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Abstract

Many automatic semantic relation extraction

tools extract subject-predicate-object triples

from unstructured text. However, a large quan-

tity of these triples merely represent back-

ground knowledge. We explore using full texts

of biomedical publications to create a training

corpus of informative and important semantic

triples based on the notion that the main con-

tributions of an article are summarized in its

abstract. This corpus is used to train a deep

learning classifier to identify important triples,

and we suggest that an importance ranking for

semantic triples could also be generated.

1 Introduction

Subject-predicate-object triples are used in numer-

ous natural language processing areas, including

question answering (e.g. Hristovski et al. (2015)),

ontology building (e.g. Du and Li (2020)) and liter-

ature based discovery (e.g. Hristovski et al. (2006)).

While they can be thought of as representing the

minimum unit of semantic expression, there is a

large degree of variability in the amount of new

(not commonly known) content they convey. On

the one hand, they sometimes represent what can

be termed background knowledge, for example

“New Zealand - ISA - country” or “pharmaceuti-

cal services - TREATS - health personnel”, while

on the other, they may describe very specific find-

ings such as pimobendan TREATS hypertrophic

cardiomyopathy or LCN2 protein, human - ASSO-

CIATED WITH - chronic kidney disease. We use

biomedical publications to test the hypothesis that

training data consisting of such, important, triples

can be created from abstracts, and train a deep

learning algorithm to identify these high impor-

tance triples from a list of all triples appearing in a

paper. The system could also be adjusted to output

a weight instead of a binary decision, allowing for

an importance ranking of semantic triples within

an article.

The paper begins with an overview of related

work in Section 2, the experimental set-up follows

in Section 3, with the results and discussion in

Section 4 and conclusions drawn in Section 5.

2 Background

A number of tools for automatically extracting se-

mantic relations – (subject, relation, object) triples

– from unstructured text exist (Yuan and Yu, 2018).

However, as Papadopoulos et al. (2020) point out,

the majority of works incorporating these do not

perform much pre- or post- processing and there-

fore include many potentially uninformative triples,

and works proposing to extend currently existing

collections of semantic relations often speak of

extending the set of relations, not refining the rela-

tions present (e.g. Koroleva et al. (2020)).

Evaluations of semantic relation extraction sys-

tems are often very comprehensive, e.g. Kilicoglu

et al. (2020) present a detailed independent evalua-

tion of SemRep – a biomedical domain tuned triple

extraction tool – and discover common sources

of error for this tool, but such evaluations do not

quantify the quality of the triple that is retrieved

by the system. It is unclear whether the incorrectly

extracted triples are uninformative, or the opposite.

While not phrased as focusing on informative /

important triples, existing works often restrict to

particular types of relations: Yuan and Yu (2018)

evaluate the extraction of health claims, defined as

a relation between something that is being manipu-

lated and something that is being measured (e.g. the

relation between a substance and a disease). Ya-

dav et al. (2020) restrict to drug-drug interaction,

protein-protein interaction, and medical concept

relation extraction, while Hope et al. (2021) fo-

cus on mechanisms, i.e. activities, functions and
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causal relations. Such restrictions are likely to in-

crease the overall quality of the remaining triples:

removing the ISA relation alone eliminates a large

quantity of background knowledge. The closest to

our work is due to Zhang et al. (2021) who filter out

uninformative triples computationally, based on the

difference between triples’ expected and observed

frequencies.

3 Experiment Design

Below, we discuss the two steps needed to explore

the hypothesis that a dataset based on abstracts can

be used to detect important triples using machine

learning: 1) creation of a training corpus, and 2)

selection of a deep learning architecture.

3.1 Training Corpus Creation

The CORD-19 dataset (Wang et al., 2020) was cho-

sen for this work due to: 1) scale, the 2021-05-03

version contains 198,347 full articles, 2) availabil-

ity of extracted text, the dataset contains the text

extracted from available full article PDFs, 3) do-

main, the restricted nature of the dataset allows the

application of existing biomedical tools.

3.1.1 Semantic Relation Extraction

Subject-relation-object triples are extracted from

all article texts present in the dataset using Sem-

Rep (Rindflesch and Fiszman, 2003). Designed

for the biomedical domain, the tool extracts triples

such as “imatinib TREATS Gastrointestinal Stromal

Tumors” but with concepts mapped to Unified Med-

ical Language System metathesaurus (UMLS) (Bo-

denreider, 2004) concept unique identifiers, CUIs

(i.e. yielding C0935989 - TREATS - C0238198

for the example). This addresses the problem

of multi-word identification (recognizing gastroin-

testinal stomal tumours rather than merely tumours)

and word sense disambiguation (distinguishing be-

tween occurrences of concepts with multiple mean-

ings, such as COLD, which could - among other

options - represent the common cold or chronic

obstructive airway disease).

3.1.2 Identifying Important Triples

To train a machine learning classifier, a training set

of important triples is needed. Since an abstract

usually summarizes the main findings of an article,

we hypothesize that important triples can be consid-

ered to be those that appear in both the body and an

abstract. It is important to note that the training set

of important triples does not need to be complete,

i.e. not every important triple from the body needs

to be identified. The dataset should be as noise free

as possible, and therefore background knowledge

triples (which may appear in both the abstract and

the body of an article) should not be included. To

reduce noise, the following filtering is performed:

• Previously published triples. The construction

of positive examples in the training set hinges

on the identification of important triple(s). If

these triples are defined as those which de-

scribe the novel contribution(s) of an article,

an identical triple (i.e. contribution) should not

have appeared in abstracts prior to the current

paper. Therefore triples appearing in SemRep

processed Medline (V40, released October

2019, i.e. before the CORD-19 dataset), a vast

collection of biomedical abstracts (Lozano-

Kühne, 2013), are removed from the dataset.

• Frequent concepts. Some frequent concepts

often appear in non important triples, such as:

– therapeutic procedure TREATS disease

– malaise PROCESS OF patients

– lung PART OF homo sapiens

Since the training set does not need include an

annotation for every triple encountered and

there is high probability of mis-annotation

with triples involving these concepts, triples

involving the top 1% of concepts appearing

in V40 of SemRep processed Medline are re-

moved. The top 1% includes patients, ther-

apeutic procedure, homo sapiens and other

very general terms. Note that this does not

mean that the system will be unable to clas-

sify triples including these concepts.

In some cases, an identical triple is used both

in the abstract and the body of an article, how-

ever, when repeated, novel contributions of a paper

are sometimes rephrased using (near) synonyms.

Therefore a measure of triple similarity needs to

be defined. Since the triples are of the format

subjectCUI -predicateword-objectCUI , this mea-

sure can be defined on each component (subject,

predicate, object) separately. Word (CUI) embed-

dings represent each word (CUI) as a vector which

captures information about the contexts it appears

in, therefore yielding similar – close – vectors for

synonyms. A triple similarity measure can there-

fore be implemented based on cui2vec (Beam et al.,
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2019) (for subject and object similarity) and GloVe

(Pennington et al., 2014) embeddings (for predi-

cate similarity).1 Similarity between two triples,

cui11−rel1−cui12 and cui21−rel2−cui22, is then

given by the formula cs(c2v(cui11), c2v(cui21))+
cs(g(rel1), g(rel2)) + cs(c2v(cui12), c2v(cui22))
where cs represents the cosine similarity, c2v(x)
the cui2vec vector of x and g(x) x’s GloVe vector.

As the maximum value for cosine similarity is 1,

the triple similarity is a decimal between 0 and 3

inclusive, 0 corresponding to complete lack of sim-

ilarity between triples and 3 an exact match. For

each body-triple, a similarity can be computed be-

tween it and each abstract-triple in the same article,

with the highest becoming the body-triple’s similar-

ity value. A threshold can be set on the similarity

value to decide which triples are deemed important.

3.2 Deep Learning Algorithm

The machine learning component consists of three

parts: 1) feature extraction, 2) architecture selec-

tion, and 3) experiment settings.

3.2.1 Feature Extraction

The ability to extract important triples (described in

Section 3.1.2) makes it possible to use supervised

machine learning approaches to train a classifier.

To this end a number of features are extracted for

each body-triple.

Frequency based features: 1) the number of

times the triple appeared in the body of the arti-

cle, and 2) the total number of relations within the

body of the publication.

UMLS based features: 1) the frequency count

of the CUIs in the body triple as extracted from

SemRep processed Medline – while the top 1% of

CUIs have been discarded, it is believed that CUIs

with lower frequencies are more likely to be part

of novel contributions, 2) the UMLS source vocab-

ulary of the CUIs – the metathesaurus consists of

many different types of biomedical vocabularies

and the information pertaining to which one(s) a

CUI belongs to can serve to give an overall idea

of its category, and 3) the depth of the body triple

CUIs within UMLS. For some source vocabularies,

a hierarchy is present, allowing the computation

of the concept’s distance to the root – assuming a

concept further away from the root is more likely to

be more fine-grained, this feature also investigates

whether important triples are more likely to contain

1GloVe embeddings were chosen since the predicate words
are being compared in isolation.

more specific CUIs (the shortest path to the root is

taken if a concept appears in multiple hierarchies).

Semantics based features: 1) the relation used,

2) the title of the section the body triple appeared

in – since the majority of articles in this collection

have relatively rigid structure, this was restricted

to the commonly prescribed sections such as intro-

duction, background, methods etc, and is based on

the hypothesis that a novel contribution of a work

is likely to appear in the discussion and / or conclu-

sion sections, and 3) the rank of the sentence the

triple appeared in as ranked by TextRank (Mihalcea

and Tarau, 2004). TextRank is a graph based algo-

rithm, often used in summarization, which can be

used to order the sentences in an article according

to importance, and therefore we hypothesize that a

sentence with a low TextRank (high importance) is

more likely to yield an important triple.

After performing one hot encoding of the rela-

tion feature, this gives 129 features for the 55,745

triples in the dataset.

3.2.2 Architecture Selection

While the similarity value of a body-triple calcu-

lated as described in Section 3.1.2 can be predicted

directly, initial experiments with regression showed

that this is hard to do exactly. The problem was

therefore framed as binary classification. In this

case, a threshold is set on the similarity value and

triples with a value above the threshold are used as

positive, important, instances.

Deep learning model is chosen due to its abil-

ity to cope with feature dependencies. The model,

implemented using Keras, was designed with fully

connected (dense) layers of halving sizes with the

final layer of size 1. ReLU was used for all layers

except the last, where the sigmoid activation func-

tion was employed. The loss function was binary

entropy and accuracy was used as the metric when

classes weren’t extremely imbalanced, F1 was used

otherwise. A number of parameters were tuned: 1)

the depth of the model (with halving sizes, thus

depth one model has a single dense layer of size

int(129/2), depth two model has two dense layers

of sizes int(129/2), int(129/4), and so on), 2) the

number of epochs, 3) dropout, and 4) whether class

weights were used.

3.2.3 Experiments

As suggested above – by exploring the use of class

weights within the model – the dataset is highly im-

balanced with, as expected, the majority of triples
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Similarity Buffer Majority Best model Accuracy /

value band proportion Depth Dropout F-measure

≥ 3 ON 50 2 0.0 a=72.7

≥ 3 OFF 50 2 0.0 a=67.2

≥ 3 ON 83.3 2 0.0 a=85.2

≥ 3 OFF 83.3 2 0.0 a=84.2

≥ 2 OFF 88.3 3 0.0 f=0.975

Table 1: Performance of informative triple classifier

not appearing in the abstract. The following meth-

ods for addressing this bias were explored:

• Using class weights within the deep learning

algorithm: this allows more emphasis to be

given to the minority class.

• Under-sampling: randomly sampling the ma-

jority class such that the number of examples

used in training corresponds to a pre-decided

ratio. The minority and majority class can

be made equal (1:1) but other ratios were ex-

plored, making the majority class more fre-

quent but not overpowering.

While all the minority, important, class triples

are included in the training set, this does not have

to be the case for the majority class. As mentioned

above, the triples to include in the minority class

are selected by a threshold. However, this can lead

to a triple with, say, similarity of 2.5 being included

in important triples, while a triple with similarity

of 2.499 appearing in the non important triples

class. Such small difference may be detrimental to

the performance of the machine learning algorithm

and a buffer band of similarities between the two

classes was also explored. I.e. two thresholds, t1
and t2 are set such that t1 − t2 > 0 and all triples

with similarity >= t1 are assigned to the impor-

tant class while triples with similarity <= t2 are

deemed not important.

4 Results And Discussion

A 5-fold cross validation was performed, and each

explored model was trained on (a possibly balance

adjusted version of) the training portion giving rise

to an accuracy or F-measure on the test portion.

This allows an average to be computed and the best

model to be determined. The results are presented

in Table 1: the similarity value refers to the thresh-

old from Section 3.1.2 used to determine which

triples are considered important, the buffer band –

when on – removes the cases close to the similar-

ity value threshold from training as described in

Section 3.2.3, and the majority column represents

the percentage of the training dataset attributed to

the majority class. The final columns present the

hyperparameters of the best model for the specific

combination and the average accuracy / F-measure.

With under-sampling, the accuracies for simi-

larities >= 2 were all within 2% of the best per-

formance, supporting the hypothesis regarding fre-

quent use of synonyms. To avoid a uniform assign-

ment of the majority class, the F-measure metric

(which rewards both precision and recall) is used

in models without under-sampling. An F-measure

of 1 represents perfect precision and recall, and the

highest F-measure achieved is 0.975.

SHapley Additive exPlanations (SHAP) (Lund-

berg et al., 2018) uses ideas from game theory to

explain feature contributions to machine learning

decisions. Figure 1 depicts the feature contribu-

tions on a randomly selected sample of 100 triples

for the best model without under-sampling. Each

dot represents a single triple, with the intensity

(blue → pink) indicating whether the feature value

was low or high. The horizontal position indicates

whether the contribution caused the prediction to

go up – towards being classified as an important

triple – or down. The top three rows show expected

results: that high values in the number of relations

in the document, very frequently occurring CUIs or

relations arising from sentences low in importance

ranked by TextRank (giving a high rank) impact

the prediction very negatively. Unsurprising posi-

tive contributors are: 1) the frequency of the triple

in the document: a new contribution may be reit-

erated in the document, 2) the triple appearing in

the conclusion: this often contains a summary of

contributions, 3) the triple including the TREATS

relation: the filtering ensures this is a new triple

and being treatment specific, is likely the focus

of the work, 4) the triple appearing in the intro-
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Figure 1: Feature contributions

duction, where the novelties of the work are often

highlighted. The contributions of a higher depth

value is also, as expected, positive.

Contributions are also due to the CUIs’ UMLS

source vocabulary (indicated by source ). In some

cases, these categorize the CUI: for example, AOD

(alcohol and other drug thesaurus) and PSY (psy-

chological index terms) are not unexpected. Sur-

prising may be the pair MSHNOR and MSHJPN,

representing the Norwegian and Japanese transla-

tions of Medical Subject Headings, as they appear

to have opposite effect. However, MSHJPN’s con-

tribution is very limited, suggesting that its com-

pleteness may not match that of MSHNOR.

5 Conclusions And Future Work

We have demonstrated that a dataset of semantic

triples created from full articles based on similarity

between triples in the body of the text and triples

in the abstract can be used to train a deep learn-

ing classifier to make predictions about a semantic

triple’s importance. An analysis of feature contri-

butions was also performed.

While a direct prediction of the similarity score

appeared difficult with the quantity of data avail-

able, converting the similarity scores into categori-

cal values may be trainable and would provide the

basis of a ranking. Again with greater quantity of

data, features based on medical subject headings

of each CUI could be beneficial indicated by the

success of the UMLS source vocabulary features.

The work undertaken was in the biomedical do-

main based on a tool tuned for biomedical do-

main grammatical relation extraction. Porting the

approach to another domain, where subject-verb-

object triples would need to be extracted using a

generic grammatical relation extraction algorithm

and some features would require re-engineering,

would also form an interesting extension of the

work.
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