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 13 

Abstract  14 

The presence of pollutants like uranium and arsenic in the groundwater can have a terrible 15 

impact on people's health (both radiologically and toxicologically) and their economic 16 

conditions. Their infiltration into groundwater can occur through geochemical reactions, 17 

natural mineral deposits, mining and ore processing. Governments and scientists are working 18 

to address these issues, and significant progress has been achieved, but it's challenging to deal 19 

with and mitigate without adequately understanding the different chemical processes and the 20 

mobilization mechanism of these hazardous chemicals. Most of the articles and reviews have 21 

focused on the particular form of contaminants and specific sources of pollution, such as 22 

fertilizers. However, no literature report exists explaining why particular forms appear and the 23 

possible basis of their chemical origins. Hence, in this review, we tried to answer the various 24 
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questions by devising a hypothetical model and chemical schematic flowcharts for the chemical 1 

mobilization of arsenic and uranium in groundwater. An effort has been made to explain how 2 

chemical seepage and excessive groundwater use resulted in the change in aquifers' chemistry, 3 

as evidenced by their physicochemical parameters and heavy metal analysis. Many 4 

technological advancements have taken place to mitigate these issues. Still, in low-middle-5 

income countries, especially in the Malwa region of Punjab, also known as Punjab's cancer 6 

belt, paying a high amount for installing and maintaining these technologies is an unviable 7 

option. In addition to working to improve people's access to sanitary facilities and clean water 8 

to drink, the policy-level intervention would focus on increasing community awareness and 9 

continued research on developing better and more economical technologies. Our designed 10 

model/chemical flowcharts will help policymakers and researchers better understand the 11 

problems and alleviate their effects. Moreover, these models can be utilised in other parts of 12 

the globe where similar questions exist. This article emphasises the value of understanding the 13 

intricate issue of groundwater management through a multidisciplinary and interdepartmental 14 

approach. 15 

Keywords: groundwater, uranium, arsenic, hydrogeochemistry, chemical mobilization. 16 
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 2 

Introduction 3 

Water covers three-quarters of the earth's surface, but only 0.3% of water, especially from 4 

lakes, rivers, and groundwater, is available for human utilization (Davis and De Weist, 1966; 5 

Shiklomanov, 1993). The demand for drinking/agricultural water keeps increasing, so the 6 

burden on freshwater resources from great rivers to underground aquifers also increases (Lall 7 

et al., 2020). Although these aquifers are renewable, the rate of pumping out water is faster 8 

than the rate of recovery; hence, water depletion occurs faster than enrichment (Fendorf and 9 

Benner, 2016; MacDonald et al., 2016).  Not only quantity but water quality also becomes a 10 

major concerning factor. According to the world water report by United Nations, the increasing 11 

groundwater withdrawal decreases its quality worldwide. From the total world groundwater 12 

content, Asian countries draw a significant share of about 65%; moreover, Indian groundwater 13 

resources are highly exploited (UNESCO World Water Assessment Programme, 2022). In the 14 

Punjab state of India, where the green revolution occurred, most of the groundwater resources 15 
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are overexploited (See supplementary information and (Punjab Water Regulation and 1 

Development authority, 2020). Indeed, Jurgens and coworkers demonstrated that 2 

overexploitation caused hydrogeochemistry changes and deteriorated the water quality 3 

(Jurgens et al., 2010). The leaching from natural chemical deposits and agrochemicals 4 

(fertilizers, pesticides, insecticides and herbicides) also contribute to the deterioration of water 5 

quality. As a result, surface and groundwater sources are polluted with several toxic heavy 6 

metals (Kaur et al., 2019).  7 

One region of Punjab, the Malwa region, was once known as the breadbasket of India, now 8 

called the cancer belt of Punjab. The state government agency conducted a study in 9 

collaboration with the Indian Council of Medical Research (ICMR) and showed results in this 10 

favour (Nanda et al., 2016a). However, people also suffer from various other diseases like 11 

Arthritis, Sinusitis, Anemia, Fluorosis, Arsenicosis, Lead poisoning, Methaenoglobinemia and 12 

kidney-related problems. Uranium and Arsenic are the two major contaminants present in 13 

groundwater, putting a shattering effect on the socioeconomic model of society. Several reports 14 

highlighted the presence of these toxic metals in higher concentrations than the WHO 15 

recommended limit. But the research’s finding describing the flow of these hazardous 16 

chemicals inside the earth's surface of the Malwa region is very sparse. Here, we collected 17 

more than 100 scientific research papers describing the excess uranium and arsenic content in 18 

the groundwater of the Malwa region of Punjab.  19 

Numerous articles and reviews have been published regarding the form of uranium 20 

[UO2(CO3)3
4- form and (UO2)3(OH)5

+] found in the groundwater and the cause of 21 

contaminations, particularly geogenic/fertilizers. However, none of them included information 22 

about the origins and relationships between the origins, for instance, why this form? How was 23 

this form formed? What are other possible sources of origin of one particular form? Without 24 

the proper knowledge of the mechanism of the whole process, it is difficult for policymakers 25 
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to devise the proper control measure. So, intending to help the policymaker, we designed this 1 

study as shown in Figure 1. 2 

 3 

Figure 1. Conceptual framework model of our work 4 

The correlation studies of various physicochemical parameters told that the change in one 5 

physicochemical parameter could be the reason for a change in other parameters, but there are 6 

very minimal reports describing the process of how this change comes out. So, the main 7 

objective of this study is to understand the complex interplay of natural dynamics of the 8 

hydrological cycle through the chemical phenomenon materialising inside the earth. Hence, the 9 

chemistry treatment to previous studies was given in order to build the connecting links and 10 

comprehend the proper mechanism of their flow and proposed hypothetical models for earth 11 

geochemistry and chemical schematic flowcharts for the movement of uranium and arsenic 12 

inside the groundwater.  Here, we limited our study to uranium and arsenic only, but we will 13 

try to explore more about other heavy metals, such as cadmium, lead, strontium etc., in our 14 

further communications. The schematic flowcharts will explain all possible ways to mobilize 15 

arsenic and uranium in the groundwater. This review attempts to underscore the complex 16 

interaction of heavy metal (U and As) contaminants in groundwater and help to understand 17 

their transport process. In our review, we tried to glimpse the available technologies for 18 

removing uranium and arsenic in the groundwater with their merits, demerits and operating 19 
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costs. Yadav et al. found in their study that these technologies were unaffordable for low-1 

middle-income countries  (Yadav et al., 2022). It’s even difficult to manage these technologies 2 

for the people of the Malwa region (also known as the cancer belt), where family income is 3 

overburdened due to cancer. Here, the average family income is Rs 2.30 lakh compared to the 4 

average cost of cancer treatment (Rs 2.75 lakh) (I. Singh et al., 2013). The policy-level 5 

intervention would prioritise raising community awareness and ongoing research on creating 6 

better and more affordable solutions, in addition to focusing on improving people's access to 7 

sanitary facilities and clean water to drink. 8 

Further, the chemical scenario provided by our designed models will be helpful for 9 

academicians, scientists and policymakers to understand the problems better and take the 10 

necessary steps to mitigate these issues. This study offers the national and state governments 11 

strategic guidance on comprehending and addressing the problem of poor water quality in 12 

Punjab's Malwa region. Moreover, this paper will highlight the urgent need for interdisciplinary 13 

and interdepartmental initiatives to ensure sustainable groundwater quality. Furthermore, the 14 

model employed here could be utilized in other areas of the world where groundwater has been 15 

seriously polluted.   16 

The Malwa region of Punjab 17 

Punjab is the land of five rivers, but the Sutlej and Beas are the two major rivers that pass 18 

through the state, while the Ravi river touches the northern part of the state. This river pattern 19 

divides the state into three regions: Malwa, Majha and Doaba. Among the three areas, the 20 

Malwa region is the most significant part of the present Punjab state of India. Sutlej river's left 21 

bank separated the Malwa region from the other regions. Its southern border is shared with 22 

Haryana and Rajasthan, while the western edge is shared with Pakistan. The Malwa 23 

region geographically extends from 29◦ 30' North to 31◦10' North and longitudes 73◦ 50' to 76◦ 24 

50' east, as shown in Figure 2. It occupies 65.1% (32808 km2) of the total Punjab area and bears 25 
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58% of the Punjab population. Cotton, rice and wheat are the major crops grown in this area, 1 

and the region is known as the cotton belt of India (Kaur and Kaur, 2016). 2 

 3 

    4 

Figure 2. Map of Malwa region of Punjab. 5 

The effect of the green revolution 6 

After the green revolution, the Malwa region of Punjab led from the front to feed the nation 7 

and made a discernible change in the economy of the state and the whole country (Khush, 2001 8 

and reference cited there in). This boom in agriculture made farmers of Punjab self-reliant. But, 9 

on the other hand, considerable investments in the agriculture sector, an increase in farm 10 

mechanization and the excessive use of pesticides for an increase in production changed the 11 

green revolution to the greed revolution (Nanda et al., 2016b; Planning Commission of Punjab, 12 

2005). In 2020, the pesticides/insecticides consumption was around 5000 metric tonnes 13 

compared to 154 metric tonnes in 1954 (Neel Kamal, 2020). The fertilizer consumption 14 

increased to 26.5 million in 2009-10 from 78000 tons in 1965-66 (Sharma and Thuker, 2011). 15 

Karam Prakash et al. reported that the fertilizers consumption was 253.94 kg/hectare (Karam 16 

Prakash, 2022). The utilization of large amounts of fertilizers/pesticides/insecticides and 17 

overexploitation of groundwater (Please see the supplementary information) resources led to 18 
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changes in the groundwater cycle and groundwater chemistry of the area, as shown in Figure 1 

3. 2 

 3 

Figure 3. Pictorial representation of the groundwater cycle and groundwater layers of this 4 

region 5 

In 1995, Singh et al. reported uranium in the water of Bathinda and Amritsar (Singh et al., 6 

1995). In the late 90s, Philipose et al. published an article in the Indian Express newspaper that 7 

described the scenario of Punjab and warned about the future consequences (Philipose, 1998).  8 

In 1999, by documenting cancer fatalities and referring to them as "cancer-stricken villages," 9 

Pandhar's editorial in the newspaper brought two villages, Gyana and Jajjal of district Bathinda, 10 

to national attention (Panher, 1999).  In parliamentary question 2003, the government of Punjab 11 

(Proceeding of Punjab Vidhan Sabha, 2003) asked the Punjab Pollution Control Board (PPCB) 12 

and Post-graduate Institute of Medical Education and Research (PGIMER) Chandigarh to 13 

conduct a study in Talwandi Sabo and Chamkaur Sahib blocks of Bathinda and Rupnagar 14 

districts, respectively. This study found that females were more affected by different types of 15 

cancers than males. Moreover, they reported heavy metals (U, As, and other heavy metals) 16 
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contamination in drinking water/groundwater at a higher concentration than the World Health 1 

Organization (WHO) permissible limit.  2 

Later on, Thakur et al. displayed the presence of pesticide residue in the vegetables, milk and 3 

blood samples of different patients (Thakur, 2005; Thakur et al., 2008).  Halder et al., in a 4 

survey, reported premature greying of hair, premature ageing and excessive cancer death in the 5 

Jajjal village of Bathinda (Haldar, 2007).  After these eye-opening reports, many other research 6 

groups and organizations worked in this region and published their findings of uranium and 7 

arsenic contents in the groundwater, summarized in Table 1. 8 

Table 1. Collection of reports about uranium and other heavy metals content in groundwater 9 

of Malwa region 10 

Area of Study Metals 

content 

found 

Concentration 

range (ppb or 

µg/l) 

(1 ppb = 1 µg/l) 

Sample 

Taken 

Reference 

Bathinda  Uranium 11.7 - 113 ppb Groundwater (Singh et al., 1995) 

Bathinda  Uranium 
 

2 - 87.5 µg/l 
 

Groundwater (Kumar et al., 2006) 

Bathinda, Mansa  Uranium 7 - 316 ppb Groundwater (Kochhar et al., 
2007) 

(Kochhar et al., 
2012) 

Malwa Region Uranium 5.41 – 43.39 µg/l Groundwater (Mehra et al., 2007) 

Bathinda, Mansa, Faridkot, 
Firozpur, Sangrur, Moga Patiala 

Arsenic 3.5 – 688 µg/l Groundwater  (Hundal et al., 
2009)(Hundal et al., 

2007) 

Bathinda, Rupnagar       
Arsenic 

 

> 10 ppb 
 

Groundwater (Thakur et al., 2008) 

Bathinda, Mansa Uranium 0.9-63.1 ppb Groundwater (Singh et al., 2009) 

Bathinda, Mansa 
 

Uranium 28.57 – 213.36  
mBq/l 

Milk  (Kumar et al., 2009) 

Malwa Region Uranium >100 ppb Groundwater (Muhanad et al., 
2009) 

Bathinda, Mansa, Faridkot, 
Firozpur 

Uranium 0.2 – 644 µg/l 
 

Groundwater (Kumar et al., 2011) 
(Kumar et al., 2014) 

Bathinda, Mansa, Firozpur, 
Faridkot 

Uranium 3.2 – 60. 5 ppb Groundwater (Prabhu et al., 2012) 

Muktsar Uranium 4.5 – 330 µg/l Groundwater (Shenoy et al., 2012) 

Bathinda, Faridkot, Firozpur, 
Sangrur, Muktsar 

Arsenic 5 – 50 µg/l, 10 – 
100 µg/l, 10 – 50 

µg/l, 5 – 50 µg/l, 5 
-50 µg/l 

Groundwater (Sharma et al., 2013) 

Bathinda Arsenic >10 µg/l in 1/3 
samples 

Groundwater (Singh et al., 2013) 

Bathinda Uranium 0.48 – 571.7 µg/l Groundwater (Singh, L. et al., 
2013) 

Malwa Region Uranium 13.9 – 172.8 µg/l Groundwater (Tripathi et al., 2013) 
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Bathinda, Moga, Faridkot  Arsenic 16 – 76 µg/l Groundwater (Sidhu et al., 2014) 

Bathinda, Mansa, Faridkot, 
Firozpur, Sangrur, Moga Patiala 

Arsenic  
 

2.2 – 120 µg/l 
 

Groundwater (Shah et al., 2015) 

Faridkot, Bathinda, Mansa Uranium 0.13 – 676 µg/l Groundwater (Saini et al., 2016) 
(Saini et al., 2017) 

Bathinda Arsenic 2.28 – 27.47 µg/l Soil (Kumar et al., 2016) 

Mansa  Uranium 0.13 – 1340 µg/l Groundwater (Sharma and Singh, 
2016) 

Bathinda, Mansa, Faridkot and 
Firozpur 

Uranium 
Arsenic 

 

0.5 – 571.7 µg/l 
1 – 59.6 µg/l 

 

Groundwater (Bajwa et al., 2017) 

Bathinda, Mansa, Muktsar 
Faridkot 

Arsenic 4.35 – 23.94 µg/l Groundwater (Kaur et al., 2017) 

Bathinda, Mansa, Muktsar 
Faridkot Firozpur, Sangrur, 

Moga, Barnala 

Arsenic  
 

2 – 1200 µg/l 
 

Groundwater (Sharma and Dutta, 
2017)(Sharma, 2018) 

Mansa, Bathinda Uranium 
 

2.3 – 357 µg/l 
 

Groundwater Sharma, DA et al., 
2017)(Sharma et al., 

2020) 

Faridkot, Muktsar Uranium, 
 

3 – 190 µg/l 
 

Groundwater (Pant et al., 
2017)(Pant et al., 

2020b) 

Bathinda, Mansa, Firozpur, 
Faridkot 

Uranium 1.78 – 261 µg/l Groundwater (Singh, KP et al., 
2018a)  

Ludhiana Arsenic 0 – 21 µg/l Groundwater (Singh et al., 2019) 

Ferozpur, Patiala, Rupnagar Arsenic  16 – 91 µg/l Groundwater (Virk, 2019a) 

Bathinda, Mansa, Faridkot, 
Firozpur, Sangrur, Moga Patiala 

Uranium 2.47 – 366 µg/l Groundwater  (Virk, 2020; Virk, 
2019b, 2019c, 2019d, 
2019e, 2018, 2017a, 

2017b, 2017c) 

Bathinda Arsenic  
Uranium 

2.1 – 83.87 µg/l 
8.98 – 289.53 µg/l 

Groundwater (Kaur, G et al., 2021)  

Bathinda, Barnala, Ludhiana Arsenic 
 Uranium  

 

0.5 – 28.7 µg/l 
0.5 – 432 µg/l 

 

Groundwater (Kumar et al., 2021) 

 1 

Table 1 shows that high uranium content was found in districts such as Bathinda, Mansa, 2 

Faridkot, Ferozpur and Moga district. Furthermore, from the data provided by CGWB 2021, 3 

the spatial and temporal distribution map and a 3D bar of uranium graph were made, as shown 4 

in Figure 4. These graphs provided a vivid illustration of the seriousness of the situation. 5 

 6 
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   1 

Figure 4.  Spatial and temporal variation and 3D bar graph of uranium distribution in the Malwa 2 

region of Punjab.  3 

This issue of high uranium contamination in the groundwater came to the limelight after Prof. 4 

Carin Smit, a South Africa-based clinical toxicologist, visited Baba Farid Centre (BFC) for 5 

special children, where children are being treated for autism, cerebral palsy and neurological 6 

impairments. He took samples and analyzed them. He reported high Uranium, Barium, 7 

Cadmium, Manganese, and Lead contents in the patients' samples (Blaurock-Busch et al., 2010; 8 

Blaurock-Busch et al., 2010).  This finding became a front-page headline in various national 9 

and international newspapers, for instance, The Times of India, Down to Earth, The Telegraph 10 

(London) etc. Hence, Center Ground Water Board (CGWB), Punjab Pollution Control Board 11 

(PPCB), Punjab Water Supply Sanitation Department (PWSSD), Punjab State Planning Board 12 

and other government and non-government agencies were employed to learn more about the 13 

situation. In the study by Punjab State Planning Board, Punjab, India, Bhabha Atomic Research 14 

Center, India (BARC) and Guru Nanak Dev University, Punjab, India (GNDU), the researchers 15 

found the excessive use of phosphate fertilizers as a possible source of the high amount of 16 

uranium in the region by percolation through the soil (Bajwa et al., 2017; Kumar et al., 2011). 17 

Still, Srivastava et al. and Singh et al. reports ruled out that hypothesis (G. Singh et al., 2018; 18 

Srivastava et al., 2017). After that, other theories were put forward, such as fly ash dump of the 19 

thermal power station, industrial effluents, etc.  However, Alrakabi et al.  2012 suggested that 20 
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the most plausible origin of high uranium content in the Malwa region might be geogenic 1 

(Alrakabi et al., 2012). This high uranium content in the groundwater can cause severe kidney 2 

problems, lung infections, autoimmune disorders, high blood pressure, reproductive system 3 

problems, and cancer (Domingo, 1994; Leggett, 1994; Leggett and Pellmar, 2003).   4 

According to the Ministry of Agriculture, India report-2013, 6500 metric tonnes (MT) of 5 

pesticides were consumed only in Punjab, and 75% was used up in the Malwa region of Punjab 6 

alone (Ministry of Agriculture, 2014). Researchers published many reports about pesticide 7 

contents in drinking water, food and vegetables, and all the studies are compiled in Mittal’s 8 

review article (Mittal et al., 2014). Arsenic is a primary component of many pesticides and is 9 

typically present in the form of lead arsenate, sodium arsenate, calcium arsenate, dimethyl 10 

arsenate, chromated copper arsenate, fluorochrome arsenate phenoyl, etc. (Bencko and Yan Li 11 

Foong, 2017). However, Hundal et al. found that in the Malwa region of Punjab, hand pumps 12 

and canal water are also more heavily contaminated with arsenic than is permitted by the WHO 13 

and put light upon the geogenic origin of arsenic in groundwater. (Hundal et al., 2009, 2007). 14 

They reported that the arsenic contents in Patiala, Bathinda, Muktsar, Mansa, Faridkot, and 15 

Firozpur districts exceeded the permissible limit. A study by PGIMER and PPCB reported that 16 

the Buddha nullah river became highly toxic due to effluents from industries and contained 17 

various harmful heavy metal ion content such as As (Machhan, 2019). From table 1 and other 18 

literature data, the Mansa district of the Malwa region was found to have very high arsenic 19 

contents with an average value of 650 µg/l (Sharma et al., 2021b). Interestingly, some other 20 

locations in the southwestern part of Malwa found a relatively high arsenic content. Hence, we 21 

found an interesting trend in the arsenic ion concentration in the Malwa region. Considering 22 

the average value of arsenic in different districts of the Malwa region, a spatial distribution 23 

trend map and 3D  bar graph of arsenic ion concentration in groundwater were plotted for 24 

understanding, as shown in Figure 5.  25 
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 1 

Figure 5.  Spatial and temporal variation and 3D bar graph of arsenic distribution in the Malwa 2 

region of Punjab. 3 

Arsenic is a deadly poison considered a carcinogenic element that causes cancer through 4 

respiratory and gastrointestinal exposure. The study conducted by Hong and co-workers 5 

confirmed the association between lung, skin and bladder cancer due to arsenic poisoning 6 

(Hong et al., 2014). Recent studies linked arsenic with other types of cancer, such as liver, 7 

prostate, leukaemia, etc. (Martinez et al., 2011). The relationship between arsenic and various 8 

diseases, such as diabetes, neurological effects, cardiac disorders, congenital disabilities and 9 

reproductive organs, was also found (Claudia et al., 2003; Lee et al., 2002; Tsai et al., 2003; 10 

Tseng et al., 2002). Consequently, it is imperative to study the mechanism of mobilization of 11 

these dangerous metals from top to bottom.  12 

Physicochemical parameters of groundwater of Malwa region  13 

To understand the mobilization of arsenic and uranium, we first studied various 14 

physicochemical parameters and correlations. The information about the quality of water and 15 

its suitability for drinking use are easily obtained by analysing the physicochemical parameters, 16 

such as pH, electrical conductivity (EC), total dissolved solutes (TDS) and turbidity and by 17 

calculating the inorganic and organic components in the water and influence of biotic and 18 

abiotic factor (Kumar et al., 2007). The inorganic elements are essential for various body 19 

functions, but their higher concentrations create groundwater pollution and human health-20 

related issues. Various natural and anthropogenic processes such as the leaching of chemicals, 21 
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rocks weathering, mining, chemical fertilizers and the metal industry can be the reason for 1 

deviation of these parameters (Thakur et al., 2016). Moreover, these parameters mentioned 2 

above vary with weather changes, such as the areas' premonsoon and post-monsoon (CGWB, 3 

2020, 2019, 2018). These variations might be due to the difference in the geological location 4 

of the study area and the method used for sample collection. So here, the physicochemical 5 

parameters data of groundwater from recent publications/reports about all districts of the 6 

Malwa region are compiled as shown in Table 2. 7 

The pH data from Bathinda (6.9 -9.5), Mansa (7.5–9.1), Faridkot (7.0–9.8), Muktsar (6.8-9.0) 8 

and Fazilka (7.8 -9.6) districts showed slightly inclination toward the upper limit of WHO 9 

permissible value (Table 2). The pH value is affected by the presence of carbon dioxide and 10 

various inorganic ions. Electrical conductivity speaks for the measure of the total dissolved 11 

ions/salts and salinity. The high electrical conductivity and high TDS data of the southwest 12 

part of the Malwa region {Bathinda [Ec(223 -3870), TDS(164-2500)], Mansa [Ec(268 – 5140), 13 

TDS(160-3400)], Faridkot [Ec(814 – 7542), TDS(446-4600)], Muktsar [Ec(513 - 11500), 14 

TDS(303-5785)] and Fazilka [Ec(745 - 8320), TDS(600-6800)]} is only due to dissolution or 15 

leaching of aquifer mineral or mixing of saline source or both respectively (Hounslow, 2018). 16 

Due to the very high EC and TDS, the land of the Muktsar and Fazilika districts became 17 

infertile. No crop has been sown in the Rattakheda and Sikhwala villages of Muktsar district 18 

and Shajrana village of Fazilka district since the last two decades (Shah, 2013). Total hardness 19 

depends upon calcium, magnesium, carbonate, sulphate, and chloride ion concentrations. Table 20 

2 showed a high value for TH (0-1490), which may be due to the calcareous texture of the soil. 21 

According to the Davis-DeWeist classification for TDS (Davis and De Weist, 1966) and 22 

Durfor-Becker classification of TH (Durfor and Becker, 1964) (Table 3), the groundwater of 23 

the Malwa region comes in the category of very hard water and unfit for drinking. 24 
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Table 2. Physiochemical parameters of groundwater of all the district of the Malwa region of Punjab.*  

*Most recent published data is used to make this table (CGWB, 2020) 
Except Ph and Ec(uS/cm), all other parameters are in mg/l 

        PP      
 
Districts                

pH 
 

Ec TH CO3
2- TDS HCO3

- NO3
- SO4

- F- Ca2+ Mg2+ Na+ In addition to 
CGWB, 2021 
Other Ref 

Bathinda 6.9 - 9.5 223 -
3870 

60 -
1125 

0 - 156 164 -
2500 

85 -818 5.28 -245 0.5 -201 029 -4.79 20 - 285 50 - 900 8.5 - 
1120 

(Sharma et al., 
2021a) 

Mansa 7.5 - 9.1 268 -
5140 

50 -
1440 

0 - 204 160 -
3400 

100 -1062 3.6 -   71 5 -   548 0.4 - 2.0 12 -   60 2 -    77 43 -1100 (Sharma et al., 
2021b) 

Faridkot 7.0 - 9.8 814 -
7542 

50 -767 0 - 190 446 -
2700 

104 -756 1 -   711 28 -1379 0.23 -4.2 1 - 182 2 - 132 41 -1397 (Ahada and 
Suthar, 2018) 

Firozpur 8.0 - 8.9 478 -
1641 

105 -
273 

0 - 102 246 -
1740 

118 -370 2.4 -172 31 -305 0.14 -
1.21 

13 - 46 13 - 51 37 - 310 (Ahada and 
Suthar, 2018) 

(G. Kaur et al., 

2019) 

Muktsar 6.8 - 9.0 513-
11500 

179 -
761 

0 - 263 303-5785 74-816 9 - 2000 31 - 2500 0.39 – 
6.4 

16 - 408 17.3 - 
348 

34 - 1123 (Pant et al., 
2020a) 

Sangrur 7.7 – 9.1 329 -
1715 

90 - 560 0 - 156  150 - 683 5.7 - 105 12 - 175 0.15 – 
1.2 

4 -48 17 - 106 19 - 385 (Ahada and 
Suthar, 2018) 

Patiala 7.6 – 8.9 355-
4060 

20 - 821 0 - 84  171 - 573 0.35 - 
358 

5 - 1022 0.19 – 
4.12 

4 - 72 2 - 156 20 – 650 (Ahada and 
Suthar, 2018) 

Rupnagar 7.1 – 8.5 330 - 
1701 

57 - 833 0 - 27 199 - 983 70-409 0.14 - 53 37.7 - 
522 

0.11 – 
1.03 

13 - 220 3 - 138 15 - 387 (Ahada and 
Suthar, 2018) 

Ludhiana 6.7 – 8.3  80 - 
1940 

60 - 695 0 - 96 57 - 1370 110 - 696 0.5 - 209 1 - 258 0.08 – 
2.75 

15 - 250 15 - 620 6.7 - 235 (Kumar et al., 
2021) 

Moga 7.5 – 8.8 73 - 
2332 

60 - 495 36 - 132 352 - 
1472 

134 - 549 107 - 163 20 - 59 0.09 – 
10. 5 

8 - 98 9 - 102 36 - 260 (Shashi and 
Bhardwaj, 
2011) 

Fatehgarh Sahib 6.7 – 8.5 206 - 
1452 

110 - 
650 

0 - 27 146 - 
1109 

168 - 629 0.5 - 65 12 - 120 0.05 – 
0.65 

15 - 88 30 - 60 30 - 122 (Kumar et al., 
2020) 

Mohali 7.7 – 9.0 450 - 
6480 

95 - 
1490 

0 - 14  182 - 699 0.4 - 407 0.1 - 880 0.31 – 
1.52 

8 - 360 14 - 163 30 - 820 (Ahada and 
Suthar, 2018) 

Fazilka 7.8 – 9.6 745 - 
8320 

74 - 911 0 - 240 600-6800 74 - 574 1.5 - 253 43 - 2005 0.32 – 
3.1 

8 - 206 5 - 418 110 - 
1600 

(Ahada and 
Suthar, 2018) 

Barnala 6.8 – 8.6 41 - 
2340 

20 -825 12 - 72 29 - 1657 159 -317 0.5 - 242 1 -392 0.37 – 
2.3 

10 - 225 10 - 650 30 -182 (Ahada and 
Suthar, 2018) 

WHO 
recommended 
Values 

6.5 - 8.5 750 - 
2000 

0 - 500 0 - 500 0 - 1000 - 0 – 50 0 - 400 0.6 – 1.5 0 - 100 0 - 50 200 (Ahada and 
Suthar, 2018) 
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A report by the Planning Commission of India showed the considerable area of four districts 1 

of southwestern Punjab, such as Fazilka, Muktsar, Bathinda, and some parts of Mansa, is facing 2 

waterlogging and salinization problems, as shown in Figure 6 (Shah, 2013). Moreover, except 3 

Rupnagar (0.14 – 53 mg/l) and Fatehgarh sahib (0.5 -65 mg/l) district, a high average nitrate 4 

content than the WHO permissible limit in all other districts of the Malwa region was reported 5 

(Aulakh and Malhi, 2005), and this is due to excessive use of fertilizers and pesticides, organic 6 

and other human wastes (Aulakh et al., 2009).  7 

 8 

 9 

Figure 6. The hypothetical sample model shows the waterlogging area in the Malwa region's 10 

southwestern part (Shah, 2013), where evaporation also played a significant role in the change 11 

in the aquifer’s chemistry in addition to rock-water interaction. 12 

 13 

Table 3.  Classifications of groundwater based on the physicochemical parameters TH (Durfor 14 

and Becker, 1964) and TDS (Davis and De Weist, 1966). 15 

 16 

Sr. No Parameters Range Water class 

1 TH (Durfor and Becker, 1964) 0 -60 
60 - 120 
120 - 180 
>180 

Soft 
Moderately Hard 
Hard 
Very Hard 

2 TDS (Davis and De Weist, 1966) < 500 
500 - 1000 
1000 - 3000 
>3000 

Desirable for drinking 
Permissible for drinking 
Useful for irrigation 
 Unfit for both 

 17 
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In 9 districts, Bathinda (0.29 -4.79 mg/l), Mansa, Faridkot, Muktsar, Patiala, Ludhiana, Moga, 1 

Fazilka and Barnala, the average value of fluoride ions is above WHO permissible limit that 2 

may be due to fluoride bearing minerals, fluorite, in aquifers (Wenzel and Blum, 1992). The 3 

high bicarbonates and sodium ions concentrations increase the fluoride pollution in 4 

groundwater (Kumar and Singh, 2015a). The highest content of fluoride ions (10.5 mg/l) was 5 

reported in the Moga district. Lower and higher concentrations of fluoride ions have severe 6 

health implications. Its lower concentration below 0.5 mg/l  leads to tooth decay, but a higher 7 

concentration above 1.5 mg/l causes dental fluorosis (Rathore et al., 2017). The sodium ions, 8 

commonly called salinity’s indicators, were found in higher concentrations than the 9 

recommended limit of WHO (200 mg/l) in most Malwa districts except Fatehgarh Sahib and 10 

Barnala (Ahada and Suthar, 2018). The weathering of feldspar minerals and the fertilizers are 11 

the most common source of sodium. The high sulphate ions concentration than WHO 12 

permissible limit (400 mg/l) in the Faridkot (28 -1379 mg/l), Muktsar (31 – 2500 mg/l), Mansa 13 

(5 – 548 mg/l), Patiala (5 – 1022 mg), Fazilka (43 – 2005 mg/l) and Mohali (0.1 – 880 mg/l) 14 

districts were reported (Kaur et al., 2017). The breakdown of organic substances from the 15 

weathered soils, human activities, fertilizers and pesticides may be the reason for its excess. 16 

The physicochemical parameters study of groundwater quality generated large and perplexing 17 

data. Therefore, software-based statistical techniques such as pearson's correlation analysis, 18 

principal component analysis, hierarchical correlation analysis, etc., are frequently used to 19 

predict the common origin and sources of contaminants in the groundwater (Ofungwu, 2014). 20 

These statistical techniques, called multivariate statistical analysis, inform about correlation 21 

and variance among the variables and find common factors responsible for pollutants in the 22 

water from the complex datasets. Table 4 summarises the linear correlation among different 23 

physicochemical parameters and is compiled for understanding. For example, electrical 24 

conductivity is attributed to various total dissolved ions (cation and anions), total hardness, 25 
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calcium, sodium and chloride concentration. Thakur et al. delineated the correlation of high 1 

EC with increased dissolved salt content (Thakur et al., 2016), and Tubonimi et al. 2010 2 

described the correlation of total dissolved (TDS) with other ions such as sodium. The positive 3 

correlation of sodium ions with Ec and TDS gave information about the salinity content of the 4 

soil. The correlation analysis showed that TH is mainly due to calcium and magnesium, along 5 

with carbonates, sulphate and chloride. Through these studies, it can be realistic to expect that 6 

weathering of limestone, dolomite and other calcium-rich minerals dissolution frequently 7 

occurring in the aquifer of this region and the reason for the high carbonate and bicarbonate 8 

contents in the groundwater (Tubonimi et al., 2010).  9 

Interestingly, these physicochemical parameters also influenced the uranium and arsenic 10 

concentration in the groundwater. Sharma et al. showed a positive correlation between uranium 11 

and high TDS in the Mansa district (Sharma et al., 2021b). Through an in-depth study, Sharma 12 

et al. found a strong correlation between uranium and total alkalinity. They claimed that high 13 

alkalinity might be one of the reasons for the mobilization of uranium in groundwater (Sharma 14 

et al., 2019). Hundal and co-workers showed that various geochemical conditions influenced 15 

the arsenic concentrations in groundwater (Hundal et al., 2007). The strong correlation between 16 

arsenic contamination with a high concentration of iron, phosphate, ammonium ions and 17 

anthropogenic activities was demonstrated by Kumar and colleagues (Kumar et al., 2010).   18 

Geographically, the Kasoor district of west Punjab of Pakistan lies adjacent to the Malwa 19 

region and Afzal and colleagues performed an in-depth study about heavy metals in this district. 20 

They revealed the highly erratic distribution of heavy metals in groundwater, which might be 21 

brought on by geochemical and anthropogenically-induced polluting sources, such as fly ash 22 

from thermal power plants, vehicle pollution, pesticides and fertilisers, corrosion of pipes, 23 

chemical industries (Afzal et al., 2014). Inclusively, the concentration of uranium and arsenic 24 

ions in groundwater is dependent upon various geochemical processes and conditions such as 25 
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oxidation-reduction, associated or competing ions, pH, dissolved salts, alkali content, arid 1 

environment and anthropogenic factors etc. Contemporary researchers also use multivariate 2 

analysis techniques to find the correlation between different metal ions and their sources of 3 

origin. The strong positive correlation among these ions indicates their common origin and 4 

source of groundwater contamination in the study area. So, to understand the geochemical 5 

changes, there is a need to understand the mechanism of hydrogeochemistry. 6 

Table 4. Linear correlation analysis among different Physico-chemical parameters. 7 

Sr. 
No. 

Physicochemical 
parameter 

Positive correlation 
with other parameters 

Information derived out Reference  

1 Ec TDS, Total alkalinity 
(TA), TH, Ca2+, Cl-, 
Na+ 

High EC informs about the 
mechanism of groundwater 
circulation, surface infiltration 
and cation exchange 

(Jothivenkatachalam et al., 
2010) 

2 TDS EC, TA, TH, Ca2+, Cl-, 
Na+, K+ 

TDS delineates some features of 
precipitation, atmospheric 
temperature, evapotranspiration 
and saline intrusion in 
underground sources 

(Tubonimi et al., 2010) 

3 TH TDS, EC, TS, TA, Ca2+, 
Mg2+,   K+ 

TH tells about the calcareous 
rock dissolution and ion 
exchange in the aquifer 

(Thakur et al., 2016) 

4 Ca2+ EC, TDS, TA, TH High Ca2+may be due to 
calcium-rich minerals in the 
aquifer 

(Zare Garizi et al., 2011) 

5 Na+ EC, TDS, Cl- High sodium ion concentration 
talks about the salinity 

(J. Kaur et al., 2021) 

6 F-  Na+, pH, HCO3
-,  High fluoride and high pH lead 

to high HCO3
- ion concentration 

and dissolutions of fluorite. 

(Li et al., 2015) 

 8 

The mechanism controlling the groundwater chemistry: hydro-geochemical 9 

evolution 10 
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The Malwa region comes under the Indo-Gangetic plains, and its north-eastern part is at a 1 

higher elevation than the southwestern region (Jain, 2014). The groundwater flows from higher 2 

to lower elevations, so there is a strong probability that the mobilization of minerals from the 3 

Himalayas influences the Malwa region's underground water quality (CGWB, 2017). The 4 

minerals-water interactions affected the groundwater chemistry. Multiple techniques, for 5 

instance, Gibbs plot, saturation index and ion exchange index, etc., are used to study the various 6 

hydrogeochemical processes, such as precipitation, rock-water interaction, and evaporation 7 

(Feth and Gibbs, 1971; Gibbs, 1970)  8 

To establish the relationship between water composition and aquifer lithological 9 

characteristics, Gibbs draws a graph between TDS and cation ratio [Na+/(Na+ + Ca2+)] and 10 

anions ratio [Cl-/(Cl- + HCO3
-)] and explains the mechanism that controls the groundwater 11 

chemistry. Through the Gibbs plot’s study, the various research groups (Kaur et al., 2017; 12 

Kumar et al., 2021; Thakur et al., 2016) suggested that in the Malwa region, the groundwater 13 

chemistry of shallow and deep aquifers is mainly controlled by the rock water interaction. In 14 

the southwestern part, along with rock-water interactions, the evaporation processes also 15 

played an important role (Pant et al., 2020c), as shown in Figure 6. The saturation index 16 

discusses about the mineral dissolution and precipitation processes by measuring the 17 

equilibrium between minerals and water.  Saturation index data showed that a variety of 18 

processes (including silicate mineral dissolutions, carbonate mineral weathering, the common 19 

ions effect, evaporation, temperature, penetration of wastewater, and irrigation return flows, 20 

etc.) supersaturated the groundwater in the Malwa region with the minerals calcite and 21 

dolomite (CGWB, 2013). In alkaline conditions, precipitation of calcite governs fluorite 22 

dissolution and high fluoride content in the groundwater, as shown in scheme 1 (Kumar and 23 

Singh, 2015b; Saxena and Ahmed, 2001)  24 
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  1 

 Scheme 1. Calcite precipitation governs fluorite dissolutions 2 

The chemical compositions of groundwater alter during its movement to the subsurface, and 3 

these changes are found by the ion exchange index. The ion exchange index describes the 4 

exchange of ions either directly or indirectly. In direct ion exchange, Na+ and K+ ions from the 5 

water exchange with the Ca2+ and Mg2+ ions from the rock, but in indirect ion exchange, Ca2+ 6 

and Mg2+ ions from the water exchange with Na+ and K+ ions from the rock. The groundwater 7 

showed reverse ion exchange trends in most Malwa regions: alkali metals such as Na+ replaced 8 

alkaline earth metals (Pant et al., 2020c; Diana Anoubam Sharma et al., 2017). These 9 

replacements most commonly happened in clay minerals and can be displayed, as shown in 10 

Scheme 2. 11 

 12 

Scheme 2. Ion exchange mechanism with clay 13 

The number of direct and indirect interactions between aquifer and bedrock controls the 14 

mineral content of groundwater. By software-based bivariate methods, the researcher found 15 

that carbonate and silicate minerals' dissolutions control the Malwa region's groundwater 16 

chemistry (CGWB, 2020; Singh et al., 2020)  17 
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 1 

Scheme 3. Silicate, feldspar, dolomite, calcite, fluorite, gypsum and halite weathering. 2 

The silicate weathering occurs upon coming in contact with carbonic acid. The albite ore, 3 

silicate weathering and halite dissolutions increased the concentration of sodium ions in 4 

groundwater. Dolomite and calcite weathering cause high calcium and magnesium content 5 

(Keesari et al., 2014). The gypsum and anhydrite minerals' dissolutions release sulphate ions 6 

in water, as shown in Scheme 3. However, there might be other reasons for high sulphate 7 

content, such as the breakdown of the organic material and the use of fertilizers (Keesari et al., 8 

2014). In this Indo-Gangetic region of Punjab, sediment deposition occurred due to the erosion 9 

of the Himalayan sedimentary rocks by the Indo-Gangetic river system. Each layer contained 10 

mixed mineralogic assemblage, and the mineralogic assemblage varied greatly from one region 11 

to another (Freeze and Cherry, 1979). The alluvium soil of the Malwa region is made up of 12 

sand, silt and clays, and their layering pattern in different areas can be different (CGWB, 2020). 13 

Here, a general hypothetical model was designed to understand the various hydrogeochemical 14 

reactions operating under the surface, as shown in Figure 7.  15 

As the water moves, it encounters several types of minerals. First, the high oxygen content 16 

decays the organic matter in the uppermost layer, and the excess water content releases the 17 

(Na+, Ca2+Mg2+) Silicate +H2CO3 H2SiO4 + HCO3 + Na+ + Ca2++ Mg2++ clay

2NaAlSi3O8 + 2H2CO3 + 9H2O Al2Si2O5(OH)4 + 2Na+ + 4H4SiO4 +HCO3
-

Albite Kalonite

CaMg(CO3)2 + H2CO3 HCO3
- + Ca2++ Mg2+

Dolomite

CaCO3 + H2CO3 HCO3
- + Ca2+

Calcite

NaCl Na+ + Cl-

Halite

CaSO4.2H2O Ca2+ + SO4
-  + 2H2O

Gypsum

Ca2+ + SO4
-

Anhydrite

CaSO4
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bicarbonate ions in the aquifer (Singh et al., 2020). The groundwater of the Malwa region is 1 

hard, and calcium carbonate nodules are there (Masuda et al., 2010). The movement of 2 

groundwater through limestone, shown as the 2nd layer in Figure 7, calcite or dolomite 3 

dissolution occurs, and water becomes rich with Ca-HCO3
- type composition. Clay (3rd layer 4 

in Figure 7) is rich in quartz, montmorillonite and feldspar-type minerals (Jassal et al., 2001). 5 

The interaction of these minerals leads to the supersaturation of calcite ore due to the common 6 

ion effect. As the water moves through the gypsum bed (4th layer in Figure 7), sulphate 7 

dissolution occurs, and calcite precipitation leads to the re-establishing of calcite equilibrium 8 

and sulphates becoming dominant ions (Ahada and Suthar, 2018; Kaur et al., 2017). Bonsor et 9 

al. proposed that the saline nature of aquifers was due to the dissolution of halite minerals. 10 

Because of the high solubility of these minerals in the water, the groundwater becomes enriched 11 

with sodium and chloride ion concentrations (Bonsor et al., 2017). 12 
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 1 

Figure 7. Hypothetical model of various hydro-chemical evolution undergoing the 2 

groundwater. The first layer is the uppermost layer, rich in organic matter. The dolomite and 3 

calcite-type minerals are denoted in 2nd layer. The clay layer rich in montmorillonite and 4 

feldspar-type minerals is demonstrated as the third layer. The dissolutions of gypsum/anhydrite 5 

and calcite precipitation are represented as the fourth layer. Finally, the halite-type minerals’ 6 

dissolutions are embodied as the fifth and last layer.  7 

The chemistry operating under the surface impacts the mobilization of other elements such as 8 

U, As, and other heavy metals. After a thorough study, Acosta and co-workers validated that 9 

salinity increased the movement of heavy metals in the groundwater (Acosta et al., 2011). Here, 10 
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we are limiting our study to two elements, arsenic and uranium and trying to describe their 1 

mobilization in groundwater.  2 

Chemical mobilization of arsenic in the aquifer of Malwa regions 3 

In Malwa region aquifers, arsenic is found in neutral arsenite (H3AsO3) and arsenate (H2AsO4
-4 

) forms (CGWB, 2014). In the Himalayan range, arsenic-rich pelitic and argillaceous rocks are 5 

commonly found. During the late Pleistocene and early Holocene, weathering processes led to 6 

deposit these materials as sediments in Pleistocene alluvium and Holocene alluvium (Herath et 7 

al., 2016). The movement of these minerals in the groundwater is mainly controlled by pH, 8 

organic matter reduction, redox reactions, and adsorbents such as oxides and hydroxides of 9 

iron, manganese, aluminium and clay minerals (Bauer and Blodau, 2006). The As(III) form is 10 

more prevalent and harmful in reducing environments. After the green revolution, frequent 11 

tube wells were dug for drinking and irrigation water diffusing atmospheric oxygen into this 12 

region's aquifers. This diffusion will be resulted in changes in groundwater chemistry and thus 13 

causes the oxidation of As(III) into As(V), as shown in Figure 8. (Hundal et al., 2007; Welch 14 

and Lico, 1998) 15 

 16 

Figure 8. illustration of redox transformation of arsenic in aquifer sediments. 17 

The various geochemical and biological processes played a crucial role in mobilizing and 18 

transforming arsenic in the groundwater. In the proposed schematic representation, shown in 19 

Figure 9, we tried to show the multiple reasons for releasing arsenic in the groundwater. 20 
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Dissolved organic matter is one reason for releasing arsenic from the soil and sediment of 1 

aquifers (Sharma et al., 2011). Frequent withdrawal of water from the aquifers by tube-well 2 

diffuses oxygen in the aquifer, and oxygen oxidizes the arsenopyrite (FeAsS) and pyrite (FeS2) 3 

minerals, as shown in Figure 5 (reaction 1, Figure 9) (Shankar et al., 2014).  The Fe(III) 4 

deposited in the aquifers can also oxidize these minerals and be the reason for the mobilization 5 

of arsenic to groundwater (reaction 2, Figure 9) (Welch and Lico, 1998). According to the 6 

report by CGWB, the oxidation of  FeAsS and dissolution of Fe(OOH)-As is the most probable 7 

reason for arsenic contamination in the groundwater (CGWB, 2014). Nitrate leaching can also 8 

oxidize these minerals at low pH (reaction 3, Figure 9) (Zhang et al., 2020). The ferrihydrite 9 

sulfidization also liberates arsenites in aquifers (reaction 4, Figure 9) (O’Day et al., 2004). After 10 

the reductive dissolution of iron oxides containing orpiment minerals discharges arsenite in the 11 

groundwater (reaction 5, Figure 9) (Wang and Mulligan, 2006). 12 



27 
 

 1 

 2 

Figure 9. Proposed chemical illustration of various mechanisms for the mobilization of 3 

arsenic in groundwater. 4 

The phosphate-containing chemical fertilizers leached through the soil. During the downward 5 

movement, phosphate ions react with arsenic-adsorbed minerals to replace arsenic from 6 

adsorbed surfaces and let go of the arsenate in the groundwater (reaction 6, Figure 9) (Cui and 7 



28 
 

Weng, 2013). The Fe(OH)3, Al(OH)3 and clay minerals adsorbed oxyanion of arsenite on their 1 

surfaces (Goldberg, 2002; Manning and Goldberg, 1996). The alkaline conditions oxidize the 2 

oxyanion species of arsenite to arsenate (reaction 7, Figure 9). At high pH, the desorption of 3 

arsenite and arsenate adsorbed on ferric hydroxide’s surfaces happened (reaction 8, Figure 9) 4 

(Masue et al., 2007). Generally, the arsenate oxyanions are found on clay minerals because 5 

trace metal impurities oxidize arsenite to arsenate (reaction 9, Figure 9). Therefore, at high pH, 6 

clay-bounded arsenite and arsenate could release into groundwater aquifers (reaction 10, Figure 7 

9) (Frost and Griffin, 1977). Kumar et al. found that in Bathinda, Barnala and Ludhiana, the 8 

mean arsenic concentration in groundwater was less after the post-monsoon than pre-monsoon 9 

(Kumar et al., 2021), and this might be due to other oxidation-reduction procedures that are 10 

described in this schematic diagram. Here, we tried to include all possible ways for the 11 

mobilization of arsenic in groundwater. We believe our proposed schematic flowchart will be 12 

helpful for the researcher and policymakers in mitigating the arsenic problem. 13 

Chemical mobilization of uranium in the aquifer of the Malwa region 14 

The radiological and toxicological impact of uranium is shattering the socioeconomic model 15 

of society (Coyte et al., 2018; Sahoo et al., 2021). To deal with this dangerous metal, a 16 

roundtable discussion of experts from different areas, such as chemists, physicists, 17 

microbiologists, geologists, zoologists, botanists, and pedologists, is required. But initially, it's 18 

essential to understand the chemical mechanism for its mobilisation; thus, an attempt was 19 

made. Indeed, the interaction of soil and water minerals with uranium species is changing every 20 

day (Ginder-Vogel and Fendorf, 2007). To understand this complicated natural chemical and 21 

physical interaction system, we proposed a chemical model of uranium mobilization in the 22 

aquifers of the Malwa region, as shown in the schematic diagram (Figure 10).  Uranium exists 23 

in two forms uranous or uranium4+ [U(IV)] and uranyl or uranium6+ [U(VI)]. U(VI) is more 24 

mobilized and generally found in water, whereas U(IV) is relatively insoluble and makes stable 25 
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compounds (Ginder-Vogel and Fendorf, 2007; Qafoku and Icenhower, 2008). UO2(CO3)3
4- and 1 

(UO2)3(OH)5
+ are the two forms that are frequently found in the groundwater of the Malwa 2 

region. The mobilization of these uranium forms in groundwater depends upon various 3 

chemical and physical factors such as the climate of that region, rock-water interaction, 4 

hydrogeochemical conditions (Langmuir, 1978). It isn’t easy to single out one particular reason 5 

responsible for these forms in the groundwater. So, we tried to introduce all possible sources 6 

for uranium dissolution in the Malwa region's groundwater. In the presence of oxygen and 7 

highly alkaline conditions, U(VI) is more prevalent and exists as UO2(CO3)3
4- and at pH above 8 

8.5, the latter species exists in equilibrium with (UO2)3(OH)5
+ (reaction 2, Figure 10) 9 

(Langmuir, 1978). In the presence of high calcium ion concentration, uranyl carbonyl ion form 10 

Ca(UO2)(CO3)3
2- (reaction 4, Figure 10) and this can also form from Ca2(UO2)(CO3)2 in the 11 

presence of bicarbonate ion concentration and oxic conditions (reaction 5, Figure 10) (Dong 12 

and Brooks, 2006).  The oxidation of liebigite ore also yields the same result (reaction 6, Figure 13 

10) (Gorman-Lewis et al., 2008). At neutral conditions (pH = 7) and high phosphate ion 14 

concentrations, the equilibrium between Uranophane and Autunite shifts towards autunite 15 

(Cuney, 2010; Langmuir, 1997). Autunite is one of the predominant species around pH 6-7.5 16 

(reaction 8, Figure 10) (Langmuir, 1997). However, uranyl carbonyl complexes predominate 17 

at higher pH and high carbonate ion concentrations (reaction 9, Figure 10) (Barnett et al., 2000; 18 

Phillippi et al., 2007). Through the process of biosorption, uranium ion sorption occurs on the 19 

organic matter and forms UO2(organic matter) complexes (Newsome et al., 2014; Tsezos and 20 

Volesky, 1982). Still, in the presence of a sufficient amount of carbonates/bicarbonates ions, 21 

this UO2(organic matter) dissolution happens, and uranyl carbonyl complexes form (reaction 22 

1, Figure 10) (Cumberland et al., 2016).  23 

The insoluble uraninite converts into uranyl carbonyl complexes in the presence of 24 

carbonate/bicarbonate ions, iron oxides (FeOOH, Fe2O3), and an oxic environment (reaction 3, 25 
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Figure 10) (Stewart et al., 2015). The oxidation of uraninite ore leads to the formation of uranyl 1 

ionic species (reaction 10, Figure 10) (Bala et al., 2022). The latter ions in high carbonate 2 

concentrations form uranyl carbonate complexes that mobilize in the groundwater (reaction 26, 3 

Figure 10) (Chandrasekar et al., 2021). Introducing oxygen and nitrate oxidizes the reduced 4 

Fe2+ to amorphous FeOOH, which can oxidise the uraninite (Senko et al., 2005). 5 

  6 
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Figure 10. Proposed chemical illustration of various mechanisms for the mobilization of 1 

uranium in groundwater. 2 

  All over the globe, the deposits of uranium ores were identified within the granite plutons, 3 

roll-front deposits, sandstones, breccia and organic matters ((Cumberland et al., 2016) and 4 

reference cited therein). In these deposits, the uranium exists as insoluble uraninite form UO2 5 

adsorbed on the surfaces of minerals like iron oxides (FeO), manganese oxides, alumina, 6 

gibbsite, granite, quartz and natural sediments etc [(Qafoku and Icenhower, 2008) and 7 

references cited therein]. The literature data showed that uranium adsorbed on the surfaces of 8 

FeO as bidentate or tridentate complexes at low pH, but bidentate complexes are more common 9 

(reaction 11, Figure 10) (Ching-kuo Daniel Hsi and Langmuir, 1985). The adsorbed uraninite 10 

on the surface of FeO oxidized by NO3
-, microbial oxidation, O2 or other factors changes into 11 

uranyl [U(VI)] complexes (reaction 12, Figure 10) (Bonotto et al., 2019; Liesch et al., 2015). 12 

At high pH, desorption of uranyl ions occurs, and uranyl ions mobilize in the groundwater 13 

(reaction 13, Figure 10) (Ching-kuo Daniel Hsi and Langmuir, 1985). The surface-adsorbed 14 

uranium complexes sometimes also make complexes with carbonate ions (reaction 14, Figure 15 

10), but these complexes are not stable (Bargar et al., 2000). Above pH 8, the adsorption 16 

affinity of these complexes towards the FeO surfaces decreases, and uranyl carbonate 17 

complexes dissolve into the water (reaction 15, Figure 10) (Wazne et al., 2003). Similar studies 18 

reported other metal oxides, for instance, MnO (Wang et al., 2013), Al2O3 (Sylwester et al., 19 

2000), Granite (Baik et al., 2004), SiO2 (Reich et al., 1998), etc. Sometimes bidentate FeO 20 

adsorbs PO4
3- ions and makes (FeO)2PO4

3- type complexes that show better affinity and holding 21 

capacity for uranium ions than simple FeO (reaction 16, Figure 10) (Del Nero et al., 2011; 22 

Finch and Murakami, 1999; Seder-Colomina et al., 2015). However, in oxic conditions, this 23 

bounded uraninite form converts into FeO-associated uranyl [U(VI)] phosphate complexes 24 

(reaction 17, Figure 10). According to literature data, PO4
3- has 3 to 4 orders of lower affinity 25 
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than carbonates (Sahoo et al., 2022). Hence in the presence of high carbonate ion concentration 1 

and high pH, these uranium species dissolve as uranyl carbonyl complexes (Langmuir, 1978; 2 

Wazne et al., 2003).  3 

Sediments and soil are both repleted with clay minerals. These clay minerals showed strong 4 

chemical and physical interactions with the dissolved species because of small particle size, 5 

complex porous structure, high specific surface area (Schulze, 2018).  Uraninite is also 6 

adsorbed on the clay minerals at low pH (reaction 19, Figure 10) (Davey and Scott, 1956; 7 

Hennig et al., 2020). However, U(IV) is readily converted into a uranyl-clay complex by 8 

microbial oxidation or other oxidation processes (reaction 20, Figure 10).  This uranyl clay 9 

complex mobilized in the water as ([(UO2
2+)3(OH-)5]+ at high pH (reaction 21, Figure 10) 10 

(Bachmaf and Merkel, 2011). In addition, clay minerals have a high negative charge on their 11 

surface, so they adsorb positive metal ions or metal oxides (Geckeis et al., 2013). These metal 12 

or metal oxide ions provide better space for holding uranium species (reactions 22 and 23, 13 

Figure 10) (Catalano and Brown, 2005; Křepelová et al., 2007; Payne et al., 2004). But at high 14 

pH conditions, by ion exchange mechanisms, these oxides liberate uranium in the groundwater 15 

as uranyl carbonate complexes (reactions 24 and 25, Figure 10) (Greathouse and Cygan, 2005; 16 

Křepelová et al., 2006). In the three districts of the Malwa region, Kumar et al. compared the 17 

uranium ion concentration in the pre-monsoon and post-monsoon periods. They found that the 18 

mean uranium concentration decreased after the post-monsoon than pre-monsoon; this might 19 

be due to the various oxidation and reduction reactions described in Figure 10. 20 

Technological developments for mitigating these issues 21 

The SciFinder database search found over 150 thousand articles about contaminations, toxicity 22 

and mitigation/removal methods of arsenic and uranium. Nonetheless, the situation of the 23 

millions of individuals affected by uranium and arsenic remains unchanged. According to a 24 
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world bank report, low-middle-income countries like India suffered the most from these 1 

problems (World Bank Group, 2020). As shown in the upper described schemes, the 2 

dissolution of arsenic and uranium in the groundwater is more related to the oxidation and 3 

reduction processes (Jain and Singh, 2012). Hence, in the past and recent research databases, 4 

we found a range of technologies (from conventional to advanced) available to treat 5 

arsenic/uranium-rich groundwater (Gandhi et al., 2022; Yadav et al., 2022). These technologies 6 

are based on various processes, such as ion exchange, membrane filtration, electrocoagulation, 7 

photocatalysis, adsorptions, co-precipitation and biological methods (Dinis and Fiúza, 2021). 8 

Many excellent reviews have been published elsewhere describing these processes and 9 

technologies (Hao et al., 2018; Jain and Singh, 2012; Katsoyiannis and Zouboulis, 2013; 10 

Weerasundara et al., 2021; You et al., 2021).  11 

Over the last few years, there has been tremendous technological advancement in uranium and 12 

arsenic removal processes. But it is necessary to consider a location-specific uranium and 13 

arsenic mitigation strategy. Due to variances in geography, geomorphology, and 14 

socioeconomic and literacy levels of the populace, a solution that works in one location should 15 

not be universally applied to the other afflicted places. Even the laboratory protocols showed 16 

limitations, like the protocols/procedure developed in one laboratory yielded different 17 

outcomes in another laboratory and field. Many technologies demonstrated encouraging results 18 

in pilot studies but are ineffective in real-world settings.  19 

The high cost of adsorbents and interference due to competitive ions for adsorption made the 20 

adsorptions methods costly and economically unviable. Although the membrane filtrations and 21 

ion-exchange methods are effective in uranium and arsenic removal, the high initial cost and 22 

recurring cost made these methods unfeasible for low-middle-income countries. The 23 

generation of sludge is a big problem with the chemical coagulation with metal salts and lime 24 

followed by filtering, even though it is a highly effective, affordable, and popular procedure. 25 
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Biosorption and bioremediation showed quite exciting results at the laboratory scale. With low 1 

uranium concentrations, electrocoagulation and photocatalysis were also effective techniques. 2 

The choice of a process is further considerably influenced by factors such as process 3 

complexity, management of hazardous materials, and waste disposal. Waste generation and 4 

disposal are significant concerns with these technologies.  In table 5, we tried to explain the 5 

various technology available with their merit, demerits, efficiency and running cost. 6 

Table 5. Analysis of various technologies for the arsenic and uranium remediation process. 7 

S

. 

N 

Treatment 

Process 

Meta

l 

Methods for 

uranium and 

arsenic removal 

Advantage Disadvantage E*%  RC*(US$/m3

) 

Ref 

1 Adsorption Ar Iron-based 
sorbents, 
activated carbon, 

clays and soils, 
aluminium-
based sorbents, 

zeolites and 
other various 
adsorbents 

Extensively 
used in 
treatment 

because of its 
low initial cost, 
ease of 

operation and 
low power 
requirements.   

Other 
contaminants 
lower its 

productivity. 
Adsobents cost 
is also an 

important factor.  

60-
99  

0.10-1.19 (Awual et al., 
2019; Hao et al., 
2018; Lata and 

Samadder, 2016; 
Weerasundara et 
al., 2021) 

U Amine 
functionalised 

Clays, modified 
metal-organic 
frameworks, 

modified 
graphene oxides, 
silica-coated 

nanoparticles 

77-
100 

 

(Tobilko et al., 
2019)(Gandhi et 

al., 2022 and 
references cited 
therein) 

2 Ion exchange Ar Using different 
Ion exchange 

materials or 
membranes 
example, TiO2-

loaded 
Amberlite resin 
etc. 

Highly efficient 
methods and 

commercially 
available 

Not suitable for 
high TDS water. 

Quite costly 
material of 
membranes and 

membrane needs 
removal after 
saturation. 

Harmful waste 
generation  

95% 0.12 as per 
laboratory 

conditions 

(Awual et al., 
2013, 2008; 

Awual and Jyo, 
2009) 

U Zirconium 
phosphate resins, 
chelax-100, 

Dowex resin, 
ORWA resin, 
synthetic resins 

etc. 

94-
99.5 

 (Gandhi et al., 
2022)(Florez et 
al., 2017) 

3 Membrane 
filtration 

Ar Four types of 
membrane 

processes: 
microfiltration, 
ultrafiltration, 

nanofiltration 
and reverse 
osmosis  

Best and highly 
efficient 

technology 
available  

Very ionic 
strength reduces 

its capacity, 
requires skilled 
workers, and the 

need for pH 
adjustment and 
the addition of 

PH control 
equipment 
increases the 

overall cost of 
the process. 
Solid waste 

regeneration 

 
0.52-0.88 (Algieri et al., 

2022) (Richards et 

al., 2022)  
U 90-

99 
(Dinis and Fiúza, 
2021) 
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4 Chemical 
Coagulation 

and chemical 
reduction 

Ar Titanium 
chloride, 

aluminium, iron, 
and zirconium 
chloride-based 

coagulants. 

Readily 
available 

material, simple 
process, and 
does not require 

a trained 
individual 

Produce large 
amounts of 

arsenic and 
uranium-bearing 
sludge, hence 

need proper 
disposal. 
Sometimes pH 

treatment is 
required. The 
overall cost adds 

up. 

Upto 
90 

0.076 
without 

sludge 
disposal 

(Awual et al., 
2012, 2011) 

(Ahmad et al., 
2018; Cañas Kurz 
et al., 2020) 

U Ferric sulphate, 
ferrous sulphate, 

aluminium 
sulphate, barium 
chloride, lime 

softening, iron 
chloride etc. 

68-
99 

(Dinis and Fiúza, 
2021)(Katsoyiann

is and Zouboulis, 
2013) 

5 Electro 
coagulation 

Ar Iron Electrodes 99-99.65% 
removal 
possible 

Generated 
hazardous 
sludge needs 

proper disposal 

99-
99.6
5 

0.22-0.31 (Kabir and 
Chowdhury, 
2017) 

U Magnesium, 
aluminium and 
iron electrodes 

in the presence 
of organic 
ligands 

(Carolin et al., 
2017; Choi et al., 
2020) 

6 Biological 
Remediation 

Ar Removal by 
phytoremediatio
n, bacteria, 

microalgae and 
fungi 

Cost-effective 
and no need to 
remove 

generated 
biomass 
 

Phytoremediatio
n is an efficient, 
environmentally 

friendly and 
low-cost 
technique. 

A large volume 
of culture is 
required. It is a 

tedious process. 
Treated water 
needs tertiary 

treatment that 
enhances its 
overall cost. 

For 
phytoremediatio
n, skilled 

workers/ subject 
experts are 
needed. 

Moreover, a 
large area and 
more treatment 

time required 

 
- (Ghosh (Nath) et 

al., 2019) 

U 30-
85.8 

(You et al., 2021) 
(Dushenkov et al., 
1997) 

7 Hybrid 
methods 

Ar First oxidation 
by biological 

means followed 
by adsorption 
etc. 

Highly efficient 
technique 

Absorbents used 
in this process 

cost more than 
50% of the total 
operational cost. 

100
% 

0.15-0.19 (Katsoyiannis et 
al., 2015) 

8 Photocatalysi
s 

U  by irradiating 
light onto the 
semiconductor 

surface U(VI) 
reduced into 
U(IV) 

100% removal 
possible 

The high cost 
and need for 
specific 

treatment make 
this 
uneconomical 

but advances 
going on in this 
area 

77-
100
% 

- (J. Wang et al., 
2020; Z. Wang et 
al., 2020) 

 1 

Conclusions and recommendations 2 

Overall, changes in physical and chemical conditions cause the change in under-surface 3 

chemistry operating in the aquifer of any region. Here, we looked at the Malwa region of 4 

Punjab, India, where overexploitation and anthropogenic activity modified the chemistry 5 

beneath the surface and caused dangerous substances like uranium and arsenic to mobilize in 6 
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the water. Through this paper, we tried to explain the various chemical changes below the 1 

earth's surface by a hypothetical model and how these changes affect the mobilization of 2 

arsenic and uranium in the groundwater of the Malwa region. To mitigate these problems, the 3 

central and state governments made several policies and laws to handle the water pollution 4 

problems in Punjab. The various government departments and agencies such as the Indian 5 

Council of Medical Research (ICMR), Punjab Pollution Control Board (PPCB), Central 6 

Groundwater Board (CGWB), Department of Drinking Water Supply and Sanitation (DWSS), 7 

Bhabha Atomic Research Centre (BARC), Department of Agriculture (DoA), Economic 8 

Protection Agency (EPA), Economic and Statistical Organization of Punjab (ESOP)  are 9 

conducting their research and take appropriate actions. In their efforts, we believe chem-10 

environmental views of our designed models will help better understand the issues and take the 11 

appropriate action.  12 

For the mitigation of these issues, numerous technological advancements have been made. 13 

However, their installation and recurring maintenance cost made these technologies 14 

unaffordable and unsustainable for long-term use, particularly in low- and middle-income 15 

nations (Yadav et al., 2022), especially in the Malwa region, where family income is 16 

overburdened due to disease-like cancer. It's difficult to purchase and use these technologies. 17 

Hernandez et al. suggested that the most efficient solutions might be achieved by implementing 18 

community-based removal plants with the help of effective policy-level initiatives (Hernandez 19 

et al., 2019). Long-term objectives of the policy-level intervention could include raising 20 

community awareness and promoting greater access to hygienic facilities and clean water for 21 

all. So, to address the issue on a greater scale, coordinated policy-level initiatives with 22 

community participation are required alongside continued research on developing improved 23 

and better technologies for removal methods. Moreover, Governments and their agencies 24 

should implement the proper control measures, such as 25 
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• Based on the above information about groundwater pollutants, the DWSS may 1 

strengthen monitoring systems to ensure a prompt and effective response, be more 2 

proactive in controlling sources in affected areas to provide safe drinking water, and 3 

effectively engage local populations to ensure that clean water is used. 4 

• Provide a clean piped water supply for drinking and cooking and ensure water is stored 5 

and handled correctly.  6 

• The Gram Panchayat Water and Sanitation Committees (GPWSCs) should be aware of 7 

the problems posed by poor water quality and actively participate in managing the water 8 

supply systems, especially ensuring proper disinfection. Create awareness at the 9 

individual, community and institutional levels. 10 

• After all other groundwater and surface water options have been tried, treatment 11 

technologies should only be used as a last resort. 12 

Finally, the need of the time is for better interdepartmental strategy and inter-disciplinary 13 

approach and research with sound science and adaptive policy and management practice to 14 

mitigate uranium and arsenic problems throughout the globe. Our designed models will help 15 

policymakers and academicians/scientists take proper control measures and develop more and 16 

better technologies in the future to tackle these problems globally.  17 
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