗), where 𝜆∗ is the optimal value of 𝜆 computed by 10-fold CV, with and without noise, for Example 5.1.

Example 5.1. Consider a random matrix 𝐴 ∈ ℝ
50×90 and a vector 𝑏 ∈ ℝ

50 to which noise 𝛿𝑏 is added such that the signal-to-noise 
ratio (SNR) is ‖𝑏‖2∕‖𝛿𝑏‖2 = 30. The condition number and effective condition number are 𝜅2(𝐴) = 6.87 × 107 and 𝜂2(𝐴, 𝑏) = 7.81 × 106

respectively.
Fig. 3 shows, on a semi-logarithmic plot, the LS solution 𝑥ls =𝐴†𝑏, with and without noise, and the large difference between the 

two solutions follows from the large value of 𝜂2(𝐴, 𝑏). The matrix 𝐴 and vector 𝑏 were chosen such that 40 components of 𝑥ls are 
about 10, 000 times larger than its other 50 components and thus the constraint on ‖𝑥‖1 is expected to have the greatest effect on 
these large components, such that 𝑥lasso(𝜆

∗) has 40 zero components.
The solution of (3) using 10-fold CV, with and without noise, is shown in Fig. 4. The solution in the absence of noise has 25 zero 

components, and the effect of the noise 𝛿𝑏 is significant because there is a large difference between the solutions with and without 
noise. It follows that the results using 10-fold CV are computationally unreliable.

Fig. 5 shows the variation of the MSE with respect to 𝜆, with and without noise. The minimum of each curve is very shallow and 
thus the optimal values of 𝜆 are badly defined. Fig. 6 shows the L-curves, with and without noise, and the optimal values of 𝜆 are 
their values in the corners of the curves, which are well defined. The optimal value of 𝜆 in the presence of noise is its value in the 
corner, on the line segment of maximum gradient on the curve, as shown in the graph. The normalised residuals at 𝜆 = 𝜆∗ are

No noise: 𝜆∗ = 8.68 × 10−8,
‖‖𝐴𝑥lasso(𝜆

∗)−𝑏‖‖2
‖𝑏‖2 = 10−3,

With noise: 𝜆∗ = 6.05 × 10−7,
‖‖𝐴𝑥lasso(𝜆

∗)−𝑏‖‖2
‖𝑏‖2 = 1.79 × 10−2.

Fig. 7 shows the variation of the number of zero entries  (𝜆) in 𝑥lasso(𝜆) with 𝜆, with and without noise, and the optimal values 
𝜆∗ of 𝜆 computed by the L-curve and 10-fold CV are marked on the graphs. The value of 𝜆∗ computed by the L-curve is numerically 
stable because  (𝜆∗) = 40, which is the number of components of 𝑥ls that are significantly larger than its other 50 components, 
with and without noise. The values of  (𝜆∗) computed by 10-fold CV are  (𝜆∗) = 25 in the absence of noise and  (𝜆∗) = 85 in the 
presence of noise, which shows that the method is numerically unstable, and it explains the large difference in the graphs in Fig. 4. 
Fig. 8 shows the solution 𝑥lasso(𝜆

∗), where 𝜆∗ is the optimal value of 𝜆 calculated by the L-curve (Fig. 6). The noise does not change 
the zero or non-zero property of the components of 𝑥lasso(𝜆

∗), but it does change the values of its non-zero components. □

Example 5.2. Let 𝐴 ∈ℝ
50×90 be a random matrix and let noise 𝛿𝑏 be added to 𝑏 ∈ℝ

50 such that SNR = 30. Sixty components of 𝑥ls
are 10,000 times larger than its other 30 components and thus the constraint on ‖𝑥‖1 is expected to have the greatest effect on these 
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Fig. 5. The variation of the MSE with 𝜆 using 10-fold CV (a) without noise, and (b) with noise, for Example 5.1. The figures include error bars for each value of 𝜆 and 
the largest value of 𝜆 that is within one standard error of the minimum MSE.

Fig. 6. The L-curves, with and without noise, for Example 5.1.

large components, such that 𝑥lasso(𝜆
∗) has 60 zero components. The condition number and effective condition number are 𝜅2(𝐴) = 83

and 𝜂2(𝐴, 𝑏) = 24.3 respectively, and thus 𝑥ls is stable.
Fig. 9 shows the L-curves, with and without noise, and it is seen that ‖‖𝑥lasso(𝜆)‖‖1 is approximately constant and ‖‖𝐴𝑥lasso(𝜆) − 𝑏‖‖2

increases as 𝜆 increases from 𝜆 = 0 to 𝜆 ≈ 10−12. As 𝜆 increases further, ‖‖𝑥lasso(𝜆)‖‖1 decreases, and ‖‖𝐴𝑥lasso(𝜆) − 𝑏‖‖2 increases and it 
is then approximately constant at 10−4. The figure shows there does not exist a value of 𝜆 such that ‖‖𝑥lasso(𝜆)‖‖1 and ‖‖𝐴𝑥lasso(𝜆) − 𝑏‖‖2
attain, approximately, their minimum values, and Fig. 10 shows the variation of the number of zero entries  (𝜆) in 𝑥lasso(𝜆) as a 
function of 𝜆. It is seen that a sparse solution exists for many values of 𝜆, but the figure does not reveal information on the fidelity 
of the model for each value of 𝜆. This information is readily obtained from Fig. 9, which shows that a sparse solution with a small 
residual exists for many values of 𝜆. Figs. 9 and 10 show, however, that an optimal value of 𝜆 and an optimal sparse solution do not 
exist. □
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Fig. 7. The number of zero entries  (𝜆) in 𝑥lasso(𝜆) as a function of 𝜆 (a) without noise, and (b) with noise, for Example 5.1.

Fig. 8. The components log10 ||𝑥lasso,𝑖(𝜆∗)|| of 𝑥lasso(𝜆∗), where 𝜆∗ is the optimal value of 𝜆 computed by the L-curve, with and without noise, for Example 5.1.

Example 5.3. Let 𝐴 ∈ ℝ
50×90 be a random matrix and let noise 𝛿𝑏 be added to 𝑏 ∈ ℝ

50 such that SNR = 30. The condition number 
and effective condition number are 𝜅2(𝐴) = 7.50 × 107 and 𝜂2(𝐴, 𝑏) = 4.33 respectively, and thus 𝑥ls is stable. Although 𝜅2(𝐴) is 
very large in Example 5.1 and this example, the values of 𝜂2(𝐴, 𝑏) show that Example 5.1 and this example define, respectively, an 
unstable LS problem and a stable LS problem.

Fig. 11 shows the components of 𝑥ls, with and without noise, and they are similar because 𝜂2(𝐴, 𝑏) = 4.33. Fig. 12 shows the 
variation of the MSE with 𝜆, with and without noise, and it is seen that neither graph possesses a unique minimum because the MSE
is constant for 𝜆 ≥ 100 in both graphs and thus the optimal values of 𝜆 satisfy 𝜆∗ ≥ 100. It follows from Fig. 14, which shows the 
variation of the number of zero entries  (𝜆) in 𝑥lasso(𝜆) with 𝜆, that 𝑥lasso(𝜆

∗) = 0, with and without noise.
Fig. 13 shows the L-curves, with and without noise, and it is seen that the curves are similar, that they are significantly different 

from the L-curves in Fig. 6, and that they are similar to the L-curves in Fig. 9. It is noted that the L-curves in Fig. 6 are for an unstable 
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Fig. 9. The L-curves, with and without noise, for Example 5.2.

Fig. 10. The number of zero entries  (𝜆) in 𝑥lasso(𝜆) as a function of 𝜆, for Example 5.2.

Fig. 11. The components log10
|||𝑥ls,i

||| of 𝑥ls =𝐴†𝑏, with and without noise, for Example 5.3.

problem, and the L-curves in Figs. 9 and 13 are for stable problems. Fig. 13 shows that there does not exist a value of 𝜆 for which 
‖‖𝑥lasso(𝜆)‖‖1 and ‖‖𝐴𝑥lasso(𝜆) − 𝑏‖‖2 attain, approximately, their minimum values, and thus an optimal sparse solution does not exist. 
It is noted that the residuals ‖‖𝐴𝑥lasso(𝜆) − 𝑏‖‖2 are many orders of magnitude larger in Fig. 13 than in Fig. 9.

Fig. 14 shows the variation of the number of zero entries  (𝜆) in 𝑥lasso(𝜆) with 𝜆, with and without noise. The results for these 
four scenarios are almost identical and thus the graph in Fig. 14 is representative of the results for all the scenarios. The figure shows 
that a sparse solution exists for −6 < log10 𝜆 < 1.5, but Fig. 13 shows that there does not exist a value of 𝜆 such that ‖‖𝐴𝑥lasso(𝜆) − 𝑏‖‖2
and ‖‖𝑥lasso(𝜆)‖‖1 assume, approximately, their minimum values, and thus an optimal sparse solution does not exist. □

Some components of 𝑥ls in the examples are significantly larger than its other components, and they therefore allowed the ability 
of the L-curve to identify the number of zero entries in 𝑥lasso(𝜆

∗) to be considered. Many other examples, which are not included 
in the paper, showed that the results are unchanged when an unstable LS problem, without specification of the magnitudes of the 
components of 𝑥ls, is considered. In particular, (i) a sparse solution exists if 𝑥ls is unstable and 𝑥lasso(𝜆

∗) has few zero components, 
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Fig. 12. The variation of the MSE with 𝜆 using 10-fold CV (a) without noise, and (b) with noise, for Example 5.3. The figures include error bars for each value of 𝜆
and the largest value of 𝜆 that is within one standard error of the minimum MSE.

Fig. 13. The L-curves, with and without noise, for Example 5.3.
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Fig. 14. The number of zero entries  (𝜆) in 𝑥lasso(𝜆) as a function of 𝜆, from 10-fold CV and the L-curve, with and without noise, for Example 5.3.

in which case the L-curve displays a sharp corner and the number of zero components in 𝑥lasso(𝜆
∗) does not change in the presence 

of noise, (ii) the variation of the MSE with 𝜆 displays a shallow minimum and it is therefore difficult to calculate the value of 𝜆∗, 
(iii) the L-curve returned much better results than 10-fold CV, and (iv) a sparse model can be computed for a wide range of values 
of 𝜆, but the existence of a sparse model does not guarantee that it is an accurate model, and thus an optimal sparse solution may 
not exist.

6. Summary

This paper has considered some properties of the solution of LASSO regression for an underdetermined equation and it was shown 
that they are dependent on the stability, or otherwise, of the solution of the LS problem. In particular, an optimal sparse solution 
with few zero entries exists if 𝑥ls is unstable, and an optimal sparse solution does not exist if 𝑥ls is stable. It was also shown that the 
L-curve yields much better results than CV and it is stable in the presence of noise. The number of equations that must be satisfied 
by 𝜆 increases as the number of zero components in 𝑥lasso(𝜆) increases, and thus an optimal sparse solution that has many zero 
components may not exist.
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