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Abstract. Levels of Autonomy are an important guide to structure our
thinking of capability, expectation and safety in autonomous systems.
Here we focus on autonomy in the context of digital healthcare, where
autonomy maps out differently to e.g. self-driving cars. Specifically we
focus here on mapping levels of autonomy to clinical decision support sys-
tems and consider how these levels relate to safety assurance. We then
explore the differences in the generation of safety evidence that exist be-
tween medical applications based on supervised learning (often used for
prediction tasks such as in diagnosis and monitoring) and reinforcement
learning (which we recently established as a way for Al-guided medical
intervention). These latter systems have the potential to intervene on
patients and should therefore be regarded as autonomous systems.
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1 Introduction

Scales of increasing levels of autonomy have been proposed for Al applications
in the healthcare domain [1,14]. This raises a concern, especially for safety en-
gineers, about how to define safety requirements for such autonomous systems.
There is general principle that higher levels of complexity and autonomy imply
more stringent safety requirements [2].

Supervised learning forms the basis of most Al-based clinical applications
that have been proposed in the literature for diagnostic and monitoring pur-
poses, e.g. in the recognition of skin tumors from images [3]. In this paradigm,
the purpose of the algorithm is to try to predict as accurately as possible a de-
fined prediction, labelling or classifications tasks using labelled data as training
material - effectively making a single decision to the nature of patient’s health
state. In contrast, in reinforcement learning (RL), a agent learns a decision strat-
egy (a so called policy) in a sequential decision making process. The policy is
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optimised so that it maximises some form of future expected total return [13].
Formally it is related to optimal control and model predictive control applica-
tions. RL differs from conventional prediction tasks used in most of the medical
AT literature in that the model does not simply reproduce human behaviour, it
attempts to improve and learn an optimal decision strategy from sub-optimal
training examples acquired from humans. This is a highly appealing approach
for many clinical scenarios with uncertainty, since the method would - in prin-
ciple - be able to tease out the right decisions among a range of options selected
by human doctors. We developed such an algorithm in previous research for
the treatment of sepsis (severe infections with organ failure), which we called
the “AI Clinician” system and is now being developed for prospective clinical
evaluation [7]. As we discuss in the later sections, the performance and safety
assessment of the output of RL algorithms is more difficult than conventional
prediction tasks based on supervised learning.

In this article, our objectives are to define increasing levels of autonomy of Al
systems in healthcare and discuss differences between supervised and RL based
AT applications with regards to safety assurance, using the example of the Al
Clinician for sepsis treatment.

In autonomous systems the nature of the action of the agent is an important
concept to consider. In autonomous vehicles the agent has to steer, accelerate and
brake the car, give signals etc. However, in clinical settings it is not necessarily
essential that the system directly controls the intervention.

2 Levels of Autonomy of AI Applications in Healthcare

We define 5 increasing levels of autonomy, from zero (no Al involved at all)
to four (fully autonomous AI), as shown in Table 1. The differences between
levels essentially reside in how the AI system and human user interact to make
a decision, and who bears the responsibility for the decision made. We illustrate
those levels using two different scenarios: self-driving vehicles, for their ease of
visualisation and understanding, and clinical decision support systems, which
are at the core of our research interests and whose deployment represents a true
challenge today.

Level 0 is used to serve as a reference: it designates a version of the setup in
which no Al is involved. For self-driving cars, this means human drivers without
any assistance, and for clinical decision support system, this is standard care.
This level is the baseline for the other ones: the aim of introducing Al is to
increase some aspects of performance of the system so the performance should
be assessed by reference to the baseline. This level can also serve as a reference
for measuring the safety of the system. This makes sense particularly when
considering systems which operate in high-risk environments, such as self-driving
cars and clinical decision support systems (CDSSs).

Level 1 is the first step towards Al autonomy. In level 1, the Al system is
set up in its environment, it can produce outputs and these outputs can be seen
by the human agent. The human has the choice to decide whether or not to
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Table 1. Definition of the five increasing levels of Al autonomy

‘Who makes
. Ilustration in Ilustration in an Al the final
Level|Short definition self-driving cars for drug administration |decision/burden
of responsibility
0 |No AI No assistance Standard care Human
Al suggests decisions  |GPS guidance system|Clinicians can see the
1 . . . Human
to human suggests direction AT recommendation

Car following lanes
on the motorway,
driver has to keep

AT changes the doses,
with human doctors Human

Al makes decisions,
2 |with permanent human

oversight hands on the wheel continually checking
Autonomous car AT changes the doses,
Al makes decisions, with a human behind |and can alert human
with no continuous the wheel, asks for  |users in case of high
3 . N . . . Al
human oversight but driver’s help if the uncertainty. Continuous
human backup available|AI cannot deal with |human oversight not
the situation required.
A.I makes decisions, Al}t?nomous §elf AT changes the dose
4 |with no human backup |driving car with . Al
. . . with no human backup
available no driving cockpit

look at the AIl’s output, and make their own decision accordingly. In this level,
the requirements on the Al system are quite low as its dysfunction should have
minimal impact on whether appropriate decisions are made or not. In the case
of self-driving cars, consider GPS systems where the driver has the option to
follow GPS guidance or not, and there is always a way for drivers to find their
way without GPS, e.g. following signs and maps. Similarly, a level 1 Al-based
CDSS would present treatment recommendations to the clinical team; however,
the team should still be able to function without the Al.

Level 2 pushes the AT’s autonomy one step further by letting it act directly
on the environment. However, on level 2, the Al system is continuously mon-
itored by a human expert who can take the lead at any time. An example of
such an Al for self-driving cars is lane-following assistance where the car can
change its steering and speed to stay in a given lane and maintain a reasonable
distance from other vehicles. In the context of Clinical Decision Support Systems
(CDSSs), a level 2 autonomous system would issue treatment recommendations
which would be administered to the patient either directly or by a human. A
human expert is continuously reviewing the system’s output.

Level 3 represents what most people would call true “autonomy”. Here, the
AT acts directly on the environment, but it is not continuously monitored by
humans anymore. Instead, the Al may request human input when needed. Note
here that, because the interactions between human and Al are not as frequent or
regular as in level 2, there can be delays in the human reaction, but these delays
should be within an acceptable range for the application. This level introduces
a new important requirement; the Al has to be uncertainty-aware, and be able
to recognise states in which its output might not be appropriate and human
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input is required. In the case of lane-keeping for self-driving cars, such a system
would be able to keep the car safely on the road in most of the situations,
without continuous human supervision, but could ask for human help when the
conditions prevent the Al from being confident in its decisions, e.g. at a complex
junction. Similarly, in a drug administration scenario, the AI would normally
be able to take care of drug administration with no human supervision, but
acknowledge the states in which the decision is not clear and ask for the input
of a human expert. A typical example in healthcare applications is represented
by mechanical ventilators that autonomously adapt to patient characteristics to
accelerate the weaning process, e.g. [9].

Level 4 stands at the top of the scale and represents the state of complete
autonomy. An AT system of level 4 autonomy acts directly on its environment,
and should be able to handle every situation within its defined scope of use.
This level is unrealistic with the current state of the art in both self-driving cars
and CDSSs for drug administration and is questionable if this would ever be
desirable in the healthcare setting [14].

An essential aspect of our approach is that the level of autonomy of a system
can only be assessed with respect to the environment in which it operates and
the tasks it aims to address. Even though there is a correlation between risk
and Al autonomy, the absolute amount of risk involved in acting in different
environments can be very different (an Al failing to mow the lawn properly has
very different consequences from failing to keep a car in line on the motorway).

3 Difference between Supervised and Reinforcement
Learning Applications

CDSSs based on supervised learning in the field of computer vision or closed-
loops are already in use in clinical settings [14]. For example, the FDA has
approved systems that detect strokes in brain CT scans and automatically alert
physicians [11]. In the operating room, prototypes of Al closed-loop systems
are being developed, to control the level of sedation (measured with real-time
electroencephalography, EEG) or blood pressure during surgery [5,6,8], e.g. the
amount of desired concentration of anesthetic in the brain (targeted controlled
infusion, [12]). In our classification, such systems would correspond to level 1
(stroke detection) or 2 (drug dosing system). In the first example, the AI merely
supports human clinicians in their decisions and improves workflow and care
coordination. In the second example, the system controls the delivery of a drug
that is being given to a human; it has latitude to increase or decrease the amount
of drug flowing into the system. This is equivalent to a clinician ordering a certain
amount of drug to be delivered and another human trying to control the amount
injected accordingly. Yet, the clinician specifies the amount of drug in a part of
the body, and the system is under the continuous supervision of a human expert
(an anesthesiologist) who may take over the control of the system at any point.

Autonomy, however arises when the AI system is not directly working to
precisely-defined human specification. An important distinction must be made



Title Suppressed Due to Excessive Length 5

between Al-based clinical systems based on supervised learning and reinforce-
ment learning. Let us use the example of the Al Clinician system for sepsis
resuscitation to illustrate this distinction [7]. Sepsis represents a global health-
care challenge, a leading cause of death and the most expensive condition treated
in hospitals [15]. A cornerstone of the treatment of severe infections is the admin-
istration of intravenous fluids and vasopressors. However, there is much debate
around the dosing of these treatments and what resuscitation targets should be
used. Despite decades of research, resuscitation strategies in an individual pa-
tient remain mostly empirical. This is the clinical challenge that the AT Clinician
attempts to address. The challenge of collecting safety evidence is much more
complex for an CDSS based on RL (such as the AI Clinician) than for the med-
ical applications based on supervised learning described above, for a number of
reasons.

Firstly, there is no established “gold standard” for sepsis treatment [15].
Clinicians may have multiple objectives, which run in parallel and might be
conflicting. For example, optimising blood pressure with large volumes of in-
travenous fluids may temporarily improve cardiac output whilst compromising
organ perfusion and increasing the risk of renal failure at a later time point.
In a conventional supervised learning setting, the equivalent task would be to
train a model to replicate desirable human behaviours, which is in general more
straightforward. In sepsis resuscitation, the desired effect of fluid resuscitation
and vasopressors may not be clearly defined, which makes it difficult to use
supervised learning.

Secondly, while the RL agent can in theory explore treatment strategies that
have not been used in practice by clinicians, there is in reality limited opportunity
with RL to learn the optimal policy using “on-policy learning” by trial-and-error,
due to ethical and patient safety risks [4]. A major limitation is the lack of high
fidelity human simulators that would enable safe exploration of various decisions
without compromising safety. In many real-world applications of RL such as
healthcare, the environment in which to train the model is not fully observable,
which induces uncertainty about the state represented by the RL model. This
is very different from simulation frameworks used in computer science research
such as the Atari games [10], where the environment is fully observable at any
time and provides all the information needed to make optimal decisions.

Thirdly, the effect of the decisions on outcomes represents a complex closed-
loop with confounded causality. The effect of administering fluids and/or vaso-
pressors is realised at multiple time horizons on multiple parameters. For exam-
ple, the effect on cardiac output and blood pressure can be immediate, while the
effect on the patient’s kidney function can be delayed by a few hours or days,
and the patient’s final outcome can be weeks away but still influenced by a sin-
gle early decision. This is reflected when defining the RL model reward, where
researchers have to choose between immediate, intermediate or delayed rewards.

Finally, key areas of our current work focus on the development of a safety
case for the AT Clinician system in which the safety evidence and its associated
arguments vary with the intended level of autonomy of the system and the
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readiness of the wider clinical environment for the deployment of this novel
technology.
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