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Abstract  25 

Background: 26 

The inhomogeneous distribution of collagen fiber in cartilage can substantially influence the 27 

knee kinematics. This becomes vital for understanding the mechanical response of soft 28 

tissues, and cartilage deterioration including osteoarthritis (OA). Though the conventional 29 

computational models consider geometrical heterogeneity along with fiber reinforcements in 30 

the cartilage model as material heterogeneity, the influence of fiber orientation on knee 31 

kinetics and kinematics is not fully explored. This work examines how the collagen fiber 32 

orientation in the cartilage affects the healthy (intact knee) and arthritic knee response over 33 

multiple gait activities like running and walking.   34 

Methods: 35 

A 3D finite element knee joint model is used to compute the articular cartilage response 36 

during the gait cycle. A fiber-reinforced porous hyper elastic (FRPHE) material is used to 37 

model the soft tissue. A split-line pattern is used to implement the fiber orientation in femoral 38 

and tibial cartilage. Four distinct intact cartilage models and three OA models are simulated 39 

to assess the impact of the orientation of collagen fibers in a depth wise direction. The 40 

cartilage models with fibers oriented in parallel, perpendicular, and inclined to the articular 41 

surface are investigated for multiple knee kinematics and kinetics. 42 

Findings: 43 

The comparison of models with fiber orientation parallel to articulating surface for walking 44 

and running gait has the highest elastic stress and fluid pressure compared with inclined and 45 

perpendicular fiber-oriented models. Also, the maximum contact pressure is observed to be 46 

higher in the case of intact models during the walking cycle than for OA models. In contrast, 47 

the maximum contact pressure is higher during running in OA models than in intact models. 48 

Additionally, parallel-oriented models produce higher maximum stresses and fluid pressure 49 

for walking and running gait than proximal-distal-oriented models. Interestingly, during the 50 
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walking cycle, the maximum contact pressure with intact models is approximately three times 51 

higher than on OA models. In contrast, the OA models exhibit higher contact pressure during 52 

the running cycle.  53 

Interpretation: 54 

Overall, the study indicates that collagen orientation is crucial for tissue responsiveness. This 55 

investigation provides insights into the development of tailored implants. 56 

Keywords: Collagen fiber orientation; Fiber reinforced biphasic model; Gait cycle; Knee 57 

articular cartilage; Osteoarthritis; 58 

 59 

 60 

 61 

 62 

 63 

 64 

 65 

 66 

 67 

 68 

 69 

 70 

 71 

 72 

 73 

 74 

 75 

 76 



4 
 

1. Introduction 77 

Daily physical activities like walking, jogging, and running lead to significant compressive 78 

loads on the knee cartilage, causing knee osteoarthritis (OA), especially in older people [1–4]. 79 

The articular cartilage constituents such as collagen fibers, proteoglycan matrix, and 80 

interstitial fluid collectively withstand body weight (BW) during activities like walking, 81 

running, stair climbing, and kneeling. The load on the knee joint is different for each of these 82 

activities 1BW, 1.5BW, 2BW, and 4BW, respectively [5–7]. The collagen network of 83 

articular cartilage protects chondrocytes, withstands high tensile force, and protects cartilage 84 

from rupture. This network attaches the cartilage to the subchondral bone and provides 85 

attachment for proteoglycans [8]. In the loading and unloading stages, the osmotic pressure 86 

increases in the articular cartilage, significantly increasing the interstitial fluid pressure. The 87 

body force is distributed throughout the cartilage during the loading stage and increases the 88 

shearing force on the articulating surface. Hence collagen fibers are subjected to complex 89 

loading conditions due to the interstitial fluid pressure and shearing force [9–11]. OA leads to 90 

degradation in cartilage structure in terms of fibrillation and proteoglycan depletion, 91 

hindering the mechanical characteristics of the cartilage [12–15]. To better understand 92 

cartilage degradation associated with OA, it would be convenient to characterize the collagen 93 

fiber orientations and their responses in a complex loading environment under different gait 94 

activities. 95 

The collagen fibers in cartilage provide mechanical rigidity, which helps to maintain the solid 96 

matrix's structure. Also, the fibers are distributed heterogeneously throughout the cartilage, 97 

with their structure similar to an arcade-like design from the articulating surface to the 98 

subchondral bone [16,17]. The fibrils are oriented parallel to the articular surface in the 99 

superficial zone. However, they become more randomly oriented in the transitional zone and 100 

turn perpendicular to the bone-cartilage interface in the deep zone to firmly anchor the tissue 101 



5 
 

to the subchondral bone [18–20]. The fiber orientation in the respective zones is represented 102 

with split-line patterns is the most widespread technique used in the literature [21–23]. 103 

 104 

Fig. 1. Schematic of workflow: (a) the stance phase of the walking gait cycle; (b) the stance 105 

phase of the running gait cycle; (c) sagittal view of femoral cartilage with the orientation of 106 

collagen fibers in a depth-wise direction; (d) finite element model of the knee joint where the 107 

gait input data and various collagen fiber orientation models are applied. 108 
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The fiber network is known to be organized differently in healthy and arthritic cartilage. The 109 

collagen fiber orientation significantly influences the tissue response and the contact 110 

mechanism for OA cartilage [7,24]. In addition, it is reported that the tissue response is 111 

highly sensitive to fiber reorientation and loading direction [25]. Fiber reorientation is the 112 

major mechanism when loading perpendicular to collagen fiber orientation; however, when 113 

loading parallel to the fiber direction, a reduction in collagen fibers crimp and fiber 114 

reorientation occurs [26]. Hence it is necessary to understand the behavior of cartilage 115 

response with respect to the collagen fiber orientation. Even though literature is available on 116 

the tissue responses for arthritic cartilage cases, the relation between collagen fiber 117 

orientation/loading direction and tissue response is not adequately studied [3,27–29].  118 

It is reported that depth-dependent fiber-oriented cartilage models can accurately estimate the 119 

realistic contact stress and fluid pressure in the knee joint [30]. However, the knee responses 120 

from daily activities such as walking and running by considering the depth-dependent 121 

cartilage characteristics are missing in the literature. In addition, the biphasic hyperelastic 122 

material models (neo-Hookean) available in commercial software do not capture the critical 123 

tissue response, such as the distribution of interstitial fluid pressure and shear stress [31]. 124 

However, results from the current fiber network model show an increase in the interstitial 125 

fluid pressure on the contact surface and could capture it during knee loading.  126 

Also, the orientation of collagen fibers is crucial to the mechanical responses of connective 127 

tissue and load-bearing tissue because it serves as the tissue's structural foundation [32]. The 128 

study of the mechanics of collagen fiber orientation advances the understanding of the 129 

mechanism of tissue formation from scratch. However, there is currently a lack of knowledge 130 

regarding the mechanism behind fiber orientation. Also, the literature results suggest that 131 

collagen orientation plays a critical role in soft tissue response during load transmission of the 132 

knee joint [26]. Hence, the present study's objective is to investigate how collagen fiber 133 
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orientation affects the mechanical response of the cartilage during the gait cycle. Moreover, 134 

the walking and running knee responses are calculated for the parallel and perpendicular 135 

loading conditions with respect to the collagen fiber alignment. We hypothesise that the 136 

vertical collagen fiber-oriented network plays a significant role in supporting and protecting 137 

articular cartilage. Damage to this network would affect the mechanics of the joint and 138 

increase the tissue's susceptibility to OA. Multiple oriented cartilage models are created and 139 

analysed for various gait cycles. The results help researchers to develop better assistance 140 

devices for arthritis patients for subject-specific activities like walking and running. 141 

Additionally, this research contributes to developing subject-specific composite knee implant 142 

material with depth-dependent features by implanting fibers in particular orientations 143 

following the activity requirements. 144 

2. Methods 145 

2.1 Finite Element Model 146 

 147 

Fig. 2. The schematic diagram of the finite element model shows that the gait input data 148 

(forces and rotations) are applied on all 6 degrees of freedom of the knee joint through the 149 

three mutually perpendicular axes. 150 
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A case study is performed based on open-knee geometry [33], simulating the walking and 151 

running cycle to study the influence of collagen fiber orientation in multiple gait activities. 152 

The tibiofemoral joint is segmented from a female subject (70 years, 77 kg) into femur, tibia, 153 

collateral ligaments (MCL and LCL), cruciate ligaments (ACL and PCL), menisci (lateral 154 

and medial), and cartilage (femoral and tibial) as given in Figure 1. The finite element model 155 

of the knee joint is imported in FEBio Studio 1.2.0 (University of Utah and Columbia 156 

University) an open-source finite element analysis software and static analysis is performed 157 

[34]. 158 

The soft tissues and bone are discretized into 56,433 hexahedral elements and 25,220 shell 159 

elements. The soft tissues such as cartilage, ligaments and meniscus are meshed with 160 

hexahedral brick elements (HEX8), and the bones such as tibia and femur are meshed with 161 

shell elements (QUAD4). A mesh convergence test is carried out to ensure that the solution 162 

shouldn't change when the mesh is refined. Multiple iterations are performed on the model 163 

from element length 0.5 to 2 mm in 0.5 mm increments. The optimum element length 164 

calculated for generating the same contact pressure on the surface is approximately 1 mm. 165 

Also, the software's mesh inspector is used to refine the model and ensure no stress or strain 166 

singularities. The current study, however, assumes each layer's mesh size is the same for 167 

numerical convergence purposes. The cartilage is divided into three layers in the direction of 168 

cartilage thickness, from the superficial layer to the deep layer shown in Figure 2. The 169 

Meniscal attachment to the tibia is modelled using a set of linear springs with a total spring 170 

constant of 350 N/mm at each meniscal horn. Eighty-eight linear springs are attached to the 171 

tibial plateau at each horn attachment. The spring constants of each spring are calculated 172 

using Eq. (1), where k is the stiffness of each spring, E is the elastic modulus of the meniscal 173 

horn, A is the total horn face area, and N is the number of nodes on that face [35–38]. 174 
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The 3D geometry used for the present investigation is segmented from a 70-year-old subject, 176 

the cartilage and other soft tissues are intact, and no evidence of arthritis is reported in the 177 

source [33]. Also, there might be a difference in the thickness of cartilage and ligaments of 178 

the current geometry due to pathological conditions compared with younger subjects. This 179 

may cause a slight variation in mechanical response compared to the actual response. This is 180 

a significant limitation of subject-specific finite element model studies like this. Researchers 181 

also developed an instrument to evaluate the methodological quality for subject-specific finite 182 

element studies dedicated to orthopaedics. This can make it easier to assess the quality in the 183 

systematic reviews of finite element models [39].  184 

2.2 Gait input data 185 

The gait input data (forces and rotation) are applied to the knee joint through the three 186 

mutually perpendicular axes shown in Figure 2. In this work, the gait data are taken from the 187 

literature and imported into the model for simulation [40–44]. Six different but simultaneous 188 

movements occur between the femur and tibia during the walking and running gait cycle. It is 189 

divided into three rotations (extension–flexion, internal-external, and varus-valgus) and three 190 

force components (anterior-posterior, medial-lateral, and proximal-distal) [45]. 191 

The walking kinetic and kinematic data are obtained from a subject (28 years old male, 82 192 

kg)  who walked on a 10 m track at an average speed (of 1.7 m/s) [28]. The typical human 193 

walking speed is between 1.2 m/s and 1.4 m/s, but the present study uses data from the 194 

literature that the subject's average walking speed is 1.7 m/s. The running data were obtained 195 

from a subject (22 years old male, 76 kg average) running at 4.07 m/s in a 30 m walkway 196 

[46]. The authors of both studies used 3D motion capture and anatomical marker systems to 197 
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track walking and running data and converted them into knee kinetics and kinematics data 198 

with commercial software.  199 

The walking gait data are adapted from a young, healthy subject, whereas the structure of the 200 

knee tissues developed from a pathological, aged subject. Also, the gait pattern of younger 201 

adults varies from that of older subjects, even with good health conditions, due to differences 202 

in knee extension and shorter stride length [47,48]. In the present work, the gait data are 203 

taken from young individuals with longer stride lengths (1.7 m/s), even though the height of 204 

an individual also changes the gait pattern [49]. Hence such pre-clinical work without the 205 

study of in vivo models is another limitation of the work. In addition, the weight of the knee 206 

model and the applied load measured from the human subject are different. Nevertheless, this 207 

weight mismatch will not affect the results significantly since the tissue response mainly 208 

depends on the gait input data and the cartilage material model. Since the same geometry is 209 

used in all subject cases, the study focuses primarily on the tissue response to various 210 

activities. Parametric modelling technology can be used to overcome the mismatching 211 

between applied load and knee joint weight. This technique can quickly build models to 212 

overcome weight mismatching limitations [50]. This can be considered in future research 213 

with orthopaedic modelling limitations.  214 

2.3 Contact and boundary conditions  215 

In the model, the tibia is constrained in all degrees of freedom, whereas the femur is 216 

subjected to rotation for the gait input data. Also, translational forces are applied to the femur. 217 

The interaction between cartilage-cartilage and cartilage-meniscus is set to be frictionless. 218 

The meniscus is connected to the tibial surface with elastic springs to mimic the anterior and 219 

posterior horn attachment.  220 
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 221 

Fig. 3. Input gait data for the analysis: (a) the components of forces (N) act on the knee joint 222 

in all three degrees of freedom during the stance phase of the walking gait cycle; (b) the 223 

rotation angle (degrees) in the sagittal plane (flexion-extension), frontal plane (valgus-varus 224 

or abduction-adduction) and transverse plane (internal-external) respectively during the 225 

stance phase of walking cycle [28]; (c) the forces as acting on the knee joint during the 226 

running gait (d) the rotation in all three plains of the joint during running gait [46]. 227 

At the initial simulation stage, the cartilage and meniscus are made to make light contact to 228 

achieve the initial convergence. A displacement-controlled input is applied to the femur to 229 

achieve convergence for attaining the initial contact. Also, the contact between ligament-230 

ligament and ligament-cartilage is chosen as frictionless. Following the initial conditions, 231 
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forces and rotations applied during the stance phase of the gait cycle through a cylindrical 232 

joint in the analysis. The tibia is fixed in space for the entire analysis time. The femur is 233 

prescribed the corresponding gait input data in all three linear and rotational directions for a 234 

time frame of 0–1.5s for the walking cycle. Similarly, the corresponding force and rotation 235 

data are applied to the femur for a time frame of 0–1s for the running cycle. The forces 236 

(proximal-distal, anterior-posterior, and medial-lateral) and rotations (flexion-extension, 237 

valgus-varus and internal-external) during the stance phase of the gait cycle for walking and 238 

running applied to the model are given in Figure 3. 239 

2.4 Material models 240 

The soft tissue is divided into fibrillar (collagen fibers) and non-fibrillar (proteoglycan matrix 241 

and interstitial fluid) components [17]. To simplify the model, the inhomogeneous 242 

compressive modulus of the matrix is neglected [51,52]. A fiber-reinforced porous 243 

hyperelastic (FRPHE) model is used for implementing the biphasic articular cartilage tissue 244 

(femoral and tibial cartilage). The collagen fibers are embedded in the ground matrix since 245 

fibers can only withstand tension and cannot sustain on their own. A fiber with exponential 246 

power-law provided by Eq. (2) is utilised to model the collagen fibers. A neo-Hookean 247 

compressible hyperelastic material model given by Eq. (4) is employed to model the 248 

proteoglycan ground matrix. The strain-dependent permeability nature of tissue is 249 

implemented based on the Holmes-Mow model given by Eq. (5) [53–62]. 250 

The fiber strain energy density function is given by, 251 

( )( )exp 1 1
n

I
 


 = − − 

                                                        (2) 252 

1 2 3sin cos sin sin cosN e e e    = + +                                            (3) 253 



13 
 

Where 2 . .
n n

I N C N= = , 
n

 = the fiber stretch, N = the fiber orientation represented by θ and 254 

φ [deg] given by Eq. (3), ξ = representing a measure of the fiber modulus [MPa], α = 255 

coefficient of exponential argument, β = power of exponential argument (fiber nonlinearity), 256 

θ, φ = spherical angle for fiber orientation [deg]. 257 

 258 

Fig. 4. Different femoral cartilage models based on distinct collagen fiber orientation are 259 

represented using the split-line pattern. (a-d) shows the intact cartilage model, and (e-g) 260 

represents osteoarthritic models. The fiber orientation in the depth-wise direction is shown in 261 

the boxes. 262 

The proteoglycan matrix strain energy density function (Mooney-Rivlin) is given by: 263 
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2

1 1 2 2

1
( 3) ( 3) (ln )C I C I J

D
 = − + − +                                             (4) 264 

where 
1 2, ,C C D  are hyperelastic material constants, when 

2 0C = the model reduces to neo-265 

Hookean constitutive model, 
1 2,I I  are the first and second invariants corresponding to the left 266 

Cauchy-Green deformation tensor, J  is Jacobian of the deformation given by det( )F , and F 267 

is the deformation gradient. 2 /D K=  and 1 / 2C =  where K is the bulk modulus and   is 268 

the shear modulus. The strain-dependent permeability of soft tissue is described using the 269 

Holmes-Mow constitutive equation given in Eq. (5) and Eq. (6) [59,62,63]. 270 

( )
s

K k J I=                                                                (5) 271 

  
( )

1
21

2
10

0

0

( )
1

M JJ
k J k e





− −
=  − 

                                         (6) 272 

Where ( )k J  is a strain-dependent component, 
0k  is isotropic hydraulic permeability, M is an 273 

exponential strain-dependent co-efficient and 1 is a power-law exponent. The 274 

inhomogeneity in the solid phase of the tissue is modelled by varying the volume fraction 275 

along the thickness direction. The solid volume fraction 0  is given in Eq. (7), where z varies 276 

from 0 to 1 from cartilage surface to subchondral bone [64]. 277 

 0 1 (.8 .15 )z = − −                                                       (7) 278 

Seven different femoral and tibial cartilage models are created to investigate the influence of 279 

collagen fiber orientation in the superficial zone and depth direction for an intact and arthritic 280 

knee. The femoral cartilage models created are shown in Figure 4. The first four models 281 

represent the intact knee, and the rest three the arthritic knee cases. The collagen fiber 282 
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orientation is defined using split-line patterns, and the direction of the fibers is controlled 283 

using the model. The split-line patterns are obtained from the literature [21,23,30,65–67]. 284 

Table 1. Material constants for FRPHE intact and arthritic cartilage models (intact model-1 285 

and OA model-1). 286 

Material Constants 

Intact knee Arthritic knee 

Source 

Deep 

zone 

Middle 

zone 

Superficial 

zone 

Deep 

zone 

Middle 

zone 

Superficial 

zone 

Collagen fiber: 

(Fiber 

exponential 

power 

uncoupled) 

ξ 
(MPa) 

9.19 4.595 4.595 9.19 4.595 2.297 2.297 4.595 

[30,56] 

α 0 0 0 0 0 0 

β 2 2 2 2 2 2 

Θ 

(deg) 
0 0 0 0 0 0 0 0 

φ 

(deg) 
0 45 -45 90 0 45 -45 90 

Proteoglycan 

matrix: 

(compressible 

hyperplastic 

neo-Hookean) 

µ 

(MPa) 
1.82 1.82 1.82 0.91 0.91 0.91 

[55] 

K 

(MPa) 
1860 1860 1860 930 930 930 

Interstitial 

fluid: 

Permeability 

(Perm-Holmes-

Mow) 

Ko 

(mm4/Ns) 
.00174 .00174 .00174 .00174 .00174 .00174 

[59,63] 
M 7.1 7.1 7.1 7.1 7.1 7.1 

α 2 2 2 2 2 2 

Density 

ρs 
(tonnes/mm3) 

1 x 10-

9 1 x 10-9 1 x 10-9 
1 x 10-

9 1 x 10-9 1 x 10-9 

[52] ρf 
(tonnes/mm3) 

1.5 
x10-9 

1.5 x10-9 1.5 x10-9 
1.5 

x10-9 
1.5 x10-9 1.5 x10-9 

Volume 

fraction 0  0.2 0.275 0.35 0.2 0.275 0.35 

 287 
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i) In intact model-1, the split lines are aligned in the medial-lateral direction in the 288 

femur and tibial cartilage. The split-line representation is shown in Figure 4(a). The 289 

model-1 mimics the arcade-like collagen structure. 290 

ii) In intact model-2, the split lines are aligned in the plane of the articulating surface, 291 

and the direction is pointed outward from the centre according to the geometry 292 

illustrated in Figure 4(b). Also, the orientation along the depth-wise path mimics an 293 

arcade-like structure. 294 

iii) In intact model-3, the split line pattern is aligned similar to model-2; It is the same for 295 

all three zones, as shown in Figure 4(c). 296 

iv) In the intact model-4, the split-line pattern is aligned along the proximal-distal 297 

direction, as shown in Figure 4(d), and it is the same for all zones. 298 

The arthritic zone where fibrillation occurs for the osteoarthritic cartilage model is selected. 299 

The split-line pattern orientation is assigned to obtain the influence of collagen orientation in 300 

the OA knee. Three different OA models are used to investigate the impact of collagen fiber 301 

orientation. 302 

v) The split-line pattern is aligned such that it is equally inclined to the medial-lateral 303 

and proximal-distal axis in OA model-1. Also, the alignment is restricted inside the 304 

arthritic zone, as shown in Figure 4(e). 305 

vi) The split-line pattern is aligned in the proximal-distal direction, as shown in Figure 306 

4(f) in OA model-2. 307 

vii) The OA model-3 represents the random split-line orientation of collagen fibers, as 308 

shown in Figure 4(g). 309 

The properties of the FRPHE cartilage material are implemented into the model according to 310 

Table1. Even though some of the proteoglycan matrix parameters are chosen as constant 311 

throughout the depth of the tissue, the depth-dependent heterogeneity is applied based on the 312 
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matrix's strain-dependent permeability characteristics, which are represented using Equations 313 

4-6. Also, the depth-dependent attributes of the solid material (proteoglycan matrix) and fluid 314 

(interstitial fluid), such as density, are chosen as the same throughout the depth to simplify 315 

the model. The collagen fibers are assumed to be oriented perpendicular or inclined to the 316 

articular surface of the cartilage for severe OA conditions compared with the intact case. This 317 

orientation affects the tissue response, and it is believed that these multiple-oriented collagen 318 

models may predict the actual tissue response due to the change in direction. These fiber 319 

orientation changes are named fibrillation, reported in the literature [23,68]. 320 

The menisci, collateral, and cruciate ligaments are modelled as transversely isotropic 321 

poroelastic, and the constants are chosen from the literature [69–72]. Another limitation of 322 

this study is that even though the meniscus and ligaments are made of fiber-reinforced 323 

poroviscoelastic material, they were represented using transversely isotropic poroelastic 324 

material. However, this simplification of the model aids in resolving the analysis's 325 

convergence problem when impact-loading scenarios like running and walking are present. In 326 

the current investigation, the transversely isotropic viscous menisci tissue and fiber-327 

reinforced viscous cartilage interchange fluid may impact the cartilage's interstitial fluid 328 

pressure. This change in interstitial fluid pressure can affect the cartilage's stress, strain, and 329 

contact pressure distribution due to the dissipated mechanical energy during the cyclic 330 

compression on the meniscus. Meanwhile, the alteration brought on by the results from other 331 

tissue types is disregarded, which is another limitation of the work. The present study focuses 332 

on the mechanical response of fiber-reinforced cartilage tissue rather than other tissues. 333 

Additionally, the literature implies that transversely isotropic material can be an alternative to 334 

fiber-reinforced material in predicting tissue responses [72–74]. 335 
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3. Results  336 

 337 

Fig. 5. Contours of mechanical responses of femoral cartilage on the surface of intact model-338 

1 during the stance phase of walking (60% gait cycle). 339 

Figure 5 shows the contours of different mechanical responses of the femoral articular 340 

cartilage during the stance phase of the walking gait cycle. It displays the variation in various 341 

mechanical responses, such as contact pressure, principal elastic stress, Lagrange strain, fluid 342 

 

 
Heel strike  

 
Loading  

 
Mid stance Terminal stance 

 
Pre-swing 

C
o

n
ta

c
t 

P
r
e
ss

u
r
e
 

Max = 1.06 Max = 2.5 Max = 0.52 Max = 1.26 Max = 2.45 

M
a

x
. 
P

r
in

c
ip

a
l 

 

E
la

st
ic

 s
tr

e
ss

 

 

Max = 0.89 Max = 1.82 Max = 1.11 Max = 1.42 Max = 1.9 

M
a

x
. 
P

r
in

c
ip

a
l 

L
a

g
r
a

n
g

e
 s

tr
a

in
 

Max = 0.12 Max = 0.22 Max = 0.13 Max = 0.16 Max = 0.25 

F
lu

id
 P

r
e
ss

u
r
e
 

 

Max = 1.41 Max = 1.60 Max = 1.10 Max = 2.04 Max = 0.67 

F
ib

e
r
 s

tr
e
tc

h
 

 

Max = 1.08 Max = 1.16 Max = 1.08 Max = 1.11 Max = 1.16 

 



19 
 

pressure, and fiber stretch of the biphasic cartilage. Throughout the cycle, it is seen that the 343 

contact pressure generated on the articulating surface varies, and maximum contact pressure 344 

of 2.5 MPa is observed at the end of the heel strike on the lateral side. According to published 345 

research, osteoarthritis is most prone to develop on the articulating surface where the 346 

maximum contact pressure is generated [75].  347 

Figure 6 depicts the contours of various mechanical responses throughout the running gait 348 

cycle. However, this also shows a similar trend in the contact pressure, as the maximum value 349 

of 2.9 MPa is observed at the end of the heel strike. The maximum contact pressure on the 350 

articulating surface of the cartilage during walking and running cases is 2.5 MPa and 2.9 351 

MPa. On the waking cycle, the maximum values are at 30% and 90% of the stance phase, 352 

whereas on the running cycle, the maximum value is obtained at 40%. Figures 1(a) and 1(b) 353 

shows the loading and the terminal stance of the gait cycle are the stances where the highest 354 

percentage of body weight acts on the knee joint during walking. In a gait cycle, these stances 355 

are situated at roughly the 30% and 90% positions of the stance phase. Thus, there is a chance 356 

that the area will experience the maximum mechanical responses. Similarly, during a running 357 

cycle, the maximum body weight that can bear on the knee joint is at mid-stance during the 358 

stance phase. Also, the trend of tissue responses for both cases is entirely different during the 359 

gait. The mismatch in trends between mechanical responses between loading and terminal 360 

stances may be due to the percentage of body weight acting on the knee joint during the 361 

respective stances. Also, the mismatch in the mechanical responses between walking and 362 

running gait may be due to the variation in the magnitude of body weight acting on the knee 363 

joint for walking and running. The maximum elastic stress and Lagrange strains are 364 

concentrated in the lateral-medial epicondyle area of the femoral cartilage during walking 365 

gait; however, during the running gait, these maximum values are observed in the posterior 366 

side of the knee cartilage.  367 
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 368 

Fig. 6. Contours of mechanical responses of femoral cartilage on the surface of intact model-369 

1 during the stance phase of running (40% gait cycle). 370 

Further, maximum principal stress of 1.82 MPa is produced throughout the walking cycle, 371 

which is more than the fluid pressure of 1.60 MPa that is produced during the loading stance 372 

(first peak in the loading curve). However, the principal stress produced at the terminal 373 

stance, 1.42 MPa, is less than the fluid pressure, 2.04 MPa (second peak in the loading 374 
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curve). A fluid pressure of 2.66 MPa is produced during the running cycle at the mid-stance 375 

start (the maximum peak in the loading curve), which is more than the maximum primary 376 

stress of 2.20 MPa produced. The medial side of the femoral cartilage experiences the 377 

maximum stresses and strains during the whole stance period of the walking gait. In contrast, 378 

the lateral compartment of the cartilage has the maximum responses during the running gait. 379 

The collagen fiber stretch also changes during the stance phase, with most variation seen in 380 

the running rather than walking cycle. 381 

 382 

Fig. 7. The comparison of mechanical characteristics of cartilage for different models during 383 

the stance phase of walking gait: (a) the contact pressure generated on the articulating 384 
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surface; (b) maximum principal elastic stress produced on the articular zone; (c) maximum 385 

principal Lagrange strain; (d) maximum fluid pressure generated in the biphasic cartilage. 386 

Figure 7 shows the variation in mechanical responses for different collagen fiber-oriented 387 

models during the stance phase of the gait cycle. All intact and arthritic models show similar 388 

trends in contact pressure, maximum principal elastic stress, maximum principal Lagrange 389 

strain, and fluid pressure. The maximum contact pressure generated on OA cartilage is higher 390 

than the intact cartilage model during the running cycle. However, the intact model observes 391 

elevated contact pressure during the walking cycle. The study indicates that running degrades 392 

cartilage morphology as peak contact stresses rise. Also, it is well known that OA can cause 393 

the cartilage's surface layer to deteriorate. Hence, the contact pressure produced by the OA 394 

model, where collagen fibers orientated normally to the articulating surface at the cartilage-395 

cartilage interface, can be greater than in the intact model, where collagen fibers are parallel 396 

to the articulating surface at the cartilage-cartilage interface.  397 

The intact model aligned with the proximal-distal direction has a higher contact pressure than 398 

the other models shown in Figure 7(a). Also, there is a 200% difference in the contact 399 

pressure for intact and OA models, and contact pressure reaches zero during the mid-stance 400 

(40-60% of the stance phase) for both models. In the walking gait, two contact pressure peaks 401 

are observed (during the 30% and 90% stance phases, respectively). During the first peak, 402 

contact pressure for intact models is two times higher than for OA models, and during the 403 

second peak, it is five times higher. Figure 7(b) shows higher principal stress for the intact 404 

parallel split-line model and lower principal stress for the random split-line oriented OA 405 

model during walking gait. According to previous experimental research, Green-Lagrange 406 

strain is a crucial indication of cell damage compared to other results such as contact 407 

pressure, principal stress, and fluid pressure [76,77]. Figure 7(c) shows that the maximum 408 

principal Lagrange strain has higher values for intact models than OA models. One can 409 
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observe that the difference in strain between these two sets of models significantly increases 410 

from 20% to 90% of the phase of stance. Figure 7(d) shows maximal interstitial fluid pressure 411 

in soft tissue. As expected, intact models give rise to higher fluid pressure than OA models. 412 

Among intact models, models 1 and 2 (parallel-oriented collagen fiber models) show elevated 413 

responses. 414 

 415 

Fig. 8. The comparison of mechanical characteristics of cartilage for different models during 416 

the stance phase of running gait: (a) the contact pressure generated on the articulating surface; 417 

(b) maximum principal elastic stress produced on the articular zone; (c) maximum principal 418 

Lagrange strain; (d) maximum fluid pressure generated in the biphasic cartilage. 419 

(a)

(c) (d)

(b)
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Figure 8 illustrates the mechanical responses of various models throughout the running gait. 420 

Even though the mechanical responses for both the walking and running cycles are 421 

comparable to the gait input data, it is interesting to note that the contact pressure created 422 

during the running cycle is more significant for the OA model than the intact model (Figure 423 

8(a)). Also, the maximum contact pressure generated is higher for the randomly oriented OA 424 

model (OA model 3) and the minimum for the perpendicularly oriented intact model (Intact 425 

model 4). Further, it can be observed that the contact pressure for walking gait (Figure 7(a)) 426 

is strikingly high for intact models than for OA models, which is not the case for running 427 

gait.  428 

429 
Fig. 9. The effective Lagrange strain in the sagittal plane sectional view of the articulating 430 

region (femur cartilage-meniscus-tibial cartilage interface) of the knee joint at the maximum 431 

loading position during the stance phase of walking and running gait. 432 

Figure 8(b) shows elastic stress distribution, where the parallel split-line model (Intact model 433 

1) exhibits the highest elastic stress, whereas the proximal-distal aligned model exhibits 434 



25 
 

lower elastic stress. The Lagrange strain is plotted in Figure 8(c). One can observe that the 435 

strain distribution trend is almost similar for all the simulated cases. This response differs 436 

greatly from the walking gait scenario (Figure 7(c)). Like the Lagrange strain, interstitial 437 

fluid pressure in Figure 8(d) also shows a similar trend. However, a closer observation 438 

indicates an increase of ~ 40% in fluid pressure in the case of intact models with parallel-439 

oriented intact models experiencing higher fluid pressure than perpendicular or inclined ones.  440 

Figure 9 shows the effective Lagrange strain in the femoral-tibial cartilage and meniscus 441 

contact region for walking and running cases. During the walking cycle, the tibial cartilage 442 

exhibits a higher strain in the case of intact models, while only the meniscus has a higher 443 

strain in OA models. Conversely, during the running cycle, the meniscus shows a higher 444 

strain in the case of intact models, and the femoral cartilage exhibits a higher stain in the case 445 

of OA models. In addition, it can be observed that the inclined intact model-3 shows lower 446 

tibial cartilage strain than the parallel-oriented models during the walking case and during the 447 

running cycle, the perpendicularly oriented intact model-4 exhibits lower tibial cartilage 448 

strain. Further, during the running cycle, the maximum strain is detected in the tibial 449 

cartilage-meniscus interface for intact models, whereas the maximum strain is observed in the 450 

femoral cartilage-meniscus interface for OA models. 451 

4. Discussion 452 

A subject-specific knee geometry with six degrees of knee kinetics and kinematics data 453 

concerning walking and running gait is utilised for the present knee investigation. An FRPHE 454 

cartilage model with control on collagen fiber orientation and osteoarthritic characteristics are 455 

used for the analysis. Also, different fiber-oriented cartilage models are created for intact and 456 

osteoarthritic cases. The model determines contact pressure in the articulating area, principal 457 

stress, Lagrange strain, interstitial fluid pressure, and cartilage fiber stretch, all of which are 458 

essential factors in the evaluation of cartilage degradation [13,73,78–80]. The findings imply 459 
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that the collagen fibril orientations, as revealed by split lines, play a significant role in 460 

regulating cartilage strains and stresses.  461 

The experimental investigation by [81] predicted larger contact pressures during the heel 462 

strike on the medial compartment compared to those on the lateral compartment, which is 463 

consistent with our model. Our model yielded contact pressures of 2 and 3 MPa at the lateral 464 

and medial compartments, respectively, at 50% of the stance phase (1500 N). These values 465 

are also in the same range as those found in past computational studies (1-5 MPa with loads 466 

between 1000 and 1800 N) [75,82–87].  467 

In the gait input data for knee kinetics and kinematics, forces and rotations corresponding to 468 

particular activities are applied to the FE knee model [88–92]. One limitation of the approach 469 

is that it uses a small displacement and rotation in the initial step to bring the model into 470 

contact with the cartilages and meniscus to achieve initial convergence. Moment-driven and 471 

rotation-driven are the two methods used to input flexion-extension, valgus-varus, and 472 

internal-external rotations to the knee model [93,94]. However, the present study uses a 473 

rotation-driven method to implement knee rotations, as shown in Figures 3(b) and 3(d). Also, 474 

it is unclear whether the FE model should be driven by a moment or a rotation because both 475 

methods predict identical measures in the literature [75]. 476 

The peak mechanical response magnitudes of the intact models are substantially more 477 

extensive than the OA model during walking gait, as shown in Figure 7; while running, peak 478 

magnitudes are observed for OA cases. Regarding the contact pressure produced, OA models 479 

have higher values than the intact model during running. The research shows that running 480 

worsens cartilage structure as the peak contact stresses increase. Additionally, it's generally 481 

understood that OA can worsen the cartilage's outer layer. As a result, the contact pressure 482 

created by the OA model, in which collagen fibers are typically oriented to the articulating 483 

surface at the cartilage-cartilage interface, may be greater than in the intact model. Studies 484 
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have revealed a strong correlation between the development and initiation of OA over a long 485 

period, and contact pressure rises on articular cartilage [95,96].  486 

Our findings of cartilage mechanics while walking and running align with overall trends from 487 

earlier computational studies and indirect experimental assessments [97]. The maximum 488 

Lagrange strain that we anticipate will occur during the first peak tibiofemoral load during 489 

walking (0.22) agrees with the 20% strain measured in the literature [98]. The magnitudes of 490 

our anticipated strains also closely matched those in [99], where the authors used a 491 

continuum-based finite element model of the knee to apply joint loads estimated from inverse 492 

dynamics at four instances of the gait cycle. Our findings concur with earlier simulation 493 

studies, suggesting that loads and collagen fiber orientation likely go together. According to 494 

these findings, stress increases when collagen fibers are randomly oriented, and superficial 495 

cartilage strain decreases along the split line directions parallel to the articular surface during 496 

the walking cycle [100,101]. This conclusion is supported by experimental data showing that 497 

cartilage's tensile strength is highest when evaluating the split liner pattern perpendicular to 498 

the collagen fiber direction [102,103].  499 

However, during the running gait, the highest value for Lagrange strain is generated in the 500 

intact model-2 with split-line patterns parallel to the articulating surface, as shown in Figure 501 

8(c), and it indicated the higher risk of OA, as excessive strain contributes to OA [21,28,104]. 502 

The maximum fiber stretch is obtained in the deep zone during running gait, whereas a lesser 503 

fiber stretch is received in the superficial layer, as illustrated in Figure 5. It may be caused by 504 

impact loading in the joint during running; however, the maximum fiber stretch in the 505 

superficial zone during walking can be seen in Figure 4. Hence, the fiber stretch values help 506 

to predict the gait data [105]. The maximum elastic stresses during walking and running cycle 507 

are obtained for models with split-line patterns parallel to the articulating surface for intact 508 

models, as shown in Figures 7(b) and 8(b). The study demonstrates that the direction of the 509 



28 
 

cartilage's collagen fibres affects the maximum stress generated and, therefore, is associated 510 

with osteoarthritis. 511 

5. Conclusions 512 

The study presents a novel method to control collagen fiber orientation for FRPHE cartilage 513 

models for knee joint analysis. This study suggests that during the walking cycle, the 514 

maximum contact pressure is observed to be greater in intact models than in OA models; 515 

however, during running, the maximum value is more remarkable in OA models than in 516 

intact models. Also, the maximum stresses and fluid pressure are obtained for parallel-517 

oriented models than proximal-distal oriented models for both walking and running gait. 518 

However, the maximum principal Lagrange strain predicts a similar trend for both intact and 519 

OA models throughout the running stance phase; the parallel-oriented models exhibit a higher 520 

value than perpendicular and inclined ones. These results will aid researchers in developing 521 

improved assistive devices for arthritis patients who engage in subject-specific activities such 522 

as walking and running.  523 
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