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Abstract

The Global Biodiversity Framework established ambitious goals for nature recovery

which governments must now incorporate into national legislation. In England, legally

binding targets require authorities to halt the decline in species abundance by 2030 and

reverse the decline by 2042. Riverine invertebrates represent a substantial proportion of

the species contributing towards the targets. Thus, understanding the response of these

species to potential river restoration actions is key to target delivery. We model counts

for 188 riverine invertebrate taxa using zero-inflated generalized Poisson models, apply-

ing the models to both inform river restoration planning and set expected values for use

in ecological assessment. We identify catchment-specific restoration strategies that com-

bine one or more actions involving the removal of channel modifications, reductions in

nitrate concentrations and reductions in total dissolved phosphorus concentrations as

the most likely to deliver species abundance targets across three joint climate–

socioeconomic scenarios. By hindcasting species abundances under alternative target

frameworks, we also demonstrate a new approach to setting expected values in ecologi-

cal assessment, accounting for changes in water temperature and hydrology that con-

found historical reference models presently used by regulators. Our findings represent

the first systematic attempt to prioritise major actions to deliver species abundance tar-

gets in England, providing valuable insights for policymakers, river restoration practi-

tioners and authorities responsible for monitoring river ecosystems.
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1 | INTRODUCTION

Growing awareness of biodiversity loss has led to the emergence of a

global policy agenda on nature recovery, culminating in 2022 with the

historic Kunming-Montreal Global Biodiversity Framework (GBF).

The GBF has four goals for 2050 and 23 targets for 2030, including to

protect 30% of all inland waters by 2030, halt the extinction of threat-

ened species and increase the abundance of native populations.

National governments must now align domestic laws and regulations

with the GBF. In the United Kingdom, section 2(3) of The Environ-

ment Act 2021 included a legally binding target to halt the decline in

species abundance by 2030. For England, the species abundance
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target was specified in The Environmental Targets (Biodiversity)

(England) Regulations, 2023 (hereafter, ‘the regulations’). Section 12

(1:2) of the regulations states that the ‘species abundance target is to

be measured by calculating the difference between the overall relative

species abundance index’ and that ‘the overall relative species abun-

dance index for a year is derived from the calculation of the geometric

mean of the relative species abundance indices for every species

listed in Schedule 2 [of the regulations]’. The species abundance index

is relative in the sense that it is expressed relative to a baseline. To

achieve the 2030 target, the index for the year 2030 must be the

same as, or greater than, the index for the year 2029. A further target

to reverse the decline in species abundance by 2042 requires that the

index for 2042 must be both greater than the index for 2022 and at

least 10% greater than the index for 2030.

Of the 1195 taxa listed in Schedule 2 of the regulations, 19.7%

are riverine invertebrates. Thus, as policymakers now consider how to

deliver the species abundance target, and given that biodiversity is a

focus of river restoration projects (England et al., 2021), understand-

ing which restoration actions can have the greatest positive impact on

Schedule 2 freshwater invertebrates is key. The policy framework

on improving the water system in England provides several potential

delivery mechanisms, including statutory targets to reduce nitrogen,

phosphorus and sediment pollution from agriculture, phosphorus

loadings from treated wastewater, the length of rivers polluted by

harmful metals from abandoned mines and per capita use of public

water supply. Further non-statutory targets require restoration of

75% of water bodies to good ecological status, reduction of leaks

from water infrastructure, elimination of all adverse ecological impacts

from sewage discharges and improved drought resilience. The Inte-

grated Plan for Water in England (Defra, 2023) sets out the actions

needed to achieve these targets and establishes a new Water Resto-

ration Fund to enable investment of environmental fines and penalties

into actions that improve the water environment. However, as yet

there is no basis for prioritising these actions in terms of their poten-

tial contribution to delivering the species abundance target under

alternative future climate and socioeconomic scenarios.

Biodiversity modelling capabilities have improved rapidly in recent

decades, to the point that models representing species–environment

relationships now underpin key global (Schipper et al., 2020) and

national (Hendriks et al., 2016) nature recovery policy. In England, a

decades-long history of intensive, large-scale monitoring of river biol-

ogy offers strong potential for guiding policy through biodiversity

modelling, yet this potential remains to be explored. In addition to

prioritising actions to improve the water environment by projecting

outcomes under alternative policy decisions and climate change scenar-

ios, biodiversity modelling could also provide the basis for a new

approach to setting expected values for use in ecological status assess-

ment, a process involving calculation of ecological quality ratios (EQRs),

that is, observed:expected values of a given index. Presently, in

England, expected values for riverine invertebrate communities are

generated using the River Invertebrate Classification Tool (RICT).

Underlying RICT is a historical reference condition model, producing

expected values based upon data collected between 1978 and 2002

from sites thought to be minimally impacted by anthropogenic stressors

at the time. However, the pace and severity of 21st century climate

change are such that historical conditions may be an increasingly poor

guide to the state of present-day river ecosystems (Tonkin et al., 2019).

River water temperatures in England increased by an average of

0.3�C per decade between 1990 and 2006 (Orr et al., 2015), and this

trend is expected to continue under the present climate trajectory

(Hannah & Garner, 2015). Hydrological research suggests a general

trend of increasing winter flows and decreasing summer flows in the

United Kingdom, with an overall increase in mean flows and flow max-

ima (Christierson et al., 2012; Kay & Kay, 2021; Prudhomme

et al., 2012; Sanderson et al., 2012), as well as steadily increasing

flood and drought risk (Collet et al., 2017; Kay et al., 2014; Lane &

Kay, 2021; Prudhomme et al., 2013, 2014; Schneider et al., 2013;

Skoulikidis et al., 2017). Water temperature and discharge are key

dimensions of the habitat template of freshwater invertebrates

(Jackson et al., 2007; Poff et al., 1997). Thus, observed thermal and

hydrological changes are expected to drive significant shifts in the dis-

tribution and abundance of freshwater invertebrate species, con-

founding historical reference models (Chessman, 2021) and

potentially undermining nature recovery (Whelan et al., 2022). Indeed,

Vaughan and Gotelli (2019) found that the impacts of warming on

freshwater invertebrate communities were already limiting the bene-

fits of water quality improvements in English rivers as early as the

1990s. A recent continental synthesis showed that the widely

reported recovery of European freshwater biodiversity had come to

an end by the 2010s, a result partly attributed to warming (Haase

et al., 2023). Biodiversity modelling offers an alternative way to define

expected values for ecological assessment by predicting what species

abundances would be if environmental targets were achieved, whilst

accounting for contemporary thermal and hydrological conditions.

We fitted zero-inflated generalized Poisson models linking >30

million individual count records of Schedule 2 freshwater invertebrate

taxa with spatial and temporal data on habitat modification, water

quality, water temperature and hydrological anomalies. Focusing on

the geometric mean abundance indicator specified in the regulations,

we made future projections under joint river restoration, representa-

tive concentration pathway (RCP; van Vuuren et al., 2011) and shared

socioeconomic pathway (SSP) scenarios (UK Climate Resilience

Programme, 2023). We also hindcasted biodiversity outcomes under

alternative environmental target frameworks to calculate target-

driven expected values of the indicator, comparing these with

expected values produced from RICT. We demonstrate how our

models can be used to both prioritise actions to improve the water

environment and support climate-resilient ecological assessment.

2 | MATERIALS AND METHODS

2.1 | Modelled data

We obtained the full set of publicly available statutory freshwater

invertebrate monitoring records for England (Environment
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Agency, 2023b). Due to the limited temporal coverage of modelled

monthly water quality data (Table 1), we filtered the records to

include only samples collected between 1991 and 2017. To obtain a

more consistent dataset for modelling, we selected only samples col-

lected from rivers using a standard 3-min kick sampling procedure,

with abundance recorded on a linear or semi-quantitative log scale

(with the latter transformed back to a linear scale by the data owner).

We excluded samples collected outside of the statutory monitoring

seasons of spring and autumn to minimise any confounding effects of

greater variation in sample timing. Samples from water bodies with a

sampling frequency <10 were also omitted to allow for model fitting

through five-fold cross-validation stratified by water body (see below).

After filtering, a total of 160,433 samples collected from 18,728

unique sites within 2999 water bodies remained for modelling. From

these samples, we selected records of the 235 Schedule 2 freshwater

invertebrate taxa by searching for accepted names and synonyms in

the taxonomic database accompanying the original data (Environment

Agency, 2023b). Count records for synonymous taxa were aggregated

and taxonomy updated to accepted names except in the case of a sin-

gle taxon, Baetis niger, which was classified as Nigrobaetis niger to be

consistent with the taxon named in Schedule 2 of the regulations.

Count data were further aggregated to the taxonomic level specified

in Schedule 2, which contains 58 taxa at genus level and 11 at species

group level (with the remainder at species level). In these cases, aggre-

gation was performed by summing counts of all child taxa after updat-

ing taxonomy.

We matched invertebrate records with spatial environmental

datasets covering catchment physiography and geology, habitat modi-

fication, water availability, water temperature, nutrient concentrations

and hydrological anomalies (Table 1). The 11 catchment physiography

and geology variables sourced from the RICT database were highly

intercorrelated. Thus, we used principal component analysis (PCA)

TABLE 1 Description and sources for environmental data used in species abundance models.

Variable (short name) Description Reference

Altitude (‘Altitude’) Raster data from the River Invertebrate Classification Tool (RICT) at 50 m resolution

covering the river network. Reduced via principal component analysis to yield four

synthetic variables (‘rict_1’, ‘rict_2’, ‘rict_3’, ‘rict_4’)

Clarke & Davy-

Bowker,

(2018)
Distance from river source

(‘Distance_from_source’)

Logarithm of upstream mean altitude

(‘Log_upstream_mean_altitude’)

Logarithm of upstream catchment

area (‘Log_upstream_area’)

Proportion of upstream catchment

area covered by chalk (‘Chalk’)

Proportion of upstream catchment

area covered by clay (‘Clay’)

Proportion of catchment area covered

by hard rock (‘Hard_rock’)

Proportion of catchment area covered

by limestone (‘Limestone’)

Proportion of catchment area covered

by peat (‘Peat’)

Discharge category

(‘Discharge_category’)

River longitudinal slope (‘Slope’)

Channel resectioning index (‘CRI’) Point vector data quantifying the extent of habitat modification through channel

resectioning at 500 m intervals along the river network, modelled from the UK River

Habitat Survey database

Environment

Agency,

(2023c)

Water resource availability at the five

percentile flow, Q95 (‘cams95’)
Polygon vector data classifying water resource availability within English water bodies

at very low flows using a ‘traffic light’ classification: green = more water available

than required to meet needs of environment; yellow = not enough water to meet

needs of environment if all licensed abstractions are carried out in full; red = not

enough water to support good ecological status; grey = no classification

Environment

Agency,

(2023a)

Water temperature (‘temp’) Raster data of modelled monthly means from the Long Term Large Scale (LTLS)

Freshwater Model at 5 km resolution, 1990–2017. Values expressed as the mean of

the 12 full months preceding the sample date

Bell et al., (2021)

Nitrate concentration (‘NO3’)

Total dissolved phosphorus (‘TDP’)

Precipitation anomalies (‘rain_anom’) Raster data of monthly precipitation from HadUK-Grid at 5 km resolution, 1960–2020.
Values expressed as the mean of monthly anomalies in the 12 full months preceding

the sample date, relative to 1960–2020 monthly mean values

Hollis et al.,

(2019)
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 15351467, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rra.4282 by U

niversity O
f L

eeds T
he B

rotherton L
ibrary, W

iley O
nline L

ibrary on [17/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



followed by the broken stick method (Jackson, 1993) to define syn-

thetic RICT variables for modelling (Supplementary Figures 1 and 2).

Whilst results indicated that only the second axis explained more vari-

ance than the broken stick model, we used the first four axes as a par-

simonious set of synthetic variables linked to catchment size, altitude

and geology. Together, the first four axes explained 69.4% of the vari-

ation in the RICT data. For environmental datasets in raster or poly-

gon vector format, we extracted values for each sample in the filtered

invertebrate dataset. For point vector data representing habitat modi-

fication via the channel resectioning index (CRI), we extracted values

from the nearest point to each unique site in the invertebrate dataset.

All numerical environmental variables were centred to mean zero and

scaled to unit standard deviation prior to modelling. To enable model

predictions to be produced for any part of the river network, we also

extracted data from the environmental datasets at the centroid of

each 50 � 50 m grid cell in the RICT data (Table 1). Available spatial

data on habitat modification and water availability were not available

as time series. We therefore assumed that CRI and cams95, variables

representing the extent of habitat modification and water availability

at very low flows respectively, did not change at individual sites

throughout the study period. Further polygon vector data on water

bodies (Environment Agency, 2023f) and river basins (Environment

Agency, 2023e) were used to reflect the spatial structure of the

modelled data.

2.2 | Modelling

Counts for each Schedule 2 invertebrate taxon were modelled as a

function of environmental covariates using hierarchical zero-

inflated generalized Poisson models. The use of a flexible distribu-

tional family was necessary as counts were frequently over- or

under-dispersed due to data heterogeneity in terms of sampling

effort, observation error and the use of a semi-quantitative log scale

before the mid-1990s (see above). We selected generalized Poisson

models from among several suitable options (Toledo et al., 2022) as

initial tests indicated that runtimes for alternatives (e.g., Conway–

Maxwell–Poisson models) were prohibitive for such a large dataset

and complex models (McCrea et al., 2023). Counts were modelled

as an additive function of the environmental variables described in

Table 1, along with interactions between CRI and cams95, water

temperature and nitrate concentration and water temperature and

total dissolved phosphorus (TDP). Thus, our models reflect potential

multiple stressor effects reported in previous studies showing fre-

quent interactions between channelisation and abstraction (Elosegi

et al., 2018) and antagonistic effects of temperature and nutrient

enrichment (Piggott et al., 2012, 2015). In the absence of discharge

records at sufficient spatial extent and resolution, we used precipi-

tation anomalies (‘rain_anom’) to reflect hydrological variation.

Since the relationship between precipitation and river discharge is

dependent on catchment characteristics, we included random inter-

cepts and slopes on rain_anom for water bodies nested within river

basins.

The use of zero-inflated models was required because the taxo-

nomic resolution of invertebrate recording in the modelled dataset

changed during the study period, with the proportion of records at

species level generally increasing but also fluctuating over time

(Supplementary Figure 3). Taxonomic resolution is a key aspect of

observation error. For example, the recording of specimens at the

family level results in zeros for the genera and species that those

specimens belong to. Thus, we modelled zero inflation using random

intercepts on year. We note that there was also variation in taxonomic

resolution between operational areas, with the Anglian area showing

consistently greater proportions of species level records than other

areas. However, during model development, we encountered com-

plete separation when including fixed and random effects on opera-

tional area in the zero inflation component.

All models were fitted through five-fold cross-validation, with fold

membership stratified by water body, using the glmmTMB function

from the glmmTMB v1.1.5 package in R (Brooks et al., 2017). In the

first instance, we tried fitting models with the ‘optim’ optimizer algo-

rithm using the ‘BFGS’ method. If that initial model either failed,

returned NA standard error values or returned extreme model coeffi-

cients ( bβ
���
���>10), we considered a succession of alternative optimiza-

tion settings. This began with changing the method to ‘L-BFGS-B’,
then ‘CG’, before switching to the ‘nlminb’ optimizer algorithm using

the ‘BFGS’, ‘L-BFGS-B’ and ‘CG’ methods, until a robust model was

found. All models for some taxa either failed or returned NA standard

error values and extreme model coefficients ( bβ
���
���>10). We excluded

these taxa, leaving models for 188 of the 235 taxa covered in Sched-

ule 2 of the regulations. The total number of individual records con-

tributing to our results was therefore 30.2 million (160,433 samples

�188 taxa).

Three types of predictions were made from the fitted models.

First, to represent the baseline, we calculated fitted abundances for

each taxon and year in the study period. Second, we predicted

expected abundances for each year under 15 alternative target frame-

works constructed by combining four individual restoration actions

(Table 2) in all possible single, two-way, three-way and four-way com-

binations. Finally, following the biodiversity model intercomparison

TABLE 2 Description of individual restoration actions used in
constructing restoration scenarios and setting alternative target
frameworks. *2009 defined as the start of the period to coincide with
cycle 1 of the Water Framework Directive.

Target
name

Short
code Description of target

Abstraction A Bring all water bodies into ‘green’
cams95 status

Morphology M Remove all channel modifications

(CRI = 0)

Nitrates N Reduce concentrations to 50% of 2009–
2017 mean*

Phosphorus P Reduce concentrations to 50% of 2009–
2017 mean*

4 WILKES ET AL.
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protocol (Kim et al., 2018), we projected abundances in 2030 and

2042 under each of the 15 alternative target frameworks crossed

with each of three RCP-SSP scenarios (Table 3) to yield 45 future

scenarios. In each case, predictions were made for spring and

autumn in every RICT grid cell within the modelled water bodies. For

each taxon, we calculated the mean and standard deviation of pre-

dictions across seasons and within water bodies to yield a single set

of predicted species abundances for each year and water body, as

well as nationally aggregated predictions for each year. We then

computed a multi-species indicator (MSI) consistent with the regula-

tions by taking the geometric mean of predicted species abundances

within each year and water body, as well as within each year at the

national level, under alternative target frameworks and RCP-SSP

scenarios.

To define the (optimal) restoration strategy that would maximise

MSI within each water body according to our models, we selected the

combination of restoration actions with the greatest projected MSI in

each future year (2030, 2042) and RCP-SSP scenario. This was

achieved by ranking MSI projections using μ MSIð Þ�σ MSIð Þ, where μ is

the mean and σ the standard deviation, to avoid selecting a target

framework with a greater projected mean MSI response but wider

bounds of uncertainty. We also identified the overall optimal restora-

tion strategy for each water body by selecting the set of targets that

most frequently maximised μ MSIð Þ�σ MSIð Þ among all future years

and RCP-SSP scenarios.

For each restoration strategy, we expressed projections as the

probability of achieving the species abundance target at the national

level for 2030 and 2042 using the pnorm function in the stats v3.6.2

package in R (R Core Team, 2023). We defined the target for 2030

as an MSI value for the year 2030 equal to or greater than the mean

baseline MSI value (1991–2017), and for 2042 as an MSI value in

2042 at least 10% greater than mean baseline MSI value (1991–

2017). This is different to how the targets are specified in the regula-

tions because observed MSI values for the years 2022, 2029 and

2030 were not yet available. However, our approach provides timely

insights that can be used inform large-scale river restoration

planning.

2.3 | Other analyses

To allow comparison of expected MSI values from our models with

those produced by the historical reference model presently used for

statutory ecological status assessment, we obtained RICT species

abundance predictions for each 50 � 50 m grid cell in the RICT data

using the rict_predict function from the rict v3.1.4 package in R

(Muyeba et al., 2023). RICT predictions incorporated mean alkalinity

values for each water body, which we calculated from the Environ-

ment Agency Water Quality Data Archive (Environment

Agency, 2023d). RICT predictions were produced for spring and

autumn, from which we calculated an annual mean for each site in the

invertebrate dataset. Species predicted by RICT were matched to

modelled taxa, aggregating to genus or species group level as neces-

sary to match the taxa named in Schedule 2 of the regulations. Some

Schedule 2 taxa were not included in RICT predictions. Thus, it was

necessary to recalculate MSI values predicted from our models by tak-

ing the geometric mean of fitted abundances only for the 168 taxa

covered by both the RICT predictions and our models. The recalcu-

lated MSI values (MSIRICT) allow direct comparison between expected

MSI values under RICT and those produced by our models.

Expected MSI values from our models were expressed relative to the

baseline (fitted values) in the first year of the timeseries (1991):

MSIrelative ¼ MSI
MSIbase

�100, where MSI is the absolute MSI value for a

specific year and MSIbase is the absolute baseline MSI value in the

first year.

3 | RESULTS

An overview of key effects from our models is provided in Figure 1,

with detailed summaries of model coefficients available in the supple-

mentary material (Supplementary Figure 4). Year random intercepts

from the zero-inflated portion of our models demonstrated that

detection probabilities generally increased but also fluctuated over

time (Figure 1a). For example, monitoring in 2013 was associated with

lower detection probabilities due to the greater frequency of records

at higher ranks (e.g., family) in that year (Supplementary Figure 3).

Random slopes and intercepts in the conditional component of our

models highlighted the role of catchment-specific effects, with broad

variation in hydrologically mediated species abundance responses

across water bodies within major river basins (Figure 1b). In terms of

predictive performance (mean ± sd) across the 188 taxa modelled,

mean error was 0.02 ± 0.09, mean absolute error was 0.67 ± 1.64,

root-mean-square error was 6.05 ± 10.47 and the marginal R-squared

was 0.37 ± 0.20 (Supplementary Figure 5).

3.1 | Model projections

Individual restoration actions selected in optimal restoration strategies

at the water body level varied by future year and RCP-SSP scenario

(Figure 2). The reduction of nitrate concentrations contributed to the

TABLE 3 Description of RCP-SSP scenarios used in projecting
from biodiversity models.

Scenario Narrative Description of future changes

RCP2.6-SSP1 Sustainability Water temperatures and rainfall

anomalies return to long-term

means (1991–2017)

RCP6.0-SSP2 Middle of the

road

Water temperature and rainfall

anomalies continue to

increase by the long-term

rate (1991–2017)

RCP8.5-SSP5 Fossil-fuelled

development

Rate of increase in water

temperatures and rainfall

anomalies doubles relative to

the long-term rate (1991–
2017)

WILKES ET AL. 5

 15351467, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rra.4282 by U

niversity O
f L

eeds T
he B

rotherton L
ibrary, W

iley O
nline L

ibrary on [17/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



optimal restoration strategy across 92.8% of the river network by

2030 and 2042 under RCP2.6-SSP1, reducing to 85.6% by 2030 and

77.2% by 2042 under RCP8.5-SSP5 (Figure 2a). In contrast, the con-

tribution of reductions in TDP concentrations increased from 79.8%

of the network by 2030 and 2042 under RCP2.6-SSP1, to 92.2% by

2030 and 98.5% by 2042 under RCP8.5-SSP5. Morphological restora-

tion consistently contributed to the optimal strategy throughout

85.6%–87.0% of the network across both future years and all RCP-

SSP scenarios. The removal of abstraction pressure was selected as

part of an optimal restoration strategy for only a single water body

(0.01% of the network) by 2030 and 2042 under RCP2.6-SSP1 and a

separate water body (0.14% of the network) by 2030 under

RCP8.5-SSP5.

The most frequently selected combination of actions in optimal

restoration strategies at the water body level was morphological res-

toration with reductions in nitrate and TDP concentrations

(Figure 2b). This combination was consistently selected across 66.4%–

69.4% of the river network, whereas reductions in nitrate and/or TDP

concentrations without morphological restoration was the optimal

strategy for 9.5%–11.5% of the total stream length. The selection of

other combinations involving morphology, nitrates and/or TDP varied

by RCP-SSP scenario. The frequency with which morphology with

TDP and TDP alone were selected increased from the most optimistic

to the most pessimistic RCP-SSP scenario, whereas the selection fre-

quency of other combinations involving morphology and nitrates

decreased. Combinations involving the removal of abstraction pres-

sure contributed to the optimal strategy across a negligible proportion

of the river network (Figure 2a).

The overall optimal restoration strategy at the water body level

(Figure 3), identified as the most frequently selected combination of

actions across all future year and RCP-SSP scenarios, involved

between one and three restoration actions (Figure 3b) and was pro-

jected to increase MSI relative to the baseline in 85.6% of water bod-

ies by 2030 (Figure 3c). The number of actions (mean ± sd)

contributing to the overall optimal strategy per unit stream length was

2.58 ± 0.62 (Supplementary Figure 6) and this was projected to lead

F IGURE 1 Summary of key effects from zero-inflated generalized Poisson models fitted to 188 freshwater invertebrate taxa: (a) year random
intercepts from the zero inflated component, expressed as the detection probability (1-p, where p is the probability of an excess zero); (b) random
intercepts (left) and slopes (right) from the conditional component of models. Boxplots show the median (bold horizontal line), interquartile range
(box) and 1.5 � the interquartile range (whiskers) of mean values for each species and water body within major river basin. Outliers are not
shown.
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to an increase in MSI nationally of 21.1 ± 21.5% by 2030 and 21.7

± 23.0% by 2042, relative to the baseline (Supplementary Figure 7).

Morphological restoration with reductions in nitrate and TDP concen-

trations was selected as the overall optimal strategy across the 65.4%

of the river network (Supplementary Figure 8). A 50% reduction in

TDP concentrations was the single most frequently selected action

(Figure 3g). Combinations involving the removal of abstraction pres-

sure were never selected (Figure 3d).

A nationally prescribed restoration strategy, in which the same

combination of actions was applied across all modelled water bodies,

was projected to lead to the achievement of the 2030 species abun-

dance target with probabilities between 25.6% (removal of abstraction

pressure only) and 72.7% (combination of morphological restoration

with reductions in nitrate and TDP concentrations) under the

RCP6.0-SSP2 (middle of the road) scenario (Figure 4). This compared

with a probability of 72.6% by 2030 under the same scenario when

the restoration strategy was optimised for each individual water body.

Results suggested that the more ambitious 2042 target would be a

greater challenge to achieve than the 2030 target, particularly under

more optimistic RCP-SSP scenarios. For example, a nationally pre-

scribed restoration strategy combining morphological restoration with

reductions in nitrate and TDP concentrations (‘MNP’) was associated

with a 72.3% and 72.7% probability of achieving the 2030 target

under RCP2.6-SSP1 and RCP8.5-SSP5, respectively. This reduced to

63.8% and 65.6%, respectively, for the 2042 target.

3.2 | Expected values

Relative MSI values expected under our approach varied over time in

response to thermal and hydrological variation (Figure 5). Absolute

expected MSI values varied strongly by target framework, with a com-

bination of targets for morphology along with nitrate and TDP con-

centrations leading to the highest expected values, and abstraction

alone the lowest expected values, in line with the projections reported

above (Supplementary Figure 9). Target-driven EQRs (mean [95% CI])

under the optimal target framework for each water body (0.80 [0.79,

0.81]) were greater and showed more variability over time than EQRs

derived from RICT predictions (0.29 [0.27, 0.30]; Figure 6).

4 | DISCUSSION

By integrating long-term biodiversity monitoring records with spatial

environmental datasets within a robust modelling framework, we pro-

vide the first national prioritisation of four major restoration actions

F IGURE 2 Frequency of individual (a) and combined (b) restoration actions identified in optimal restoration strategies at the water body level
based on projections for 2030 and 2042 under three In (a), the contribution of individual restoration actions is shown; also note the different
scale in the upper row. Key to restoration actions in (b): A = abstraction; M = morphology; N = nitrates; P = total dissolved phosphorus (TDP).
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under future climate and socioeconomic scenarios. To underpin eco-

logical assessment, we also present a new reference model that sets

expected values based upon predicted outcomes under alternative

target frameworks, whilst accounting for changes in water tempera-

ture and hydrological variability.

Model projections at the national level indicated that morphologi-

cal restoration and 50% reductions in nitrate and TDP concentrations

are priority actions for delivering the species abundance targets for

2030 and 2042. Morphology is a common focus of river restoration

projects and may involve channel re-meandering, bank reprofiling, the

raising of river bed levels, or barrier removal, among other techniques

(van Andel & Aronson, 2012). These aspects of river habitat are impli-

cated in the non-statutory target to restore 75% of water bodies to

good ecological status (Defra, 2023). In terms of nutrient concentra-

tions, The Environment Act 2021 targets for water require that nitro-

gen and phosphorus pollution from agriculture is reduced by at least

40% by 2038 (against a 2018 baseline) and phosphorus loadings from

treated wastewater are reduced by 80% by 2038 (against a 2020

baseline). Such reductions could be achieved via catchment restora-

tion programmes focusing on land use and land management prac-

tices, as well as mechanisms to increase investment in

underperforming sewage treatment works. Whilst we were unable to

directly reflect these nutrient targets due to a lack of detailed data on

the contribution of agriculture and treated wastewater to nutrient

loadings throughout the river network, the morphological restoration

and nutrient reductions simulated here are plausible policy outcomes.

Changes to water resources management, which would retain

more water for the environment after licensed abstractions are carried

out, were identified as a positive contributor to target delivery across

a negligible proportion of the river network. This finding suggests that

targets aimed at reducing the use of public water supply may not play

a major role in delivering the species abundance target. However, we

F IGURE 3 Summary of overall optimal restoration strategies at the water body level based on projections for 2030: (a) location of study
extent; (b) number of individual restoration actions involved; (c) projected change in the multi-species indicator (MSI) compared with the mean
1991–2017 baseline; (d-g) water bodies for which individual measure were (TRUE) or were not (FALSE) included in the overall optimal restoration
strategy. Bold lines in (b-g) show watersheds between major river basins. TDP = total dissolved phosphorus.
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urge caution in the interpretation of these findings as abstraction

pressure is widespread in England. Thus, for many water bodies, anal-

ogous habitat conditions under low abstraction pressure do not exist

in the modelled dataset. Furthermore, our assumption that abstraction

pressure did not change during the study period is unlikely to be sup-

ported given that human water demands vary over time in many sys-

tems (Tijdeman et al., 2018). These factors may explain why, for many

taxa, our models indicated higher abundances with greater abstraction

pressure (Supplementary Figure 4). On the other hand, our findings

are supported by a substantial body of research showing that the

impacts of abstraction on riverine invertebrates are difficult to detect

in the presence of other pressures (Castella et al., 1995; White

et al., 2021).

Optimising the combination of restoration actions required to

maximise MSI at the water body level under our models did not lead

to an uplift in the probability of achieving the species abundance tar-

gets for 2030 and 2042, compared to nationally prescribed restora-

tion strategies. However, restoration planning at the water body level

would reduce the number of individual actions required per unit

length of the river network (mean = 2.58) by an estimated 14%

compared with the combination of three actions projected to result in

the greatest probability of achieving the targets via a nationally pre-

scribed strategy. Cost-effectiveness is an important criterion for river

restoration (Smith et al., 2014), and our models provide a foundation

upon which detailed cost–benefit projections could be based.

The expected MSI values produced from our models are respon-

sive to thermal and hydrological change, in contrast to static expecta-

tions produced from RICT (Figure 5). Scientists and practitioners

working on freshwater ecological assessment have increasingly

argued that reference models used to produce expected values must

be adapted to account for climate change or risk generating increas-

ingly confounded results (Chessman, 2021; Feio et al., 2014; Logez

et al., 2012). Even under locally unimpacted conditions, it is unrealistic

to expect ecological communities to remain static over decades-long

periods whilst the global environment undergoes fundamental shifts.

Yet, the River Invertebrate Prediction and Classification System

(RIVPACS), which is the historical reference model underlying RICT

and has inspired many other similar approaches worldwide, incorpo-

rates only long-term air temperature means and ranges (Clarke

et al., 2003). It therefore fails to account for the severe thermal and

F IGURE 4 Probability of achieving species abundance targets in 2030 and 2042 at the national level under three alternative representative
concentration pathway (RCP)-shared socioeconomic pathway (SSP) scenarios (rows) and 16 alternative restoration strategies. Dashed horizonal
lines correspond to a 50% probability. Key to individual restoration actions making up alternative restoration strategies: A = abstraction;
M = morphology; N = nitrates; P = total dissolved phosphorus. *WB = nationally aggregated change in MSI for restoration strategies optimised
at the water body level.
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hydrological shifts observed within rivers in England (Christierson

et al., 2012; Collet et al., 2017; Hannah & Garner, 2015; Kay

et al., 2014; Kay & Kay, 2021; Lane & Kay, 2021; Orr et al., 2015;

Prudhomme et al., 2012, 2013, 2014; Sanderson et al., 2012). As cli-

mate change contributes to biodiversity loss or offsets the biodiver-

sity benefits of environmental improvements (Vaughan &

Gotelli, 2019), regulators must distinguish between those changes

they are accountable for (e.g., water quality) and those driven by fac-

tors beyond their control (e.g., global greenhouse gas emissions). Our

climate-resilient approach provides a foundation upon which regula-

tors can set expected values to support more robust assessment of

progress towards environmental targets. Using a notional EQR bound-

ary between ‘good’ and ‘less than good’ ecological status of 0.86, our
approach suggests 42.6% of water bodies were in good ecological sta-

tus with respect to MSI by the end of the timeseries (2017). This com-

pares to 18.6% under the RICT approach. Importantly, distributions of

EQRs show that many more water bodies would be considered closer

to ‘good’ under our approach (Figure 6), thus motivating restoration

efforts to push water bodies over the EQR boundary.

Whilst our models incorporate data covering four major potential

pressures on river ecosystems, several further pressures could not be

included due to a lack of data at the requisite spatial extent. For exam-

ple, fine sediment is known to be a significant pressure on freshwater

invertebrate diversity (McKenzie et al., 2024). However, sediment pol-

lution across the whole river network of England is presently charac-

terised only by the risk of agricultural fine sediment inputs (Naura,

Hornby, et al., 2016) rather than by estimates of actual deposition

from any source, including construction, transport and sewage treat-

ment effluent. The concentration of harmful metals from abandoned

mines is also identified in the statutory environmental target frame-

work for England, yet time series data on metal concentrations are

available for only a small subset of sites in the invertebrate data.

F IGURE 5 Summary of nationally aggregated expected multi-species indicator (MSI) values over time under 15 MSI values are expressed
relative to baseline starting (1991) values. Solid lines denote means and shaded areas show means +/� one standard error. Key to individual
targets making up alternative target frameworks: A = abstraction; M = morphology; N = nitrates; P = total dissolved phosphorus.
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Further statutory targets requiring water companies to reduce leaks

and the achievement of a greater level of resilience to drought could

also potentially contribute to the achievement of biodiversity targets.

In particular, the drying of river beds represents a severe disturbance

that only specialist invertebrate species can resist or rapidly recover

from (Stubbington et al., 2022). The development of spatial datasets

relating to the frequency, magnitude and duration of drying events

across the river network should therefore be a priority.

Of the pressures we were able to incorporate into predictive

models, the corresponding datasets we used are the best available

sources of large-scale spatial information for river systems in England,

but it is important to note that these are themselves subject to uncer-

tainty which we were unable to fully account for. Data on river habitat

modification (CRI) were derived from observations contained within

the UK River Habitat Survey database using kriging to generate esti-

mates at 500 m intervals along the river network (Naura, Clark,

et al., 2016). The kriging model explained 57% of the variation in the

training data. Further uncertainty arises due to the relatively coarse

resolution of the CRI data, which risks missing abrupt changes in habi-

tat modification along the river network. Data on abstraction pressure

were taken from the national Catchment Abstraction Management

Strategy process (Environment Agency, 2023a) which assesses the

water resource availability across a whole water body using broad cat-

egories derived from a series of models that estimate natural flows,

flow scenarios and environmental flow indicators for invertebrates

and other freshwater groups. Although based upon ecological

responses to water availability, these broad categories of abstraction

pressure are somewhat arbitrary (Table 1). Further work would benefit

from the development of quantitative indicators of abstraction pres-

sure. Monthly water temperature, nitrate and TDP concentrations

originated from a national-scale dynamic macronutrient model associ-

ated with spatially variable predictive performance. For example,

whilst simulated nitrate concentrations are consistently within 1% of

observed values, in some places the model overestimates TDP by up

to 100% (Bell et al., 2021). However, our use of long-term mean nutri-

ent concentrations mitigates this source of uncertainty in our models.

Precipitation anomalies were derived from climate data interpolated

from situ observations to a regular grid (Hollis et al., 2019). Water

quality and precipitation data were only available at a relatively coarse

(5 km) resolution. If future projects are able to model finer scale varia-

tion in water temperature, nutrient concentrations, hydrological

anomalies and other pressures, our ecological modelling framework

provides the potential for end-users to re-prioritise restoration

actions. This would enable application of our approach to guide

detailed local river restoration planning.

In constructing RCP-SSP scenarios, we have followed a model

intercomparison protocol (Kim et al., 2018) as implemented in a prom-

inent global biodiversity model (Schipper et al., 2020). The specific

future changes in water temperature and rainfall anomalies used in

our projections were based upon the narratives and semi-quantitative

projections developed by the UK-SSP project (UK Climate Resilience

Programme, 2023). However, substantial uncertainty around specific

environmental trends under the scenarios warrants a full sensitivity

analysis in future biodiversity modelling applications. Additional

uncertainty is related to the spatial coverage of our models. Due to

limited availability of freshwater invertebrate records (particularly in

western river basins), we were unable to model every water body; the

results reported here represent 75.6% of the land surface of England.

Data collection by statutory agencies should focus on filling these

gaps to ensure that future models are fully representative of the array

F IGURE 6 Summary of ecological quality ratios (EQRs; observed: expected MSIRICT scores) under the River Invertebrate Classification Tool
(RICT) compared with the target-driven framework developed here. Boxplots show the median (bold horizontal line), interquartile range (box) and
1.5 � the interquartile range (whiskers) of EQRs across water bodies for each year. Outliers are not shown. Coloured lines denote mean EQRs
from locally estimated scatterplot smoothing (LOESS) models. EQRs under the target-driven framework were calculated based on the overall
optimal restoration strategy identified for each water body from the model projections.
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of England's river basins. Our models could be used to produce popu-

lation level (fixed effects only) estimates for these understudied water

bodies, but we chose not to do this as it would ignore variation in

hydrological responses among catchments.

5 | CONCLUSIONS

We offer the first prioritisation of restoration actions to deliver spe-

cies abundance targets in England, thus providing valuable insights for

policymakers and river restoration practitioners. Our findings highlight

a critical role for morphological restoration, alongside significant

efforts to reduce nutrient concentrations, in delivering nature recov-

ery in English rivers. By introducing a novel approach to setting

expected values for ecological assessment, it is now possible to

account for shifting thermal and hydrological conditions which con-

found historical reference models presently used by regulators in the

United Kingdom and elsewhere (Chessman, 2021). Some uncertainties

and data limitations are currently unavoidable in our models, yet they

still present significant potential to underpin a systematic approach to

restoration planning and ecological assessment, which is locally

adapted whilst accounting for alternative future climate and socioeco-

nomic scenarios.

ACKNOWLEDGEMENTS

We thank G. Peirson (Environment Agency) for advice about taxo-

nomic incompleteness for fish and Dr D. M. Cooper (UK Centre for

Ecology & Hydrology) for providing the LTLS data.

FUNDING INFORMATION

Martin A. Wilkes was funded by the UKRI Landscape Decisions Pro-

gramme via the University of Leicester (agreement RP13G0401).

Mansi Mungee and Lee E. Brown were funded by the Natural Envi-

ronment Research Council (NERC) Drivers and Repercussions of UK

Insect Decline (DRUID) project (NE/V006916/1, NE/V006878/1).

Vicky A. Bell was funded by NERC under the research program

NE/W005050/1 AgZero+ � Towards Sustainable, Climate-Neutral

Farming Systems.

CONFLICT OF INTEREST STATEMENT

No conflicts of interest to disclose.

DATA AVAILABILITY STATEMENT

Catchment physiography and geology data may be requested from

the UK Centre for Ecology and Hydrology. Channel resectioning index

(M. Naura) and modelled monthly water quality data (V. Bell) may be

made available by the respective data owners. Precipitation data,

abstraction pressure data, invertebrate records, and other spatial data

are publicly available from the sources cited in the main text.

REFERENCES

Bell, V. A., Naden, P. S., Tipping, E., Davies, H. N., Carnell, E.,

Davies, J. A. C., Dore, A. J., Dragosits, U., Lapworth, D. J.,

Muhammed, S. E., Quinton, J. N., Stuart, M., Tomlinson, S., Wang, L.,

Whitmore, A. P., & Wu, L. (2021). Long term simulations of macronu-

trients (C, N and P) in UK freshwaters. Science of the Total Environment,

776, 145813. https://doi.org/10.1016/J.SCITOTENV.2021.145813

Brooks, M. E., Kristensen, K., Van Benthem, K. J., Magnusson, A.,

Berg, C. W., Nielsen, A., Skaug, H. J., Mächler, M., & Bolker, B. M.

(2017). glmmTMB balances speed and flexibility among packages for

zero-inflated generalized linear mixed modeling. The R Journal, 9(2),

378–400.
Castella, E., Bickerton, M., Armitage, P. D., & Petts, G. E. (1995). The

effects of water abstractions on invertebrate communities in

U.K. streams. Hydrobiologia, 308(3), 167–182. https://doi.org/10.

1007/BF00006869/METRICS

Chessman, B. C. (2021). What's wrong with the Australian River assess-

ment system (AUSRIVAS)? Marine and Freshwater Research, 72(8),

1110–1117. https://doi.org/10.1071/MF20361

Christierson, B. V., Vidal, J. P., & Wade, S. D. (2012). Using UKCP09 proba-

bilistic climate information for UK water resource planning. Journal of

Hydrology, 424–425, 48–67. https://doi.org/10.1016/J.JHYDROL.

2011.12.020

Clarke, R., Wright, J., & Furse, M. (2003). RIVPACS models for predicting

the expected macroinvertebrate fauna and assessing the ecological

quality of rivers. Ecological Modelling, 160(3), 219–233. https://doi.
org/10.1016/S0304-3800(02)00255-7

Clarke, R. T., & Davy-Bowker, J. (2018). GIS Re-calibration of the

hydromorphology-independent RIVPACS predictive model (M37):

New model M44 a report to the Scottish environment protection

Agency final 24July2018. www.fba.org.uk

Collet, L., Beevers, L., & Prudhomme, C. (2017). Assessing the impact of cli-

mate change and extreme value uncertainty to extreme flows across

Great Britain. Water, 9(2), 103. https://doi.org/10.3390/W9020103

Defra. (2023). Plan for water: Our integrated plan for delivering clean and

plentiful water. https://www.gov.uk/government/publications/plan-

for-water-our-integrated-plan-for-delivering-clean-and-plentiful-water/

plan-for-water-our-integrated-plan-for-delivering-clean-and-plentiful-

water

Elosegi, A., Feld, C. K., Mutz, M., & Von Schiller, D. (2018). Multiple

stressors and hydromorphological degradation. In S. Sabater,

A. Elosegi, & R. Ludwig (Eds.), Multiple Stressors in River Ecosystems:

Status, Impacts and Prospects for the Future (pp. 65–79). Elsevier.

https://doi.org/10.1016/B978-0-12-811713-2.00004-2

England, J., Angelopoulos, N., Cooksley, S., Dodd, J., Gill, A., Gilvear, D.,

Johnson, M., Naura, M., O'hare, M., Tree, A., Wheeldon, J., &

Wilkes, M. A. (2021). Best practices for monitoring and assessing the

ecological response to river restoration. Water, 13(23), 3352. https://

doi.org/10.3390/W13233352

Environment Agency. (2023a). Abstraction licensing strategies (CAMS pro-

cess). https://www.gov.uk/government/collections/water-abstraction-

licensing-strategies-cams-process

Environment Agency. (2023b). Ecology & Fish Data Explorer. https://

environment.data.gov.uk/ecology/explorer/

Environment Agency. (2023c). River habitat survey - survey details and

summary results. https://www.data.gov.uk/dataset/4cb467c9-346e-

44ac-85c6-6cd579111e2c/river-habitat-survey-survey-details-and-

summary-results

Environment Agency. (2023d). Water quality data archive. https://

environment.data.gov.uk/water-quality/view/landing

Environment Agency. (2023e). WFD River basin districts cycle 2. https://

www.data.gov.uk/dataset/368ae5fb-65a1-4f19-98ff-a06a1b86b3fe/

wfd-river-basin-districts-cycle-2

Environment Agency. (2023f). WFD River waterbody catchments cycle 2.

https://www.data.gov.uk/dataset/298258ee-c4a0-4505-a3b5-0e65

85ecfdb2/wfd-river-waterbody-catchments-cycle-2

Feio, M. J., Viana-Ferreira, C., & Costa, C. (2014). Combining multiple

machine learning algorithms to predict taxa under reference conditions

12 WILKES ET AL.

 15351467, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rra.4282 by U

niversity O
f L

eeds T
he B

rotherton L
ibrary, W

iley O
nline L

ibrary on [17/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1016/J.SCITOTENV.2021.145813
https://doi.org/10.1007/BF00006869/METRICS
https://doi.org/10.1007/BF00006869/METRICS
https://doi.org/10.1071/MF20361
https://doi.org/10.1016/J.JHYDROL.2011.12.020
https://doi.org/10.1016/J.JHYDROL.2011.12.020
https://doi.org/10.1016/S0304-3800(02)00255-7
https://doi.org/10.1016/S0304-3800(02)00255-7
http://www.fba.org.uk
https://doi.org/10.3390/W9020103
https://www.gov.uk/government/publications/plan-for-water-our-integrated-plan-for-delivering-clean-and-plentiful-water/plan-for-water-our-integrated-plan-for-delivering-clean-and-plentiful-water
https://www.gov.uk/government/publications/plan-for-water-our-integrated-plan-for-delivering-clean-and-plentiful-water/plan-for-water-our-integrated-plan-for-delivering-clean-and-plentiful-water
https://www.gov.uk/government/publications/plan-for-water-our-integrated-plan-for-delivering-clean-and-plentiful-water/plan-for-water-our-integrated-plan-for-delivering-clean-and-plentiful-water
https://www.gov.uk/government/publications/plan-for-water-our-integrated-plan-for-delivering-clean-and-plentiful-water/plan-for-water-our-integrated-plan-for-delivering-clean-and-plentiful-water
https://doi.org/10.1016/B978-0-12-811713-2.00004-2
https://doi.org/10.3390/W13233352
https://doi.org/10.3390/W13233352
https://www.gov.uk/government/collections/water-abstraction-licensing-strategies-cams-process
https://www.gov.uk/government/collections/water-abstraction-licensing-strategies-cams-process
https://environment.data.gov.uk/ecology/explorer/
https://environment.data.gov.uk/ecology/explorer/
https://www.data.gov.uk/dataset/4cb467c9-346e-44ac-85c6-6cd579111e2c/river-habitat-survey-survey-details-and-summary-results
https://www.data.gov.uk/dataset/4cb467c9-346e-44ac-85c6-6cd579111e2c/river-habitat-survey-survey-details-and-summary-results
https://www.data.gov.uk/dataset/4cb467c9-346e-44ac-85c6-6cd579111e2c/river-habitat-survey-survey-details-and-summary-results
https://environment.data.gov.uk/water-quality/view/landing
https://environment.data.gov.uk/water-quality/view/landing
https://www.data.gov.uk/dataset/368ae5fb-65a1-4f19-98ff-a06a1b86b3fe/wfd-river-basin-districts-cycle-2
https://www.data.gov.uk/dataset/368ae5fb-65a1-4f19-98ff-a06a1b86b3fe/wfd-river-basin-districts-cycle-2
https://www.data.gov.uk/dataset/368ae5fb-65a1-4f19-98ff-a06a1b86b3fe/wfd-river-basin-districts-cycle-2
https://www.data.gov.uk/dataset/298258ee-c4a0-4505-a3b5-0e6585ecfdb2/wfd-river-waterbody-catchments-cycle-2
https://www.data.gov.uk/dataset/298258ee-c4a0-4505-a3b5-0e6585ecfdb2/wfd-river-waterbody-catchments-cycle-2


for streams BIOASSESSMENT. River Research and Applications, 30(9),

1157–1165. https://doi.org/10.1002/RRA.2707
Haase, P., Bowler, D. E., Baker, N. J., Bonada, N., Domisch, S., Garcia

Marquez, J. R., Heino, J., Hering, D., Jähnig, S. C., Schmidt-Kloiber, A.,

Stubbington, R., Altermatt, F., Álvarez-Cabria, M., Amatulli, G.,
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