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Abstract. Linear temporal logic (LTL) is used in system veriőcation to
write formal speciőcations for reactive systems. However, some relevant
properties, e.g. non-inference in information ŕow security, cannot be
expressed in LTL. A class of such properties that has recently received
ample attention is known as hyperproperties. There are two major streams
in the research regarding capturing hyperproperties, namely hyperlogics,
which extend LTL with trace quantiőers (HyperLTL), and logics that
employ team semantics, extending truth to sets of traces. In this article
we explore the relation between asynchronous LTL under set-based team
semantics (TeamLTL) and HyperLTL. In particular we consider the
extensions of TeamLTL with the Boolean disjunction and a fragment
of the extension of TeamLTL with the Boolean negation, where the
negation cannot occur in the left-hand side of the Until-operator or
within the Global-operator. We show that TeamLTL extended with the
Boolean disjunction is equi-expressive with the positive Boolean closure of
HyperLTL restricted to one universal quantiőer, while the left-downward
closed fragment of TeamLTL extended with the Boolean negation is
expressively equivalent with the Boolean closure of HyperLTL restricted
to one universal quantiőer.

Keywords: Hyperproperties · Temporal Logic · Team Semantics · Hy-
perLTL · Veriőcation

1 Introduction

In 1977 Amir Pnueli [16] introduced a core concept in verification of reactive
and concurrent systems: model checking of formulae of linear temporal logic
(LTL). The idea is to view the accepting executions of the system as a set of
infinite sequences, called traces, and check whether this set satisfies specifica-
tions expressed in LTL. The properties that can be checked by observing every
execution of the system in isolation are called trace properties. An oft-cited
example of a trace property is termination, which states that a system terminates
if each of its computations terminates. Classical LTL is fit for the verification
of such propositional trace properties, however some properties relevant in, for



instance, information flow security are not trace properties. These properties
profoundly speak of relations between traces. Clarkson and Schneider [3] coined
the term hyperproperties to refer to such properties that lie beyond what LTL
can express. Bounded termination is an easy to grasp example of a hyperprop-
erty: whether every computation of a system terminates within some bound
common for all traces, cannot be determined by looking at traces in isolation. In
information flow security, dependencies between public observable outputs and
secret inputs constitute possible security breaches; checking for hyperproperties
becomes invaluable. Two well-known examples of hyperproperties from this field
are noninterference [18,15], where a high-level user cannot affect what low-level
users see, and observational determinism [21], meaning that if two computations
are in the same state according to a low-level observer, then the executions will be
indistinguishable. However, hyperproperties are not limited to information flow
security; examples from different fields include distributivity and other system
properties such as fault tolerance [6].

Given this background, several approaches to formally specifying hyperprop-
erties have been proposed since 2010, with families of logics emerging from these
approaches. The two major streams in the research regarding capturing hyperprop-
erties are hyperlogics and logics that employ team semantics. In the hyperlogics
approach, logics that capture trace properties are extended with trace quantifica-
tion, extending logics such as LTL, computation tree logic (CTL) or quantified
propositional temporal logic (QPTL), into HyperLTL [2], HyperCTL∗ [2], and
HyperQPTL [17,4], respectively. An alternative approach is to lift the semantics
of the temporal logics from being defined on traces to sets of traces, by using what
is known as team semantics. This approach yields logics such as TeamLTL [14,9]
and TeamCTL[13,9]. Since its conception, TeamLTL has been considered in two
distinct variants: a synchronous semantics, where the team of traces agrees on the
time step of occurrence when evaluating temporal operators; and an asynchronous
semantics, where the temporal operators are evaluated independently on each
trace. An example that illustrates the difference between these two semantics is
the aforementioned termination and bound termination pair of properties. If we
write F for the future-operator and terminate for a proposition symbol represent-
ing the trace terminating, we can write the formula F terminate, which under the
synchronous semantics expresses the hyperproperty “bounded termination”, while
under the asynchronous semantics the same formula defines the trace property
“termination”. Not only is the above formulation of bounded termination clear and
concise, it also illuminates a key difference between hyperlogics and team logics:
while each formula of hyperlogic has a fixed number of quantifiers, which restricts
the number of traces that can be referred to in a formula, which restricts the
number of traces between which dependencies can be characterised by formulae,
team logics have the ability to refer to an unbounded number of traces, even an
infinite collection.

One of the original motivations behind team semantics [19] was to enable
the definition of novel atomic formulae, and this is another important defining
feature of team temporal logics as well. Among these atoms the dependence



atom dep(x̄, ȳ) and inclusion atom x̄ ⊆ ȳ stand out as the most influential. They
respectively state that the variables ȳ are functionally dependent on the variables
x̄, and that the values of the variables x̄ also occur among the values of variables
ȳ. As an example of the use of the inclusion atom, let the proposition symbols
o1, . . . , on denote public observable bits and assume that the proposition symbol
s is a secret bit. The atomic formula (o1, . . . on, s) ⊆ (o1, . . . on,¬s) expresses a
form of non-inference by stating that an observer cannot infer the value of the
confidential bit from the outputs.

While the expressivity of HyperLTL and other hyperlogics has been studied
extensively, where the many extensions of TeamLTL lie in relation the hyper-
logics is still not completely understood. The connections for the logics without
extensions were already established in Krebs et al. [14], where they showed that
synchronous TeamLTL and HyperLTL are expressively incomparable and that
the asynchronous variant collapses to LTL. With regards to the expressivity
of synchronous semantics, Virtema et al. [20] showed that the extensions of
TeamLTL can be translated to HyperQPTL+, which in turn extends HyperLTL
with (non-uniform) quantification of propositions. Relating the logics to the
first-order context, Kontinen and Sandström [11] defined Kamp-style translations
from extensions of both semantics of TeamLTL to the three-variable fragment of
first-order team logic. It is worth noting that recently asynchronous hyperlogics
have been considered also in several other articles (see, e.g., [10,1]). An example of
the significant rift between asynchronous and synchronous TeamLTL is that the
asynchronous semantics is essentially a first-order logic, while the synchronous
semantics has second-order aspects. Especially the set-based variant of asyn-
chronous TeamLTL can be translated, using techniques in [11], into first-order
logic under team semantics, which is known to be first-order logic [19]. Similarly,
HyperLTL is equally expressive as the guarded fragment of first-order logic with
the equal level predicate, as was shown by Finkbeiner and Zimmermann [7].

In this article we focus on exploring the connections between fragments of
HyperLTL and extensions of TeamLTL. The set-based asynchronous semantics
that we consider here was defined in Kontinen et al. [12] in order to further study
the complexity of the model checking problem for these logics. Prior to that, the
literature on temporal team semantics employed a semantics based on multisets
of traces. In the wider team semantics literature, this often carries the name strict

semantics, in contrast to lax semantics which is de facto a set-based semantics.
This relaxation of the semantics enabled the definition of normal forms for the
logics, which we use in this article to explore the connection with HyperLTL.

Our contribution. We show correspondences in expressivity between the
set-based variant of linear temporal logic under asynchronous team semantics
and fragments of the Boolean closure of HyperLTL. In particular we show that
LTL under team semantics with the Boolean disjunction, TeamLTL(6), is equi-
expressive with the positive Boolean closure of HyperLTL restricted to only one
universal quantifier, while the left downward closed fragment of TeamLTL(∼) is
equi-expressive with the Boolean closure of HyperLTL restricted to one universal
quantifier.



2 Preliminaries

We begin by defining the variant of TeamLTL and its extensions, as in [12].
Let AP be a set of atomic propositions. The formulae of LTL (over AP) is

attained by the grammar:

ϕ ::= p | ¬p | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕ | Gϕ | ϕUϕ,

where p ∈ AP. We follow the convention that all formulae of TeamLTL are given
in negation normal form, where ¬ is only allowed before atomic propositions, as
is customary when dealing with team semantics.

We will consider the extensions of TeamLTL with the Boolean disjunction 6,
denoted TeamLTL(6), and Boolean negation ∼, denoted TeamLTL(∼).

A trace t over AP is an infinite sequence of sets of proposition symbols from
(2AP)ω. Given a natural number i ∈ N, we denote by t[i] the (i+ 1)th element of
t and by t[i,∞] the suffix (t[j])j≥i of t. We call a set of traces a team.

We write P(N)+ to denote P(N) \ {∅}. For a team T ⊆ (2AP)ω a function
f : T → P(N)+, we set T [f,∞] := {t[s,∞] | t ∈ T, s ∈ f(t)}. For T ′ ⊆ T ,
f : T → P(N)+, and f ′ : T ′ → P(N)+, we define that f ′ < f if and only if

∀t ∈ T ′ : min(f ′(t)) ≤ min(f(t)) and,

if max(f(t)) exists, max(f ′(t)) < max(f(t)).

Definition 1 (TeamLTL). Let T be a team, and ϕ and ψ TeamLTL-formulae.

The lax semantics is defined as follows.

T |= l ⇔ t |= l for all t ∈ T, where l ∈ {p,¬p | p ∈ AP}

is a literal and “t |= ” refers to LTL-satisfaction

T |= ϕ ∧ ψ ⇔ T |= ϕ and T |= ψ

T |= ϕ ∨ ψ ⇔ ∃T1, T2 s.t. T1 ∪ T2 = T and T1 |= ϕ and T2 |= ψ

T |= ϕ ⇔ T [1,∞] |= ϕ

T |= Gϕ ⇔ ∀f : T → P(N)+ it holds that T [f,∞] |= ϕ

T |= ϕUψ ⇔ ∃f : T → P(N)+ such that T [f,∞] |= ψ and

∀f ′ : T ′ → P(N)+s.t. f ′ < f , it holds that T ′[f ′,∞] |= ϕ

or T ′ = ∅, where T ′ := {t ∈ T | max(f(t)) ̸= 0}

The semantics for the Boolean disjunction and Boolean negation, used in the

extensions TeamLTL(6) and TeamLTL(∼), are given by:

T |= ϕ6 ψ ⇔ T |= ϕ or T |= ψ

T |=∼ ϕ ⇔ T ̸|= ϕ

Note that the Boolean disjunction is definable in TeamLTL(∼), as the dual
of conjunction, i.e. T |=l ϕ6 ψ if and only if T |=l∼ (∼ ϕ∧ ∼ ψ).



Two important properties of team logics are flatness and downward closure.
A logic has the flatness property if T |=l ϕ if and only if {t} |=l ϕ for all t ∈ T ,
holds for all formulae ϕ of the logic. A logic is downward closed if for all formulae
ϕ of the logic if T |=l ϕ and S ⊆ T then S |=l ϕ. The following Proposition was
proven in [12].

Proposition 2. TeamLTLl has both the flatness and the downward closure prop-

erties, while TeamLTLl(6) only has the downward closure property.

We consider the left-downward closed fragment of TeamLTLl(∼), denoted
left-dc–TeamLTLl(∼), where every subformula of the form Gψ or ψU θ, the
subformula ψ is a TeamLTL(6)-formula

It was established in [12] that any formula of TeamLTLl(6) can be equivalently
expressed in 6-disjunctive normal form, i.e. in the form

>
i∈I

αi,

where αi are LTL-formulae.
Similarly by [12], every formula of left-dc–TeamLTLl(∼) can be equivalently

stated in quasi-flat normal form, which means in the form

>
i∈I

(αi ∧
∧

j∈Ji

∃βi,j),

where αi and βi,j are LTL-formulae, and ∃βi,j is an abbreviation for the formula
∼ βd

i,j , where βd
i,j is the formula obtained from ¬β, after ¬ has been pushed

down to the atomic level.
Next we state the syntax and semantics of HyperLTL, as defined in [2], as

well as the Boolean closure concepts we are concerned with.

Definition 3 (Syntax of HyperLTL). Let AP be a set of propositional variables

and V the set of all trace variables. Formulas of HyperLTL are generated by the

following grammar:

ψ ::=∃π.ψ |∀π.ψ |ϕ

ϕ ::=aπ |¬ϕ |ϕ ∨ ϕ | ϕ |ϕUϕ,

where a ∈ AP and π ∈ V.

We denote the set of all traces by TR and the set of all trace variables
by V. For a trace assignment function Π : V → TR, we write Π[i,∞] for the
trace assignment defined through Π[i,∞] = Π(π)[i,∞], and Π[π 7→ t] for the
assignment that assigns t to π, but otherwise is identical to Π.

Definition 4 (Semantics of HyperLTL). Let a ∈ AP be a proposition symbol,

π ∈ V be a trace variable, T be a set of traces, and let Π : V → TR be a trace

assignment.



Π |=T ∃π.ψ ⇔ there exists t ∈ T : Π[π 7→ t] |=T ψ

Π |=T ∀π.ψ ⇔ for all t ∈ T : Π[π 7→ t] |=T ψ

Π |=T aπ ⇔ a ∈ Π(π)[0]

Π |=T ¬ϕ ⇔ Π ̸|=T ϕ

Π |=T ϕ1 ∨ ϕ2 ⇔ Π |=T ϕ1 or Π |=T ϕ2

Π |=T ϕ ⇔ Π[1,∞] |=T ϕ

Π |=T ϕ1 Uϕ2 ⇔ there exists i ≥ 0: Π[i,∞] |=T ϕ2

and for all 0 ≤ j < i we have Π[j,∞] |=T ϕ1

Definition 5 (Universal Fragments). The universal fragment of HyperLTL,

denoted by ∀∗HyperLTL, is the fragment of HyperLTL with no existential quantifi-

cation. We write ∀HyperLTL for the one variable universal fragment of HyperLTL,

and QHyperLTL for the one variable fragment of HyperLTL.

Definition 6 ((Positive) Boolean Closure). The Boolean closure of a logic

L, denoted by BC(L), is the extension of L that is closed under ∧, ∨ and ¬. The

positive Boolean closure of a logic L, denoted by PBC(L), is the extension of L
that is closed under ∧ and ∨.

The semantics for the Boolean closures are attained by relaxing the definition
of conjunction ∧, disjunction ∨, and ¬ to apply to any formula of the Boolean
closure.

Using a suitable algorithm, all BC(L)-formulae can be equivalently expressed
in disjunctive normal form, i.e. as a disjunction of conjunctions with possibly a
negation in front of each formula of L. Similarly, all PBC(L)-formulae can be
equivalently expressed as

∨

i∈I

∧

j∈J

ϕi,j

for some formulae ϕi,j ∈ L and index sets I and J . From here on we use I and J
to denote arbitrary index sets.

3 Correspondence between TeamLTL and HyperLTL

In this section we will explore the relationship between the logics by proving some
correspondence theorems. First, however, we prove some pertinent propositions
regarding the Boolean closure of HyperLTL, showing that conjunction, disjunction
and negation distribute over the quantifiers in a manner analogous to first-order
logic. We go through these propositions in some detail as, although they appear
familiar from the first-order setting, HyperLTL is usually considered only in the
prenex normal form and thus these basic results are not explicitly addressed
in the literature. Moreover, the proofs feature arguments that will be useful in
subsequent proofs.



As usual, for logics L and L′, we write L ≤ L′, if for every L-formula there
exists an equivalent L′-formula. We write L ≡ L′, if both L ≤ L′ and L′ ≤ L.

Proposition 7. PBC(∀∗HyperLTL) ≡ ∀∗HyperLTL

Proof. Let
∨

i∈I

∧

j∈J ψi,j be an arbitrary formula of PBC(∀∗HyperLTL). If all
ψi,j are quantifier free, we are done, as then

∨

i∈I

∧

j∈J ψi,j is a ∀∗HyperLTL-
formula. Thus, we may assume that ψi,j = ∀π1 · · · ∀πnϕi,j for some LTL-formula
ϕi,j . Suppose

Π |=T

∨

i∈I

∧

j∈J

∀π1 · · · ∀πnϕi,j .

Without loss of generality, we may assume a uniform quantifier block in each
conjunct, as one can rename variables and take the largest quantifier block as the
common one, since redundant quantifiers do not effect evaluation. The previous
is therefore equivalent with

Π |=T

∨

i∈I

∀π1 · · · ∀πn
∧

j∈J

ϕi,j .

At this point, we wish to push the disjunction past the quantifier block, but
the variables would become entangled and different traces could satisfy different
disjuncts. We need to distinguish the variables of the disjuncts from each other,
so we rename the trace quantifiers. The previous evaluation is therefore equivalent
with

Π |=T ∀π1
1 · · · ∀π

i
1 · · · ∀π

1
n · · · ∀π

i
n

∨

i∈I

∧

j∈J

ϕi,j(π
1
1 , · · · , π

i
n).

This is a formula of ∀∗HyperLTL. ⊓⊔

The following remark, familiar from first-order logics, can be proven with a
straight-forward induction over the length of the quantifier block.

Remark 8. For HyperLTL-formula Q1π1 · · ·Qnπnψ it holds that

¬Q1π1 · · ·Qnπnψ ≡ Q−
1 π1 · · ·Q

−
n πn¬ψ,

where for every index i, Qi are quantifiers ∀ or ∃, and Q−
i is ∃ if Qi is ∀ and vice

versa.

Proposition 9. BC(HyperLTL) ≡ HyperLTL

Proof. Consider a BC(HyperLTL)-formula
∨

i∈I

∧

j∈J ϕi,j in disjunctive normal
form, with either ϕi,j ∈ HyperLTL or ϕi,j = ¬ψi,j for some formula ψi,j ∈

HyperLTL. By Remark 8 ¬ψi,j ≡ Q
i,j
1 π

i,j
1 · · ·Qi,j

n πi,j
n θi,j , where θi,j ∈ LTL. Thus

we may assume that ϕi,j only appears positively. By a similar argument to that
of the proof of Proposition 7 we get the following:

∨

i∈I

∧

j∈J

Q
i,j
1 π

i,j
1 · · ·Qi,j

n πi,j
n ψi,j ≡ Q

1,1
1 π

1,1
1 · · ·Q1,j

1 π
1,j
1 · · ·Qi,j

n πi,j
n

∨

i∈I

∧

j∈J

ψi,j .

⊓⊔



One last remark before we get to the core results of this article, this time
relating quantifier-free HyperLTL-formulae with LTL-formulae. The remark can
again be proven by induction on the structure of the formula.

Remark 10. Let T be a team, Π be a trace assignment, π be a trace variable, ϕ
be a LTL-formula, and let ϕ(π) be the HyperLTL formula identical to ϕ, except
every proposition symbol p is replaced by pπ. Suppose Π(π) = t for some t ∈ T .
Now the following equivalence holds

Π |=T ϕ(π) ⇐⇒ t |= ϕ.

Using the above propositions we may now proceed with proving our main
results: correspondence theorems between team logics and the Boolean closures
of hyperlogics.

Note that TeamLTL has no separation between closed and open formulae, and
has no features to encode trace assignments. Thus, when ϕ is a formula of some
team based logic L and ψ is a formula of a hyper logic L′ without free variables,
we say that ϕ and ψ are equivalent, if the equivalence T |= ϕ⇔ ∅ |=T ψ, holds
for all sets of traces T . The notations L ≤ L′ and L ≡ L′ are then defined in the
obvious way, by restricting L′ to formulae without free variables.

Theorem 11. TeamLTLl(6) ≡ PBC(∀HyperLTL)

Proof. Let T be an arbitrary team and ϕ an arbitrary TeamLTLl(6)-formula. By
[12, Theorem 10], we may assume that ϕ is in the form >i∈I αi, where I in an
index set and αi are LTL-formulae. We let αi(π) denote the HyperLTL-formulae
obtained from αi, by replacing every proposition symbol p by pπ. We obtain the
following chain of equivalences:

T |=>
i∈I

αi ⇐⇒ there is i ∈ I such that T |= αi

⇐⇒ there is i ∈ I such that t |= αi for all t ∈ T

⇐⇒ there is i ∈ I such that ∅ |=T ∀παi(π)

⇐⇒ ∅ |=T

∨

i∈I

∀παi(π),

where the first equivalence follows from the semantics of 6, the second equivalence
holds by the flatness of αi, the third equivalence is due to the semantics of ∀ and
Remark 10, and the final equivalence follows from the semantics of ∨.

For the converse direction, consider an arbitrary PBC(∀HyperLTL)-sentence
ψ. As noted above, ψ is equivalent to a sentence

∨

i∈I

∧

j∈J ∀πϕi,j(π), where
ϕi,j(π), for every pair i and j, is a HyperLTL-formula with π as the only free
variable. Now by an argument similar to the proof of Proposition 7, ∅ |=T
∨

i∈I

∧

j∈J ∀πϕi,j(π) if and only if ∅ |=T

∨

i∈I ∀π
∧

j∈J ϕi,j(π). Equivalently then
by the definition of the semantics of the disjunction, we may fix i′ ∈ I such that
∅ |=T ∀π

∧

j∈J ϕi′,j(π). By the definition of the universal quantifier then we get
that the previous is equivalent with ∅[π 7→ t] |=T

∧

j∈J ϕi′,j(π) for all t ∈ T .



Now by Remark 10, the previous holds if and only if t |=
∧

j∈J ϕi′,j for all t ∈ T ,

which is equivalent to T |=l
∧

j∈J ϕi′,j , due to the flatness property of TeamLTL.
Finally, by the semantics of the Boolean disjunction, the previous is equivalent
with T |= >i∈I

∧

j∈J ϕi,j . ⊓⊔

As a corollary we get that TeamLTLl(6) is subsumed by the universal fragment
of HyperLTL, which follows from Theorem 11 and the observations made in the
proof of Proposition 7.

Corollary 12. TeamLTLl(6) ≤ ∀∗HyperLTL

Note that another consequence of Theorem 11 is that ∀HyperLTL is strictly
less expressive than PBC(∀HyperLTL), as the former is equivalent with LTL [5]
and thus has the flatness property, while the latter is equivalent with TeamLTL(6),
which does not satisfy flatness. This stands in contrast to the unrestricted
universal fragment ∀∗HyperLTL, which by Proposition 7 is equivalent to its
positive Boolean closure.

Theorem 13. left-dc–TeamLTLl(∼) ≡ BC(QHyperLTL) ≡ BC(∀HyperLTL)

Proof. Let ϕ be an arbitrary left-dc–TeamLTLl(∼)-formula. Now by the quasi-
flat normal form T |=l ϕ if and only if T |=l >i∈I

(

αi∧
∧

j∈J ∃βi,j
)

. Equivalently,

by the semantics of 6, we may fix an index i′ ∈ I such that T |=l αi′ ∧
∧

j∈J ∃βi′,j .
By the semantics of the logic, flatness, and the interpretation of the shorthand
∃, the previous evaluation is equivalent with that t |= αi′ for all t ∈ T and for
all j ∈ J there is a tj ∈ T such that tj |= βi′,j . By Remark 10 the previous
holds if and only if ∅[π 7→ t] |=T αi′(π) for all t ∈ T and for all j ∈ J there is a
tj ∈ T such that ∅[π 7→ tj ] |=T βi′,j(π). Equivalently, by the semantics of ∀ and
∃, we have that ∅ |=T ∀παi′(π) and ∅ |=T

∧

j∈J ∃πβi′,j(π), which, finally by the

semantics of ∨ and ∧, holds if and only if ∅ |=T

∨

i∈I

(

∀παi(π)∧
∧

j∈J ∃πβi,j(π)
)

.

On the other hand, let ψ be an arbitrary sentence of BC(HyperLTL). Now
we get the following chain of equivalences, where Qi,j ∈ {∃, ∀}:

∅ |=T ψ ⇐⇒ ∅ |=T

∨

i∈I

(

∧

j∈J

Qi,jπϕi,j

)

⇐⇒ ∅ |=T

∨

i∈I

(

∀παi ∧
∧

j∈J

∃πϕi,j

)

⇐⇒ there is i ∈ I such that ∅ |=T ∀παi, and for all j ∈ J

it holds that ∅ |=T ∃πϕi,j

⇐⇒ there is i ∈ I such that ∅[π 7→ t] |=T αi for all t ∈ T, and for all

j ∈ J there exists tj ∈ T such that ∅[π 7→ tj ] |=T ϕi,j

⇐⇒ there is i ∈ I such that t |= αi for all t ∈ T, and for all j ∈ J

there exists tj ∈ T such that tj |= ϕi,j



⇐⇒ there is i ∈ I such that T |= αi, and for all j ∈ J it holds that

T |= ∃ϕi,j

⇐⇒ there is i ∈ I such that T |= αi ∧
∧

j∈J

∃ϕi,j

⇐⇒ T |=>
i∈I

(

αi ∧
∧

j∈J

∃ϕi,j

)

,

where the first equivalence is due to the normal form for a Boolean closure,
the second equivalence is holds because the universally quantified conjuncts can
equivalently be evaluated simultaneously, the third equivalence follows from the
semantics of ∧ and ∨, the fourth equivalence holds by the semantics of ∀ and
∃, the fifth equivalence holds by Remark 10, the sixth equivalences is due to
flatness and the definition of the shorthand ∃, the seventh equivalence holds by
the semantics of ∧, and the final equivalence follows from the semantics of 6.

The other equivalence in the theorem is a direct consequence of Remark 8. ⊓⊔

4 Conclusion

In this article we explored the connections in expressivity between extensions of
linear temporal logic under set-based team semantics (TeamLTLl) and fragments
of linear temporal logic extended with trace quantifiers (HyperLTL). We showed
that TeamLTLl, when extended with the Boolean disjunction, corresponds to
the positive Boolean closure of the one variable universal fragment of HyperLTL.
Furthermore we considered a fragment of TeamLTLl extended with the Boolean
negation, where the formulae are restricted to not to contain the Boolean negation
on the left-hand side of the ‘until’ operator (U) or under the ‘always going to’ (G)
operator. We showed a correspondence between that fragment and the Boolean
closure of the one variable universal fragment of HyperLTL. From our results it
follows that the logics considered are all true extensions of LTL. Decidability of
the model checking and satisfaction problems for the team based logics was shown
in [12], and by our correspondence results (and the translation implied by the
proofs of the theorems), decidability of the problems extends to the hyperlogics
in question as well. See Table 1 for a summary of the results.

It is fascinating to see that the restriction to left downward closed formulae
in the latter correspondence on the team logic side disappears on the hyperlogic
side. This hints at that the fragment considered is intuitive. It is an open question
whether the downward closed fragment of TeamLTLl(∼) is TeamLTLl(6), or if
some restricted use of the Boolean negation could be allowed and still maintain
downward closure. Another open question is whether an analogous correspondence
exists for the full logic TeamLTLl(∼), or even for some lesser restriction of the
logic than the left-downward closed fragment.
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TeamLTLl
[12]
≡ LTL

[5]
≡ ∀HyperLTL

[8]
≡ ∗ FO[≤]

<

[12]

<

†

<

†

≡

∗

TeamLTLl(6)
Thm. 11

≡ PBC(∀HyperLTL)
Cor. 12

≤ ∀∗HyperLTL
‡

< FO[≤,E]

<

[12]

<

† <**

left-dc–

TeamLTLl(∼)
Thm. 13

≡ BC(∀HyperLTL)
Thm. 13

≡ BC(HyperLTL1)
‡

< FO[≤]

Table 1. Expressivity hierarchy of the logics considered in the paper. For the deőnition
of left downward closure, we refer to the next section. Note that the equivalence in ∗ is
over traces, whereas the other relations are over sets of traces. †: Follow by transitivity
from the other results. ‡: Follow by slightly modifying the proof of [7, Lemma 2]. The
one variable case does not require a equal time predicate, as only one trace can be
speciőed at a time. **: Follows by a straightforward EF game argument.
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