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Abstract 29 

Structurally, the articular cartilages are heterogeneous owing to nonuniform distribution 30 

and orientation of its constituents. The oversimplification of this soft tissue as a 31 

homogeneous material is generally considered in the simulation domain to estimate 32 

contact pressure along with other physical responses. Hence, there is a need for 33 

investigating knee cartilages for their actual response to external stimuli. In this article, 34 

impact of material and geometrical heterogeneity of the cartilage is resolved using well 35 

known material models. The findings are compared with conventional homogeneous 36 

models. The results indicate vital differences in contact pressure distribution and tissue 37 

deformation. Further, this study paves way for standardising material models to extract 38 

maximum information possible for investigating knee mechanics with variable 39 

geometry and case specific parameters. 40 

 41 

Keywords: Articular cartilage; Contact Pressure; Finite element analysis; Knee joint; 42 

Material heterogeneity; Superficial layer; 43 

1. Introduction 44 

 The knee is a complicated joint that includes tibiofemoral and patella-femoral 45 

articulations1,2. Mechanically, articular cartilage functioning similar to frictionless 46 

bearing between the surfaces3. The knowledge of contact pressure and stress fields is 47 

essential in predicting the onset of functional damage of these tissues4–6. The 48 

computational model for whole-knee biomechanics is a useful clinical tool for 49 

determining the onset and progression of disease and injury. The critical challenge in 50 

simulating soft tissues like articular cartilage is the complexity of structure, 51 

compounded by the heterogeneous distribution of collagen fibers throughout its cross-52 

section7,8. A dense extracellular matrix (ECM) with a random distribution of 53 
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chondrocyte cells constitutes the cartilage structure. ECM is primarily composed of 54 

collagen fibers, proteoglycan, and water fraction9. These components jointly help 55 

maintain ECM water, critical in keeping properties like sudden impact strength and high 56 

compressive strength10. A cross-section of articular cartilage reveals the direction of 57 

collagen fibers into three zones: fibers oriented parallel to articulating surface in the 58 

superficial zone (SZ), randomly oriented in transitional zone (TZ) and oriented 59 

perpendicular to subchondral bone in the deep zone (DZ) 11,12. The zonal thickness of 60 

SZ, TZ, and DZ is about 12%, 32%, and 56% of cartilage’s total thickness, respectively 61 

13. 62 

The most common material models for simulating the mechanical behavior of 63 

cartilage are isotropic elastic (IE), isotropic poroelastic (IPE), transversely isotropic 64 

poroelastic/ transversely isotropic elastic (TIPE/TIE), and fibril-reinforced 65 

poroviscoelastic/poroelastic (FRPVE/FRPE) 10,14,23,15–22. The isotropic elastic model 66 

predicts the instantaneous cartilage response faster compared with its alternative models 67 

24–27. Essentially these models give a qualitative understanding of the response. 68 

Nevertheless, in reality, articular cartilages comprise a porous matrix saturated with 69 

water (68% - 88% of cartilage weight). The response of cartilage tissue is influenced by 70 

fluid pressure, according to studies 28,29. Hence the biphasic characteristics of cartilage 71 

are generally studied with IPE models. In IPE models, the fluid flow in cartilage is 72 

modelled with Darcy’s law related to permeability(𝑘) 30. 73 

Apart from biphasic characteristics, the articular cartilage constitutes a non-fibril matrix 74 

and collagen fibril network. FRPE model may suit well to simulate the response of such 75 

structure31. The material orientation is assigned such that it mimics contribution of 76 

collagen fibril orientation (arcade-like structure). However, this model is 77 

computationally not cost effective, lacks their relevance in clinical applications. TIE 78 
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models are also widely used in modelling articular cartilage32–34. From recent studies, 79 

the TIE model can predict intact articular cartilage uniaxial compression responses with 80 

higher accuracy 35. The highly heterogeneous nature of superficial zone can simulate 81 

well with such models36,37 the most influential compartment on articular cartilage to 82 

mechanical response 38. 83 

Although many studies were conducted on the articular cartilage behavior with 84 

multiple constitutive models 39–44, the mechanical response of heterogeneous cartilage at 85 

maximum loading position in a gait is not adequately compared. Therefore, our primary 86 

objective is to address this issue by considering graded cartilage material with multiple 87 

heterogeneous constitutive models. The scope of the paper extends further to identify 88 

the critical differences among material models in predicting contact pressure and stress 89 

distributions. Even though the cartilage structure is complex and comprises dense 90 

collagen fibre networks and extracellular matrixes, the hypothesis addressed for the 91 

current study assumes cartilage as elastic models. The present study focused on the 92 

tibio-femoral articulation, ignoring the effects of muscle, tendon, and patella forces on 93 

cartilage response prediction at full extension position in a gait cycle. 94 

2. Materials and Methods 95 

2.1 Geometry and Finite Element model 96 

An existing knee joint geometry (open knee) developed at Computational Bio modeling 97 

Core and Department of Biomedical Engineering, Cleveland Clinic from a female 98 

corpse (70 years & 77 kg)  is used for the current study 45,46. An expanded view of knee 99 

geometry (Figure 1(a)) and the 3D knee substructure is imported into Abaqus CAE for 100 

analysis. The model contains four ligaments anterior and posterior cruciate ligaments 101 

(ACL and PCL) and medial and lateral collateral ligaments (MCL and LCL), two 102 
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cartilages (femur and tibia cartilage), two meniscus (lateral and medial meniscus) and 103 

two bones (femur and tibia).  104 

 105 

Fig 1. (a) The posterior view of 3D finite element knee joint model (b) enlarged view of tibial 106 

cartilage with three layers in different colours representing inhomogeneity; (c) Bodyweight 107 

acting on knee joint simulated by applying 1000N force in vertical direction acting downwards 108 

at the reference point which is constrained with femur cartilage and meniscus. 109 

The coordinate system of the geometry is synchronized with the Abaqus, such 110 

that the x-axis is anterior-posterior, where the anterior or posterior force component can 111 

apply. Similarly, the y-axis is the proximal-distal where the vertical ground reaction 112 

force can use, and the z-axis is the medial-lateral direction where medial or lateral joint 113 

force components can apply. The ground reaction force becomes the body weight (BW) 114 

when the body is in a full extension position during the stance phase of a gait cycle. The 115 

valgus or varus rotation is about the x-axis, internal or external rotation is about the y-116 

axis, and the flexion or extension rotation is about the z-axis.  117 

In this article, the heterogeneity of the cartilage is defined in terms of material 118 

and geometrical heterogeneities. The material heterogeneity is the inhomogeneous 119 

distribution of material constituents (such as fiber density and orientation) and it is 120 

modeled using the corresponding constitutive models. The geometrical heterogeneity is 121 
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the inhomogeneity in terms of cartilage structure (such as superficial, transverse/middle, 122 

and deep zones) as shown in Figure 1(b). It may be noted here is that native architecture 123 

of cartilage may have these individual layers with different thicknesses depending on 124 

the collagen fiber structural inhomogeneity. The current study, however, assumes mesh 125 

size of each zone is to be same for numerical convergence purpose. These soft tissues 126 

are discretized into 56433 hexahedral elements with an element size of 0.5 mm each. 127 

The cartilage, meniscus, and ligaments are meshed with hexahedral brick elements 128 

(element type: C3D8) and the femur and tibia are meshed with shell elements (element 129 

type: S4) as per Abaqus/Standard user’s manual 47. The use of an 8-node element in 130 

contact modelling has the potential to improve contact response and numerical 131 

convergence than higher node elements. 132 

2.2 Interface, constraints, loading and boundary conditions  133 

The interaction between the cartilages at the articulating surface is assigned as 134 

frictionless contact. A rigid body tie constraint ties the ligaments and cartilage with 135 

bone’s nodes at the bone insertion points to retain their position. Another rigid body 136 

constraint connects the tibia and femur to corresponding reference points (RP-1 and RP-137 

2), such that the tibia and femur act as rigid body. The RP-1 is at the centre position of 138 

lateral and medial femoral epicondyles for the femur. The femur can rotate about RP-1, 139 

and the meniscus is constrained such that its position is maintained between two 140 

cartilages.  141 

All rotational and linear motions (6DOF) of tibia is constrained and the femur is 142 

set free to move in all five degrees of freedom but restricted in knee flexion. Since this 143 

study focus on the maximum extension position of gait cycle, when flexion angle is 144 

zero. Thus RP-1 is subjected to a load of 1000N (compressive) as shown in Figure 1(c) 145 
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2.3 Material Models  146 

The influence of homogeneous and heterogeneous (both material and geometrical case) 147 

cartilage surface texture is compared for mechanical response using well-known 148 

material models. These are IE, IPE, and TIE models. Note that the basic models such as 149 

IE and IPE assumes collagen fibers is homogenized with rest of the cartilage 150 

constituents. The TIE model is extended version of these basic models where collagen 151 

contribution is assumed as reinforcements. The material constants of these models (the 152 

constitutive relation of all these models are given supplementary information S1) are 153 

provided in Table 1. 154 

Table 1 155 

The material parameters used for modeling homogeneous and heterogeneous articular 156 

cartilage. 157 

Material 

models 

Homogeneous 

(non-gradient)  

Heterogeneous 

(gradient)   

Source 

IE 

𝐸 = 15 MPa 𝜈 = 0.475 

𝐸𝑠 = 15 MPa  𝐸𝑡 = 10 MPa 𝐸𝑑 = 5 MPa 𝜈 = 0.475 

27* 

IPE 

𝐸 = 15 MPa 𝜈 = 0.475 𝑆𝑙 = 1 𝑒 = 4 𝑘 = 0.001 𝑚𝑚4 𝑁𝑠⁄  

 

𝐸𝑠 = 15 MPa  𝐸𝑡 = 10 MPa 𝐸𝑑 = 5 MPa 𝜈 = 0.475 

 𝑆𝑙 = 1, 𝑒 = 4 𝑘 = 0.001 𝑚𝑚4 𝑁𝑠⁄  

27,48* 

TIE 

 𝐸𝑝 = 5.8 𝑀𝑃𝑎 𝐸𝑡 = 0.46 𝑀𝑃𝑎  ν𝑝 = 0.87 (−)** 

𝐸𝑝𝑠 = 5.8 𝑀𝑃𝑎 𝐸𝑡𝑠 = 0.46 𝑀𝑃𝑎 ν𝑝𝑠 = 0.87 (−) ν𝑡𝑠 = 0.03(−) 

29,49,50* 
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ν𝑡 = 0.03(−)  G𝑡 = 2.5 𝑀𝑃𝑎 

G𝑡𝑠 = 2.5 𝑀𝑃𝑎 

𝐸𝑝𝑡 = 4 𝑀𝑃𝑎 𝐸𝑡𝑡 = 0.46 𝑀𝑃𝑎 ν𝑝𝑡 = 0.87 (−)  ν𝑡𝑡 = 0.05(−) G𝑡𝑡 = 2 𝑀𝑃𝑎    𝐸𝑝𝑑 = 2 𝑀𝑃𝑎 𝐸𝑡𝑑 = 0.46 𝑀𝑃𝑎 ν𝑝𝑑 = 0.87 (−) ν𝑡𝑑 = 0.2 (−) G𝑡𝑑 = 1 𝑀𝑃𝑎    
Notes: 𝐸 = Elastic modulus, 𝜈 = Poisson’s ratio, 𝐸𝑠 , 𝐸𝑡 , 𝐸𝑑 = Elastic moduli of the superficial, 158 

transitional and deep layer, 𝐸𝑝𝑠, 𝐸𝑝𝑡 , 𝐸𝑝𝑑 and 𝐸𝑡𝑠,  𝐸𝑡𝑡 , 𝐸𝑡𝑑 are in-plane and out of plane 159 

Young’s moduli for the three layers, similarly ν𝑝𝑠, ν𝑝𝑡 , ν𝑝𝑑 and ν𝑡𝑠, ν𝑡𝑡 , ν𝑡𝑑 are in-plane and out 160 

of plane Poisson’s ratio for the three layers. G𝑡𝑠, G𝑡𝑡 , G𝑡𝑑 are out of plane shear modulus for all 161 

layers respectively, 𝑆𝑙 = specific weight of wetting liquid, 𝑘 = permeability and  𝑒 = void ratio. 162 

*
Source for the homogeneous (non-gradient) model. 163 

**Poisson’s ratio in the in-plane direction has been chosen from article 29, but the value is 164 

altered to match the material's consistency in Abaqus. 165 

The rest of the joint parts are modelled as per Table 2. Even though the bone 166 

(femur and tibia) consists of the cortical and cancellous parts, we approximated it as a 167 

uniform rigid body. Similar to articular cartilage, the meniscus also has complicated 168 

architecture, including a network of collagen fibers. To reduce the complexity in 169 

modelling, we modelled the meniscus (lateral and medial) with TIE material 51. The 170 
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ligaments are modeled with Neo-Hookean isotropic hyperelastic material (nearly 171 

incompressible) model. 172 

Table 2 173 

 The material parameters for the components of the knee joint other than cartilage 174 

Parts Components C1 (MPa) D1 (MPa)-1 Source 

Ligaments 

isotropic hyperelastic 

(Neo-Hookean) 

ACL 1.95 0.00683 

52,53 

PCL 3.25 0.0041 

MCL 1.44 0.00126 

LCL 1.44 0.00126 

Meniscus 

(TIE) 

 𝐸𝑝 = 120 𝑀𝑃𝑎, 𝐸𝑡 = 20 𝑀𝑃𝑎  ν𝑝 = 0.2 (−), ν𝑡 = 0.3(−)  G𝑝 = 8.33 𝑀𝑃𝑎, G𝑡 = 57.7 𝑀𝑃𝑎 

53 

Notes: 𝐶1 and 𝐷1 are Neo-Hookean material constants, 𝐸𝑝and 𝐸𝑡 are in-plane and transverse plane 175 

elastic modulus, ν𝑝 and ν𝑡 are in-plane and transverse plane Poisson’s ratio, G𝑝and G𝑡 are  in-176 

pane and transverse plane shear modulus. 177 

3. Results 178 

The contact pressure distribution in the tibial cartilage surface from the meniscus 179 

impact are compared for homogeneous and heterogeneous cartilage cases are given in 180 

Figure 2. Though no significant difference is observable in Figure 2(a), the 181 

homogeneous model provides higher contact pressure distribution compared to 182 

heterogeneous case. Among all the constitutive models compared, TIE and IPE models 183 

shows a clear impression of contact pressure on the cartilage surface. 184 
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Also the equivalent stress has an essential role in predicting knee pathologies. 185 

Figure 3(a) depicts the stresses distribution on the tibial surface. Compared with the IE 186 

and TIE model, the IPE model showed maximum equivalent stress generated in the 187 

femur cartilage. This indicates the biphasic tissue model supports more load than the 188 

simple model during the load transfer mechanism. Also it is observed here that the IE 189 

and IPE geometrical heterogeneous models provide less uniformity in stress distribution 190 

with respect to the TIE model. Figure 3(b) shows the femoral stress distribution and it 191 

follows similar pattern for all models, where the TIE model gives a clear understanding 192 

of the stress impression with no stress concentration. The maximum stress generated on 193 

the TIE model are 2.559 MPa and 2.792 MPa for the tibial cartilage, 2.045 MPa and 194 

2.231 MPa for the femoral cartilage for the material heterogeneous and homogeneous 195 

cases, respectively. 196 

 197 

Fig 2. Distribution of contact pressure on (a) the tibial lateral surface; (b) the femoral surface 198 
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 199 

Fig 3. The contours for equivalent stress generation on (a) the tibial lateral surface; (b) the femoral 200 

surface 201 

Directional stress may give better insights into the knee mechanics. Figure 4(a) and 4(b) 202 

clearly distinguish the directional stress impression in tibial and femoral surface. Figure 203 

4(a) shows a uniform stress distribution in heterogeneous (both material and 204 

geometrical) case for all models compared to homogeneous model. In TIE model the 205 

tibial cartilage has a lower stress than the femur cartilage -2.2 MPa and -1.4 MPa 206 

respectively. Also the compression stress in the homogeneous situation is relatively 207 

high for the TIE model. This could be owing to the high rigidity provided by the 208 

cartilage’s surface.  209 

 210 

Fig 4. The normal stress distribution on (a) the tibial surface; (b) the femoral surface 211 

 212 
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 213 

Fig 5. The cartilage deformation (a) U1 (anterior-posterior) on the tibial surface; (b) U2 (proximal-distal) 214 

on the tibial surface at full extension position after loading. 215 

Table 3 216 

The estimated over-prediction of mechanical measures in percentage for homogeneous 217 

model relative to its heterogeneous alternative. 218 

Comparison 

of models 
Zones 

Mises 

stress 

(%) 

Max. 

prin. 

Stress 

(%) 

Max. 

prin. log. 

strain (%) 

Min. prin. 

log. strain 

(%) 

Max. def. 

(%) 

Max. 

pres. 

generated 

(%) 

Homo. IE 

Vs 

Hetro. IE 

SZ 25 32 9 28 6 0.3 

TZ 12 5 10 13 7 6 

DZ 4 15 22 28 6 12 

Homo. IPE 

Vs 

Hetro. IPE 

SZ 25 36 49 42 5 0.7 

TZ 14 6 8 99 4 6 

DZ 22 15 23 4 5 12 

Homo. TIE 

Vs 

Hetro. TIE 

SZ 60 42 4 95 3 47 

TZ 4 88 71 98 3 37 

DZ 37 215 42 27 2 47 

Note: Homogeneous isotropic elastic (Homo. IE), heterogeneous isotropic elastic (Hetro. IE), 219 

homogeneous isotropic poroelastic (Homo. IPE), heterogeneous isotropic poroelastic (Hetro. IPE), 220 

homogeneous transversely isotropic elastic (Homo. TIE), heterogeneous transversely isotropic elastic 221 
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(Hetro. IE), maximum principal (Max. prin.), maximum principal logarithmic strain (Max. prin. log. 222 

strain), maximum deformation (Max. def.), the maximum pressure (Max. pres.) 223 

The tibial cartilage deformation U2 (anterior-posterior) over the medial and lateral 224 

compartment of the tibial cartilage surface are shown for different material models and 225 

also for the deformation in U1 (proximal-distal) given by Figure 5(a) and 5(b). The 226 

maximum tibial cartilage deformation for the IPE geometrical heterogeneous model is 227 

0.17 mm in the posterior and 0.88 mm in the proximal direction, where the solid model 228 

has lesser deformation. It indicates that porosity impacts tibial deformation and pressure 229 

distribution in a knee joint during the standing position. It can be observed from Figure 230 

5 that even with the homogeneous TIE model, the in-plane (anterior-posterior) and 231 

through plane (proximal-distal) cartilage deformation is more pronounced and clear 232 

than the material heterogeneous IPE model. Therefore TIE models can safely assumed 233 

to be reliable in predicting the onset and progression of OA.   234 

  In addition, Table.3 compares the maximum variation in Mises stress, principal 235 

stress, strain, deformation, and pressure generated on the cartilage with the 236 

homogeneous and heterogeneous entity. The maximum percentage change in stresses 237 

and strains is observed higher in the TIE model than in the IE and IPE models. The 238 

maximum primary stress varies about 200 percentage in TIE models between 239 

homogeneous and heterogeneous entity. 240 

4. Discussion 241 

This study examines the influence of heterogeneous material characteristics as a 242 

function of tissue depth from superficial to deep zone with multiple constitutive 243 

material models. Also, investigate the impact of stresses and strains during the full 244 

extension position (standing position) using the finite element knee model. Verifying 245 
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simulation findings is a critical step, and we double-checked that our findings for the 246 

intact knee model match those found in the literature54–59. The IE, IPE, and TIE 247 

cartilage material models are compared with homogeneous and heterogeneous entities. 248 

The contact pressure distribution is observed not so evident from IE models compared 249 

to IPE or TIE models, and the material heterogeneity produces a relatively lower 250 

magnitude of pressure distribution.  251 

According to some studies, the material property of articular cartilage varies 252 

enormously with distance from the articular surface, especially in the superficial region; 253 

hence heterogeneous constitutive models suit well for such studies60. Also, many 254 

constitutive models are proposed for implementing intact and OA heterogeneous 255 

characteristics. The heterogeneous behavior of a finite element cartilage model with an 256 

incompressible, poroelastic solid matrix reinforced by an inhomogeneous, distributed 257 

fibre filled with an incompressible fluid in the collagen–proteoglycan solid matrix's is 258 

well predicted 7. The split-line patterns are utilized for FRPE inhomogeneous cartilage 259 

models to illustrate diverse cartilage influenced by collagen fibres. The average Mises 260 

stresses in the homogeneous IE model are 2.7 MPa in the tibial lateral compartment and 261 

2.2 MPa in the femoral lateral component, similar to the range reported in the previous 262 

work61,62. Also, with a load of 1000 N, the maximum contact pressure generated on 263 

cartilage surface varies between 6 and 16 MPa63. Particularly in the geometrically 264 

heterogeneous model, the maximum principal stresses increased significantly in the 265 

cartilage’s middle zone21. The early OA model showed increased compressive strains in 266 

the articulating layer, as well as decreased stresses and fibril strains, especially in the 267 

intermediate zone33,64.  268 

We assumed that IE models predict more accurate findings under short-term 269 

loading, similar to the assumptions made in other investigations10,65. Moreover, in 270 
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compression, the IE material model (elastic) showed the highest primary stresses, 271 

whereas the other models indicated tension. It's because the IE material model doesn't 272 

include fluid pressure. According to previous research, the load supported by fluid in 273 

cartilage can be as high as 5–15 MPa, which can support 80–90% of the BW when 274 

walking15,28,42 However, different parameters undoubtedly likewise influence the 275 

material heterogeneity characteristics in cartilage. This might alter minimally if more 276 

attributes were included (heterogeneity in fluid flow across cartilage thickness), but it 277 

should not change any conclusions about the correlation between the material models. 278 

The IE and IPE models are basic models, which do not take into account of material 279 

heterogeneity of the cartilage. From the present study, material heterogeneous TIE 280 

models show better impression of meniscus reaction on articular cartilage compared to 281 

its homogeneous alternative. While IE and IPE geometrically heterogeneous models 282 

predict poor impression on cartilage surface. Hence material heterogeneous TIE model 283 

can be used as a better alternative model to fiber reinforced model in knee biomechanics 284 

study. 285 

In a wide range of biomedical engineering applications, it is becoming 286 

increasingly important to develop better constitutive models for modelling soft tissue 287 

deformation. Researchers can use these articular cartilage model comparisons to look 288 

into tissue-joint mechanism, implant material design, and have a better understanding of 289 

microscale response of tissues. 290 

5. Conclusions 291 

In summary, the following conclusions drawn: (1) the maximum cartilage 292 

contact pressure induced by the knee joint with the geometrically heterogeneous 293 

material model is lower compared to the homogeneous model; (2) the maximum Von-294 

Mises stress may not present a quantitative assessment of cartilage damage; (3) 295 
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Poroelastic cartilage model can be helpful to in estimative anterior/posterior 296 

deformation whereas material heterogeneous TIE model is suitable in understanding 297 

proximal/distal deformation limits. (4) The maximum change in stresses and strains are 298 

observed in TIE models than IE and IPE models. 299 

The study has some limitations in terms of model generation, input, and 300 

assumptions. The knee kinematics is very complex, and hard to simulate the exact 301 

motion; the tibia stresses are a combination of loading (compression), shear, and tensile. 302 

In this article, only the knee joint’s standing (full extension) position is considered as a 303 

simple case of loading. Other soft tissues are left out (patella, patellar tendon, joint 304 

capsule, and skin) in the models because the focus of this investigation is to compare 305 

three distinct material models of cartilage having the geometry under same applied load. 306 
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