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Over fields of characteristic 2, Specht modules may decompose 
and there is no upper bound for the dimension of their en-
domorphism algebra. A classification of the (in)decomposable 
Specht modules and a closed formula for the dimension of their 
endomorphism algebra remain two important open problems 
in the area. In this paper, we introduce a novel description 
of the endomorphism algebra of the Specht modules and pro-
vide infinite families of Specht modules with one-dimensional 
endomorphism algebra.
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open access article under the CC BY license (http://
creativecommons .org /licenses /by /4 .0/).

1. Introduction

Let k be an algebraically closed field of characteristic p ≥ 0 and r a positive integer. 

We write Sr for the symmetric group on r letters and kSr for its group algebra over 

k. For each partition λ of r we have the Specht module Sp(λ) and for each composition 
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α of r we have the permutation module M(α). Recall that Sp(λ) may be viewed as a 

submodule of M(λ). One fundamental result by James states that unless the character-

istic of k is 2 and λ is 2-singular, the space of homomorphisms HomkSr
(Sp(λ), M(λ)) is 

one-dimensional[11, Corollary 13.17]. It follows that the endomorphism algebra of Sp(λ)

is one-dimensional and so in particular that Sp(λ) is indecomposable.

In contrast, if the characteristic of k is 2 and λ is a 2-singular partition, that is λ has 

a repeated term, Sp(λ) may certainly decompose. The first example of a decomposable 

Specht module was discovered by James in the late 70s, thereby setting in motion the 

investigation of the (in)decomposability of Specht modules; a problem that has attracted 

a lot of attention over the years [14], [4], [8], [2]. In a recent paper [8], Donkin and 

the first author considered partitions of the form λ = (a, m − 1, m − 2, . . . , 2, 1b) and 

obtained precise decompositions of Sp(λ) in the case where a − m is even and b is odd. 

An interesting feature arising in these decompositions is that there is no upper bound 

for the number of indecomposable summands of Sp(λ) and so in turn for the dimension 

of its endomorphism algebra [8, Example 6.3]. Almost half a century after James’ first 

example, a classification of the (in)decomposable Specht modules remains to be found 

and there is no known formula describing the dimension of their endomorphism algebra. 

In this paper, we provide a new characterisation of EndkSr
(Sp(λ)) as a subset of the 

homomorphism space HomkSr
(M(λ′), M(λ)), where λ′ is the transpose partition of λ. 

Our description allows one to realise an endomorphism of Sp(λ) as an element of the set 

HomkSr
(M(λ′), M(λ)) that satisfies certain concrete relations. In this way, we are able 

to show that for λ = (a, m − 1, . . . , 2, 1b) with a − m ≡ b (mod 2), the endomorphism 

algebra of Sp(λ) is one-dimensional.

We do so by taking inspiration from the category of polynomial representations of the 

general linear groups. More precisely, for a partition λ, we compare two different construc-

tions of the induced module ∇(λ) for GLn(k): the first introduced by Akin, Buchsbaum, 

and Weyman [1, Theorem II.2.11] and the second by James[11, Theorem 26.3(ii)]. By 

applying the Schur functor [10, §6.3], we then obtain two characterisations of the Specht 

module Sp(λ): first as a quotient of M(λ′) and then as a submodule of M(λ). This leads 

to a concrete description of the endomorphism algebra of Sp(λ), which we shall then 

investigate in detail for partitions of the form λ = (a, m − 1, . . . , 2, 1b).

The paper is arranged in the following way. Section 2 provides the necessary back-

ground on polynomial representations of GLn(k) and kSr-modules. In Section 3 we 

explore the connection between these two categories via the Schur functor f and its right-

inverse g. As a by-product of our considerations, we provide a new short proof of the fact 

that gSp(λ) ∼= ∇(λ) for p �= 2. Then, we focus on homomorphisms and in Lemma 3.3

we obtain the desired description of EndkSr
(Sp(λ)) in characteristic 2. In Section 4 we 

utilise more tools from the representation theory of GLn(k) to obtain a reduction tech-

nique that will be instrumental to our investigation of the case λ = (a, m − 1, . . . , 2, 1b)

in Section 5.
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2. Preliminaries

We write N for the set of non-negative integers.

2.1. Combinatorics

Let ℓ be a positive integer and α = (α1, . . . , αℓ) be an ℓ-tuple of non-negative integers. 

We let deg(α) := α1 + · · · + αℓ and call it the degree of α. We define the length of α, 

denoted ℓ(α), to be the maximal positive integer l with 1 ≤ l ≤ ℓ such that αl �= 0 if α is 

non-zero, and we set ℓ(α) := 0 for α = (0ℓ). Now, fix positive integers n and r. We write 

Λ(n) for the set of n-tuples of non-negative integers, and Λ+(n) for the set of partitions 

with at most n parts. We write Λ(n, r) for the subset of Λ(n) consisting of those elements 

of degree r, and Λ+(n, r) for the partitions of r with at most n parts. Given a partition 

λ ∈ Λ+(n), we write λ′ for its transpose partition. For α ∈ Λ(n) and 1 ≤ i < j ≤ ℓ(α)

with αj �= 0, and for 0 < k ≤ αj , we shall denote by α(i,j,k) = (α(i,j,k)

1 , α(i,j,k)

2 , . . .) the 

element of Λ(n) with terms α(i,j,k)

l
:= αl + k(δi,l − δj,l).

2.2. Representations of general linear groups

We consider the general linear group G := GLn(k) and its coordinate algebra 

k[G] = k[c11, . . . , cnn, det−1], where det is the determinant function. We write Ak(n) :=

k[c11, . . . , cnn] for the polynomial subalgebra of k[G] generated by the functions cij with 

1 ≤ i, j ≤ n. The algebra Ak(n) has an N-grading of the form Ak(n) =
⊕

r∈N
Ak(n, r)

where Ak(n, r) consists of the homogeneous degree r polynomials in the cij . Given 

a rational G-module V , we shall denote by cf(V ) the coefficient space of V , that 

is the subspace of k[G] generated by the coefficient functions fvv′ : G → k satisfying 

g · v′ =
∑

v∈V fvv′(g)v for g ∈ G, v, v′ ∈ V, where V is some k-basis of V . We say that 

V is a polynomial representation of G if cf(V ) ⊆ Ak(n) and a polynomial representation 

of G of degree r if cf(V ) ⊆ Ak(n, r). We write Mk(n) for the category of polynomial 

representations of G and Mk(n, r) for its subcategory of representations of degree r. 

Recall that the category Mk(n, r) is naturally equivalent to the category of Sk(n, r)-

modules, where Sk(n, r) := Ak(n, r)∗ is the corresponding Schur algebra[10, §2.3, §2.4]. 

For V ∈ Mk(n) we write V ◦ for its contravariant dual, in the sense of [10, §2.7].

We fix T to be the maximal torus of G consisting of the diagonal matrices in G. An 

element α ∈ Λ(n) may be identified with the multiplicative character of T that takes 

an element t = diag(t1, . . . , tn) ∈ T to α(t) := tα1
1 · · · tαn

n ∈ k. We denote by kα the 

one-dimensional rational T -module on which t ∈ T acts by multiplication by α(t). Then, 

given V ∈ Mk(n), α ∈ Λ(n), we write V α := {v ∈ V | t · v = α(t)v for all t ∈ T} for the 

α-weight space of V . We write E := k
⊕n for the natural G-module and SrE (resp. ΛrE, 

DrE) for the corresponding rth-symmetric power (resp. exterior power, divided power) 

of E. For ℓ ≥ 1 and an ℓ-tuple α = (α1, . . . , αℓ) of non-negative integers, we define the 

polynomial G-modules: SαE := Sα1E ⊗ · · · ⊗ SαℓE, ΛαE := Λα1E ⊗ · · · ⊗ ΛαℓE, and 
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DαE := Dα1E ⊗ · · · ⊗ DαℓE. If deg(α) = r, then each of these modules lies in Mk(n, r). 

For V ∈ Mk(n), there is a k-linear isomorphism HomG(V, SαE) ∼= V α[6, §2.1(8)]. For 

α ∈ Λ(n), the T -action on kα extends uniquely to a module action of the subgroup 

B ⊆ G of lower-triangular matrices. For λ ∈ Λ+(n), we write ∇(λ) := indG
B kλ for the 

induced G-module corresponding to λ[12, §II.2]. Recall that there is a G-isomorphism

∇(λ)◦ ∼= Δ(λ), where Δ(λ) is the Weyl module corresponding to λ[12, §II.2.13(1)].

Here, we shall review a construction of the induced module by Akin, Buchsbaum, and 

Weyman. In [1, §II.1], the authors associate to a partition λ with λ1 ≤ n, a G-module 

denoted Lλ(E), which they call the Schur functor of E. Further, in [1, §II.2] the authors 

provide a description of Lλ(E) by generators and relations. More precisely, in [1, Theorem 

II.2.16], the authors identify Lλ(E) with the cokernel of a G-homomorphism between a 

pair of (direct sums of) tensor products of exterior powers of E. By [7, §2.7(5)], we have 

that Lλ(E) is isomorphic to an induced module, namely Lλ(E) ∼= ∇(λ′) for λ ∈ Λ+(n)

(note that Y (λ) is used in place of ∇(λ) in [7]). The construction as a cokernel by 

Akin, Buchsbaum, and Weyman is as follows. Recall that the exterior algebra Λ(E) of 

E enjoys a Hopf algebra structure [1, §I.2]. We write Δ and μ for the comultiplication 

and multiplication of Λ(E) respectively. Let λ be a partition with ℓ := ℓ(λ). For 1 ≤

i < ℓ, 1 < j ≤ ℓ, t ≥ 1, and 1 ≤ s ≤ λj , we consider the G-homomorphisms Δ(i,t)

λ :

Λλi+tE → ΛλiE ⊗ ΛtE and μ(j,s)

λ : ΛsE ⊗ Λλj−sE → Λλj E, coming from Δ and μ

respectively. Further, for 1 ≤ i < j ≤ ℓ, 1 ≤ s ≤ λj we construct the G-homomorphism

φ(i,j,s)

λ : Λλ(i,j,s)

E → ΛλE as the composition:

Λλ(i,j,s)

E
1⊗···⊗Δ

(i,s)
λ ⊗···⊗1

−−−−−−−−−−−−−→ Λλ1E ⊗ · · · ⊗ ΛλiE ⊗ ΛsE ⊗ · · · ⊗ Λλj−sE ⊗ · · · ⊗ ΛλℓE

σ−→ Λλ1E ⊗ · · · ⊗ ΛλiE ⊗ · · · ⊗ ΛsE ⊗ Λλj−sE ⊗ · · · ⊗ ΛλℓE
1⊗···⊗μ

(j,s)
λ ⊗···⊗1

−−−−−−−−−−−−→ ΛλE,

(2.1)

where σ denotes the isomorphism that permutes the corresponding tensor factors, and 

each 1 refers to the identity map on the corresponding tensor factor. Now, set:

φ(i,i+1)

λ
:=

λi+1
∑

s=1

φ(i,i+1,s)

λ :

λi+1
∑

s=1

Λλ(i,i+1,s)

E → ΛλE, (2.2)

φλ :=
ℓ−1
∑

i=1

φ(i,i+1)

λ :
ℓ−1
∑

i=1

λi+1
∑

s=1

Λλ(i,i+1,s)

E → ΛλE. (2.3)

For λ ∈ Λ+(n), we have that coker φλ′
∼= Lλ′(E) [1, Theorem II.2.16], and hence 

coker φλ′
∼= ∇(λ) [7, §2.7(5)]. We shall refer to this description as the ABW-construction

of ∇(λ).

Now, we review an alternative description of ∇(λ) due to James [11, §26]. Although 

James refers to this module as the “Weyl module”, it is not to be confused with the usual 

Weyl module Δ(λ) that we discussed above [10, Theorem (4.8f)]. James’ construction is 

as follows. Recall that the symmetric algebra S(E) of E also has a Hopf algebra structure 
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[1, §I.2]. As a slight abuse of notation, we shall once again use the symbols Δ and μ for 

the corresponding comultiplication and multiplication of S(E) respectively. Let λ be a 

partition with ℓ := ℓ(λ). For 1 ≤ i < ℓ, 1 < j ≤ ℓ, 1 ≤ t ≤ λj , and s ≥ 1, we consider the 

G-homomorphisms Δ(j,t)

λ : Sλj E → StE ⊗ Sλj−tE and μ(i,s)

λ : SλiE ⊗ SsE → Sλi+sE

coming from Δ and μ respectively. Further, for 1 ≤ i < j ≤ ℓ, 1 ≤ t ≤ λj , we construct 

the G-homomorphism ψ(i,j,t)

λ : SλE → Sλ(i,j,t)

E as the composition:

SλE
1⊗···⊗Δ

(j,t)
λ ⊗···⊗1

−−−−−−−−−−−−−→ Sλ1E ⊗ · · · ⊗ SλiE ⊗ · · · ⊗ StE ⊗ Sλj−tE ⊗ · · · ⊗ SλℓE σ̄−→

Sλ1E ⊗ · · · ⊗ SλiE ⊗ StE ⊗ · · · ⊗ Sλj−tE ⊗ · · · ⊗ SλℓE
1⊗···⊗μ

(i,t)
λ ⊗···⊗1

−−−−−−−−−−−−→ Sλ(i,j,t)

E,

(2.4)

where σ̄ denotes the isomorphism that permutes the corresponding tensor factors, and 

each 1 refers to the identity map on the corresponding tensor factor. Now, set:

ψ(i,i+1)

λ
:=

λi+1
∑

t=1

ψ(i,i+1,t)

λ : SλE →

λi+1
∑

t=1

Sλ(i,i+1,t)

E, (2.5)

ψλ :=

ℓ−1
∑

i=1

ψ(i,i+1)

λ : SλE →

ℓ−1
∑

i=1

λi+1
∑

t=1

Sλ(i,i+1,t)

E. (2.6)

For λ ∈ Λ+(n), we have that ∇(λ) ∼= ker ψλ [11, Theorem 26.5]. We shall refer to this 

description as the James-construction of ∇(λ).

It is important to point out that the James-construction of ∇(λ) may be derived 

from Akin, Buchsbaum, and Weyman’s construction of the Weyl module Δ(λ) via 

contravariant duality [1, §II.3]. Similarly to (2.1), (2.2), and (2.3), one may define a 

G-homomorphism θ(i,j,t)

λ : Dλ(i,j,t)

E → DλE for 1 ≤ i < j ≤ ℓ, 1 ≤ t ≤ λj , and then 

construct the G-homomorphism:

θλ :=

ℓ−1
∑

i=1

λi+1
∑

t=1

θ(i,i+1,t)

λ :

ℓ−1
∑

i=1

λi+1
∑

t=1

Dλ(i,i+1,t)

E → DλE. (2.7)

For λ ∈ Λ+(n), we have that Δ(λ) ∼= coker θλ [1, Theorem II.3.16]. Now, recall that 

Δ(λ)◦ ∼= ∇(λ) and that (DαE)◦ ∼= SαE for α ∈ Λ(n). By taking contravariant duals, 

it follows that ∇(λ) ∼= ker θλ
◦ and it is easy to check that we have the identifications 

θλ
◦ = ψλ and θ(i,j,t)◦

λ = ψ(i,j,t)

λ for 1 ≤ i < j ≤ ℓ, 1 ≤ t ≤ λj .

2.3. Connections with the symmetric groups

Recall that for a partition λ of r, we have the Specht module Sp(λ) for kSr. For 

λ = (1r), we have that Sp(1r) is the sign representation sgnr of kSr. We fix n ≥ r, 

and we consider the Schur functor f : Mk(n, r) → kSr-mod, where fV := V (1r) for 

V ∈ Mk(n, r) [10, §6.1, §6.3]. For λ ∈ Λ+(n, r) we have the isomorphism f∇(λ) ∼= Sp(λ)
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[10, (6.3c)], and for α ∈ Λ(n, r) we have the kSr-isomorphisms fSαE ∼= M(α) and 

fΛαE ∼= M(α) ⊗ sgnr =: Ms(α), where Ms(α) denotes the signed permutation module

corresponding to α [5, Lemma 3.4]. We set ℓ := ℓ(λ). By applying the Schur functor to the 

maps φλ and ψλ from (2.3) and (2.6) respectively, we obtain the kSr-homomorphisms:

φ̄λ := f(φλ) :
ℓ−1
⊕

i=1

λi+1
⊕

s=1

Ms(λ(i,i+1,s)) → Ms(λ), (2.8)

ψ̄λ := f(ψλ) : M(λ) →
ℓ−1
⊕

i=1

λi+1
⊕

t=1

M(λ(i,i+1,t)). (2.9)

As a consequence of the exactness of the Schur functor f , it follows that Sp(λ) ∼= coker φ̄λ′

and Sp(λ) ∼= ker ψ̄λ. This second isomorphism is an alternative realisation of James’ 

Kernel Intersection Theorem [11, Corollary 17.18]. These two descriptions of the Specht 

module Sp(λ) will be crucial for our considerations in this paper.

We set S := Sk(n, r) for the Schur algebra. The group algebra kSr may be identified 

with the algebra eSe for a certain idempotent e of S [10, (6.3)]. Accordingly, the Schur 

functor f may be identified with the functor f : S-mod → kSr-mod with fV = eV [10, 

§6.2, §6.3]. Now, the Schur functor f has a partial inverse g : kSr-mod → S-mod with 

gW := Se ⊗eSeW for W ∈ kSr-mod [10, (6.2c)]. This functor is a right-inverse of f and it 

is right-exact. Moreover, it is easy to see that g is left-adjoint to f , and so for V ∈ Mk(n, r)

and W ∈ kSr-mod, there is a k-linear isomorphism HomG(gW, V ) ∼= HomkSr
(W, fV ). 

For α ∈ Λ(n, r) one has that gM(α) ∼= SαE [9, Appendix A], and for λ ∈ Λ+(n, r) and 

p �= 2 one has that gSp(λ) ∼= ∇(λ) [5, Proposition 10.6(i)], [13, Theorem 1.1]. Further 

results related to the properties of g will be proved in Section 3, including a new short 

proof of the fact that gSp(λ) ∼= ∇(λ) for p �= 2.

3. Endomorphism algebras

3.1. General Results

From now on we fix n ≥ r. Note that for λ ∈ Λ+(n, r) we have that λ′ ∈ Λ+(n, r). 

First, in Proposition 3.1(i), we point out a new property of the functor g, which we 

immediately apply in Proposition 3.1(ii) to obtain a new short proof of the fact that 

gSp(λ) ∼= ∇(λ) when p �= 2. Then, we utilise the two different descriptions of the Specht 

module Sp(λ) to introduce a new description of its endomorphism algebra.

Proposition 3.1. Assume that p �= 2. Then:

(i) For α ∈ Λ(n, r), we have gMs(α) ∼= ΛαE.

(ii) For λ ∈ Λ+(n, r), we have gSp(λ) ∼= ∇(λ).
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Proof. (i) Recall that for β ∈ Λ(n, r) and V ∈ Mk(n, r), we have a k-isomorphism

HomG(V, SβE) ∼= V β , and so in particular dim V β = dim HomG(V, SβE). Moreover, 

fSαE ∼= M(α) and so it follows that:

HomG(gMs(α), SβE) ∼= HomkSr
(Ms(α), fSβE) ∼= HomkSr

(Ms(α), M(β)).

Now, since p �= 2, the dimension of HomkSr
(Ms(α), M(β)) does not depend on the value 

of p [3, Theorem 3.3(ii)], and so in order to calculate the dimension of gMs(α)β , we 

may assume that p = 0. However, in characteristic 0, the functors f and g are inverse 

equivalences of categories and so gMs(α) ∼= ΛαE. Therefore, for p �= 2, we deduce that 

dim gMs(α)β = dim ΛαEβ for all β ∈ Λ(n, r). Now, recall that for V ∈ Mk(n, r), we 

have the weight space decomposition V =
⊕

β∈Λ(n,r) V β [10, (3.2c)], and so it follows 

that, for p �= 2, we have dim gMs(α) = dim ΛαE.

Now, we have that M(1r) ∼= eSe and so gM(1r) ∼= Se ⊗eSe eSe ∼= Se ∼= E⊗r [10, 

(6.4f)]. For α ∈ Λ(n, r) we have a surjective G-homomorphism E⊗r → ΛαE and so via the 

Schur functor, we get a surjective kSr-homomorphism M(1r) → Ms(α). The functor g, 

being right-exact, preserves surjections, and so the G-homomorphism gM(1r) → gMs(α)

is surjective. We consider the commutative diagram:

gM(1r) E⊗r

gMs(α) ΛαE

∼=

,

where the horizontal maps are induced from the kSr-inclusions M(1r) ∼= fE⊗r → E⊗r

and Ms(α) ∼= fΛαE → ΛαE. The top horizontal map is an isomorphism and the 

right-hand vertical map is surjective, and so the bottom horizontal map is hence surjec-

tive. Since dim gMs(α) = dim ΛαE away from characteristic 2, we obtain gMs(α) ∼= ΛαE

for p �= 2.

(ii) Recall that ∇(λ) ∼= coker φλ′ , where φλ′ : K(λ′) → Λλ′

E and K(λ′) is the direct 

sum of tensor products of exterior powers given in (2.3), where here we replace the parti-

tion λ with λ′. By applying the Schur functor f to φλ′ , we obtain the kSr-homomorphism

φ̄λ′ : K̄(λ′) → Ms(λ′), where K̄(λ′) is the direct sum of signed permutation modules 

given in (2.6), again substituting λ with λ′. Also, recall that Sp(λ) ∼= coker φ̄λ′ . By 

part (i), we have that gMs(λ′) ∼= Λλ′

E and so gK̄(λ′) ∼= K(λ′). Hence, we obtain the 

commutative diagram:

gK̄(λ′) gMs(λ′)

K(λ′) Λλ′

E

g(φ̄λ′ )

∼= ∼=

φλ′

.
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The image of g(φ̄λ′) is mapped isomorphically onto the image of φλ′ , and so in particular 

coker φλ′
∼= coker g(φ̄λ′). Finally, g preserves cokernels since it is right-exact, and so we 

deduce that ∇(λ) ∼= coker φλ′
∼= coker g(φ̄λ′) ∼= g coker φ̄λ′

∼= gSp(λ). �

Lemma 3.2. Let α, β ∈ Λ(n, r). Then:

(i) HomkSr
(M(α), M(β)) ∼= HomG(SαE, SβE) ∼= (SαE)β.

(ii) For p �= 2, we have HomkSr
(Ms(α), M(β)) ∼= HomG(ΛαE, SβE) ∼= (ΛαE)β.

Proof. Recall that for V ∈ Mk(n, r) and W ∈ kSr-mod, we have a k-isomorphism

of the form HomG(gW, V ) ∼= HomkSr
(W, fV ). Parts (i)-(ii) then both follow from our 

comments in §2.2, §2.3, and Proposition 3.1(i). �

Lemma 3.3. Let λ ∈ Λ+(n, r). Then:

(i) There is a k-isomorphism:

EndkSr
(Sp(λ)) ∼= {h ∈ HomkSr

(Ms(λ′), M(λ)) | h ◦ φ̄λ′ = 0 and ψ̄λ ◦ h = 0}.

(ii) In particular, when p = 2, there is a k-isomorphism:

EndkSr
(Sp(λ)) ∼= {h ∈ HomkSr

(M(λ′), M(λ)) | h ◦ φ̄λ′ = 0 and ψ̄λ ◦ h = 0}.

Proof. Part (i) follows immediately from the two descriptions of the Specht module: 

Sp(λ) ∼= coker φ̄λ′ and Sp(λ) ∼= ker ψ̄λ from §2.3. Part (ii) then follows from part (i) and 

the fact that the permutation module and the signed permutation module coincide in 

characteristic 2. �

Recall the G-homomorphisms φ(i,j,s)

λ and ψ(i,j,t)

λ from (2.1) and (2.4) respectively.

Lemma 3.4. Let λ ∈ Λ+(n) with ℓ := ℓ(λ). Then:

(i) im φ(i,j,s)

λ ⊆ im φλ for 1 ≤ i < j ≤ ℓ, 1 ≤ s ≤ λj.

(ii) ker ψλ ⊆ ker ψ(i,j,t)

λ for 1 ≤ i < j ≤ ℓ, 1 ≤ t ≤ λj.

Proof. For part (i), from [1, Theorem II.2.16], we have that im φλ = ker dλ, where 

the map dλ : ΛλE → Sλ′

E is a G-homomorphism that arises as a composition of 

(tensor products of) comultiplications between exterior powers and (tensor products of) 

multiplications between symmetric powers [1, Definition II.1.3]. Now, from [1, Lemma 

II.2.3], we have that for each 1 ≤ i < ℓ, the map dλ may be factored through the 

G-homomorphism:

ΛλE
1⊗···⊗d(λi,λi+1)⊗···⊗1

−−−−−−−−−−−−−−−→Λλ1E ⊗ · · · ⊗ Λλi−1E ⊗ (S2E)⊗λi+1
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⊗ E⊗(λi−λi+1) ⊗ Λλi+2E ⊗ · · · ⊗ ΛλℓE,

where d(λi,λi+1) is the corresponding map associated to the partition (λi, λi+1), and each 

1 refers to the identity map on the corresponding tensor factor. Now, it is clear that one 

may replace i +1 with any j > i in the statement of [1, Lemma II.2.3] without any harm. 

Then, part (i) follows by applying [1, Theorem II.2.16] for the partition (λi, λj).

For part (ii), we use the ABW-construction of the Weyl module Δ(λ) (2.7). Similarly 

to part (i), from [1, Theorem II.3.16] and the comment before [1, Definition II.3.4], we 

deduce that im θ(i,j,t)

λ ⊆ im θλ for 1 ≤ i < j ≤ ℓ and 1 ≤ t ≤ λj . Taking contravariant 

duals, we have that ker θλ
◦ ⊆ ker θ(i,j,t)◦

λ for all such i, j, t. The result follows by recalling 

the identifications θλ
◦ = ψλ and θ(i,j,t)◦

λ = ψ(i,j,t)

λ from §2.2. �

Let λ ∈ Λ+(n, r). By applying the Schur functor f to the maps φ(i,j,s)

λ and ψ(i,j,t)

λ of

(2.1) and (2.4) respectively, we obtain the kSr-homomorphisms:

φ̄(i,j,s)

λ : Ms(λ(i,j,s)) → Ms(λ), ψ̄(i,j,t)

λ : M(λ) → M(λ(i,j,t)).

Remark 3.5. We may view any partition λ ∈ Λ+(n, r) as an n-tuple by appending an 

appropriate number of zeros to λ. Accordingly, we may relax the dependence on ℓ(λ) of 

the maps φ̄λ and ψ̄λ. We do so by setting φ̄(i,j,s)

λ
:= 0 and ψ̄(i,j,t)

λ
:= 0 if ℓ(λ) < j ≤ n.

By Lemma 3.3(ii) and Lemma 3.4, we obtain the following Corollary:

Corollary 3.6. Assume that char k = 2 and let λ ∈ Λ+(n, r). Then the endomorphism al-

gebra of Sp(λ) may be identified with the k-subspace of HomkSr
(M(λ′), M(λ)) consisting 

of those elements h that satisfy:

(i) h ◦ φ̄(i,j,s)

λ′ = 0 for 1 ≤ i < j ≤ n and 1 ≤ s ≤ λ′
j,

(ii) ψ̄(i,j,t)

λ ◦ h = 0 for 1 ≤ i < j ≤ n and 1 ≤ t ≤ λj.

3.2. A concrete description

From now on we shall assume that the underlying field k has characteristic 2. We 

write [r] := {1, . . . , r} and as always we assume that n ≥ r. First, we provide a matrix 

description of a k-basis of HomkSr
(M(α), M(β)) for α, β ∈ Λ(n, r), and then we shall 

utilise this description to obtain some crucial information regarding the endomorphism 

algebra of Sp(λ).

We write Mn×n(N) for the set of (n × n)-matrices with non-negative integer entries. 

Let {ei | 1 ≤ i ≤ n} be the standard basis of column vectors of E. Then, for α ∈ Λ(n, r), 

we consider the k-basis {ea11
1 ea12

2 . . . ea1n
n ⊗ · · · ⊗ ean1

1 ean2
2 . . . eann

n |
∑

j aij = αi} of SαE, 

where the ith-tensor factor is defined to be 1 if αi = 0 for some 1 ≤ i ≤ n. We may 

parametrise this k-basis by the set of all elements of Mn×n(N) whose sequence of row-

sums is equal to α. Accordingly, for β ∈ Λ(n, r), the β-weight space (SαE)β has a 
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k-basis parametrised by the set of all matrices in Mn×n(N) whose sequence of row-sums 

is equal to α, and whose sequence of column-sums is equal to β. On the other hand, the 

permutation module M(α) has a k-basis consisting of all ordered sequences of the form 

(x1| . . . |xn), where each xi = (xi1, xi2, . . . , xiαi
) is an unordered sequence with terms 

from [r], that satisfy the property that for each k ∈ [r], there is a unique pair (i, j) with 

xij = k. Here xi denotes the zero sequence whenever αi = 0.

We set Tab(α, β) := {A = (aij)i,j ∈ Mn×n(N) |
∑

j aij = αi, 
∑

i aij = βj}. We as-

sociate to each A ∈ Tab(α, β), a homomorphism ρ[A] ∈ HomkSr
(M(α), M(β)). We do 

so as follows: Given a basis element x := (x1| . . . |xn) ∈ M(α), we set ρ[A](x) to be the 

sum of all basis elements of M(β) that may be obtained from x by moving, in concert, 

aij entries from its ith-position xi to its jth-position xj for every 1 ≤ i, j ≤ n. The set 

{ρ[A] | A ∈ Tab(α, β)} is linearly independent. Indeed, take any linear combination of 

the ρ[A]s, say h =
∑

A h[A]ρ[A] (h[A] ∈ k), along with any basis element x of M(α), 

and then consider the coefficients of the basis elements of M(β) in h(x). The linear inde-

pendence of the ρ[A]s along with Lemma 3.2(i) gives that the set {ρ[A] | A ∈ Tab(α, β)}

forms a k-basis of HomkSr
(M(α), M(β)). Accordingly, for h ∈ HomkSr

(M(α), M(β))

and A ∈ Tab(α, β), we shall denote by h[A] ∈ k the coefficient of ρ[A] in h so that 

h =
∑

A∈Tab(α,β) h[A]ρ[A].

Examples 3.7. Let λ ∈ Λ+(n, r). For 1 ≤ i, j ≤ n, denote by Eij ∈ Mn×n(N) the matrix 

with a 1 in its (i, j)th-position and 0s elsewhere. Notice that:

(i) φ̄(i,j,s)

λ = ρ[A], where A := diag(λ1, . . . , λi, . . . , λj − s, . . . , λn) + sEij .

(ii) ψ̄(i,j,t)

λ = ρ[B], where B := diag(λ1, . . . , λi, . . . , λj − t, . . . , λn) + tEji.

Remark 3.8. Consider the k-basis {ρ[A] | A ∈ Tab(α, β)} of HomkSr
(M(α), M(β)). For 

A ∈ Mn×n(N), we write A′ ∈ Mn×n(N) for the transpose matrix of A. If A ∈ Tab(α, β), 

then it is clear that A′ ∈ Tab(β, α). Moreover, the set {ρ[A′] | A ∈ Tab(α, β)} forms a 

k-basis of HomkSr
(M(β), M(α)).

Now, for α ∈ Λ(n, r), recall that the permutation module M(α) is self-dual. We 

write δα : M(α) → M(α)∗ for the kSr-isomorphism that sends each basis element x

of M(α) to the corresponding basis element of M(α)∗ dual to x. We shall denote by 

ζα,β : HomkSr
(M(α), M(β)) → HomkSr

(M(β)∗, M(α)∗) the natural k-isomorphism, 

and by ηα,β : HomkSr
(M(α), M(β)) → HomkSr

(M(β), M(α)) the k-isomorphism with 

ηα,β(h) = δ−1
α ◦ ζα,β(h) ◦ δβ for h ∈ HomkSr

(M(α), M(β)).

Lemma 3.9. Let α, β ∈ Λ(n, r). Then ηα,β(ρ[A]) = ρ[A′] for all A ∈ Tab(α, β).

Proof. This is a simple calculation which we leave to the reader. �

Definition 3.10. For h ∈ HomkSr
(M(α), M(β)), we shall denote by h′ the homomorphism 

ηα,β(h) ∈ HomkSr
(M(β), M(α)) and call it the transpose homomorphism of h.
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Notice that if h =
∑

A∈Tab(α,β) h[A]ρ[A], then h′ =
∑

A∈Tab(α,β) h[A]ρ[A′] by 

Lemma 3.9.

Lemma 3.11. Let α, β, γ ∈ Λ(n, r). Then we have the identity (h2 ◦ h1)′ = h′
1 ◦ h′

2 for all 

h1 ∈ HomkSr
(M(α), M(β)) and h2 ∈ HomkSr

(M(β), M(γ)).

Proof. Since ζα,γ(h2 ◦ h1) = ζα,β(h1) ◦ ζβ,γ(h2), we have:

(h2 ◦ h1)′ = δ−1
α ◦ ζα,β(h1) ◦ ζβ,γ(h2) ◦ δγ

= (δ−1
α ◦ ζα,β(h1) ◦ δβ) ◦ (δ−1

β ◦ ζβ,γ(h2) ◦ δγ) = h′
1 ◦ h′

2. �

Lemma 3.12. Let λ ∈ Λ+(n, r) and h ∈ HomkSr
(M(λ′), M(λ)). Then:

(i) (h ◦ φ̄(i,j,s)

λ′ )′ = ψ̄(i,j,s)

λ′ ◦ h′.

(ii) (ψ̄(i,j,t)

λ ◦ h)′ = h′ ◦ φ̄(i,j,t)

λ .

(iii) The map ηλ′,λ induces a k-isomorphism η̄λ : EndkSr
(Sp(λ)) → EndkSr

(Sp(λ′)).

Proof. By Lemma 3.9 and the examples in Examples 3.7, it follows that (φ̄(i,j,t)

λ )′ =

ψ̄(i,j,t)

λ . Now, parts (i)-(ii) follow directly from Lemma 3.11. For part (iii), notice that 

Lemma 3.3 gives that any element h̄ ∈ EndkSr
(Sp(λ)) may be identified with a ho-

momorphism h ∈ HomkSr
(M(λ′), M(λ)) such that h ◦ φ̄(i,i+1,s)

λ′ = 0 for 1 ≤ i < n, 

1 ≤ s ≤ λ′
i+1, and also ψ̄(i,i+1,t)

λ ◦ h = 0 for 1 ≤ i < n, 1 ≤ t ≤ λi+1. By parts (i)-(ii), we 

deduce that ψ̄(i,i+1,s)

λ′ ◦ h′ = 0 and h′ ◦ φ̄(i,i+1,t)

λ = 0 for all such i, s, t and so h′ induces 

an endomorphism of Sp(λ′), h̄′ say. Therefore, it follows that the map ηλ′,λ induces a 

k-homomorphism η̄λ : EndkSr
(Sp(λ)) → EndkSr

(Sp(λ′)) with h̄ −→ h̄′. By applying the 

same procedure to the map ηλ,λ′ , we see that η̄λ is a k-isomorphism with inverse η̄λ′ as 

required. �

For A = (aij)i,j ∈ Mn×n(Z) and 1 ≤ k, l ≤ n, we shall write A(k,l) for the element 

of Mn×n(Z) with entries given by a(k,l)

ij := aij + δ(i,j),(k,l), and A(k,l) for the element 

of Mn×n(Z) with entries given by a(k,l)ij := aij − δ(i,j),(k,l). Let α, β ∈ Λ(n, r) with 

A ∈ Tab(α, β), and let 1 ≤ i < j ≤ n, 1 ≤ k, l ≤ n. Note that A(i,l)

(j,l) ∈ Tab(α(i,j,1), β) if 

ajl �= 0, whilst A(k,i)

(k,j) ∈ Tab(α, β(i,j,1)) if akj �= 0.

Henceforth, we denote by Tλ the set Tab(λ′, λ) for λ ∈ Λ+(n, r).

Lemma 3.13. Let λ ∈ Λ+(n, r) and 1 ≤ i < j ≤ n. For A ∈ Tλ we have:

(i) ρ[A] ◦ φ̄(i,j,1)

λ′ =
∑

l(ail + 1)ρ[A(i,l)

(j,l)], where the sum is over all l such that ajl �= 0.

(ii) ψ̄(i,j,1)

λ ◦ ρ[A] =
∑

k(aki + 1)ρ[A(k,i)

(k,j)], where the sum is over all k such that akj �= 0.

Proof. We shall only prove part (i) since part (ii) is similar. We may assume that j ≤

ℓ(λ′). Fix 1 ≤ i < j ≤ ℓ(λ′), and we denote by x := (x1| . . . |xi| . . . |xj | . . . |xn) a basis 
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element of M(λ′(i,j,1)
), where xi = (xi1, . . . , xi(λ′

i+1)) say. Then φ̄(i,j,1)

λ′ (x) =
∑λ′

i+1
k=1 x

k, 

where xk denotes the basis element of M(λ′) that is obtained from x by omitting the 

entry xik from the sequence xi and placing it in the (unordered) sequence xj . For 

1 ≤ k ≤ λ′
i + 1, we have ρ[A](xk) =

∑

t cktz[t], where the z[t] are the basis elements of 

M(λ) and the ckt are constants with ckt ∈ {0, 1}. Then ρ[A] ◦ φ̄(i,j,1)

λ′ (x) =
∑

t ctz[t]

where ct :=
∑λ′

i+1
k=1 ckt. Now, fix 1 ≤ k ≤ λ′

i + 1 and some s with cks = 1. Then, suppose 

that the entry xik appears in the lth-position z[s]l of z[s] and hence ajl �= 0. Note that 

the sequence z[s]l contains ail entries from {xi1, . . . , xi(k−1), xi(k+1), . . . , xi(λ′

i+1)}. If xiv

is such an entry with v �= k, then cvs = 1. On the other hand, given 1 ≤ q ≤ λ′
i + 1, 

if xiq does not appear as an entry in z[s]l, then cqs = 0. It follows that cs = ail + 1. 

Meanwhile, given 1 ≤ l′ ≤ n, z[s] appears in ρ
[

A(i,l′)

(j,l′)

]

(x) if and only if l′ = l, in which 

case it appears with a coefficient of 1. The result follows. �

Lemma 3.14. Let λ ∈ Λ+(n, r) and consider a homomorphism h ∈ HomkSr
(M(λ′), M(λ))

with h =
∑

A∈Tλ
h[A]ρ[A]. Then for 1 ≤ i < j ≤ n, we have:

(i) h ◦ φ̄(i,j,1)

λ′ = 0 if and only if 
∑

l bilh
[

B(j,l)

(i,l)

]

= 0 for all B ∈ Tab(λ′(i,j,1)
, λ).

(ii) ψ̄(i,j,1)

λ ◦ h = 0 if and only if 
∑

k dkih
[

D(k,j)

(k,i)

]

= 0 for all D ∈ Tab(λ′, λ(i,j,1)).

Proof. We shall only prove part (i) since part (ii) is similar. By Lemma 3.13 we have:

h ◦ φ̄(i,j,1)

λ′ =
∑

A∈Tλ

h[A](ρ[A] ◦ φ̄(i,j,1)

λ′ ) =
∑

A∈Tλ

h[A]

(

∑

l

(ail + 1)ρ
[

A(i,l)

(j,l)

]

)

=
∑

A∈Tλ

∑

l

(ail + 1)h[A]ρ
[

A(i,l)

(j,l)

]

=
∑

B∈Tab(λ′(i,j,1),λ)

(

∑

l

bilh
[

B(j,l)

(i,l)

]

)

ρ[B].

The result now follows from the linear independence of {ρ[B] | B ∈ Tab(λ′(i,j,1)
, λ)}. �

Definition 3.15. Let λ ∈ Λ+(n, r). We say that an element h ∈ HomkSr
(M(λ′), M(λ)) is 

relevant if h ◦ φ̄(i,j,1)

λ′ = 0 and ψ̄(i,j,1)

λ ◦ h = 0 for all 1 ≤ i < j ≤ n.

Denote by RelkSr
(M(λ′), M(λ)) the k-subspace of HomkSr

(M(λ′), M(λ)) consisting 

of the relevant homomorphisms M(λ′) → M(λ). The following Remark is clear:

Remark 3.16. Let λ ∈ Λ+(n, r). Note that there is a k-embedding of the endomorphism 

algebra of Sp(λ) into the k-space RelkSr
(M(λ′), M(λ)).

Now, by Lemma 3.14, we deduce the following Corollary:

Corollary 3.17. Let λ ∈ Λ+(n, r) and h ∈ HomkSr
(M(λ′), M(λ)). Then we have that 

h ∈ RelkSr
(M(λ′), M(λ)) if and only if the coefficients h[A] of the ρ[A] in h satisfy:



32 H. Geranios, A. Higgins / Journal of Algebra 652 (2024) 20–51

(i) For all 1 ≤ i < j ≤ n, 1 ≤ k ≤ n, and all A ∈ Tλ with ajk �= 0, we have:

(aik + 1)h[A] =
∑

l 	=k

ailh
[

A(i,k)(j,l)

(j,k)(i,l)

]

, (Rk
i,j(A))

(ii) For all 1 ≤ i < j ≤ n, 1 ≤ k ≤ n, and all A ∈ Tλ with akj �= 0, we have:

(aki + 1)h[A] =
∑

l 	=k

alih
[

A(k,i)(l,j)

(k,j)(l,i)

]

. (Ck
i,j(A))

4. A reduction trick

4.1. Flattening the partition

Now, we fix integers a, b, m with a ≥ m ≥ 2, and we write a′ := b +m −1, b′ := a −m +1. 

We denote by λ the partition (a, m − 1, . . . , 2, 1b), and we fix r := deg(λ). Note that the 

transpose partition λ′ of λ is given by λ′ = (a′, m − 1, . . . , 2, 1b′

).

Recall that through the ABW-construction of the induced module, we see that ∇(λ)

is isomorphic to a G-quotient of Λλ′

E = Λa′

E ⊗ Λm−1E ⊗ · · · ⊗ Λ2E ⊗ E⊗b′

, namely 

by the submodule im φλ′ (2.3). We claim that we can replace the factor E⊗b′

with the 

symmetric power Sb′

E. This process is in fact independent of the characteristic of the 

field k. To this end, we construct from the multiplication map μ : E⊗b′

→ Sb′

E, the 

surjective G-homomorphism 1 ⊗ μ : Λλ′

E → Λa′

E ⊗ Λm−1E ⊗ · · · ⊗ Λ2E ⊗ Sb′

E.

Lemma 4.1. For m ≥ 2 and λ = (a, m − 1, m − 2, . . . , 2, 1b), we have:

(i) ker(1 ⊗ μ) =
∑b′−1

k=1 im φ(m+k−1,m+k,1)

λ′ ⊆ im φλ′ .

(ii) ∇(λ) ∼= coker ((1 ⊗ μ) ◦ φλ′) as G-modules.

Proof. (i) Firstly, that im φ(m+k−1,m+k,1)

λ′ ⊆ im φλ′ for 1 ≤ k < b′ follows from the def-

inition of φλ′ . Then, note that by the definition of the symmetric power Sb′

E, the 

k-space ker μ is generated by elements of the form e
[k]
i

for 1 ≤ k < b′ and sequences 

i := (i1, . . . , ib′) with terms in [n], where e
[k]
i

:= (ei1
⊗· · ·⊗eik

⊗eik+1
⊗· · ·⊗eib′

) − (ei1
⊗

· · · ⊗ eik+1
⊗ eik

⊗ · · · ⊗ eib′
). Then, it follows that the k-space ker(1 ⊗ μ) is generated by 

elements of the form x ⊗ e
[k]
i

for x ∈ Λa′

E ⊗ Λm−1E ⊗ · · · ⊗ Λ2E, and such k and i. But 

given such x, k and i, the image of the element x ⊗ei1
⊗· · ·⊗(eik

∧eik+1
) ⊗· · ·⊗eib′

under 

φ(m+k−1,m+k,1)

λ′ is precisely x ⊗ e
[k]
i

, and so x ⊗ e
[k]
i

∈ im φ(m+k−1,m+k,1)

λ′ . On the other hand, 

it is clear that the elements of the form x ⊗ e
[k]
i

generate the k-space im φ(m+k−1,m+k,1)

λ′ , 

from which part (i) follows.

(ii) Now, the map 1 ⊗ μ : Λλ′

E → Λa′

E ⊗ Λm−1E ⊗ · · · ⊗ Λ2E ⊗ Sb′

E induces a sur-

jective G-homomorphism:
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π :
Λλ′

E

ker(1 ⊗ μ)
→

Λa′

E ⊗ Λm−1E ⊗ · · · ⊗ Λ2E ⊗ Sb′

E

im ((1 ⊗ μ) ◦ φλ′)
.

Moreover, it follows from part (i) that ker π = im φλ′/ ker(1 ⊗ μ), and so we deduce that 

∇(λ) ∼= coker ((1 ⊗ μ) ◦ φλ′). �

On the other hand, recall that through the James-construction of the induced module, 

we see that ∇(λ) is isomorphic to a submodule of SλE, namely as the kernel of the 

G-homomorphism ψλ (2.6). We claim that we may replace the factor E⊗b with the 

exterior power ΛbE. Once again, this process is independent of the characteristic of k. 

For this, we construct from the comultiplication map Δ : ΛbE → E⊗b, the injective 

G-homomorphism 1 ⊗ Δ : SaE ⊗ Sm−1E ⊗ · · · ⊗ S2E ⊗ ΛbE → SλE.

Lemma 4.2. For m ≥ 2 and λ = (a, m − 1, m − 2, . . . , 2, 1b), we have:

(i) ker ψλ ⊆
⋂b−1

k=1 ker ψ(m+k−1,m+k,1)

λ = im (1 ⊗ Δ).

(ii) ∇(λ) ∼= ker(ψλ ◦ (1 ⊗ Δ)) as G-modules.

Proof. (i) Firstly, it follows from the definition of ψλ that ker ψλ ⊆ ker ψ(m+k−1,m+k,1)

λ

for 1 ≤ k < b. Then, the k-space ker ψ(m+k−1,m+k,1)

λ is generated by elements of the form 

x ⊗e
[k]
i

for x ∈ SaE ⊗Sm−1E ⊗· · ·⊗S2E, 1 ≤ k < b, and sequences i := (i1, . . . , ib) with 

terms in [n], where e
[k]
i

:= (ei1
⊗· · ·⊗eik

⊗eik+1
⊗· · ·⊗eib

) −(ei1
⊗· · ·⊗eik+1

⊗eik
⊗· · ·⊗eib

). 

It follows that the k-space 
⋂b−1

k=1 ker ψ(m+k−1,m+k,1)

λ is generated by elements of the form:

∑

σ∈Sb

sgn(σ)
(

x ⊗ eiσ(1)
⊗ · · · ⊗ eiσ(b)

)

= x ⊗ Δ(ei1
∧ · · · ∧ eib

) ∈ im (1 ⊗ Δ).

Moreover, it is clear that elements of the form x ⊗ Δ(ei1
∧ · · · ∧ eib

) generate the k-space

im (1 ⊗ Δ), from which part (i) follows.

(ii) Now, the map 1 ⊗Δ : SaE⊗Sm−1E⊗· · ·⊗S2E⊗ΛbE → SλE induces an injective 

G-homomorphism ν : ker(ψλ ◦ (1 ⊗ Δ)) → ker ψλ. Moreover, it follows from part (i) that 

ν is surjective, and so we have a G-isomorphism ker(ψλ ◦ (1 ⊗ Δ)) ∼= ker ψλ
∼= ∇(λ). �

Now, we shall return to the situation where the underlying field k has characteristic 

2. We fix the sequences α := (a′, m − 1, . . . , 2, b′) and β := (a, m − 1, . . . , 2, b).

Remark 4.3. We shall consider the constructions of this section from the perspective of 

the Specht module Sp(λ).

(i) By Lemma 4.1(ii) we have that ∇(λ) ∼= coker ((1 ⊗ μ) ◦ φλ′). By applying the Schur 

functor f , we obtain that Sp(λ) ∼= coker (f(1 ⊗ μ) ◦ φ̄λ′). Now, since we are in char-

acteristic 2, we have that f(Λa′

E ⊗ Λm−1E ⊗ · · · ⊗ Λ2E ⊗ Sb′

E) is identified with 

f(Sa′

E ⊗ Sm−1E ⊗ · · · ⊗ S2E ⊗ Sb′

E) which in turn is isomorphic to M(α). We 
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write πα : M(λ′) → M(α) for the surjective kSr-homomorphism that is obtained 

from f(1 ⊗ μ) under these identifications. We set φ̄α := πα ◦ φ̄λ′ and we deduce that 

Sp(λ) ∼= coker φ̄α.

(ii) On the other hand, by Lemma 4.2(ii) we have that ∇(λ) ∼= ker(ψλ ◦ (1 ⊗ Δ)). By 

applying the Schur functor f , we deduce that Sp(λ) ∼= ker(ψ̄λ ◦ f(1 ⊗ Δ)). But 

once again, since we are in characteristic 2, f(SaE ⊗ Sm−1E ⊗ · · · ⊗ S2E ⊗ ΛbE)

is identified with f(SaE ⊗ Sm−1E ⊗ · · · ⊗ S2E ⊗ SbE) which in turn is isomorphic 

to M(β). We write ιβ : M(β) → M(λ) for the injective kSr-homomorphism that 

is obtained from f(1 ⊗ Δ) under these identifications. We set ψ̄β := ψ̄λ ◦ ιβ and we 

deduce that Sp(λ) ∼= ker ψ̄β .

We summarise the content of Remark 4.3 in the following Lemma:

Lemma 4.4. For m ≥ 2 and λ = (a, m − 1, m − 2, . . . , 2, 1b), we have:

(i) Sp(λ) ∼= coker φ̄α as kSr-modules.

(ii) Sp(λ) ∼= ker ψ̄β as kSr-modules.

We define the following kSr-homomorphisms:

φ̄(i,j,s)

α := πα ◦ φ̄(i,j,s)

λ′ : M(λ′(i,j,s)
) → M(α), ψ̄(i,j,t)

β
:= ψ̄(i,j,t)

λ ◦ ιβ : M(β) → M(λ(i,j,t)),

where πα and ιβ are as defined in Remark 4.3.

Lemma 4.5. For m ≥ 2 and λ = (a, m − 1, m − 2, . . . , 2, 1b), we have:

(i) φ̄(i,j,1)
α = 0 for m ≤ i < j ≤ n.

(ii) ψ̄(i,j,1)

β = 0 for m ≤ i < j ≤ n.

(iii) φ̄α =
∑m−1

i=1

∑λ′

i+1

s=1 φ̄(i,i+1,s)
α .

(iv) ψ̄β =
∑m−1

i=1

∑λi+1

t=1 ψ̄(i,i+1,t)

β .

Proof. Parts (i)-(ii) follow from Lemma 4.1(i) and Lemma 4.2(i) respectively. Then, 

parts (iii)-(iv) follow immediately from parts (i)-(ii). �

Now, the following Lemma provides an analogue of Lemma 3.4:

Lemma 4.6. For m ≥ 2 and λ = (a, m − 1, m − 2, . . . , 2, 1b), we have:

(i) im φ̄(i,j,s)
α ⊆ im φ̄α for 1 ≤ i < j ≤ m, 1 ≤ s ≤ λ′

j.

(ii) ker ψ̄β ⊆ ker ψ̄(i,j,t)

β for 1 ≤ i < j ≤ m, 1 ≤ t ≤ λj.

Proof. Firstly, recall the kSr-homomorphisms πα and ιβ defined within Remark 4.3. 

Then, part (i) follows from Lemma 3.4(i) by applying the Schur functor and post-
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composing by πα. Similarly, we see that part (ii) follows from Lemma 3.4(ii) by applying 

the Schur functor and pre-composing by ιβ . �

Then, by combining the results of Lemma 4.4, Lemma 4.5, and Lemma 4.6, we obtain 

the following description of the endomorphism algebra of Sp(λ):

Corollary 4.7. The endomorphism algebra of Sp(λ) may be identified with the k-subspace

of HomkSr
(M(α), M(β)) consisting of those elements h that satisfy:

(i) h ◦ φ̄(i,j,s)
α = 0 for 1 ≤ i < j ≤ m and 1 ≤ s ≤ λ′

j,

(ii) ψ̄(i,j,t)

β ◦ h = 0 for 1 ≤ i < j ≤ m and 1 ≤ t ≤ λj.

Definition 4.8. Let m ≥ 2, λ = (a, m − 1, m − 2, . . . , 2, 1b), α = (a′, m − 1, . . . , 2, b′), and 

β = (a, m − 1, . . . , 2, b). Then:

(i) We say that an element h ∈ HomkSr
(M(λ′), M(λ)) is semirelevant if h ◦ φ̄(i,j,1)

λ′ = 0

and ψ̄(i,j,1)

λ ◦ h = 0 for all m ≤ i < j ≤ n.

(ii) We say that an element h ∈ HomkSr
(M(α), M(β)) is relevant if h ◦ φ̄(i,j,1)

α = 0 and 

ψ̄(i,j,1)

β ◦ h = 0 for all 1 ≤ i < j ≤ m.

Denote by SRelkSr
(M(λ′), M(λ)) the k-subspace of HomkSr

(M(λ′), M(λ)) consisting 

of the semirelevant homomorphisms M(λ′) → M(λ), and then, we shall also denote by 

RelkSr
(M(α), M(β)) the k-subspace of HomkSr

(M(α), M(β)) consisting of the relevant 

homomorphisms M(α) → M(β).

Lemma 4.9. Denote by ω : HomkSr
(M(α), M(β)) → HomkSr

(M(λ′), M(λ)) the k-linear 

homomorphism with ω(h) := ιβ ◦ h ◦ πα. Then ω induces the following k-linear isomor-

phisms:

(i) ω̂ : HomkSr
(M(α), M(β)) → SRelkSr

(M(λ′), M(λ)).

(ii) ω̄ : RelkSr
(M(α), M(β)) → RelkSr

(M(λ′), M(λ)).

Proof. Firstly, notice that Lemma 4.5(i) and Lemma 4.5(ii) justify the stated codomains 

of the maps ω̂ and ω̄ respectively. Moreover, ω̂ and ω̄ are clearly injective. Now, 

Lemma 4.1(i) and Lemma 4.2(i) give that both maps are surjective. �

Remark 4.10. Let γ ∈ Λ(n, r) with ℓ := ℓ(γ). Then:

(i) Fix B ∈ Tab(α, γ). Then ρ[B] ◦ πα ∈ HomkSr
(M(λ′), M(γ)) and one can easily 

check that ρ[B] ◦ πα =
∑

A ρ[A], where the sum is over those A ∈ Tab(λ′, γ) whose 

first (m − 1) rows agree with those of B, and also 
∑a

i=m aij = bmj for 1 ≤ j ≤

ℓ. Informally, these A are obtained from B by distributing, along columns, each 
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non-zero entry within the mth-row of B into rows m through a of A such that these 

rows of A contain exactly one non-zero, and hence equal to 1, entry.

(ii) Now, let B ∈ Tab(γ, β). Then ιβ ◦ ρ[B] ∈ HomkSr
(M(γ), M(λ)) and one can easily 

check that ιβ ◦ ρ[B] =
∑

A ρ[A], where the sum is over those A ∈ Tab(γ, λ) whose 

first (m − 1) columns agree with those of B, and also 
∑a′

j=m aij = bim for 1 ≤ i ≤ ℓ. 

Informally, these A are obtained from B by distributing, along rows, each non-zero

entry within the mth-column of B into columns m through a′ of A such that these 

columns of A contain exactly one non-zero, and hence equal to 1, entry.

The following Example details the forms of the compositions of maps discussed in 

Remark 4.10.

Example 4.11. For λ = (3, 13), we have:

ρ

[

2 2
1 1

]

◦ π(4,2) = ρ

[

2 2
1 0
0 1

]

+ ρ

[

2 2
0 1
1 0

]

,

ι(3,3) ◦ ρ

[

2 2
1 1

]

= ρ

[

2 1 1 0
1 0 0 1

]

+ ρ

[

2 1 0 1
1 0 1 0

]

+ ρ

[

2 0 1 1
1 1 0 0

]

,

ι(3,3) ◦ ρ

[

2 2
1 1

]

◦ π(4,2) = ρ

[

2 1 1 0
1 0 0 0
0 0 0 1

]

+ ρ

[

2 1 0 1
1 0 0 0
0 0 1 0

]

+ ρ

[

2 0 1 1
1 0 0 0
0 1 0 0

]

+ ρ

[

2 1 1 0
0 0 0 1
1 0 0 0

]

+ ρ

[

2 1 0 1
0 0 1 0
1 0 0 0

]

+ ρ

[

2 0 1 1
0 1 0 0
1 0 0 0

]

.

The following Lemma provides an analogue of Corollary 3.17:

Lemma 4.12. Let h ∈ HomkSr
(M(α), M(β)). Then h ∈ RelkSr

(M(α), M(β)) if and only 

if the coefficients h[B] of the ρ[B] in h satisfy:

(i) For all 1 ≤ i < j ≤ m, 1 ≤ k ≤ m, and all B ∈ Tab(α, β) with bjk �= 0, we have:

(bik + 1)h[B] =
∑

l 	=k

bilh
[

B(i,k)(j,l)

(j,k)(i,l)

]

, (Rk
i,j(B))

(ii) For all 1 ≤ i < j ≤ m, 1 ≤ k ≤ m, and all B ∈ Tab(α, β) with bkj �= 0, we have:

(bki + 1)h[B] =
∑

l 	=k

blih
[

B(k,i)(l,j)

(k,j)(l,i)

]

. (Ck
i,j(B))

Proof. For B ∈ Tab(α, β), we denote by Ω(B) the subset of matrices in Tab(λ′, λ) with:

ω(ρ[B]) = ιβ ◦ ρ[B] ◦ πα =
∑

A∈Ω(B)

ρ[A]. (4.13)
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Clearly, given B �= B′ ∈ Tab(α, β), we have that Ω(B) ∩ Ω(B′) = ∅. Now, we fix 

h ∈ HomkSr
(M(α), M(β)) with h =

∑

B∈Tab(α,β) h[B]ρ[B], and we shall fix the notation 

h̃ := ω(h) = ιβ ◦ h ◦ πα. Then, it follows from Remark 4.10 that the coefficients h̃[A] of 

the ρ[A] in h̃ satisfy:

h̃[A] =

{

h[B], if A ∈ Ω(B) for some B ∈ Tab(α, β),

0, otherwise.
(4.14)

Now, suppose that h is relevant and we shall show that the coefficients h[B] of the ρ[B]

in h satisfy the relations stated in (i), and it may be shown in a similar manner that they 

also satisfy the relations stated in (ii). Firstly, note that h̃ is relevant by Lemma 4.9(ii). 

We fix 1 ≤ i < j ≤ m, 1 ≤ k ≤ m, and B ∈ Tab(α, β) with bjk �= 0. Then, there 

exists A ∈ Ω(B) with ajk �= 0. For such an A, since h̃ is relevant, the relation Rk
i,j(A) of 

Corollary 3.17(ii) gives that:

(aik + 1)h̃[A] =
∑

l 	=k

ailh̃
[

A(i,k)(j,l)

(j,k)(i,l)

]

. (4.15)

Now, take any 1 ≤ l ≤ n with l �= k such that ail �= 0. If l < m, then ail = bil and 

A(i,k)(j,l)

(j,k)(i,l) ∈ Ω(B(i,k)(j,l)

(j,k)(i,l)), so that h̃
[

A(i,k)(j,l)

(j,k)(i,l)

]

= h
[

B(i,k)(j,l)

(j,k)(i,l)

]

. On the other hand, if l ≥ m, 

then ail = 1 with A(i,k)(j,l)

(j,k)(i,l) ∈ Ω(B(i,k)(j,m)

(j,k)(i,m)) so that h̃
[

A(i,k)(j,l)

(j,k)(i,l)

]

= h
[

B(i,k)(j,m)

(j,k)(i,m)

]

. Therefore, 

we may rewrite (4.15) as:

(aik + 1)h[B] =
∑

l<m
l 	=k

bilh
[

B(i,k)(j,l)

(j,k)(i,l)

]

+
(

∑

l≥m
l 	=k

ail

)

h
[

B(i,k)(j,m)

(j,k)(i,m)

]

. (4.16)

Now, if k < m, then aik = bik and 
∑

l≥m ail = bim. Thus, (4.16) becomes:

(bik + 1)h[B] =
∑

l<m
l 	=k

bilh
[

B(i,k)(j,l)

(j,k)(i,l)

]

+ bim

[

B(i,k)(j,m)

(j,k)(i,m)

]

=
∑

l 	=k

bilh
[

B(i,k)(j,l)

(j,k)(i,l)

]

,

which is precisely the relation Rk
i,j(B).

On the other hand, if k = m, then aim = 0, since ajm �= 0, and so 
∑

l>m ail = bim. 

Moreover, B(i,k)(j,m)

(j,k)(i,m) = B, and so (4.16) becomes:

h[B] =
∑

l<m

bilh
[

B(i,k)(j,l)

(j,k)(i,l)

]

+ bimh[B],

which in turn gives the relation Rm
i,j(B):

(bim + 1)h[B] =
∑

l 	=m

bilh
[

B(i,k)(j,l)

(j,k)(i,l)

]

.
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Conversely, suppose that the coefficients h[B] of the ρ[B] in h satisfy the relations 

stated in the Lemma. Note that by Lemma 4.9(ii), in order to show that h is relevant, 

it suffices to show that h̃ is relevant. To this end, we shall show that h̃ ◦ φ̄(i,j,1)

λ′ = 0 for 

1 ≤ i < j ≤ n, and it shall follow similarly that ψ̄(i,j,1)

λ ◦ h̃ = 0 for such i, j. Note that 

h̃ is semirelevant by Lemma 4.9(i) and so h̃ ◦ φ̄(i,j,1)

λ′ = 0 for i ≥ m. Therefore, we may 

assume that i < m. Accordingly, fix some 1 ≤ i < j ≤ n with i < m. Then, as in the 

proof of Lemma 3.14, we have:

h̃ ◦ φ̄(i,j,1)

λ′ =
∑

C∈Tab(λ′(i,j,1),λ)

⎛

⎝

∑

1≤l≤n

cilh̃
[

C(j,l)

(i,l)

]

⎞

⎠ ρ[C]. (4.17)

Let C ∈ Tab(λ′(i,j,1)
, λ), and we wish to show that the coefficient of ρ[C] in h̃ ◦ φ̄(i,j,1)

λ′

is equal to 0. According to (4.14) and (4.17), we may assume that there exists some 

1 ≤ k ≤ n with cik �= 0 such that A := C(j,k)

(i,k) ∈ Ω(B) for some B ∈ Tab(α, β), where Ω(B)

is as in (4.13), since otherwise, each summand cilh̃
[

C(j,l)

(i,l)

]

appearing in the coefficient of 

ρ[C] in (4.17) is equal to zero. Then, it follows from (4.17) that the coefficient of ρ[C] in 

h̃ ◦ φ̄(i,j,1)

λ′ is:

cikh[B] +
∑

1≤l≤n
l 	=k

cilh̃
[

A(i,k)(j,l)

(j,k)(i,l)

]

. (4.18)

We split our consideration into the following cases:

(i) (j < m; k < m): We have cik = aik +1 = bik +1. Now, if 1 ≤ l < m with l �= k, then 

cil = ail = bil with A(i,k)(j,l)

(j,k)(i,l) ∈ Ω(B(i,k)(j,l)

(j,k)(i,l)) so that h̃
[

A(i,k)(j,l)

(j,k)(i,l)

]

= h
[

B(i,k)(j,l)

(j,k)(i,l)

]

. On 

the other hand, if l ≥ m with cil �= 0, then cil = ail = 1 with A(i,k)(j,l)

(j,k)(i,l) ∈ Ω(B(i,k)(j,m)

(j,k)(i,m))

so that h̃
[

A(i,k)(j,l)

(j,k)(i,l)

]

= h
[

B(i,k)(j,m)

(j,k)(i,m)

]

. Note that there are precisely bim such values of 

l. Hence, we may rewrite (4.18) as:

(bik + 1)h[B] +
∑

1≤l<m
l 	=k

bilh
[

B(i,k)(j,l)

(j,k)(i,l)

]

+ bimh
[

B(i,k)(j,m)

(j,k)(i,m)

]

= 0,

since the coefficient h[B] satisfies the relation Rk
i,j(B).

(ii) (j < m; k ≥ m): Here, we have cik = 1 and also bjm �= 0 since A ∈ Ω(B). 

Now, if 1 ≤ l < m, then cil = ail = bil with A(i,k)(j,l)

(j,k)(i,l) ∈ Ω(B(i,m)(j,l)

(j,m)(i,l)) so that 

h̃
[

A(i,k)(j,l)

(j,k)(i,l)

]

= h
[

B(i,m)(j,l)

(j,m)(i,l)

]

. On the other hand, if l ≥ m with l �= k and cil �= 0, 

then cil = ail = 1 with A(i,k)(j,l)

(j,k)(i,l) ∈ Ω(B) so that h̃
[

A(i,k)(j,l)

(j,k)(i,l)

]

= h[B]. Note that there 

are precisely bim such values of l. Hence, we may rewrite (4.18) as:
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h[B] +
∑

1≤l<m

bilh
[

B(i,m)(j,l)

(j,m)(i,l)

]

+ bimh[B] = 0,

since the coefficient h[B] satisfies the relation Rm
i,j(B).

(iii) (j ≥ m; k < m): Now, we have cik = aik + 1 = bik + 1 and also bmk �= 0 since A ∈

Ω(B). Now, if 1 ≤ l < m with l �= k, then cil = ail = bil with A(i,k)(j,l)

(j,k)(i,l) ∈ Ω(B(i,k)(m,l)

(m,k)(i,l))

so that h̃
[

A(i,k)(j,l)

(j,k)(i,l)

]

= h
[

B(i,k)(m,l)

(m,k)(i,l)

]

. On the other hand, if l ≥ m with cil �= 0, then 

cil = ail = 1 with A(i,k)(j,l)

(j,k)(i,l) ∈ Ω(B(i,k)(m,m)

(m,k)(i,m)) so that h̃
[

A(i,k)(j,l)

(j,k)(i,l)

]

= h
[

B(i,k)(m,m)

(m,k)(i,m)

]

. 

Note that there are precisely bim such values of l. Hence, we may rewrite (4.18) as:

(bik + 1)h[B] +
∑

1≤l<m
l 	=k

bilh
[

B(i,k)(m,l)

(m,k)(i,l)

]

+ bimh
[

B(i,k)(m,m)

(m,k)(i,m)

]

= 0,

since the coefficient h[B] satisfies the relation Rk
i,m(B).

(iv) (j ≥ m; k ≥ m): Finally, in this case, we have cik = 1 and also bmm �= 0 since 

A ∈ Ω(B). Now, if 1 ≤ l < m, then cil = ail = bil with A(i,k)(j,l)

(j,k)(i,l) ∈ Ω(B(i,m)(m,l)

(m,m)(i,l))

so that h̃
[

A(i,k)(j,l)

(j,k)(i,l)

]

= h
[

B(i,m)(m,l)

(m,m)(i,l)

]

. On the other hand, if l ≥ m with l �= k and 

cil �= 0, then cil = ail = 1 with A(i,k)(j,l)

(j,k)(i,l) ∈ Ω(B) so that h̃
[

A(i,k)(j,l)

(j,k)(i,l)

]

= h[B]. Note 

that there are precisely bim such values of l. Hence, we may rewrite (4.18) as:

h[B] +
∑

1≤l<m

bilh
[

B(i,m)(m,l)

(m,m)(i,l)

]

+ bimh[B] = 0,

since the coefficient h[B] satisfies the relation Rm
i,m(B).

Thus, we have shown that the coefficient of ρ[C] in h̃ ◦ φ̄(i,j,1)

λ′ is zero in all possible cases, 

and so we are done. �

Now, since α and β both have length m, we may ignore the final (n − m) rows and 

columns of each matrix in Tab(α, β) and Tab(β, α). Accordingly, we identify Tab(α, β)

with the set T := {A ∈ Mm×m(N) |
∑

j aij = αi and
∑

i aij = βj}, and Tab(β, α) with 

the set T ′ := {A ∈ Mm×m(N) |
∑

j aij = βi and
∑

i aij = αj}.

Remark 4.19. Note that λ and its transpose λ′ are of the same form. That is to say, 

the swap λ ↔ λ′ is equivalent to the swap (a, b) ↔ (a′, b′), where a′ = b + m − 1, 

b′ = a − m + 1 respectively, which in turn is equivalent to the swap α ↔ β. Therefore, 

after defining the notion of relevance for elements h ∈ HomkSr
(M(β), M(α)), similarly 

to Definition 4.8(ii), and also swapping T with T ′, we obtain the following analogue of 

Lemma 4.12:

Corollary 4.20. Let h ∈ HomkSr
(M(β), M(α)). Then h ∈ RelkSr

(M(β), M(α)) if and 

only if the coefficients h[B] of the ρ[B] in h satisfy:
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(i) Rk
i,j(B) for all 1 ≤ i < j ≤ m, 1 ≤ k ≤ m, and B ∈ T ′ with bjk �= 0,

(ii) Ck
i,j(B) for all 1 ≤ i < j ≤ m, 1 ≤ k ≤ m, and B ∈ T ′ with bkj �= 0.

The following Remark is clear:

Remark 4.21. Let m ≥ 2 and λ = (a, m − 1, m − 2, . . . , 2, 1b). Then:

(i) We have a k-linear embedding of the endomorphism algebra of Sp(λ) into the 

k-space RelkSr
(M(α), M(β)).

(ii) We have a k-linear embedding of the endomorphism algebra of Sp(λ′) into the 

k-space RelkSr
(M(β), M(α)).

Remark 4.22. Let h ∈ HomkSr
(M(α), M(β)) and consider its transpose homomorphism 

h′ ∈ HomkSr
(M(β), M(α)). We have:

(i) For 1 ≤ i < j ≤ m, 1 ≤ k ≤ m, and A ∈ T with ajk �= 0, the relation Rk
i,j(A)

concerning the coefficient of ρ[A] in h coincides with the relation Ck
i,j(A′) concerning 

the coefficient of ρ[A′] in h′.

(ii) For 1 ≤ i < j ≤ m, 1 ≤ k ≤ m, and A ∈ T with akj �= 0, the relation Ck
i,j(A)

concerning the coefficient of ρ[A] in h coincides with the relation Rk
i,j(A′) concerning 

the coefficient of ρ[A′] in h′.

(iii) The transpose homomorphism h′ is relevant if and only if h is relevant.

4.2. A critical relation

Here, we shall highlight a new relation that occurs as a combination of the relations 

Rk
i,j(A) and Ck

i,j(A) of Lemma 4.12 that will play an important role in our considerations 

below.

Lemma 4.23. Suppose that h ∈ HomkSr
(M(α), M(β)) is a relevant homomorphism. Then 

the coefficients h[A] of the ρ[A] in h satisfy the relations:

zj,k(A)h[A] =
∑

i<j
l>k

ailh
[

A(i,k)(j,l)

(j,k)(i,l)

]

+
∑

i>j
l<k

ailh
[

A(i,k)(j,l)

(j,k)(i,l)

]

, (Zj,k(A))

for all 1 ≤ j, k ≤ m and A ∈ T with ajk �= 0, where zj,k(A) :=
∑

i<j

aik +
∑

l<k

ajl +j+k ∈ k.

Proof. Since h is relevant, the coefficients h[A] of the ρ[A] in h satisfy the relations of 

Lemma 4.12, and so in particular, given 1 ≤ j, k ≤ m, the coefficients satisfy the relation 
∑

i<j Rk
i,j(A) +

∑

l<k Cj
l,k(A) for all A ∈ T with ajk �= 0. But, the left-hand side of this 

relation is given by:
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∑

i<j

(aik + 1)h[A] +
∑

l<k

(ajl + 1)h[A] = zj,k(A)h[A], (4.24)

by definition of zj,k(A). On the other hand, the right-hand side of this relation is:

∑

i<j
l 	=k

ailh
[

A(i,k)(j,l)

(j,k)(i,l)

]

+
∑

l<k
i	=j

ailh
[

A(j,l)(i,k)

(j,k)(i,l)

]

. (4.25)

Now, notice that for i < j, l < k we have A(j,l)(i,k)

(j,k)(i,l) = A(i,k)(j,l)

(j,k)(i,l) and so after cancelling 

those terms that appear twice, we may rewrite (4.25) as:

∑

i<j
l 	=k

ailh
[

A(i,k)(j,l)

(j,k)(i,l)

]

+
∑

l<k
i	=j

ailh
[

A(i,k)(j,l)

(j,k)(i,l)

]

=
∑

i<j
l>k

ailh
[

A(i,k)(j,l)

(j,k)(i,l)

]

+
∑

i>j
l<k

ailh
[

A(i,k)(j,l)

(j,k)(i,l)

]

,

which, along with (4.24), gives the required expression. �

5. One-dimensional endomorphism algebra

Given integers s, t, we write s ≡ t to mean that s is congruent to t modulo 2, and so 

in particular, are equal as elements of the field k. From here, we shall assume that the 

parameters a, b, and m satisfy the parity condition: a − m ≡ b (mod 2). Note that this 

condition is preserved by the swap (a, b) ↔ (a′, b′), where a′ = b + m − 1, b′ = a − m + 1.

Firstly, we highlight some basic properties of the coefficients zj,k(A) from Lemma 4.23.

Lemma 5.1. Let A ∈ T . Then:

(i) zj,k(A) =
∑

i>j aik +
∑

l>k ajl + αj + βk + j + k for 1 ≤ j, k ≤ m.

(ii) zj,k(A) =
∑

i>j aik +
∑

l>k ajl for 1 < j, k < m.

(iii) zj,m(A) = b + 1 +
∑

i>j aim and zm,k(A) = a + m +
∑

i>k ami for 1 < j, k < m.

(iv) zm,m(A) = 1.

(v) z1,m(A) =
∑

i>1 aim and zm,1(A) =
∑

i>1 ami.

Proof. Part (i) follows from substituting the two expressions: 
∑

i<j aik = βk −
∑

i≥j aik

and 
∑

l<k ajl = αj −
∑

l≥k aji into the definition of zi,j(A). Parts (ii)-(v) then follow 

immediately from part (i) along with the forms of α and β. �

Definition 5.2. Let A, B ∈ T . Then:

(i) We write A <R B to mean that B follows A under the induced lexicographical 

order on rows, reading left to right and bottom to top. This is a total order and we 

call it the row-order.
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(ii) We write A <C B to mean that B follows A under the induced lexicographical 

order on columns, reading top to bottom and right to left. This is a total order and 

we call it the column-order.

Remark 5.3. Let 1 ≤ j, k ≤ m and let A ∈ T with ajk �= 0. Then any B = A(i,k)(j,l)

(j,k)(i,l) that 

appears in the relation Zj,k(A) of Lemma 4.23 satisfies both B <R A and B <C A.

From now on, we fix a relevant homomorphism h ∈ HomkSr
(M(α), M(β)).

Lemma 5.4. Let A ∈ T and suppose that amm �= 0. Then h[A] = 0.

Proof. Firstly, zm,m(A) = 1 by Lemma 5.1(iv), and the result follows by Zm,m(A). �

Remark 5.5. Assume that m = 2, where then α = (b + 1, a − 1) and β = (a, b). Suppose 

that h ∈ HomkSr
(M(α), M(β)) is a non-zero relevant homomorphism, and suppose that 

A ∈ T is such that h[A] �= 0. We may assume that a22 = 0 by Lemma 5.4. Now, since 

a12 + a22 = b and a21 + a22 = a − 1, we deduce that a12 = b and a21 = a − 1. Moreover, 

since a11 + a12 = b + 1, we have that a11 = 1. Hence, there is a unique matrix A for 

which h[A] �= 0, namely:

A =
1 b

a − 1 0
.

Hence for λ = (a, 1b) with a ≡ b (mod 2), we deduce that EndkSr
(Sp(λ)) ∼= k, and in 

this way we recover Murphy’s result [14, Theorem 4.1].

Lemma 5.6. Let A ∈ T and suppose that there exist some 1 < j, k < m such that ajm �= 0

and amk �= 0. Then h[A] = 0.

Proof. Suppose for contradiction that the claim is false and let A ∈ T be a counterex-

ample that is minimal with respect to the column-order <C . We choose 1 < j, k < m to 

be maximal such that ajm, amk �= 0. We may assume that amm = 0 by Lemma 5.4. Now, 

by Lemma 5.1(iii) we have zj,m(A) +zm,k(A) = 1 and so the relation Zj,m(A) +Zm,k(A)

gives:

h[A] =
∑

i>j
l<m

ailh[B[i,l]] +
∑

i<m
l>k

ailh[D[i,l]],

where B[i,l] := A(i,m)(j,l)

(j,m)(i,l) for i > j, l < m with ail �≡ 0, and D[i,l] := A(i,k)(m,l)

(m,k)(i,l) for i < m, 

l > k with ail �≡ 0.

Suppose that i > j, l < m are such that ail �≡ 0, and consider the matrix B[i,l]. 

If i = m, then b[m,l]
mm �= 0 and so h[B[m,l]] = 0 by Lemma 5.4. On the other hand, if 

i < m then b[i,l]

im , b[i,l]

mk �= 0, and notice also that B[i,l] <C A by Remark 5.3. Therefore, by 
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minimality of A, we have that h[B[i,l]] = 0. Similarly, one may show that h[D[i,l]] = 0 for 

i < m, l > k with ail �≡ 0, and so we deduce that h[A] = 0. �

Definition 5.7. We define the sets:

(i) T R := {A ∈ T | ai1 = 1 for 1 ≤ i < m, and amk = 0 for 1 < k ≤ m}.

(ii) T C := {A ∈ T | a1k = 1 for 1 ≤ k < m, and aim = 0 for 1 < i ≤ m}.

Lemma 5.8. Let A ∈ T and suppose that A �∈ T R ∪ T C. Then h[A] = 0.

Proof. By Lemma 5.4 we may assume that amm = 0. Suppose that amk �= 0 for some k

with 1 < k < m. Then, by Lemma 5.6, we may assume that ajm = 0 for 1 < j < m. But 

then a1m = b and so 
∑

l<m a1l = m − 1. Since A �∈ T C we deduce that there exists some 

1 ≤ l < m with a1l = 0. Now, the relation C1
l,m(A) gives that h[A] =

∑

j>1 ajlh[B[j]]

where B[j] := A(1,l)(j,m)

(1,m)(j,l) for j > 1 with ajl �≡ 0. Suppose that j > 1 is such that ajl �≡ 0. 

If j = m then b[m]
mm �= 0 and so h[B[m]] = 0 by Lemma 5.4. Moreover, for 1 < j < m

we have that b[j]

mk, b[j]

jm �= 0 and so h[B[j]] = 0 by Lemma 5.6. Therefore, we deduce that 

h[A] = 0.

Hence, we may assume that amk = 0 for all 1 < k ≤ m and so it follows that 

am1 = a − m + 1 and that 
∑

j<m aj1 = m − 1. However, since A �∈ T R we must have 

that aj1 = 0 for some j with 1 ≤ j < m. Now, the relation R1
j,m(A) gives h[A] =

∑

l>1 ajlh[D[l]] where D[l] := A(j,1)(m,l)

(m,1)(j,l) for l > 1 with ajl �≡ 0. Suppose that l > 1 is such 

that ajl �≡ 0. If l = m, then d[m]
mm �= 0 and so h[D[m]] = 0 by Lemma 5.4. On the other 

hand, if 1 < l < m then d[l]
ml �= 0. Now, if d[l]

um �= 0 for some 1 < u < m, then h[D[l]] = 0

by Lemma 5.6. Hence, we may assume that d[l]
um = 0 for all 1 < u < m and so we deduce 

that d[l]

1m = a1m = b. Since A �∈ T C we have that there exists some 1 ≤ k < m with 

a1k = 0 and hence d[l]

1k = 0. Then, the relation C1
k,m(D[l]) expresses h[D[l]] as a linear 

combination of h[F ]s where either fmm �= 0, or fml �= 0 and fvm �= 0 for some v with 

1 < v < m. Once again, Lemma 5.4 and Lemma 5.6 give that h[F ] = 0 for all such F

and so h[D[l]] = 0. Hence h[A] = 0. �

Definition 5.9. We shall require some additional notation that we shall introduce here:

(i) In order to assist with counting in reverse, set τ(i) := m − (i − 1) for 1 ≤ i ≤ m.

(ii) For 1 < i < m, we define:

T Ri := {A ∈ T R | the τ(j)th-row of A contains j odd entries for 1 < j ≤ i}.

(iii) For 1 < i < m, we define T Ri := T Ri \ T Ri+1, where we set T Rm := ∅.

Remark 5.10. Let A ∈ T . Recall that 
∑

l aτ(i)l = i for 1 < i < m. Therefore, if A ∈ T Ri

for some 1 < i < m, then the τ(j)th-row of A consists entirely of ones and zeros for all 

1 < j ≤ i.
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Definition 5.11. Let 1 < i < m and A ∈ T Ri. Then:

(i) We set KA := {2 ≤ k ≤ i | auk = 1 for τ(i) ≤ u ≤ τ(k)}.

(ii) We set kA := min{2 ≤ k ≤ i + 1 | k �∈ KA}.

(iii) If kA ≤ i, we set jA := min{kA ≤ j ≤ i | aτ(j)kA
= 0}.

(iv) If kA ≤ i and kA ≤ j ≤ i, we denote by wj(A) := (wj
1(A), wj

2(A), . . .) the decreas-

ing sequence of column-indices within the final τ(kA) columns of A that satisfy 

a
τ(j)w

j
s(A) = 1 for s ≥ 1.

Notice that the sequence wj(A) has j − kA + 1 terms.

Example 5.12. We have kA = 4, jA = 4, and w5(A) = (7, 5), where:

A :=

1 · · · · · · · ·

...
...

...
...

...
...

...
...

...

1 1 1 1 1 2 0 0 0

1 1 1 0 1 0 1 0 0

1 1 1 0 1 0 0 0 0

1 1 1 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0

a − m + 1 0 0 0 0 0 0 0 0

∈ T R5.

Lemma 5.13. Let 2 < i < m and let A ∈ T Ri with kA ≤ i. Suppose that there exists 

some index k with kA < k ≤ i such that wj
t (A) = wj−1

t−1 (A) for all kA < j ≤ k and all 

even t. Then for l ≥ kA, kA ≤ j ≤ k, we have 
∑

u≥τ(j) aul ≡ 1 if and only if l = wj
s(A)

for some odd s.

Proof. We proceed by induction on j. The case j = kA is clear and so we may assume 

that j > kA and that the claim holds for all smaller values of j in the given range. Let 

l ≥ kA and suppose that 
∑

u≥τ(j) aul ≡ 1. Suppose, for the moment, that aτ(j)l = 0. 

Then 
∑

u≥τ(j) aul =
∑

u≥τ(j−1) aul, and so l = wj−1
s (A) for some odd s by the inductive 

hypothesis. However, wj
s+1(A) = wj−1

s (A) = l and so aτ(j)l = 1, contradicting that 

aτ(j)l = 0. Hence, aτ(j)l = 1 and so l = wj
s(A) for some s. Moreover, 

∑

u≥τ(j) aul ≡ 1

if and only if 
∑

u≥τ(j−1) aul ≡ 0 and so by the inductive hypothesis l �= wj−1
s′ (A) for 

any odd s′. Now, if s is even then wj
s(A) = wj−1

s−1(A), leading to a contradiction. Hence, 

s must be odd. Conversely, suppose that l = wj
s(A) for some odd s, and suppose, for 

the sake of contradiction, that 
∑

u≥τ(j) aul ≡ 0. Then, there exists some kA ≤ j′ < j

such that aτ(j′)l = 1, and we choose j′ to be maximal with this property. Therefore, 

aul = 0 for τ(j) < u < τ(j′) and 
∑

u≥τ(j′) aul ≡ 1. Then, by the inductive hypothesis, 

l = wj′

s′ (A) for some odd s′. But then wj′+1
s′+1(A) = wj′

s′ (A) = l, by our assumption, 

and so aτ(j′+1)l = 1. Now, by the maximality of j′, we must have j′ + 1 = j. Thus, 
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l = wj′+1
s′+1(A) = wj

s′+1(A) = wj
s(A) and so s′ + 1 = s, which is impossible since s′ and s

are both odd. Hence 
∑

u≥τ(j) aul ≡ 1, and so we are done. �

Lemma 5.14. Let 2 < i < m and let A ∈ T Ri with kA ≤ i. Suppose that zτ(j),l(A) = 0

for all kA ≤ j ≤ i, kA ≤ l < m with aτ(j)l = 1. Then wj
s(A) = wj−1

s−1(A) for kA < j ≤ i

and even s with s ≤ j − kA + 1.

Proof. We fix i and we proceed by induction on j, with the base case being j = kA +

1. Here wj(A) = (wj
1(A), wj

2(A)) and for w := wj
2(A) we have zτ(j),w(A) = 0. Now, 

by Lemma 5.1(ii) we have zτ(j),w(A) =
∑

u>τ(j) auw +
∑

v>w aτ(j)v = aτ(j−1)w + 1. 

Therefore, the entry aτ(j−1)w is odd and so w = wkA
1 (A) as required. Suppose now that 

kA + 1 < j ≤ i and that the claim holds for smaller values of j in the given range. Note 

that this implies that the hypotheses of Lemma 5.13 are met for k = j − 1.

Suppose that s is even and set l := wj
s(A). Then 

∑

u>τ(j) aul + s − 1 ≡ 0 by 

Lemma 5.1(ii) since zτ(j),l(A) = 0. Therefore, 
∑

u≥τ(j−1) aul ≡ 1 and so by Lemma 5.13

we deduce that l = wj−1
s′ (A) for some odd s′ with s′ ≤ j − kA. Now, the sequence wj(A)

has exactly one extra term compared to wj−1(A) and so the number of even indices in 

wj(A) equals the number of odd indices in wj−1(A). It follows that s′ = s − 1 and so we 

are done. �

Lemma 5.15. Let 1 < i < m and let A ∈ T Ri with kA ≤ i. Suppose that 

wj
1(A) > wj−1

1 (A) for all jA < j ≤ i. Then we may express h[A] as a linear combi-

nation of h[B]s for some B ∈ T where either:

(i) B ∈ T Ri′ for some i′ < i,

(ii) B ∈ T Ri with kB > kA,

(iii) B ∈ T Ri with kB = kA and B <C A, which is witnessed within the final τ(wjA

1 (A))

columns of A and B.

Moreover, if A �∈ T C then B �∈ T C for all such B listed above.

Proof. To ease notation we set u := τ(jA) > 1, k := kA, and w := wjA

1 (A). Notice that 

w > k, and that auk = 0 and auw = 1. The relation Cu
k,w(A) gives h[A] =

∑

l 	=u alkh[B[l]]

where B[l] := A(u,k)(l,w)

(u,w)(l,k) for l �= u with alk �≡ 0. Let l �= u be such that alk �≡ 0, and let 

k[l] := kB[l], j[l] := jB[l], and w[l] := w
j[l]

1 (B[l]). We shall proceed by induction on jA, 

decreasing from jA = i.

Firstly, suppose that jA = i. If l > u and alw �= 0, then B[l] ∈ T Ri′ for some i′ < i, 

and so B[l] is as described in case (i). Now, if l > u with alw = 0, then k[l] = k, B[l] <C A, 

and the final column in which B[l] and A differ is the wth-column. Hence, here B[l] is as 

described in case (iii). On the other hand, if l < u, then k[l] > k and B[l] is as described 

in case (ii).
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Now, suppose that jA < i and that the claim holds for all D ∈ T Ri with jA < jD ≤ i. 

We split our consideration into steps:

Step 1: If l > u and alw �= 0, then B[l] ∈ T Ri′ for some i′ < i, and so B[l] is as 

described in case (i). On the other hand, if l > u and alw = 0, then B[l] ∈ T Ri with 

k[l] = k and B[l] <C A. Moreover, the final column in which B[l] and A differ in this case 

is the wth-column and so B[l] is as described in case (iii).

Step 2: Now, if τ(i) ≤ l < u with alw �= 0. Then B[l] ∈ T Rm−l with m − l < i since 

l ≥ τ(i) = m − i + 1, and so B[l] is as described as in case (i).

Step 3: On the other hand, if τ(i) ≤ l < u and alw = 0, then B[l] ∈ T Ri with k[l] = k

and j[l] > jA. Moreover, the final column in which A and B differ is the wth-column, 

and so wj
1(B[l]) = wj

1(A) for all jA < j ≤ i, since wj
1(A) > wj−1

1 (A) for all jA <

j ≤ i, and so in particular wj
1(B[l]) > wj−1

1 (B[l]) for each j[l] < j ≤ i. Hence, by the 

inductive hypothesis, B[l] must satisfy the claim, and so h[B[l]] may be written as a 

linear combination of h[D]s for some D ∈ T where either:

(iv) D ∈ T Ri′ for some i′ < i,

(v) D ∈ T Ri with kD > k[l],

(vi) D ∈ T Ri with kD = k[l] and D <C B[l], which is witnessed within the final τ(w[l])

columns of B[l] and D.

Any such D as in (iv) is as described in case (i), whereas any such D as in (v) is as 

described in case (ii) since k[l] = kA. Now, notice that the final τ(w[l]) columns of A and 

B[l] match since w[l] > w, and so any such D as in (vi) also satisfies D <C A (witnessed 

within the final τ(w) columns of A and D), and so is as described in case (iii).

Step 4: Finally, if l < τ(i), then B[l] ∈ T Ri. Moreover, if atk = 1 for all τ(i) ≤ t <

τ(jA), then k[l] > k and so B[l] is as described in case (ii). On the other hand, if atk = 0

for some t in this range, then k[l] = k with j[l] > jA and then one may proceed as in Step 

3 above.

Now, suppose that A �∈ T C but B[l] ∈ T C for some l �= u with alk �≡ 0. Notice that 

this forces l = 1 and alk = 2, which contradicts that alk �≡ 0. Hence if A �∈ T C, then 

B[l] �∈ T C for all l �= u with alk �≡ 0. By applying this argument recursively, it follows 

that if A �∈ T C, then all such B produced by this procedure satisfy B �∈ T C as well. �

Lemma 5.16. Let 1 < i < m − 1 and let A ∈ T Ri with kA = i + 1. Then we may express 

h[A] as a linear combination of h[B]s for some B ∈ T where either:

(i) B ∈ T Ri′ for some i′ < i,

(ii) B �∈ T R.

Moreover, if A �∈ T C then B �∈ T C for all such B listed above.
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Proof. Firstly, recall that the sum of the entries in the τ(i + 1)th-row of A is i + 1. Now, 

since A �∈ T Ri+1, we deduce that the τ(i + 1)th-row of A contains at most i − 1 odd 

entries. Hence, there exists some 1 < s ≤ i such that aτ(i+1)s is even and we choose s be 

minimal with this property. To ease notation, we set q := τ(i +1) and u := τ(s). Note that 

aus = 1. The relation Rs
q,u(A) gives that h[A] =

∑

l 	=s aqlh[B[l]] where B[l] := A(q,s)(u,l)

(u,s)(q,l)

for l �= s with aql �≡ 0.

If l = 1, then B[1] �∈ T R, and so B[1] is as described in case (ii). Now, if 1 < l < s, 

then B[l] ∈ T Rs−1 with s − 1 < i, and so B[l] is as described in case (i). Meanwhile, if 

l > s, then B[l] ∈ T Ri and, as in the previous paragraph, we may find some s < t ≤ i

(depending on l) such that b[l]

qt is even, and we take t to be minimal with this property. 

The relation Rt
q,τ(t)(B

[l]) expresses h[B[l]] as a linear combination of h[D]s for some 

D ∈ T that must either fit into one of the cases described in the statement of the claim, 

or otherwise once again D ∈ T Ri and there exists some t < v ≤ i such that dqv is even, 

and we take v to be minimal with this property. Noting that v > t > s, it is clear that 

this process must terminate, hence providing the desired expression for h[A].

Now, suppose that A �∈ T C but B[l] ∈ T C for some l �= s with aql �≡ 0. Then, notice 

that B[l] agrees with A outside the τ(i + 1)th-row and τ(s)th-row, and so in particular 

they agree in the first row since i < m − 1. Hence a1v = b
[l]
1v = 1 for 1 ≤ v < m since 

B[l] ∈ T C. Now, by considering the first row-sum and the last column-sum of A, we 

deduce that a1m = b and avm = 0 for 1 < v ≤ m. However, this implies that A ∈ T C, 

which is a contradiction. Once again, by applying this argument recursively, it follows 

that if A �∈ T C, then all such B produced by this procedure satisfy B �∈ T C as well. �

Lemma 5.17. Let 1 < i < m − 1 and let A ∈ T Ri. Then we may express h[A] as a linear 

combination of h[B]s for some B ∈ T \T R. Moreover, if A �∈ T C then all such B satisfy 

B �∈ T R ∪ T C.

Proof. We proceed by induction on i ≥ 2. Firstly, suppose that i = 2. Since A /∈ T R3

with 
∑

l a(m−2)l = 3, the (m − 2)th-row of A must contain a single odd entry, which 

must then be equal to 1, and be located in the first column of A. On the other hand, 

since A ∈ T R2, there exists a unique l > 1 with a(m−1)l = 1. The relation Rl
m−2,m−1(A)

gives h[A] = h[B] for B := A(m−2,l)(m−1,1)

(m−1,l)(m−2,1). Evidently, B �∈ T R, and so the claim holds 

for i = 2.

Now, we suppose that i > 2 and that the claim holds for all B ∈ T such that B ∈ T Ri′

for some 2 ≤ i′ < i. Suppose, for the sake of contradiction, that the claim fails for this 

particular value of i and consider the set of counterexamples A ∈ T Ri whose value of 

kA is maximal amongst all counterexamples. Now, we choose A to be the element of this 

set that is minimal with respect to the column-ordering. In other words, if D ∈ T Ri is 

a counterexample to the claim, then either kD < kA, or kD = kA and D ≥C A.

Now if kA = i + 1, then Lemma 5.16 states that we may express h[A] as a linear 

combination of some h[B]s for some B ∈ T where either B ∈ T Ri′ with i′ < i, or 

B �∈ T R. In the first case the inductive hypothesis states that h[B] can be expressed 
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as a linear combination of some h[D]s with D �∈ T R, whilst in the second case we have 

B ∈ T \ T R. Thus, h[A] satisfies the statement of the claim which contradicts that A

was chosen to be a counterexample.

Hence, we may assume that kA ≤ i. Suppose, for the sake of contradiction, that there 

exists kA ≤ j ≤ i, kA ≤ k < m such that aτ(j)k = 1 and zτ(j),k(A) = 1. The relation 

Zτ(j),k(A) gives the expression:

h[A] =
∑

u<τ(j)
l>k

aulh[B[u,l]] +
∑

u>τ(j)
l<k

aulh[B[u,l]], (5.18)

where B[u,l] := A(u,k)(τ(j),l)

(τ(j),k)(u,l) for all such (u, l) satisfying aul �≡ 0.

Now, set B := B[u,l] where (u, l) is as in (5.18) with aul �≡ 0. We claim that B fits 

into one of the following cases: B �∈ T R, B ∈ T Ri′ for some i′ < i, or B ∈ T Ri with 

kB = kA and B <C A. We provide full details for the case where u > τ(j), l < k with 

the other case, that is u < τ(j), l > k, being similar.

If l = 1 then B �∈ T R and so B is of the desired form. Now, if 1 < l < kA, then either 

u ≥ τ(kA) or τ(j) < u < τ(kA). In the first case, we have B ∈ T Rj−1, whilst in the 

second case we have B ∈ T Rτ(u)−1 if auk = 1 and B ∈ T Rj−1 if auk = 0. Hence, in 

either case, we deduce that B ∈ T Ri′ for some i′ < i. Suppose now that kA ≤ l < k, 

then we must have τ(j) < u ≤ τ(kA) since aul �≡ 0. Now, if auk = 1 then B ∈ T Rτ(u)−1, 

whilst if auk = 0 and aτ(j)l = 1, then B ∈ T Rj−1. Finally, if auk = 0 and aτ(j)l = 0, 

then B ∈ T Ri with kB = kA and B <C A. But then, either by the inductive hypothesis 

on i, or by the minimality of A, all such B produced in this procedure must satisfy the 

statement of the claim, and hence so must A, which contradicts that A was chosen to 

be a counterexample.

Therefore, we may assume that that zτ(j),k(A) = 0 for all kA ≤ j ≤ i, kA ≤ k < m

such that aτ(j)k = 1. Then, by Lemma 5.14 and Lemma 5.15, we may express h[A] as 

a linear combination of h[B]s for some B ∈ T where either: B ∈ T Ri′ for some i′ < i, 

B ∈ T Ri with kB > kA, or B ∈ T Ri with kB = kA and B <C A. But then, either 

by the inductive hypothesis on i, maximality of kA, or minimality of A, each such B

must satisfy the statement of the claim, and hence so must A, which contradicts that A

was chosen to be a counterexample. Thus, no such counterexample may exist. Finally, 

once again, it is clear to see from the steps taken above that if A �∈ T C, then all such B

produced by this procedure satisfy B �∈ T C as well. �

Corollary 5.19. Let 1 < i < m − 1 and let A ∈ T Ri with A �∈ T C. Then h[A] = 0.

Proof. By Lemma 5.17, we may express h[A] as a linear combination of h[B]s for some 

B ∈ T with B �∈ T R ∪ T C. But h[B] = 0 for all such B by Lemma 5.8, and so the result 

follows. �

Lemma 5.20. Let A ∈ T R \ T C. Then h[A] = 0.
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Proof. Suppose, for the sake of contradiction, that the claim is false, and let A ∈ T be a 

counterexample that is minimal with respect to the column-ordering of Definition 5.2(ii). 

By Corollary 5.19, we may assume that A �∈ T Ri for any i < m −1, and so we must have 

that A ∈ T Rm−1 \ T C since A ∈ T R. Hence, for each 1 < u < m, either aum = 0 or 

aum = 1, and we claim that there exists at least one u in this range with aum = 1. Indeed, 

suppose otherwise, then there exists some 1 < v < m with a1v even since A �∈ T C. But 

then the relation C1
vm(A) expresses h[A] as a linear combination of h[B]s for some B ∈ T

with B <C A and B ∈ T R \ T C. But h[B] = 0 for all such B by minimality of A, which 

contradicts that A was chosen to be a counterexample. We hence write (u1, . . . , us) for 

the increasing sequence whose terms are given by all u in the range 1 < u < m with 

aum = 1. Firstly, suppose that s > 1 and set u := us−1 and u′ := us. By Lemma 5.1(iii), 

we have that zu,m(A) + zu′,m(A) = 1 and so the relation Zu,m(A) + Zu′,m(A) is given 

by:

h[A] =
∑

v>u
l<m

avlh[B[v,l]] +
∑

v>u′

l<m

avlh[D[v,l]], (5.21)

where B[v,l] := A(v,m)(u,l)

(u,m)(v,l) and D[v,l] := A(v,m)(u′,l)

(u′,m)(v,l) for all such (v, l) with avl �≡ 0. Now, let 

(v, l) be as in (5.21) with avl �≡ 0.

If l = 1, then B[v,1], D[v,1] �∈ T R ∪ T C and so h[B[v,1]] = h[D[v,1]] = 0 by Lemma 5.8. 

On the other hand, if l > 1, then B[v,l], D[v,l] ∈ T R\T C and A <C B[v,l], D[v,l]. Hence, by 

the minimality of A, once again we deduce that h[B[v,l]] = h[D[v,l]] = 0. Thus h[A] = 0, 

which contradicts that A was chosen to be a counterexample.

Hence we may assume that s = 1, or in other words that there exists a unique u in 

the range 1 < u < m such that aum = 1, and so then z1,m(A) = 1 by Lemma 5.1(v). 

By applying similar considerations to the above to the relation Z1,m(A), we once again 

reach a contradiction, and so no such counterexample may exist. �

Definition 5.22. For 1 < i < m, similarly to T Ri of Definition 5.9(ii), we define:

T Ci := {A ∈ T C | the τ(j)th-column of A contains j odd entries for 1 < j ≤ i}.

Remark 5.23. Firstly, note that by Remark 4.22, we see that the transpose homomor-

phism h′ ∈ HomkSr
(M(β), M(α)) of h is relevant. Now, the results proven above 

are independent of the values of a and b, provided that they satisfy the parity con-

dition a − m ≡ b. In particular, note that this condition is preserved under the swap 

(a, b) ↔ (a′, b′), where a′ := b + m − 1, b′ := a − m + 1. But, as in Remark 4.19, this 

swap is equivalent to the swap λ ↔ λ′ and accordingly α ↔ β and T ↔ T ′. There-

fore, by defining the subsets T R′, T C′ ⊆ T ′ analogously to T R, T C ⊆ T , we obtain the 

analogous results to those shown in this section for the coefficients h′[A′] of the ρ[A′] in 

h′.

Proposition 5.24. Let A ∈ T and suppose that A �∈ T Rm−1 ∩ T Cm−1. Then h[A] = 0.
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Proof. Suppose that D ∈ T is such that h[D] �= 0. Then, we may assume that we 

have D ∈ T R ∪ T C since otherwise h[D] = 0 by Lemma 5.8. Moreover, we may as-

sume that D �∈ T R \ T C since otherwise h[D] = 0 by Lemma 5.20. On the other hand, 

if D ∈ T C \ T R, then D′ ∈ T R′ \ T C′, where T R′, T C′ ⊆ T ′ are as defined in Re-

mark 5.23. But then we have h[D] = h′[D′] = 0 á la Lemma 5.20, which contradicts our 

choice of D, and so we may assume that D �∈ T C \ T R. In sum, we have shown that 

h[D] = 0 for all D ∈ T with D �∈ T R ∩ T C. In particular, to prove the Proposition, we 

may assume that A ∈ T R ∩ T C. Now, if A �∈ T Rm−1, then there exists some i with 

1 < i < m − 1 such that A ∈ T Ri. But then Lemma 5.17 allows one to express h[A]

as a linear combination of h[B]s for some B ∈ T with B �∈ T R. But then every such 

B satisfies B �∈ T R ∩ T C and hence that h[B] = 0 as shown above, and so h[A] = 0. 

On the other hand, if A �∈ T Cm−1, then A′ �∈ T R′
m−1 where T R′

m−1 ⊆ T ′ is defined 

analogously to T Rm−1 ⊆ T . But then h[A] = h′[A′] = 0 by the ′-decorated analogue to 

the argument outlined above, and so we are done. �

Theorem 5.25. Let λ = (a, m −1, . . . , 2, 1b) with a ≥ m ≥ 2, b ≥ 1, where r := deg(λ), and 

suppose that the parameters a, b, and m satisfy the parity condition: a − m ≡ b (mod 2). 

Then EndkSr
(Sp(λ)) ∼= k.

Proof. Let h̄ be a non-zero endomorphism of Sp(λ), which we identify with a relevant 

homomorphism h ∈ HomkSr
(M(α), M(β)) as in Remark 4.21. If A ∈ T with h[A] �= 0, 

then A ∈ T Rm−1 ∩ T Cm−1 by Proposition 5.24. But since 
∑

v aτ(i)v = i, 
∑

u auτ(j) = j

for 1 < i, j < m, this set consists solely of the matrix:

A0 :=

1 1 1 . . . 1 1 b

1 1 1 . . . 1 1 0

1 1 1 . . . 1 0 0

...
...

...
. . .

...
...

...

1 1 1 . . . 0 0 0

1 1 0 . . . 0 0 0

a − m + 1 0 0 . . . 0 0 0

.

Therefore, we have h = h[A0]ρ[A0], and so we are done. �
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