
This is a repository copy of Controller Synthesis for Autonomous Systems with Deep-
Learning Perception Components.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/211131/

Version: Published Version

Article:

Calinescu, Radu orcid.org/0000-0002-2678-9260, Imrie, Calum Corrie, Mangal, Ravi et al.
(4 more authors) (2024) Controller Synthesis for Autonomous Systems with Deep-Learning
Perception Components. IEEE Transactions on Software Engineering. pp. 1374-1395.
ISSN 0098-5589

https://doi.org/10.1109/TSE.2024.3385378

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long
as you credit the authors, but you can’t change the article in any way or use it commercially. More
information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

1374 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 6, JUNE 2024

Controller Synthesis for Autonomous Systems With

Deep-Learning Perception Components
Radu Calinescu , Senior Member, IEEE, Calum Imrie , Ravi Mangal , Genaína Nunes Rodrigues ,

Corina Păsăreanu , Misael Alpizar Santana , and Gricel Vázquez

Abstract—We present DeepDECS, a new method for the
synthesis of correct-by-construction software controllers for au-
tonomous systems that use deep neural network (DNN) classifiers
for the perception step of their decision-making processes. Despite
major advances in deep learning in recent years, providing safety
guarantees for these systems remains very challenging. Our con-
troller synthesis method addresses this challenge by integrating
DNN verification with the synthesis of verified Markov models.
The synthesised models correspond to discrete-event software
controllers guaranteed to satisfy the safety, dependability and
performance requirements of the autonomous system, and to be
Pareto optimal with respect to a set of optimisation objectives. We
evaluate the method in simulation by using it to synthesise con-
trollers for mobile-robot collision limitation, and for maintaining
driver attentiveness in shared-control autonomous driving.

Index Terms—Discrete-event controller synthesis, Markov
model, deep neural network, uncertainty quantification, neuro-
symbolic AI.

I. INTRODUCTION

IN a growing range of application domains, software-

controlled systems use deep neural network (DNN) classi-

fiers to perceive and respond to changes in their environment

autonomously. In an example of such an autonomous system

(AS) from healthcare, DNN classification and localisation of

blood vessels has been used to develop a robotic device for

introducing needles into deformable patient tissues to draw

blood or deliver medication autonomously [19]. In autonomous

driving, DNN classifiers are widely used for traffic-sign detec-

tion and recognition [82], for object sensing and classification

[38], and for other perception tasks. In finance, the decision-

making of autonomous trading agents relies on DNN classifiers

that perceive or predict market trends [71].

Manuscript received 27 May 2023; revised 12 March 2024; accepted
26 March 2024. Date of publication 10 April 2024; date of current version
14 June 2024. This work was supported by the EPSRC under project
EP/V026747/1 ‘UKRI Trustworthy Autonomous Systems Node in Resilience’,
the UKRI Global Research and Innovation Programme, and the Assuring
Autonomy International Programme. The work or Radu Calinescu was also
supported by the Institute for Software Engineering and Software Technology
“Jose María Troya Linero” at the University of Málaga. Recommended for
acceptance by S. Nejati. (Corresponding author: Radu Calinescu.)

Radu Calinescu, Calum Imrie, Misael Alpizar Santana, and Gricel Vázquez
are with the Department of Computer Science, University of York, YO10 5GH
York, U.K. (e-mail: radu.calinescu@york.ac.uk).

Ravi Mangal and Corina Păsăreanu are with Carnegie Mellon University,
Silicon Valley, Moffett Field, CA 94035 USA.

Genaína Nunes Rodrigues is with the Department of Computer Science,
University of Brasília, Brasília 70910-900, Brazil (e-mail: genaina@unb.br).

Digital Object Identifier 10.1109/TSE.2024.3385378

This integration of DNN perception into the AS control loop

poses major assurance challenges [3], [36]. In particular, the

long-established methods for formal software verification [27]

are not applicable to DNNs, and thus cannot be used to provide

safety and performance guarantees for AS comprising both tra-

ditional software and deep-learning components. Furthermore,

verification methods developed specifically for DNNs focus on

verifying robustness to changes in DNN inputs [45], [56] or

input clusters [37]. As such, DNN verification methods cannot

be used to establish system-level properties for the software

controllers of DNN-perception AS.

Our paper presents DeepDECS,1 a method for the synthesis

of discrete-event controllers (i.e., software components that

control the response of a system to events in its environment)

that addresses this significant limitation. As shown in Fig. 1,

DeepDECS generates discrete-event controllers aware of the

uncertainty induced by the DNN perception component of an

AS in three stages.

First, in a DNN uncertainty quantification stage (shown at

the top of Fig. 1), n DNN verification techniques (taken from

the existing repertoire of such techniques—see Section III-E)

are used to analyse the pre-trained DNN perception component

over a test dataset representative for the operational design

domain (ODD) of the AS. The verification results provide

separate quantifications of the DNN prediction uncertainty for

the inputs verified by each of the 2n combinations of verifica-

tion techniques. As shown by our theoretical and experimental

results, the DNN predictions have higher accuracy for inputs

verified by more techniques, enabling the controller to act con-

fidently after such trustworthy predictions, and conservatively

after predictions associated with inputs verified by fewer or

no techniques. As an analogy, consider medical diagnosis by a

doctor, and the questions “Are the patient’s symptoms familiar

to the doctor? (true/false)” and “Is the doctor well rested?

(true/false)?” Knowing the likelihood of a correct diagnosis for

all combinations of answers to these questions, e.g., based on

historical data, allows the doctor to decide when to trust his or

her diagnosis, and when to ask a colleague for a second opinion

and/or to request, for instance, a blood test before deciding a

treatment for the patient.

Next, a Model augmentation stage (depicted in the middle

of Fig. 1) uses the uncertainty quantification results—and a

parametric discrete-time Markov chain (pDTMC) that models

1Deep-learning aware Discrete-Event Controller Synthesis

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

CALINESCU et al.: CONTROLLER SYNTHESIS FOR AUTONOMOUS SYSTEMS WITH DEEP-LEARNING PERCEPTION COMPONENTS 1375

Fig. 1. DeepDECS generation of discrete-event controllers aware of the
uncertainty introduced by the DNN perception component of an autonomous
system.

the AS behaviour assuming perfect perception—to assemble

a pDTMC system model that takes the DNN-induced uncer-

tainty into account. Finally, a Controller synthesis stage (shown

at the bottom of Fig. 1) uses this uncertainty-aware pDTMC

model to synthesise a set of discrete-event controllers guaran-

teed to satisfy the AS requirements (i.e., constraints and opti-

misation objectives) encoded in probabilistic computation tree

logic (PCTL).

To the best of our knowledge, the hybrid verification ap-

proach underpinning the DeepDECS neuro-symbolic controller

synthesis process is novel. As discussed in detail in our related

work section, while other approaches that employ deep-learning

classifiers for the discrete-event control of AS have been pro-

posed, these approaches focus on the development of end-to-

end DNN controllers for AS (e.g. [48], [65]), on quantifying

the uncertainty of DNNs to support the probabilistic safety

verification of autonomous systems (e.g., [5], [74]), and on

verifying the safety of AS with DNN-based components and

already implemented controllers (e.g., [22], [44], [46], [47],

[49], [57], [72], [77]).

The main contributions of our paper are:

1) A theoretical foundation that integrates DNN uncer-

tainty quantification, stochastic modelling and probabilis-

tic model checking, to enable the synthesis of correct-by-

construction neuro-symbolic controllers for autonomous

systems with deep-learning perception components.

2) An open-source software tool that automates the augmen-

tation of perfect-perception autonomous system models

with constructs that capture the aleatory uncertainty intro-

duced by the use of deep-learning perception components

within such systems. The uncertainty that DeepDECS

deals with is aleatory (i.e., it cannot be reduced) because

it comes from an already trained DNN that does not learn

at runtime. This differs from epistemic uncertainty, which

is uncertainty due to insufficient knowledge, and therefore

reducible by acquiring additional knowledge [26].

3) An extensive evaluation that shows the applicability of

our method to the synthesis of discrete-event controllers

for mobile-robot collision limitation, and for maintaining

driver attentiveness in shared-control vehicles equipped

with Level 3 (i.e., conditional automation) automated driv-

ing systems [70].

We structured the remainder of the paper as follows.

Section II introduces a running example that we use to il-

lustrate the application of DeepDECS. Section III provides

a brief introduction to the formal modelling and verification

paradigms integrated by DeepDECS. Sections IV and V present

the DeepDECS theoretical foundation, and its evaluation for

two autonomous systems from different application domains,

respectively. We compare DeepDECS to related work, and dis-

cuss its merits and limitations in Section VI. Finally, Sect-

ion VII provides a brief summary and discusses our plans for

future work.

II. RUNNING EXAMPLE

To illustrate the DeepDECS theoretical foundation and its ap-

plication, we will use a running example inspired by recent re-

search on DNN-based collision avoidance for autonomous air-

craft [54], [55], marine vehicles [85] and robots [28]. This run-

ning example involves the development of a collision-limitation

controller for a mobile robot travelling between locations A

and B, e.g., for infrastructure inspection, or to carry goods in

a warehouse (Fig. 2). Within this environment, the robot may

encounter and potentially collide with another moving agent.

We assume that collisions are not catastrophic, but should be

limited to reduce robot damage and delays. As such, the robot

uses DNN perception at each waypoint, to assess if it is on a

collision course. Based on the DNN output, its controller should

decide if the robot will proceed to the next waypoint or needs to

wait for a while at its current waypoint such that the following

system-level requirements are achieved:

• The robot journey is completed without any collision with

a probability of at least 0.9 (a constraint);

• An optimal trade-off is achieved between maximising the

probability of completing the journey without collisions

and minimising the duration of the journey (two conflict-

ing optimisation objectives).

III. PRELIMINARIES

A. Discrete-Event Controllers

Many computer and cyber-physical systems are used in ap-

plications in which they need to respond to events that occur

at discrete points in time. Examples of such events include the

arrival of a user request or reaching a predefined workload level

for a web server, and encountering an obstacle or arriving at a

waypoint for a mobile robot. More often than not, the systems

can react to these events by selecting one of several possible

1376 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 6, JUNE 2024

Fig. 2. Collision limitation for a mobile robot tasked with traversing a known environment through the use of waypoints. A mobile robot (darker blue)
travelling between locations A and B may collide with another mobile agent (red) when moving from its current waypoint I to the next. A two-class DNN
predicts whether the robot is on collision course based on the relative horizontal distance x and vertical distance y between the robot and the collider, and

the speed s, angle θ and angular velocity θ̇ of the collider.

responses. For instance, a web server may choose to process a

user request with high or low priority, and the mobile robot may

choose between several alternative routes around an obstacle.

When this is the case, the selection of a suitable response

is typically made by a system component termed a discrete-

event controller.

Often implemented as software components, discrete-event

controllers guide the way in which computer and cyber-physical

systems respond to events, so that these systems meet their

functional and non-functional requirements. Given their key

role in many important systems, the formalisation, analysis and

synthesis of these controllers—typically using state-transition

models such as automata [76], Petri Nets [67] or Markov

models [6], [35]—have received significant attention from the

research community.

The synthesis of discrete-event controllers presented in this

paper uses parametric discrete-event Markov chains. In this

modelling paradigm, each combination of values for the pa-

rameters of a Markov chain corresponds to a different con-

troller variant, and the controller synthesis problem involves

determining the parameter value combinations that satisfy a

set of system-level requirements. As such, we use the term

controller parameters to refer to these parameters, which rep-

resent transition probabilities for the Markov chain, as well as

the probabilities with which the controller selects between the

possible system responses to events.

Before providing the required background on discrete-event

Markov chains in the next section, we note that the discrete-

event control that is the focus of our work differs fundamentally

from continuous control techniques such as PID (proportional-

integral-derivative) control [52], which involves the continuous

adjustment of a control variable based on the error between

a measured system parameter (e.g., web server workload, or

room temperature) and its desired value, so that this value is

maintained by the system.

B. Discrete-Event Markov Chains

DeepDECS uses discrete-event Markov chains (DTMCs), an

established modelling paradigm for discrete-event controllers

(e.g. [2], [29], [34], [61]), to capture the uncertainty affecting an

autonomous system and its environment. DTMCs are finite state

transition systems used to model the stochastic behaviour and to

analyse the reliability, performance and other key properties of

a wide range of real-world systems. DTMC states correspond to

system configurations that are relevant for the properties under

analysis, and are labelled with atomic propositions that hold

in those states. State transitions model all possible transitions

between states, and are annotated with probabilities. Finally,

to allow the analysis of a broader set of properties, DTMC

states and transitions can be annotated with nonnegative values

termed rewards. These values are interpreted as “costs” (e.g.,

energy used by a robot) or “gains” (e.g. requests processed by a

web server).

Definition 1: A reward-augmented discrete-time Markov

chain over a set of atomic propositions AP is a tuple

M= (S, s0, P, L,R), (1)

where S �= ∅ is a finite set of states; s0 ∈ S is the initial state; P :
S × S → [0, 1] is a transition probability function such that, for

any states s, s′ ∈ S, P (s, s′) gives the probability of transition

from state s to state s′ and
∑

s′∈S P (s, s′) = 1; L : S → 2AP

is a labelling function that maps every state s ∈ S to the atomic

propositions from AP that hold in that state; and R is a set of

reward structures, i.e., function pairs (ρ, ι) that associate non-

negative values with the DTMC states (ρ) and transitions (ι):

ρ : S → R≥0, ι : S × S → R≥0. (2)

We note that the use of a set of reward structures R in

(1) supports the analysis of multiple properties of the system

modelled by the DTMC (e.g., resource use, time and risk).

Furthermore, the association of rewards with both states and

transitions enables the specification of different values for these

properties both when in a state and when transitioning between

states; as an example, a mobile robot may use energy e1 while

in a state s1, energy e12 to transition to another state s2, and

then energy e2 while in the new state s2.

DeepDECS models the possible variants (i.e., the design

space) of an AS controller as a reward-augmented parametric

discrete-time Markov chain (pDTMC) [23].

Definition 2: A parametric discrete-time Markov chain is a

DTMC (1) comprising transition probabilities and/or reward

function values specified as rational functions over a set of con-

tinuous variables {x, y, . . .}, i.e., functions that can be written

CALINESCU et al.: CONTROLLER SYNTHESIS FOR AUTONOMOUS SYSTEMS WITH DEEP-LEARNING PERCEPTION COMPONENTS 1377

as fractions whose numerators and denominators are polyno-

mial expressions, e.g., (1− x)/y.

C. DTMC Modelling Language

We specify the discrete-time Markov models used by Deep-

DECS in the high-level modelling language of the PRISM

model checker [62]. In this language, a system is modelled by

the parallel composition of a set of modules. The state of a

module is given by a set of finite-range local variables, and its

state transitions are specified by commands that change these

variables and have the generic form:

[action] guard → e1 :update1 + e2 :update2 + . . .

+ em :updatem; (3)

where guard is a boolean expression over the variables of all

modules, and ei, i ∈ [m], is an arithmetic expression that can

only take values in the interval [0, 1] and is defined over the

same variables such that
∑m

i=1 ei = 1. If guard evaluates to

true, the value of ei, i ∈ [m], gives the probability with which

the updatei change of the module variables occurs. When

action is present, all modules comprising commands with this

action must synchronise by performing one of these commands

simultaneously.

D. Probabilistic Computation Tree Logic

DeepDECS uses probabilistic computation tree logic

(PCTL) [8], [41] extended with rewards [1] to formalise AS

requirements. Reward-augmented PCTL supports the spec-

ification of constraints such as ‘the robot should not in-

cur a collision until done with its mission with probabil-

ity at least 0.9’ (P[¬collision U done]≥ 0.9) and optimisa-

tion objectives such as ‘minimise the expected mission time’

(minimise Rtime[F done]).
Definition 3: State PCTL formulae Φ and path PCTL for-

mulae Ψ over an atomic proposition set AP , and PCTL reward

formulae ΦR over a rwd reward structure (2) are defined by

the grammar:

Φ ::= true | α | Φ ∧ Φ | ¬Φ | P[Ψ]∼ p
Ψ ::=XΦ | Φ U Φ | Φ U≤k Φ

ΦR ::=Rrwd[C≤k]∼ r | Rrwd[F Φ]∼ r
(4)

where α ∈AP is an atomic proposition, ∼∈ {≥, >,<,≤} is a

relational operator, p ∈ [0, 1] is a probability bound, r ∈ R
+
0 is

a reward bound, and k ∈ N>0 is a timestep bound.

The PCTL semantics [1], [8], [41] is defined using a satisfac-

tion relation |= over the states of a DTMC (1). Given a state s of

this DTMC M, s |=Φ means ‘Φ holds in state s’, and we have:

always s |= true; s |= α iff α ∈ L(s); s |= ¬Φ iff ¬(s |=Φ);
and s |=Φ1 ∧ Φ2 iff s |=Φ1 and s |=Φ2. The time-bounded

until formula Φ1 U
≤k Φ2 holds for a path (i.e., sequence of

DTMC states s0s1s2 . . . such that P (si, si+1)> 0 for all i > 0)

iff Φ1 holds in the first i < k path states and Φ2 holds in the

(i+ 1)-th path state; and the unbounded until formula Φ1 UΦ2

removes the bound k from the time-bounded until formula.

The next formula XΦ holds if Φ is satisfied in the next state.

The semantics of the probability P and reward R operators

are defined as follows: P[Ψ]∼ p specifies that the probability

that paths starting at state s satisfy a path property Ψ is ∼ p;

Rrwd[C≤k]∼ r holds if the expected cumulated reward up to

time-step k is ∼ r; and Rrwd[FΦ]∼ r holds if the expected

reward cumulated before reaching a state satisfying Φ is ∼ r.

Removing ‘∼p’ (or ‘∼r’) from (4) specifies that the calcu-

lation of the probability (or reward) is required. We use the

shorthand notation pmc(Φ,M) and pmc(ΦR,M) for these

quantities computed (using the established DTMC analysis al-

gorithms implemented by model checking tools such as PRISM

[62] and Storm [25]) for the initial state s0 of M.

E. Verification of DNN Classifiers

A K-class DNN classifier f is a function that maps a d-

dimensional input to a class from the set [K] = {1, 2, . . . ,K}:

f : Rd → [K]. (5)

DNN classifiers are learnt from data, and are not guaranteed

to always classify their input correctly. DNN verification tech-

niques can help assess the quality of a classifier for a given

input. Each DNN verification technique used by DeepDECS

(see Fig. 1) has the general form

verif : (Rd → [K])× R
d → B, (6)

where B= {true, false}, such that, for a classifier f ∈ R
d →

[K] and an input x ∈ R
d, verif (f, x) = true if the technique

deems the DNN f likely to classify the input x correctly, and

verif (f, x) = false otherwise. Two existing DNN verification

techniques that can be used with DeepDECS are described

below. However, DeepDECS can use any DNN verifier pro-

vided that it is fast enough to be used at runtime. The two

verifiers described here were chosen because they verify two

qualitatively different properties of DNNs and represent the

state-of-the-art for these respective properties. For a list of

other verifiers that could be used in conjunction with Deep-

DECS, the International Verification of Neural Networks com-

petition [9], [68] conducted every year since 2020 serves as a

useful resource.

1) Minimum Confidence Threshold: Given an input x ∈ R
d,

a K-class DNN classifier (5) operates by first computing a

discrete probability distribution δ(x) = (p1, p2, . . . , pK) over

the K classes, and then outputting the class argmaxKi=1 >
pi as its prediction. As δ(x) is typically a poor estimate of

the true probability distribution of x, the temperature scaling

mechanism introduced by Guo et al. [40] (and implemented by

Kueppers et al. [60]) can be used to calibrate the DNN, allowing

the definition of the following DNN verification method:

verif 1(f, x) =

{

true, if maxKi=1 pi ≥ τ
false, otherwise

(7)

where τ is a threshold that we set to 0.8 in our experiments

described later in the paper. The intuition behind this verifica-

tion method is that if a calibrated DNN is very confident in its

prediction, then the prediction is likely to be correct.

1378 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 6, JUNE 2024

2) Local Robustness Certification: A DNN classifier (5) is

ǫ-locally robust at an input x if perturbations within a small

distance ǫ > 0 from x (measured using the ℓ2 metric) do not lead

to a change in the classifier prediction. A second verification

technique can be defined using the GloRo Net framework of

Leino et al. [63]. Given a DNN, this framework augments

it with a local-robustness output by computing the Lipschitz

constant of the function denoted by the original DNN and using

it to verify local robustness. Adding this GloRo Net layer to

the perception DNN of an AS, we can define the following

verification method for the augmented DNN:

verif 2(f, x) =

⎧

⎨

⎩

true, if ∀x′ ∈ R
d. ||x− x′||2 ≤ ǫ

=⇒ f(x) = f(x′)
false, otherwise

(8)

We use ǫ= 0.05 for the experiments presented later in the paper.

The intuition behind this verification method is that if a DNN

is verified as locally robust at an input, i.e., a small change

in the input does not change the classification output, then the

prediction is likely to be correct.

IV. THEORETICAL FOUNDATION

We model the design space of an AS controller under devel-

opment as a pDTMC. The uncertainty introduced by the deep-

learning perception and the one inherent to the environment are

modelled by the probabilities of transition between the states of

this pDTMC. The controller synthesis problem involves finding

combinations of parameter values for which the pDTMC sat-

isfies strict safety, dependability and performance constraints,

and is Pareto-optimal with respect to a set of optimisation

objectives. These constraints and optimisation objectives are

formalised as PCTL formulae.

As shown in Fig. 1, DeepDECS derives the pDTMC under-

pinning its controller synthesis automatically from:

1) DNN verification results that quantify the uncertainty

introduced by the DNN perception;

2) an “ideal” pDTMC that models the AS behaviour assum-

ing perfect perception.

Given this pDTMC, Pareto-optimal DeepDECS controllers

are then synthesised by applying a combination of probabilistic

model checking and search techniques to this pDTMC.

As illustrated in Fig. 3, the cyber-physical components of an

autonomous system managed by a DeepDECS controller (e.g.,

the software and hardware components involved in stopping the

robot from our running example in Section II at a waypoint)

monitor their environment (e.g., the surroundings of the robot

from our running example and any nearby moving agents)

through sensors (1) and perform actions that affect it through

effectors (2). A DNN perception component uses a combination

(3) of preprocessed sensor data and data about these managed

components to classify the state of the environment (4). The

n verification techniques used for the DeepDECS controller

synthesis are also applied to the classification (4) and the DNN

input (3) that produced it. Using the online DNN verification

results (5) alongside the classification (4) and additional state

Fig. 3. DeepDECS controller deployment.

information (6) obtained directly from the managed cyber-

physical components, the DeepDECS controller updates (7) the

controllable parameters of these components in line with the

system requirements. Thus, a DeepDECS controller operates

by reacting to changes in the system, in the DNN outputs and,

unique to DeepDECS, in the results of the online verification

of the DNN classification.

We detail the DeepDECS stages in the rest of this section.

A. Stage 1: DNN Uncertainty Quantification

DNN perception introduces aleatory uncertainty since DNNs

cannot classify all inputs accurately. To quantify this uncer-

tainty, DeepDECS uses n≥ 0 DNN verification techniques

verif 1, verif 2,..., verif n, and a test dataset X ⊂ R
d that repre-

sents a statistically representative sample of the inputs that the

AS will encounter in operation. We note that X is one and the

same with the testing dataset used in the established supervised

machine learning practice [21], [53], [80]. The n verification

techniques are used to partition X into 2n subsets comprising

inputs x with the same verification results. We note that using

only a few verification techniques (e.g., n≤ 3) yields a small

number of such subsets. Formally, given a DNN f , DeepDECS

constructs the subset

Xv = {x ∈X | verif (f, x) = v} (9)

for every v = (v1, v2, . . . , vn) ∈ B
n, where verif (f, x) =

(verif 1(f, x), verif 2(f, x), . . . , verif n(f, x)). We use each

subset (9) to obtain a K ×K confusion matrix Cv such that,

for any k, k′ ∈ [K], the element in row k and column k′ of Cv
represents the number of class-k inputs from Xv that the DNN

classifies as belonging to class k′:

Cv[k, k
′] = # {x ∈Xv | f

∗(x) = k ∧ f(x) = k′} , (10)

where f∗(x) represents the true class of x and, for any set A,

#A denotes its cardinality.

AsX is representative of the DNN inputs that the AS encoun-

ters in operation, we henceforth assume that the probability that

CALINESCU et al.: CONTROLLER SYNTHESIS FOR AUTONOMOUS SYSTEMS WITH DEEP-LEARNING PERCEPTION COMPONENTS 1379

a class-k input x is classified as belonging to class k′ when it

satisfies verif (f, x) = v is given by:

pkk′v = Pr (f(x) = k′ ∧ verif (f, x) = v | f∗(x) = k)

=
Cv[k, k

′]
∑

v′∈Bn

∑

k′′∈[K] Cv′ [k, k′′]

=
Cv[k, k

′]

#{x ∈X | f∗(x) = k}
. (11)

Formally, the law of large numbers [39, Ch. 8] implies that this

result holds as #X →∞. We note that
∑

(k′,v)′∈[K]×Bn

pkk′v = 1. (12)

We note that DeepDECS works seamlessly in the degenerate

case when n= 0, i.e., when no DNN verification technique

is used. In this case, we have v = () and X() =X in (9), C()
from (10) is simply the standard confusion matrix for the DNN,

and the DeepDECS controller deployment from Fig. 3 uses no

online DNN verification. This DeepDECS variant is useful (and

thus included in the paper) because (i) it incurs no runtime

DNN verification overheads, (ii) it requires no additional system

coding/modifications, and (iii) it can be used when the DNN

inputs cannot be accessed for the deployed system (e.g., due to

licensing constraints).

Example 1: Consider the collision-prediction DNN fcollision
used by the mobile robot from our running example in Sec-

tion II, where, for any DNN input x, fcollision(x) = 1 pre-

dicts that the robot is on collision course, and fcollision(x) =
2 predicts that the robot is not on collision course. Sup-

pose that a representative 49000-sample2 test dataset X and

the DNN verification technique verif 1 from (7) are used

to quantify the uncertainty of fcollision. Further assume that

Xtrue = {x ∈X | verif 1(fcollision, x) = true} and Xfalse = {x ∈
X | verif 1(fcollision, x) = false} contain 28843 and 20157 of the

data samples from X , respectively (i.e., 28843 of the 49000
data samples from X are “verified”). In this DeepDECS stage,

separate confusion matrices Ctrue and Cfalse are obtained for the

test data samples from Xtrue and Xfalse, respectively. Assuming

that the two matrices are

Ctrue =

[

2302 180
1266 25095

]

and Cfalse =

[

2786 353
8447 8571

]

,

the first DeepDECS stage terminates by using (11) to calcu-

late the probabilities pkk′v that a class-k input x that satisfies

verif 1(fcollision, x) = v is classified as belonging to class k′:

p11true =
2302

2482
= .93, p12true =

242

2482
= .07,

p21true =
1266

26361
= .05, p22true =

25095

26361
= .95,

p11false =
2786

3139
= .89, p12false =

353

3139
= .11,

p21false =
8447

17018
= .50, p22false =

8571

17018
= .50

2All numbers used in the example are actual values from our evaluation
of DeepDECS for the mobile robot collision avoidance application (see also
Section V).

B. Stage 2: Model Augmentation

1) Controller Synthesis Problem: DeepDECS organises

each state s of the perfect-perception pDTMC model from

Fig. 1 into a tuple

s= (z, k, t, c), (13)

where z ∈ Z models the state of the system, k ∈ [K] models the

state of the environment, c ∈ C models the control parameters

of the system, and t ∈ [3] is a “turn” flag. This flag (i) parti-

tions the state set into states in which the system can change

(t= 1), states in which the environment is observed (t= 2)

and states in which it is the controller’s “turn” to act (t= 3);

and (ii) forces the pDTMC to visit these three types of states

in order:

∀s= (z, k, t, c), s′ = (z′, k′, t′, c′) ∈ S :
((t= 1 ∧ P (s, s′)> 0) =⇒ k′ = k ∧ c′ = c ∧ t′ < 3)
∧ ((t= 2 ∧ P (s, s′)> 0) =⇒ z′ = z ∧ c′ = c ∧ t′ = 3)
∧ ((t= 3 ∧ P (s, s′)> 0) =⇒ z′ = z ∧ k′ = k ∧ t′ = 1) .

(14)

We note that the use of a “turn” flag to distinguish between

different types of model states is common in the research on dis-

crete controller synthesis using probabilistic models (e.g., [20],

[81]), which we drew inspiration from for the DeepDECS state

partitioning. The outgoing transition probabilities from states

(z, k, 3, c) ∈ S are controller parameters to be determined. We

refer to them using the notation:

xzkcc′ = P ((z, k, 3, c), (z, k, 1, c′)) (15)

for all c′ ∈ C, where xzkcc′ ∈ {0, 1} for deterministic con-

trollers or xzkcc′ ∈ [0, 1] for probabilistic controllers, and
∑

c′∈C xzkcc′ = 1.

We note that a perfect-perception Markov chain model is

just a regular Markov chain model of a system with stochastic

behaviour. As such, established practices can be used to obtain

this model, e.g., through automatic generation from software

artefacts such as activity diagrams [12], [30], or by following

the tutorials and examples from the numerous case studies on

the PRISM website https://prismmodelchecker.org/. In our ex-

perience, an engineer familiar with probabilistic model check-

ing can develop one of these models within a few hours for a

small to medium-sized system.

Example 2: We developed a perfect-perception pDTMC

model for the mobile robot from our running example in the

PRISM modelling language (Fig. 4(a)). This pDTMC mod-

els the logic underpinning the operation of the robot at a

generic intermediate waypoint I from Fig. 2. The model states

are tuples

(z, k, t,wait) ∈ {0, 1, . . . , 4} × [2]× [3]× B (16)

with the semantics from (13), where k = 1 and k = 2 corre-

spond to the mobile robot being on a collision course, and not

being on a collision course, respectively.

As shown by the MobileRobot pDTMC module, when reach-

ing waypoint I the robot first uses its sensors (lidar, cameras,

etc.) to look for the “collider” (state z = 0). If the collider is

1380 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 6, JUNE 2024

dtmc

const double pcollider = 0.8;

module MobileRobot // ManagedComponents
z : [0..4] init 0; // 0:check collider, 1:collider detected,

// 2:check wait, 3:no collider, 4:done
[look] t=1 ∧ z=0 → pcollider:(z’=1) + (1-pcollider):(z’=3);
[check] t=1 ∧ z=1 → 1:(z’=2);
[retry] t=1 ∧ z=2 ∧ wait → 1:(z’=0);
[proceed] t=1 ∧ z=2 ∧ ¬wait → 1:(z’=3);
[travel] t=1 ∧ z=3 → 1:(z’=4);
[end] t=1 ∧ z=4 → 1:(z’=4);

endmodule

const double pocc = 0.25;

module Collider // Environment
k : [1..2] init 1; //1:on collision course (occ), 2:not occ

[monitor] t=2 → pocc:(k’=1) + (1-pocc):(k’=2);
endmodule

const double x1; // prob. of waiting when occ
const double x2; // prob. of waiting when not occ

module PerfectPerceptionController
wait : bool init false;

[decide] t=3 ∧ k=1 → x1:(wait’=true) + (1-x1):(wait’=false);
[decide] t=3 ∧ k=2 → x2:(wait’=true) + (1-x2):(wait’=false);

endmodule

module Turn
t : [1..3] init 1;

[check] true → 1:(t’=2);
[monitor] true → 1:(t’=3);
[decide] true → 1:(t’=1);

endmodule

rewards ”time”
[travel] true : 9.95;
[proceed] k=1 : 2.57;
[retry] true : 5;

endrewards

label ”collision” = z=3 & k=1;
label ”done” = z=4;

Fig. 4. DeepDECS pDTMC models from the robot collision limitation application.

present in the vicinity of the robot (which happens with prob-

ability pcollider, known from previous executions of the task),

the robot performs a check action (state z = 1). As defined in

the module Collider, this leads to the execution of a monitor

action to predict whether travelling to the next waypoint would

place the robot on collision course with the other agent (which

happens with probability pocc, also known from historical data)

or not. Each monitor action activates the controller, whose

behaviour is specified by the PerfectPerceptionController mod-

ule. A probabilistic controller with two parameters is used: the

controller decides that the robot should wait with probability x1

when a collision is predicted (k = 1) and with probability x2 if

no collision is predicted (k = 2). Depending on this decision,

the robot will either retry after a short wait or proceed and travel

to the next waypoint, reaching the end of the decision-making

process. Finally, when the collider is absent (with probability

CALINESCU et al.: CONTROLLER SYNTHESIS FOR AUTONOMOUS SYSTEMS WITH DEEP-LEARNING PERCEPTION COMPONENTS 1381

1− pcollider in the first line from the MobileRobot module),

the robot can travel without going through these intermediate

actions.

Given a pDTMC with the characteristics described earlier,

the controller synthesis problem for the perfect-perception AS

is to find the combinations of values for parameters (15) for

which the pDTMC satisfies n1 ≥ 0 PCTL-encoded constraints

Ci ::= propi ∼i bound i, (17)

and achieves optimal trade-offs among n2≥1 PCTL-encoded

optimisation objectives

Oj ::= minimise propn1+j | maximise propn1+j (18)

where prop1 to propn1+n2
are PCTL-encoded AS properties,

∼i∈ {<,≤,≥, >}, bound i ≥ 0, i ∈ [n1] and j ∈ [n2]. The con-

straints (17) and optimisation objectives (18) taken together rep-

resent the system-level requirements considered by DeepDECS.

Example 3: The controller synthesis problem for the perfect-

perception variant of the mobile robot from our running exam-

ple involves finding the combinations of values for the param-

eters x1 and x2 of the pDTMC from Fig. 4(a) that ensure a

collision-free journey with probability of at least 0.9:

C1 : P[¬collision U done]≥ 0.9 (19)

and an optimal trade-off between maximising this probability

and minimising the travel time:

O1 : maximise P[¬collision U done]
O2 : minimise Rtime[F done]

(20)

2) pDTMC Augmentation: The controller of an AS with

deep-learning perception cannot access the true environment

state k from (13). Instead, DeepDECS controllers need to

operate with an estimate k̂ ∈ [K] of k, and with the results

v = (v1, v2, . . . , vn) ∈ B
n of the n verification techniques (6)

applied to the DNN and its input that produced the estimate k̂.

The states ŝ of a DeepDECS DNN-perception pDTMC model,

M̂= (Ŝ, ŝ0, P̂ , L̂, R̂) (21)

are tuples that extend (13) with k̂ and v:

ŝ= (z, k, k̂, v, t, c). (22)

To provide a formal definition for the derivation of this pDTMC,

we use the notation s(ŝ) = (z, k, t, c) to refer to the element

from Z × [K]×[3]× C that corresponds to a generic ele-

ment ŝ ∈ Z × [K]2 × B
n × [3]× C. With this notation, the el-

ements of M̂ are obtained from the perfect-perception pDTMC

M= (S, s0, P, L,R) of the AS and the probabilities (11)

as follows:

Ŝ = {ŝ ∈ Z × [K]2 × B
n × [3]× C | s(ŝ) ∈ S}; (23)

ŝ0 = (z0, k0, k0, true, . . . , true, t0, c0), (24)

where (z0, k0, t0, c0) = s0; and, for any states

ŝ= (z, k, k̂, v, t, c), ŝ′ = (z′, k′, k̂′, v′, t′, c′) ∈ Ŝ,

P̂ (ŝ, ŝ′)=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

P (s(ŝ), s(ŝ′)), if t= 1 ∧ (k̂′, v′) = (k̂, v)
P (s(ŝ), s(ŝ′)) · p

k′k̂′v′ , if t= 2

x
zk̂vcc′

, if t= 3 ∧ (z′, k′, k̂′, v′, t′)

= (z, k, k̂, v, 1)
0, otherwise

(25)

where

x
zk̂vcc′

= P̂ ((z, k, k̂, v, 3, c), (z, k, k̂, v, 1, c′)) (26)

are controller parameters such that x
zk̂vcc′

∈ {0, 1} for

deterministic controllers or x
zk̂vcc′

∈ [0, 1] for probabilistic

controllers, and
∑

c′∈C x
zk̂vcc′

= 1. Finally, for any

state ŝ ∈ Ŝ,

L̂(ŝ) = L(s(ŝ)), (27)

and

R̂= {(ρ̂, ι̂) ∈ (Ŝ → R≥0)× (Ŝ × Ŝ → R≥0) |

∃(ρ, ι) ∈R :
(

∀ŝ ∈ Ŝ : ρ̂(ŝ) = ρ(s(ŝ))
)

∧
(

∀ŝ, ŝ′ ∈ Ŝ : ι̂(ŝ, ŝ′) = ι(s(ŝ), s(ŝ′))
)

}.
(28)

An alternative encoding of the controller design space using

a partially observable Markov decision process (POMDP) is

possible [17], [18]. However, we opted for the pDTMC formal-

isation because current POMDP-enabled probabilistic model

checkers [42], [69] do not support policy synthesis for com-

binations of requirements as complex as (17), (18).

Example 4: Fig. 4(b) illustrates the PRISM-encoded DNN-

perception pDTMC model obtained for the mobile robot from

our running example when a single (generic) verification

method is used in the DNN uncertainty quantification stage of

DeepDECS.

We end this section with a series of theorems that demon-

strate the correctness, and show several key properties of our

approach. First, Theorem 1 demonstrates that the pDTMC aug-

mentation method from Section IV-B2 yields – by construction

– a valid pDTMC (21) in which the controller actions are

oblivious of the true environment state k, which is unknown to

the controller. Second, Theorem 2 shows that the set CtrlDNN

of DNN-perception controllers for an autonomous system is

included in the set Ctrlperf of perfect-perception controllers

for that system (i.e., CtrlDNN ⊂ Ctrlperf). This is a relevant

property, as it provides a bound for what can be achieved

using DNN-perception controllers; in particular, if no perfect-

perception controller is adequate for the needs of an applica-

tion, there is no point in seeking a DNN-perception controller

that meets those needs, as no such controller exists. Next,

Theorem 3 demonstrates that the set of DNN-perception con-

trollers Ctrlperf contains controllers not present in the DNN-

perception controller set CtrlDNN (i.e., Ctrlperf \ CtrlDNN �=
∅). This property is relevant because it shows that one cannot

use DNN-perception controllers to match the performance of

1382 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 6, JUNE 2024

every single perfect-perception controller. Finally, Theorem 4

shows that increasing the number of DNN verification tech-

niques used by DeepDECS is never detrimental, and may yield

a better set of DNN-perception controllers. As further detailed

in the discussion provided after Theorem 4, this last property is

relevant as it confirms that using additional DNN verification

techniques may produce better controllers.

The following result shows that the DeepDECS module aug-

mentation produces a valid pDTMC in which the probabilities

of control-parameter changes are independent of the true envi-

ronment state k.

Theorem 1: The tuple (21) with the elements defined by

(23)–(28) is a valid pDTMC that satisfies:

∀ŝ= (z, k, k̂, v, t, c), ŝ′ = (z′, k′, k̂′, v′, t′, c′) ∈ Ŝ :

(c′ �= c ∧ P̂ (ŝ, ŝ′)> 0) =⇒
(

(z′, k′, k̂′, v′) = (z, k, k̂, v)

∧ t= 3 ∧ t′ = 1 ∧ ∀k′′ ∈ [K] : P̂ ((z, k′′, k̂, v, t, c),

(z, k′′, k̂, v, t′, c′)) = P̂ (ŝ, ŝ′)
)

. (29)

Proof: To demonstrate that (21) is a valid pDTMC,

we need to show that, for any state ŝ= (z, k, k̂, v, t, c) ∈ Ŝ,
∑

ŝ′∈Ŝ
P̂ (ŝ, ŝ′) = 1. We prove this and the following variant

of (14) (which is required for the subsequent proofs):

∀ŝ= (z, k, k̂, v, t, c), ŝ′ = (z′, k′, k̂′, v′, t′, c′) ∈ Ŝ :
(

(t=1 ∧ P (ŝ, ŝ′)>0)

=⇒ ((k′, k̂′, v′, c′)=(k, k̂, v, c) ∧ t′<3)
)

∧
(

(t=2 ∧ P (ŝ, ŝ′)>0)

=⇒ ((z′, c′)=(z, c) ∧ t′=3)
)

∧
(

(t=3 ∧ P (ŝ, ŝ′)>0)

=⇒ ((z′, k′, k̂′, v′)=(z, k, k̂, v) ∧ t′=1)
)

(30)

for each possible value of t ∈ {1, 2, 3}.

For t= 1, (25) implies that
∑

ŝ′∈Ŝ

P̂ (ŝ, ŝ′) =
∑

ŝ′∈Ŝ

P (s(ŝ), s(ŝ′)) = 1

because the last sum adds up all outgoing transition probabili-

ties of state s(ŝ) from the perfect-perception pDTMC M. Con-

sider now any ŝ′ = (z′, k′, k̂′, v′, t′, c′) ∈ Ŝ such that P̂ (ŝ, ŝ′)>
0. According to (25), this requires k̂′ = k̂ ∧ v′ = v when t=
1. Additionally, since P̂ (ŝ, ŝ′) = P ((z, k, 1, c), (z′, k′, t′, c′)),
(14) implies that k′ = k ∧ c′ = c ∧ t′ < 3, as required by (30).

For t= 2, we have
∑

ŝ′∈Ŝ

P̂ (ŝ, ŝ′)

=
∑

(z′,k′,k̂′,v′,t′,c′)∈Ŝ

(

P̂ (ŝ, (z′, k′, k̂′, v′, t′, c′)) · p
k′k̂′v′

)

=

∑

(z′,k′,t′,c′)∈S

(

P ((z, k, 2, c), (z′, k′, t′, c′)) ·
∑

(k̂′,v′)′∈[K]×Bn

p
k′k̂′v′

)

=
∑

(z′,k′,t′,c′)∈S

(P ((z, k, 2, c), (z′, k′, t′, c′)) · 1) = 1.

Consider again a generic ŝ′ = (z′, k′, k̂′, v′, t′, c′) ∈ Ŝ such that

P̂ (ŝ, ŝ′)> 0. Since

P̂ (ŝ, ŝ′) = P ((z, k, 2, c), (z′, k′, t′, c′)) · p
k′k̂′v′ ,

(14) implies that (z′, c′) = (z, c) ∧ t′ = 3.

Finally, for t= 3, we have
∑

ŝ′∈Ŝ
P̂ (ŝ, ŝ′)=

∑

c′∈C x
zk̂vcc′

=1 and the property (30) is explicitly stated in

(25). To show now that (29) holds, we note that, according to

definition (25), both transition probabilities from this relation

(i.e., P̂ (ŝ, ŝ′) and P̂ ((z, k′′, k̂, v, t, c), (z, k′′, k̂, v, t′, c′))) are

equal to x
zk̂vcc′

.

Proving the next results requires the following lemma.

Lemma 1: Let x and x̂ be valid instantiations of the perfect-

perception controller parameters
{

xzkcc′ ∈ [0, 1]
∣

∣ (∃k ∈ [K].(z, k, 3, c) ∈ S) ∧ c′ ∈ C
}

from (15) and of the DNN-perception controller parameters
{

x
zk̂vcc′

∈ [0, 1]
∣

∣ (∃k ∈ [K].(z, k, k̂, v, 3, c) ∈ Ŝ) ∧ c′ ∈ C
}

from (25), respectively. Also, let Mx and M̂x̂ be the instances

of the perfect-perception pDTMC M and DNN-perception

pDTMC M̂ corresponding to the controller parameters x and

x̂, respectively. With this notation, we have

pmc(Φ,M̂x̂) = pmc(Φ,Mx), (31)

and

pmc(ΦR,M̂x̂) = pmc(ΦR,Mx), (32)

for any (quantitative) PCTL state formula Φ and reward state

formula ΦR if and only if the elements of x and x̂ satisfy

xzkcc′ =
∑

k̂∈[K]

∑

v∈Bn

p
kk̂v

x
zk̂vcc′

(33)

for all (z, k, 3, c) ∈ S and c′ ∈ C.

Proof: Let PathsMx(s0) and PathsM̂x̂(ŝ0) be the set of

all Mx paths starting at s0 and the set of all M̂x̂ paths starting

at ŝ0, respectively. Equalities (31) and (32) hold iff, for any path

π = s0s1s2 . . . ∈ PathsMx(s0), set of associated paths Π̂ =
{

ŝ0ŝ1ŝ2 . . . ∈ PathsM̂x̂(ŝ0) | ∀i≥ 0 . s(ŝi) = si
}

, and i≥ 0,

the following property holds:

P (si, si+1) =
∑

ŝ0ŝ1ŝ2...∈Π̂

P̂ (ŝi, ŝi+1). (34)

This is required because, according to (27) and (28), the (i+ 1)-
th state of π and of any path π̂ ∈ Π̂ are labelled with the same

atomic propositions and assigned the same state rewards, re-

spectively; and, according to (28), the transition rewards for the

transition between their i-th state and (i+ 1)-th state are also

identical. Thus, if this equality holds, the path π and path set Π̂
are indistinguishable in the evaluation of PCTL state and state

reward formulae; and, if the equality does not hold, a labelling

function L and a PCTL state formula Φ (or state reward formula

ΦR) can be handcrafted to provide a counterexample for (31)

(or for (32)).

CALINESCU et al.: CONTROLLER SYNTHESIS FOR AUTONOMOUS SYSTEMS WITH DEEP-LEARNING PERCEPTION COMPONENTS 1383

Given the definition of P̂ from (25), property (34) holds

trivially for any state si = (z, k, t, c) ∈ S with t= 1, and also

holds for states si with t= 2 because
∑

ŝ0ŝ1ŝ2...∈Π̂

P̂ (ŝi, ŝi+1) =
∑

ŝ0ŝ1ŝ2...∈Π̂

(P (si, si+1) · pkk̂i+1vi+1
)

= P (si, si+1) ·
∑

ŝ0ŝ1ŝ2...∈Π̂

p
kk̂i+1vi+1

= P (si, si+1) · 1 = P (si, si+1),

where k̂i+1 and vi+1 represent the DNN prediction and veri-

fication result for each state ŝi+1 from the sum, respectively.

Finally, for t= 3, property (34) holds if and only if the perfect-

perception and DNN-perception controllers select each next

controller configuration c′ ∈ C with the same probability for

si and for all the states ŝi from Π̂ taken together, i.e., if and

only if (33) holds, which completes the proof.

The next two theorems show that for each controller that

satisfies constraints (17) and Pareto-optimises objectives (18)

for the DNN-perception AS there is an equivalent controller for

the perfect-perception AS, but the converse does not hold.

Theorem 2: For any AS requirements (17), (18) for which

there exists a DNN-perception controller that satisfies the con-

straints (17), there exists also a perfect-perception controller

that satisfies the same constraints and yields the same values

for the PCTL properties from the optimisation objectives (18).

Proof: We prove this result by showing that the applica-

tion of (33) to any valid instantiation of the DNN-perception

controller parameters x
zk̂vcc′

produces a valid instantiation of

the perfect-perception controller parameters xzkcc′ . First, since

x
zk̂vcc′

∈ [0, 1] for any valid (z, k̂, v, c, c′) tuple, we have

0 =
∑

k̂∈[K]

∑

v∈Bn

(p
kk̂v

· 0)≤
∑

k̂∈[K]

∑

v∈Bn

p
kk̂v

x
zk̂vcc′

≤
∑

v∈Bn

(p
kk̂v

· 1)≤ 1,

so xzkcc′ ∈ [0, 1] for any valid tuple (z, k, c, c′). Additionally,

for any valid combination of z, k and c, we have
∑

c′∈C

xzkcc′ =
∑

c′∈C

∑

k̂∈[K]

∑

v∈Bn

p
kk̂v

x
zk̂vcc′

=
∑

c′∈C

⎛

⎝x
zk̂vcc′

⎛

⎝

∑

k̂∈[K]

∑

v∈Bn

p
kk̂v

⎞

⎠

⎞

⎠=
∑

c′∈C

(

x
zk̂vcc′

· 1
)

=1,

which completes the proof.

Theorem 3: If a confusion matrix Cv0
from (10) satisfies

Cv0
[k1, k0]> 0∧Cv0

[k2, k0]> 0 for a combination of verifica-

tion results v0 ∈ B
n, two classes k1 �= k2 and a class k0, then

there is an infinite number of AS requirements (17), (18) for

which there exists a perfect-perception controller that satisfies

the constraints (17), and no DNN-perception controller exists

that satisfies the constraints and yields the same values as the

perfect-perception controller for the PCTL properties from the

optimisation objectives (18).

Proof: Consider two perfect-perception controller param-

eters xzk1cc′ and xzk2cc′ corresponding to a configuration c′

being selected by the controller when the environment state is

k1 and k2, respectively. Since Cv0
[k1, k0]> 0 ∧ Cv0

[k2, k0]> 0,

definition (11) implies that pk1k0v0
> 0 ∧ pk2k0v0

> 0, and we

consider the infinite set of (probabilistic) perfect-perception

controllers with xzk1cc′ = 1 and xzk2cc′ ∈ [0, pk2k0v0
). For any

such controller, consider the instantiation of equality (33) for

xzk1cc′ . The parameters of any equivalent DNN-perception con-

troller that are multiplied by non-zero probabilities p
kk̂v

on

the right-hand side of this instantiation must have value 1, or

otherwise the terms of the double sum from (33) will add up

to a value below 1 and the equality cannot hold. In particular,

we must have xzk0v0cc′ = 1 because this parameter is multiplied

by pk1k0v0
> 0. However, according to (33), this means that the

DNN-perception controller can only be equivalent to a perfect-

perception controller whose parameter xzk2cc′ satisfies

xzk2cc′ =
∑

k̂∈[K]

∑

v∈Bn

p
k2k̂v

x
zk̂vcc′

≥ pk2k0v0
· xzk0v0cc′

= pk2k0v0
· 1 = pk2k0v0

.

This inequality is not satisfied by any of the perfect-perception

controllers from the infinite set we considered. As such, no

equivalent DNN-perception controller exists for any of these

perfect-perception controllers.

Theorem 3 demonstrates that the decision-making capabil-

ities of infinitely many perfect-perception controllers cannot

be replicated by DNN-perception controllers (unless, excep-

tionally, applying the n DNN verification techniques resolves

the uncertainty introduced by the DNN). Finally, the following

result shows that increasing the number of DNN verification

techniques is never detrimental and may yield better Deep-

DECS controllers.

Theorem 4: For any AS requirements (17), (18) and

DNN-perception controller generated using n DNN verifica-

tion techniques verif 1, verif 2, . . . , verif n such that the con-

straints (17) are satisfied, the DeepDECS pDTMC obtained

using any verification technique verif n+1 in addition to

verif 1, verif 2, . . . , verif n can be used to generate a controller

that satisfies the constraints and yields the same values for the

PCTL properties from the optimisation objectives.

Proof: Let M̂n and M̂n+1 be the DNN-perception

pDTMCs obtained using the DNN verification techniques

verif 1, verif 2, . . . , verif n, and the DNN verification tech-

niques verif 1, verif 2, . . . , verif n+1, respectively. Consider

any instantiation x̂n of the controller parameters (25) for M̂n

so that the constraints (17) are satisfied, and let x̂n+1 be the

instantiation of the controller parameters (25) for M̂n+1 such

that the elements of this instantiation satisfy

xn+1

zk̂(v1,v2,...,vn,false)cc′
= xn+1

zk̂(v1,v2,...,vn,true)cc′

= xn

zk̂(v1,v2,...,vn)cc′
. (35)

We will show that the controller defined by x̂n+1 over M̂n+1

is equivalent to the controller defined by x̂n over M̂n (and

therefore must satisfy the constraints (17) and yield the

same values for the PCTL properties from the optimisation

objectives (18)).

1384 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 6, JUNE 2024

According to Lemma 1, the former controller is equivalent to

the perfect-perception controller whose parameters (15) satisfy:

xzkcc′ =
∑

k̂∈[K]

∑

v∈Bn+1

p
kk̂v

xn+1

zk̂vcc′
. (36)

Taking into account (35), we obtain:

xzkcc′=
∑

k̂∈[K]

∑

(v1,...,vn)∈Bn

(

p
kk̂(v1,...,vn,false)

xn+1

zk̂(v1,...,vn,false)cc′

+ p
kk̂(v1,...,vn,true)

xn+1

zk̂(v1,...,vn,true)cc′

)

=
∑

k̂∈[K]

∑

(v1,...,vn)∈Bn

[(

p
kk̂(v1,...,vn,false)

+ p
kk̂(v1,...,vn,true)

)

·xn

zk̂(v1,...,vn)cc′

]

=
∑

k̂∈[K]

∑

v∈Bn

p
kk̂v

xn

zk̂vcc′

because, according to (11),

p
kk̂(v1,...,vn,false)

+ p
kk̂(v1,...,vn,true)

=
C(v1,...,vn,false)[k, k

′] + C(v1,...,vn,true)[k, k
′]

∑

v′∈Bn+1

∑

k′′∈[K] Cv′ [k, k′′]

=
C(v1,...,vn)[k, k

′]
∑

v′∈Bn

∑

k′′∈[K] Cv′ [k, k′′]
= p

kk̂(v1,...,vn)
.

According again to Lemma 1, this result implies that the

perfect-perception controller induced by (36) is also equivalent

to the controller defined by x̂n over M̂n. Hence, using (35)

to select the parameters of the controller obtained for n+ 1
DNN verification technique yields a controller equivalent to that

obtained using only the first n verification techniques.

The result from Theorem 4 (i.e., that including any addi-

tional verification technique cannot yield worse DeepDECS

controllers) may appear counterintuitive. To understand why

this is the case, consider a poor verification technique which

consistently tells that the DNN output is wrong when the DNN

classifies its input correctly, and the other way around. If this

happened, then the uncertainty quantification from the first

DeepDECS stage would simply indicate to our stage 3 con-

troller synthesis that the DNN should be trusted more when the

result of this verification is ‘false’. This scenario is similar to

a weather forecasting service that keeps predicting dry weather

on rainy days (and the other way around): its regular users will

know to take their umbrellas with them on days predicted to be

dry, and to leave their umbrellas at home on days predicted to be

rainy. Another type of “poor” verification technique is one that

selects its true or false output completely randomly. For such

a technique, the uncertainty quantification from the first Deep-

DECS stage will show that the technique provides no useful

information, and therefore the DeepDECS controller synthesis

will automatically ignore its output and only rely on the other

verification techniques. Adding this technique will neither help

nor harm the outcome of the DeepDECS synthesis. To return

to our analogy, the regular users of a weather forecasting ser-

vice that makes random predictions will learn to ignore that

service, and to base their decisions on other services they have

access to.

C. Stage 3: Controller Synthesis

The controller synthesis problem for the DNN-perception

system involves finding instantiations for the controller parame-

ters for which the pDTMC M̂ from (21) satisfies the constraints

(17) and is Pareto optimal with respect to the optimisation

objectives (18). Solving the general version of this problem

precisely is unfeasible. However, metaheuristics such as multi-

objective genetic algorithms for probabilistic model synthe-

sis [14], [32] can be used to generate close approximations

of the Pareto-optimal controller set. Alternatively, exhaustive

search can be employed to synthesise the actual Pareto-optimal

controller set for AS with deterministic controllers and small

numbers of parameters, or—by discretising the search space—

an approximate Pareto-optimal controller set for AS with prob-

abilistic controllers.

Example 5: Consider again the DNN-perception pDTMC

model of the mobile robot from our running example (Fig.

4(b)). One option for searching its controller design space for

parameter combinations (x1false, x1true, x2false, x2true) ∈ [0, 1]4

that satisfy the constraint (19) and achieve optimal trade-offs

with respect to the optimisation objectives (20) is via discretis-

ing the four controller parameters, with each parameter varied

between 0 and 1 with a step size of 0.1. The DNN-perception

pDTMC instance for every parameter combination obtained in

this way can then be analysed using the probabilistic model

checker PRISM, so that the combinations which violate the

constraint (19) are discarded, and the remaining combinations

are used to assemble a Pareto-optimal set of controllers.

We demonstrate the synthesis of DeepDECS controllers

through the use of both metaheuristics and exhaustive search

in the next section.

V. EVALUATION

A. Evaluation Methodology

We carried out experiments to answer the research questions

(RQs) summarised below.

RQ1 (Uncertainty quantification effectiveness): Are the

DNN input subsets (9) “endorsed” by verification techniques

a sizeable part of the inputs encountered in the operational

design domain of autonomous systems? Given a DNN classifier

f , DeepDECS distinguishes between “endorsed” DNN inputs

x, i.e., inputs for which verif i(f, x) = true for one or more

of the verification techniques verif 1, verif 2,..., verif n, and

inputs that do not have this property. The envisaged benefits of

using DNN verification techniques in DeepDECS can only be

achieved if the endorsed inputs are (i) associated with higher

accuracy levels than unendorsed inputs, and (ii) encountered

frequently by the autonomous system. By using established

DNN verification techniques within DeepDECS, we know that

prerequisite (i) is going to hold. Therefore, we assessed whether

prerequisite (ii) is also met.

RQ2 (Controller synthesis effectiveness): How do the con-

trollers synthesised by DeepDECS compare to those obtained

without using DeepDECS, and are they achieving better trade-

offs between the optimisation objectives (18) when more DNN

CALINESCU et al.: CONTROLLER SYNTHESIS FOR AUTONOMOUS SYSTEMS WITH DEEP-LEARNING PERCEPTION COMPONENTS 1385

TABLE I
KEY CHARACTERISTICS OF THE APPLICATIONS USED FOR THE DEEPDECS EVALUATION

Collision Limitation Driver-Attentiveness Management

Application Domain Infrastructure Inspection/Goods Transportation Autonomous Driving

System type Mobile robot Embedded autonomous system

System-level properties†
Probability of collision-free journey
Journey time

Risk level
Driver nuisance

DNN perception component Binary DNN classifier Three-class DNN classifier
DNN training/testing data Obtained through simulation Obtained from user study with human drivers

†These are the properties that appear in the system-level requirements (i.e., constraints and optimisation objectives) guiding the DeepDECS
controller synthesis.

verification techniques are used? For the first part of this re-

search question, we compare DeepDECS to a baseline approach

in which controllers are synthesised based solely on the output

of the perception DNN used by an autonomous system. For the

second part of this research question, Theorem 4 shows that

using n+ 1 DNN verification techniques yields controllers at

least as good as the controllers obtained using only n of those

techniques, but does not guarantee that the former controllers

are actually better than the latter. As such, we examined exper-

imentally if using additional verification techniques produces

better controllers.

RQ3 (Overheads): What are the development-time and

run-time computational overheads to synthesise DeepDECS

controllers and to use online DNN verification tech-

niques within an autonomous system, respectively? We as-

sessed the execution time for the synthesis of the DeepDECS

Pareto-optimal controllers, and for the online verification of

DNN inputs.

To answer these research questions, we used DeepDECS to

synthesise discrete-event controllers for two autonomous sys-

tems from different application domains. First, we considered

the autonomous mobile robot from our running example and

the synthesis of its collision-limitation controller. Second, we

used our method to synthesise an attentiveness-management

controller for drivers of level 3 autonomous vehicles, i.e., ve-

hicles whose drivers must retain situational awareness at all

times, so that they can resume manual driving when needed.

Table I summarises the significant differences between the key

characteristics of these systems.

In each of the two case studies, we considered four DNN

uncertainty quantification setups. These setups correspond to

using every subset of the two DNN verification techniques

from Section III-E in the uncertainty quantification stage

of DeepDECS:

(i) no verification technique;

(ii) only verif 1 from (7);

(iii) only verif 2 from (8);

(iv) both verif 1 and verif 2.

We synthesised separate sets of Pareto-optimal DeepDECS

controllers for each of these setups, as well as a fifth set

of Pareto-optimal controllers corresponding to the perfect-

perception variant of the autonomous system. Finally, we

used the following Pareto front quality metrics to compare

the five sets of Pareto optimal controllers, and to evaluate

their quality:

1) Inverted Generational Distance (IGD) [84], which mea-

sures the distance between the analysed Pareto front and a

reference frame (e.g., the true Pareto front, the best known

approximation of the true Parero front, or an “ideal”

Pareto front) by calculating, for each point on the refer-

ence frame, the distance to the closest point on the Pareto

front. The IGD measure for the front is then computed as

the mean of these distances. Smaller IGD values indicate

better Pareto fronts. The IGD values from our case studies

were computed using the perfect-perception Pareto front

as the reference frame.

2) Hypervolume (HV) [87], which captures the proximity

of the analysed Pareto front to a reference frame and the

diversity of its points (where higher diversity is better)

by measuring the volume (or area for two-dimensional

Pareto fronts) delimited by these points and a reference

point defined with respect to the reference framework.

The HV values from our case studies were obtained us-

ing the perfect-perception Pareto front as the reference

frame and, in line with common practice [86], its nadir

(i.e., the point corresponding to the worst values for each

optimisation objective) as the reference point.

To ease the application of DeepDECS and support its adop-

tion, we implemented a Python software tool that automates

the DeepDECS model augmentation process. The tool takes as

input a perfect-perception pDTMC model and the confusion

matrices (10) and outputs a DNN-perception pDTMC model.

The tool is executed as

pythondeepDECSAugment.py perfect-

pDTMC.pm

confusion_matrices.txt DNN-pDTMC.pm

where:

• perfect-pDTMC.pm is a file containing the perfect-

perception pDTMC model;

• confusion_matrices.txt is a file containing the

confusion matrix elements Cv[k, k
′], v ∈ B

n, k ∈ [K], k′ ∈
[K], from (10);

• DNN-pDTMC.pm is the name of the file in which the

DNN-perception pDTMC model will be generated.

The two applications of DeepDECS are detailed in the

remainder of this section. To enable the reproducibility of

1386 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 6, JUNE 2024

our results, the DeepDECS project website [24] contains all

the data, models and code from our experiments, as well

as the software tool that automates the model augmentation

stage of DeepDECS, and a tutorial that provides step-by-

step instructions for the use of our tool-supported controller

synthesis method.

B. Application 1: Mobile-Robot Collision Limitation

Many of the steps from the DeepDECS synthesis of collision-

limitation controllers for the mobile robot from our running ex-

ample were already summarised in Examples 1 through 5 from

Section IV. The additional details provided below complement

the information presented in those examples.

1) DeepDECS Inputs: The four inputs required for the ap-

plication of DeepDECS (see Fig. 1) were:

• a collision-prediction DNN trained using data from a sim-

ulator we implemented for the scenario in Fig. 2;

• a test dataset collected using our mobile robot simulator;

• a perfect-perception pDTMC model of the robot journey;

• controller requirements specifying the minimum accept-

able probability of a collision-free journey, and demanding

an optimal trade-off between maximising this probability

and minimising the travel time.

Further details about these four inputs are provided below.

DNN perception component. The data for training the DNN

and quantifying its uncertainty were obtained using the 2D

particle simulator Box2D (https://box2d.org/), with the robot

and collider simulated by circular particles of 0.5-unit radius.

We ran simulations with the robot starting at the origin (0, 0)
with a heading of π

2 radians, and travelling in a straight line

to a goal destination (xgoal , ygoal), with a speed of 1 unit/s.

A journey was deemed completed when the robot reached a

goal area defined by (xgoal ± ǫ, ygoal ± ǫ) for a small ǫ > 0.

The robot advanced with an angular velocity

θ̇r = α · arctan

(

vx · ygoal − vy · xgoal

vx · xgoal + vy · ygoal

)

where vx and vy are the horizontal and vertical velocities of the

robot, respectively, and α > 0 is a constant. When the difference

between the robot’s and the target heading exceeded π
36 , the

robot’s linear speed was reduced to 0.1 unit/s, allowing it time

to correct its course. The collider had a random initial position

(x, y, θ) = (U(−xlim, xlim), U(0, ylim), U(−π, π))

where U is the uniform distribution function, and random linear

and angular speeds given by

(s, θ̇c) = (U(0, slim), U(−θ̇lim, θ̇lim)).

The parameter values used for the experimental setup are:

α= 0.5, xgoal = 0, ygoal = 10, ǫ= 0.05, xlim = 10, ylim = 10,

slim = 2 units/s, and θ̇lim = π
4 rads/s. Each collected datapoint

was a tuple

(xdiff , ydiff , s, θ, θ̇c, occ),

where xdiff and ydiff are the relative horizontal and vertical

distances between the robot and the collider, and occ is the

label specifying whether the two agents are on collision course

(occ = 2) or not (occ = 1). The datapoints were normalised

such that xdiff , θ, θ̇c ∈ [−1, 1] and ydiff ∈ [0, 1]. Multiple simu-

lations were performed to collect 10000 collision datapoints and

10000 no-collision datapoints, and the mean times to complete

a journey between two successive waypoints with and without

collision were recorded.

We used 80% of the collected datapoints to train a two-class

DNN classifier with the architecture proposed by Ehlers [28].

This architecture comprises a fully-connected linear layer with

40 nodes, followed by a MaxPool layer with pool size 4 and

stride size 1, a fully-connected ReLU layer with 19 nodes, and

a final fully-connected ReLU layer with 2 nodes. The DNN was

implemented and trained using TensorFlow in Python, with a

cross-entropy loss function, the Adam optimisation algorithm

[59], and the following hyperparameters: 100 epochs, batch size

128, and initial learning rate 0.005 set to decay to 0.0001.

Test dataset. We assembled the test dataset using the 20% of

the datapoints collected from the mobile robot simulations that

were not used for training the collision-prediction DNN.

Perfect-perception pDTMC model. See Example 2.

PCTL-encoded requirements. See Example 3.

2) DeepDECS Application

Stage 1: DNN uncertainty quantification. We obtained four

sets of DNN uncertainty quantification probabilities (11) using

the test dataset mentioned in Section V-B1 and each possible

subset of DNN verification techniques from Section III-E. The

probabilities of the DNN classifying class-k inputs associated

with every verification result v as class k′ are summarised in

Fig. 5(a), which shows that “verified” classifications (i.e., those

associated with v = (true) for setups (ii) and (iii), and v =
(true, true) for setup (iv)) are obtained for large percentages

of DNN inputs, and have a much higher probability of being

correct than “unverified” classifications.

Stage 2: Model augmentation. We used our model aug-

mentation tool to obtain the DNN-perception pDTMC model

for each combination of the verification methods (7) and (8)

from the perfect-perception pDTMC and the DNN uncer-

tainty quantification probabilities (11) obtained in stage 1.

Example 4 presents one such DNN-perception model; the mod-

els generated for all four uncertainty quantification setups ex-

plored in our experiments are provided on the DeepDECS

website [24].

Stage 3: Controller synthesis. The controller parameters

synthesised by DeepDECS were the probabilities x1v and x2v

for the robot to wait at its current waypoint when the DNN

predicts it is on collision course (class 1) and not on collision

course (class 2), respectively, where v = () for setup (i), v ∈ B

for setups (ii) and (iii), and v ∈ B
2 for setup (iv).

As mentioned in Example 5, the controller design space was

explored via discretising the controller parameters x1v, x2v ,

with each parameter varied between 0 and 1 with a step

size of 0.1. The DNN-perception pDTMC instance for every

parameter combination obtained in this way was analysed using

the probabilistic model checker PRISM.

The Pareto fronts for the controllers that satisfied constraint

(19) for each setup are presented in Fig. 5(b), together with

CALINESCU et al.: CONTROLLER SYNTHESIS FOR AUTONOMOUS SYSTEMS WITH DEEP-LEARNING PERCEPTION COMPONENTS 1387

Fig. 5. DeepDECS controller synthesis for the mobile robot collision limitation.

1388 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 6, JUNE 2024

the Pareto front for the perfect-perception setup, which we

analysed for comparison purposes. Expectedly, the best re-

sults are achieved in the perfect-perception setup, and the

worst when no DNN verification technique is used. The use of

verification methods yields Pareto fronts located closer to the

perfect-perception Pareto front, with the best DNN-perception

Pareto front obtained when both verification methods are used.

These findings from the visual inspection of Fig. 5(b) are con-

firmed by the analysis (Fig. 5(c)) of the Pareto fronts using the

two established Pareto-front quality indicators (IGD and HV)

mentioned in Section V-A.

For comparison purposes, we also considered a baseline ap-

proach in which the Pareto-optimal controllers were synthesised

based on the DNN outputs alone, i.e. by assuming these outputs

to be always correct. We note that this is the only option when

the aleatory uncertainty introduced by the DNN is not quantified

as done in the first stage of DeepDECS. The expected Pareto

front for this baseline approach is shown as an inset plot in Fig.

5(b). For each point on this expected Pareto front, the plot also

shows the actual outcome delivered by the controller associated

with that point. Because the DNN uncertainty is not considered

by this baseline, the expected and actual outcomes are typically

different. Furthermore, because the DNN accuracy is worse

when the mobile robot is not on collision course than when it

is on collision course (i.e., 78% versus 91%, cf. Fig. 5(a)(i)),

the expected Pareto front is overly pessimistic, and only two of

its points satisfy constraint (19).

The synthesis of these Pareto-optimal controller sets was

performed on a HP Elitebook 840 G7 Laptop with i5 Intel

10th generation processor and 16GB memory, and the synthesis

times are reported in Fig. 5(d), alongside the mean execution

time for the online DNN verification technique(s) used by

DeepDECS.

C. Application 2: Driver-Attentiveness Management

We used DeepDECS to design a proof-of-concept

driver-attentiveness management system for shared-control

autonomous cars. Developed as part of our SafeSCAD project

[4], [13] and inspired by the first United Nations regulation

on vehicles with Level 3 automation [83], this system uses

(Fig. 6): (i) specialised sensors to monitor key car parameters

(velocity, lane position, etc.) and driver’s biometrics (eye

movement, heart rate, etc.), (ii) a three-class DNN to predict

the driver’s response to a request to resume manual driving, and

(iii) a deterministic controller to issue visual/acoustic/haptic

alerts when the driver is insufficiently attentive.

1) DeepDECS Inputs: The four inputs required for the ap-

plication of DeepDECS (see Fig. 1) were:

• an existing DNN trained and validated with driver data

from a SafeSCAD user study performed within a driving

simulator [73];

• a test dataset obtained also from the study in [73];

• a perfect-perception pDTMC model of the decision pro-

cess used for driver-attentiveness management;

• controller requirements that place constraints on, and re-

quire the minimisation of, the journey risk and the driver

nuisance caused by the use of alerts.

Fig. 6. Driver-attentiveness management for shared-control autonomous
driving. Data from car sensors (1) and driver biometric sensors (2) are supplied
to a DNN perception component that classifies the driver state as attentive,
semi-attentive or inattentive. The DeepDECS controller decides when optical,
acoustic and/or haptic alerts (3) should be used to increase the driver’s
attentiveness.

Further details about these four inputs are provided below.

DNN perception component. The datasets for training the

DNN and quantifying its uncertainty were taken from a user

study [73] conducted as part of our SafeSCAD project on the

safety of shared control in autonomous driving [4]. Each data-

point included: (i) driver biometrics (eye movement, heart rate,

and galvanic skin response); (ii) driver gender; (iii) driver per-

ceived workload and psychological stress (estimated using es-

tablished metrics); (iv) driver engagement in non-driving tasks

while not in control of the car (e.g., using a mobile phone, or

reading); and (v) vehicle data (distances to adjacent lanes and

to any potential hazard, steering wheel angle, velocity, and gas

and break pedal angles). We used 60% of the collected data

for training a three-class DNN classifier with the architecture

proposed by Pakdamanian et al. [73], and 15% for its calibration

and validation.

Test dataset. We used a test dataset comprising the 25% of the

data mentioned above that were not used for the DNN training,

calibration and validation.

Perfect-perception pDTMC model. We modelled the op-

eration of the driver attentiveness management system from

Fig. 6 using a perfect-perception pDTMC (available in our

GitHub repository [24]) whose states are tuples

(z, k, t, c) ∈ {0, 1, . . . , 7} × [3]× [3]× {0, 1, . . . , 7} (37)

with the semantics from (13). In this tuple, the system state

z ∈ {0, 1, . . . , 7} is a binary encoding of the alerts currently

activated, e.g., z = 5 = 101(2) corresponds to a scenario in

which the optical alert is active, the acoustic alert is inactive,

and the haptic alert is active; the classes k = 1, k = 2 and k = 3
correspond to the driver being attentive, semi-attentive and inat-

tentive, respectively;3 and the control variable c ∈ {0, 1, . . . , 7}

3We used a three-class DNN classifier as recommended by the authors of the
user study [73] that this application is based on. Advantageously, this allowed
the evaluation of DeepDECS for non-binary DNN classifiers in addition to
its evaluation for binary classifiers in Section V-B.

CALINESCU et al.: CONTROLLER SYNTHESIS FOR AUTONOMOUS SYSTEMS WITH DEEP-LEARNING PERCEPTION COMPONENTS 1389

is the binary encoding of the alerts to be activated in response

to a new DNN prediction of the driver’s attentiveness level.

PCTL-encoded requirements. The system-level requirements

comprise two constraints that limit the maximum expected risk

and driver nuisance cumulated over a 45-minute driving trip,

and two optimisation objectives requiring that the same two

measures are minimised:

C1 : Rrisk[C≤ntrans(45)]≤ 100
C2 : Rnuisance[C≤ntrans(45)]≤ 6000
O1 : minimise Rrisk[C≤ntrans(45)]
O2 : minimise Rnuisance[C≤ntrans(45)]

(38)

where Rrwd[C≤ntrans(45)] denotes the reward rwd cumulated

over the number of DNN-perception pDTMC transitions corre-

sponding to a 45-minute journey.

2) DeepDECS Application

Stage 1: DNN uncertainty quantification. Fig. 7(a) shows

the four sets of DNN uncertainty quantification probabilities

(11) obtained using the test dataset from Section V-C1 for

each DNN verification setup. Similar to the robot collision-

limitation controller, setups (ii)–(iv), which use the DNN ver-

ification techniques verif 1 from (7) and/or verif 2 from (8),

led to large fractions of the test dataset being verified, and to

higher DNN accuracy for these subsets compared to the no-

verification setup. Furthermore, the “verified” DNN predictions

have a much higher probability of being correct than “unveri-

fied” ones.

Stage 2: Model augmentation. We used our Deep-

DECS model augmentation tool to derive the DNN-perception

pDTMC model for each setup (i.e., set of DNN uncertainty

quantification probabilities (11) from stage 1). The DNN-

perception pDTMC models for all uncertainty quantification

options explored in our experiments are provided on the Deep-

DECS website [24].

Stage 3: Controller synthesis. The controller parameters

synthesised by DeepDECS were the encodings x1v, x2v, x3v ∈
{0, 1, . . . , 7} of the alert combinations to be issued when the

driver is attentive, semi-attentive and inattentive, respectively,

where v = () for setup (i), v ∈ B for setups (ii) and (iii), and v ∈
B
2 for setup (iv). As the controller design space was too large

for exhaustive exploration, we used the EvoChecker probabilis-

tic model synthesis tool [32] to generate close approximations

of the Pareto-optimal controllers. EvoChecker performs this

synthesis using a multi-objective genetic algorithm (MOGA)

whose fitness function is computed with the help of a probabilis-

tic model checker. For all setups, we configured EvoChecker

to use the NSGA-II MOGA with a population size of 1000

and a maximum number of evaluations set to 20× 104, and the

model checker PRISM. The result of the DeepDECS controller

synthesis is presented in Fig. 7(b). A visual inspection of the

(approximate) Pareto fronts from this figure indicates that the

setups that employed verification techniques achieved Pareto-

optimal controllers closer to the perfect-perception Pareto front.

In particular, the knee points of the Pareto fronts from setups

(ii) and (iv) are much closer to the knee point of the perfect-

perception front than those from the other setups. These findings

are confirmed by the Pareto-front analysis that we conducted

using the quality metrics IGD and HV (Fig. 7(c)), which shows

that the quality metrics for these two fronts are the best out of

the four setups. We further note that the two best Pareto fronts

are almost indistinguishable visually, with the front obtained

using both verification techniques having only a marginally

better HV score than the one obtained using only verif 1.

This result is in line with Theorem 4, which states that using

more verification techniques is never detrimental but is not

guaranteed to yield better trade-offs between the optimisation

objectives.

As for the mobile robot application, we also considered

the baseline approach in which the Pareto-optimal controllers

were synthesised based on the DNN outputs alone, i.e., without

quantifying the DNN uncertainty. As a result, we obtained an

expected Pareto front whose points are associated with synthe-

sised controllers which yield actual outcomes different from

the expected ones, as shown by the inset plot from Fig. 7(b).

Furthermore, none of the points on the expected Pareto front

meets the two constraints from 38.

The EvoChecker executions used to generate the Pareto-

optimal controller sets from Fig. 7(b) were carried out using five

CPUs and 8GB of memory on the University of York’s Viking

high-performance cluster (https://www.york.ac.uk/it-services/

services/viking-computing-cluster), with a set time of five

hours. This result is shown in Fig. 7(d), which also reports

the mean time required to execute the online DNN verification

technique(s) on the regular computer with the specification

mentioned at the end of Section V-B2.

D. Discussion

Having applied our approach to two systems taken from

different application domains and exhibiting the different char-

acteristics summarised in Table I, we can now provide answers

to the research questions from Section V-A.

RQ1 (Uncertainty quantification effectiveness): As shown in

Figs. 5(a) and 7(a), for both DeepDECS applications and across

all setups that used DNN verification techniques, the DNN

inputs verified by at least one verification technique amounted

to well over half of test datasets representative for the opera-

tional design domains of the two autonomous systems, with the

exception of the setup from Fig. 7(a)(iii), for which a still large

fraction of slightly under half of the test dataset was verified.

These results show that a significant percentage of DNN inputs

encountered within the ODDs of the two applications are veri-

fied, confirming that the key second prerequisite from the RQ1

description in Section V-A holds.4

RQ2 (Controller synthesis effectiveness): As shown by the

inset plots from Figs. 5(b) and 7(b), the baseline approach

synthesised inferior controllers whose expected outcomes: (a)

barely met the required constraints for our first application, and

did not meet the constraints for our second application; and

(b) differed considerably from the actual outcomes produced

4Gven our use of established DNN verification techniques, the other prereq-
uisite from the RQ1 description also holds: the DNNs from both applications
exhibited much higher accuracies for their verified inputs, with differences as
significant as 50% versus 95% accuracy for the correct classification of class
2 unverified and verified inputs, respectively, in the setup from Fig. 5(a)(ii).

1390 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 6, JUNE 2024

Fig. 7. DeepDECS controller synthesis results for the driver-attentiveness management system.

by these controllers. Additionally, the controller Pareto fronts

from Figs. 5(b) and 7(b), and their quantitive evaluations from

Figs. 5(c) and 7(c) show that increasing the number of DNN

verification techniques used by DeepDECS yields controllers

with better trade-offs between the optimisation objectives (18).

Using either of the two verification techniques considered in

CALINESCU et al.: CONTROLLER SYNTHESIS FOR AUTONOMOUS SYSTEMS WITH DEEP-LEARNING PERCEPTION COMPONENTS 1391

our evaluation produced significantly better results than the no-

verification setup, with verif 2 performing slightly better than

verif 1 for the collision limitation controller (Fig. 5(c)), and

verif 1 leading to much better results than verif 2 for driver-

attentiveness management controller (Fig. 7(c)). Using both

verification techniques at the same time produced even better

controllers in both DeepDECS applications, although the im-

provements over the setups with a single verification technique

were much smaller than those achieved by moving from no

verification to one verification technique. This result indicates

that including larger numbers of verification techniques yields

diminishing returns.

RQ3 (Overheads): For all four DNN verification setups, the

synthesis of the DeepDECS controller sets was completed in

under one hour on a standard laptop computer for the mobile

robot collision limitation (Fig. 5(d)), and controller sets of

significantly better quality than those obtained for the baseline

were generated in five hours on a modest five-CPU computer

cluster for the driver-attentiveness management (Fig. 7(d)). As

the DeepDECS controller synthesis is a one-off, development-

time activity, all of these computational overheads are perfectly

acceptable. As for the online computational overheads, carrying

out the verification of one DNN prediction on a standard lap-

top computer took between 0.2ms (when only the lightweight

DNN verification technique verif 1 was used) and 110.2ms

(when both verification techniques were used for the driver-

attentiveness management system). The former overhead is

clearly acceptable, whereas the latter is likely to be acceptable

for many practical applications; for instance, the United Nations

regulation on vehicles with Level 3 automation [83] (which in-

spired our second DeepDECS application) specifies that driver

unavailability should be established within 30s after the driver

lost concentration—a time interval that is over 270 times larger

than the 110.2ms DNN verification overhead.

The answers to our research questions show the effectiveness

of the hybrid, neuro-symbolic approach to controller synthesis

employed by DeepDECS, whose combined use of DNN verifi-

cation techniques and probabilistic model checking provides an

effective quantification of DNN classification uncertainty, and

guarantees that the synthesised controllers meet system-level

requirements, respectively.

Furthermore, DeepDECS is generalisable in two important

ways. First, our approach to quantifying DNN uncertainty

opens up the opportunity to leverage the broad range of re-

cently devised DNN verification techniques, [37], [40], [45],

[56], [63], [75], [78] that certify DNN properties like local

robustness and confidence, for the purpose of uncertainty quan-

tification. Second, DeepDECS is not prescriptive about the

type of machine learning that introduces uncertainty into au-

tonomous systems. As such, we envisage that it is equally

applicable to autonomous systems with other types of machine

learnt components for which local verification techniques ex-

ist to enable the quantification of their aleatory uncertainty.

Such machine learning techniques that utilise confidence mea-

sures to quantify the uncertainty of their predictions include

support vector machines and Gaussian processes. Finally, the

case studies presented in the paper indicate that DeepDECS

supports autonomous system controller synthesis for different

application domains.

DeepDECS also has a number of limitations. A key fac-

tor for its successful application is the test dataset used for

quantifying the uncertainty of the DNN used for perception by

the autonomous systems. The DeepDECS theoretical founda-

tion relies on the assumption that this test dataset is representa-

tive of the operational design domain (ODD) of the autonomous

system. The invalidation of this assumption will cause the Deep-

DECS process to generate suboptimal controllers, or controllers

that do not meet the required constraints (17). If the ODD

evolves slowly over time, this will also cause the initial test

dataset to no longer be representative. An example is an out-

doors vision system trained during summer, and subsequently

operating in winter, when snow has visually changed the land-

scape. Thus, DeepDECS only provides guarantees with respect

to the assumed ODD. Future investigation into DeepDECS

should incorporate an online monitoring component to instigate

the DeepDECS process with new data if the system operates

outside the ODD.

Another potential limitation of DeepDECS is its scalabil-

ity. The uncertainty quantification and model augmentation

stages of DeepDECS are scalable, as the former stage ap-

plies established, efficient DNN verification techniques in-

dependently to each sample within a dataset, and the latter

stage only needs to parse and expand 2n-fold certain com-

mands from the PRISM-encoded perfect-perception pDTMC

model, typically for n≤ 2 DNN verification techniques. How-

ever, the controller synthesis stage uses (probabilistic) model

checking, which is known to experience scalability problems.

While the synthesis of the Pareto-optimal sets of controllers

from our two case studies only took between a few seconds

and several hours, the controller design spaces of autonomous

systems grow linearly with the numbers of DNN classes K
and system states #Z, and exponentially with the number of

DNN verification techniques n. Encouragingly, the EvoChecker

probabilistic model synthesis tool [32] (which we used in

the second case study) was shown to generate close Pareto

front approximations for search spaces comprising over 1086

parameter-value combinations [33]. Nevertheless, further ex-

perimentation, in particular with DNNs predicting larger num-

bers of classes, will be needed to confirm the scalability of

DeepDECS.

E. Threats to Validity

Construct validity threats may arise due to assumptions

made about the autonomous systems used in our evaluation,

or about their deep-learning perception components. To limit

these threats, the two autonomous systems used in the paper

are adapted from existing research on collision avoidance for

autonomous vehicles/robots [28], [54], [55], [85] and driver-

attentiveness management [13]. Furthermore, their DNN per-

ception components have the architecture and outputs recom-

mended in the research literature on deep-learning classifiers for

collision prediction [28] and by a user study on deep-learning

classifiers for monitoring driver attentiveness [73].

1392 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 6, JUNE 2024

Internal validity threats may stem from bias in establish-

ing cause-effect relationships in the experiments from our

DeepDECS applications. To mitigate these threats, we as-

sessed DeepDECS for four combinations of two existing DNN

verification techniques, and we used two established Pareto

front quality metrics to evaluate the sets of Pareto-optimal

controllers produced by our approach. Furthermore, we have

enabled replication by making all our models, code and exper-

imental data available in the project’s GitHub repository [24].

External validity threats could affect the applicability of

DeepDECS to other autonomous systems than those used in our

evaluation. As summarised in Table I, we mitigated these threats

by evaluating the use of DeepDECS for two applications drawn

from different application domains, involving different types

of systems with requirements based on different properties of

those systems. Additionally, the DNN perception components

used by the two systems have different characteristics. Fur-

thermore, DeepDECS employs established probabilistic model

checking methods and tools that have been successfully used

across a wide range of application domains, and we can ex-

pect their generality to extend to our approach. Nevertheless,

additional experiments are needed to establish the applicability

and feasibility of DeepDECS in domains and for autonomous

systems with characteristics different from those used in

our evaluation.

Another external validity threat may arise if the modelling

of other autonomous systems requires the use of much larger

perfect-perception pDTMC models and/or these systems use

DNN classifiers with many more classes than for the two ap-

plications from our evaluation of DeepDECS. As our approach

uses established probabilistic model checking and synthesis

tools, evaluating their scalability is beyond the scope of our

paper. Such evaluations are already available, e.g., in [50] and

[32], [33], respectively, and (as explained at the end of Section

V-D) they suggest that DeepDECS should scale well to larger

systems. As always, further case studies are needed to examine

this hypothesis.

VI. RELATED WORK

The design of autonomous systems that use DNN classifiers

for perception in combination with discrete-event controllers

for decision-making has been studied before. The approach of

Jha et al. [51] synthesises correct-by-construction controllers

for autonomous systems with noisy sensors, i.e., with per-

ception uncertainty. Unlike DeepDECS, this approach only

considers systems that use linear models (i.e., not DNNs) for

perception, and assumes already known uncertainty quanti-

ties. Moreover, while we formulate the control problem as a

pDTMC, Jha et al. consider the simpler setting of deterministic

linear systems.

Michelmore et al. [65] analyze the safety of autonomous

driving control systems that use DNNs in an end-to-end manner

for both perception and control, i.e., the DNN consumes sensor

readings and outputs control actions. They use Bayesian meth-

ods for calculating the uncertainty in the DNN control actions,

and, when this uncertainty exceeds pre-determined thresholds,

the system defaults to executing fail-safe actions. In contrast,

we synthesise controllers that use the quantified uncertainty of

DNN perception to select optimal yet safe actions.

Similarly, Ivanov et al. [48] present a technique for learning

end-to-end DNN controllers for an autonomous system such

that the autonomous system satisfies non-probabilistic specifi-

cations of safety. In contrast to our work where the autonomous

system is verified with respect to an abstract, uncertainty-aware,

probabilistic model of the DNN, Ivanov et al. verify the au-

tonomous system with respect to the actual DNN. This makes

verification extremely expensive; applying their technique to

an autonomous system with a complex DNN (thousands or

millions of parameters) is practically infeasible.

Recent work by ourselves [74] and others [5] also proposes

to use confusion matrices for quantifying the aleatory uncer-

tainty of DNNs and to verify the probabilistic safety of the

autonomous system in an uncertainty-aware manner. Unlike

DeepDECS, these approaches assume that the controller has

already been synthesized. A number of other approaches [22],

[44], [46], [47], [49] [57], [72], [77] have been proposed in

recent years for verifying the closed-loop safety of autonomous

systems with DNN-based components and already synthesized

controllers. These approaches differ in the manner in which

they model the environment and perception components but,

in general, scalability is a challenge.

The related field of reinforcement learning (RL) is a

paradigm for generating policies to solve a task, and have in-

corporated deep-learning to solve complex problems [31], [66].

In recent years the deep-RL community has been interested

in ensuring the safety during both exploration and exploitation

phases [10]. Berkenkamp et al. [7] implemented a safe model-

based RL algorithm with verification in the loop, which pro-

vides assurances that the system would not enter unsafe states

while learning. Control barrier functions have been studied

[64] for safe RL which penalises the system if it approaches

an unsafe state. RL in general, however, produces one con-

troller compared to multiple correct-by-construction controllers

generated by DeepDECS. The multiple controllers with their

respective trade-offs yields flexibility to the user/stakeholders

to choose a controller that best satisfy their objectives. There

is also a higher level of explainability with DeepDECS, as the

controller is modelled via pDTMC rather than learned with a

DNN. Related to the idea of having DeepDECS operate in an

online setting, these safe RL approaches could be exploited. If

the deployed system detects it is outside the ODD, then it will

need to gather new data while maintaining safety, which these

algorithms are designed to provide.

Handling uncertainty in autonomous systems has been stud-

ied extensively by the recent research on self-adaptive soft-

ware, e.g., [15], [16], [43], [79], including in the context

of controller synthesis, e.g., [11], [58]. However, the ap-

proaches proposed by this research focus on uncertainty due

to failures, changes in the environment, interactions with

users, etc. In contrast, DeepDECS tackles the uncertainty

introduced by the deep-learning perception components of

autonomous systems.

In conclusion, synthesising safe and optimal controllers

that account for the uncertainty in the DNN outcomes is

a novel contribution of DeepDECS. Additionally, our DNN

CALINESCU et al.: CONTROLLER SYNTHESIS FOR AUTONOMOUS SYSTEMS WITH DEEP-LEARNING PERCEPTION COMPONENTS 1393

uncertainty quantification mechanism, which uses the out-

comes of off-the-shelf DNN verifiers in a black-box manner, is

also new.

VII. CONCLUSION

We introduced DeepDECS, a new method for the synthesis

of correct-by-construction controllers for autonomous systems

with deep-learning perception. The new method uses (i) a suite

of techniques for the verification of deep neural networks to

quantify the aleatory uncertainty associated with DNN per-

ception, and (ii) a mathematically based stochastic modelling

paradigm to synthesise discrete-event controllers that take this

uncertainty into account. The controllers synthesised using our

method are guaranteed to satisfy the safety, dependability and

performance requirements of the autonomous system within its

operational design domain. Furthermore, they are guaranteed

to achieve optimal trade-offs between a set of pre-specified

optimisation objectives for the autonomous system.

To evaluate DeepDECS, we presented its application to the

synthesis of discrete-event controllers for mobile-robot col-

lision limitation, and for maintaining driver attentiveness in

shared-control autonomous driving. To ensure the reproducibil-

ity of our experiments, we made all the software, datasets,

models and results from these experiments publicly accessible

on our GitHub project website [24].

In future work, we will explore several opportunities for

extending the applicability, effectiveness and usability of Deep-

DECS. First, we will assess the possibility to use DeepDECS

controller synthesis for autonomous systems with other types

of machine learnt components (e.g., support vector machines,

reinforcement learning agents, and Gaussian processes). Sec-

ond, we plan to assemble a broad repertoire of DNN verifi-

cation techniques that can be used in the DeepDECS uncer-

tainty quantification stage, and to examine the usefulness and

limitations of these techniques when used for this purpose.

Third, we will explore options for complementing the current

DeepDECS capabilities with monitoring the environment of a

deployed autonomous system in order to identify changes from

its operational design domain, and to dynamically update the

synthesised controllers in line with such changes. Fourth, we

will investigate ways in which DeepDECS controllers can be

augmented with the ability to detect out-of-distribution DNN

inputs (e.g. through worsening DNN verification results over

time) and to mitigate their occurrence. Last but not least, we aim

to expand the evaluation of DeepDECS to additional application

domains and types of autonomous systems.

ACKNOWLEDGMENT

The authors are grateful to the developers of the DeepTake

deep neural network [73] for sharing the DeepTake data sets,

and to the University of York’s Viking research computing

cluster team for providing access to their systems.

REFERENCES

[1] S. Andova, H. Hermanns, and J.-P. Katoen, “Discrete-time rewards
model-checked,” in Proc. Int. Conf. Formal Model. Anal. Timed Syst.,
Berlin, Germany: Springer-Verlag, 2003, pp. 88–104.

[2] A. Arapostathis, R. Kumar, and S.-P. Hsu, “Control of Markov chains
with safety bounds,” IEEE Trans. Autom. Sci. Eng., vol. 2, no. 4,
pp. 333–343, Oct. 2005.

[3] R. Ashmore, R. Calinescu, and C. Paterson, “Assuring the machine
learning lifecycle: Desiderata, methods, and challenges,” ACM Comput.

Surv., vol. 54, no. 5, pp. 1–39, 2021.
[4] Assuring Autonomy International Programme, “Safe-SCAD: Safety of

shared control in autonomous driving,” Univ. of York, York, U.K.,
2022. [Online]. Available: https://www.york.ac.uk/assuring-autonomy/
demonstrators/autonomous-driving/

[5] A. Badithela, T. Wongpiromsarn, and R. M. Murray, “Leveraging
classification metrics for quantitative system-level analysis with temporal
logic specifications,” in Proc. 60th IEEE Conf. Decis. Control (CDC),
Piscataway, NJ, USA: IEEE Press, 2021, pp. 564–571.

[6] C. Baier, M. Größer, M. Leucker, B. Bollig, and F. Ciesinski, “Controller
synthesis for probabilistic systems,” in Proc. Exploring New Frontiers

Theor. Inform., IFIP 18th World Comput. Congr. TC1 3rd Int. Conf.

Theor. Comput. Sci. (TCS), Toulouse, France. Boston, MA, USA:
Springer-Verlag, 2004, pp. 493–506.

[7] F. Berkenkamp, M. Turchetta, A. Schoellig, and A. Krause, “Safe model-
based reinforcement learning with stability guarantees,” in Proc. Adv.

Neural Inf. Process. Syst., 2017, vol. 30.
[8] A. Bianco and L. De Alfaro, “Model checking of probabilistic and

nondeterministic systems,” in Proc. Int. Conf. Found. Softw. Tech-

nol. Theor. Comput. Sci., Berlin, Germany: Springer-Verlag, 1995,
pp. 499–513.

[9] C. Brix, M. N. Müller, S. Bak, T. T. Johnson, and C. Liu, “First three
years of the international verification of neural networks competition
(VNN-COMP),” Int. J. Softw. Tools Technol. Transfer, vol. 25, pp. 329–
339, Jun. 2023.

[10] L. Brunke et al., “Safe learning in robotics: From learning-based control
to safe reinforcement learning,” Annu. Rev. Control, Robot., Auton. Syst.,
vol. 5, pp. 411–444, May 2022.

[11] R. D. Caldas, A. Rodrigues, E. B. Gil, G. N. Rodrigues, T. Vogel, and
P. Pelliccione, “A hybrid approach combining control theory and AI for
engineering self-adaptive systems,” in Proc. IEEE/ACM 15th Int. Symp.

Softw. Eng. Adaptive Self-Manag. Syst., 2020, pp. 9–19.
[12] R. Calinescu, K. Johnson, and Y. Rafiq, “Developing self-verifying

service-based systems,” in Proc. 28th IEEE/ACM Int. Conf. Automated

Softw. Eng., Piscataway, NJ, USA: IEEE Press, 2013, pp. 734–737.
[13] R. Calinescu, N. Alasmari, and M. Gleirscher, “Maintaining driver

attentiveness in shared-control autonomous driving,” in Proc. Int. Symp.

Softw. Eng. Adaptive Self-Manag. Syst. (SEAMS), Piscataway, NJ, USA:
IEEE Press, 2021, pp. 90–96.

[14] R. Calinescu, M. Ceska, S. Gerasimou, M. Kwiatkowska, and N.
Paoletti, “Efficient synthesis of robust models for stochastic systems,”
J. Syst. Softw., vol. 143, pp. 140–158, Sep. 2018. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0164121218300967

[15] R. Calinescu, R. Mirandola, D. Perez-Palacin, and D. Weyns, “Un-
derstanding uncertainty in self-adaptive systems,” in Proc. IEEE Int.

Conf. Autonomic Comput. Self-Organizing Syst. (ACSOS), Piscataway,
NJ, USA: IEEE Press, 2020, pp. 242–251.

[16] J. Cámara et al., “The uncertainty interaction problem in self-adaptive
systems,” Softw. Syst. Model., vol. 21, no. 4, pp. 1277–1294, 2022.

[17] K. Chatterjee, M. Chmelík, R. Gupta, and A. Kanodia, “Qualitative
analysis of POMDPs with temporal logic specifications for robotics
applications,” in Proc. IEEE Int. Conf. Robot. Automat. (ICRA), 2015,
pp. 325–330.

[18] K. Chatterjee, M. Chmelík, R. Gupta, and A. Kanodia, “Optimal cost
almost-sure reachability in POMDPs,” Artif. Intell., vol. 234, pp. 26–48,
May 2016.

[19] A. I. Chen, M. L. Balter, T. J. Maguire, and M. L. Yarmush, “Deep
learning robotic guidance for autonomous vascular access,” Nature

Mach. Intell., vol. 2, pp. 104–115, Feb. 2020.
[20] T. Chen, V. Forejt, M. Kwiatkowska, D. Parker, and A. Simaitis,

“Automatic verification of competitive stochastic systems,” in Proc.

18th Int. Conf. Tools Algorithms Construction Anal. Syst. (TACAS),
C. Flanagan and B. König, Eds., vol. 7214. Berlin, Heidelberg: Springer-
Verlag, 2012, pp. 315–330.

[21] F. Chollet, Deep Learning with Python. New York, NY, USA: Simon
and Schuster, 2021.

[22] M. Cleaveland, I. Ruchkin, O. Sokolsky, and I. Lee, “Monotonic safety
for scalable and data-efficient probabilistic safety analysis,” in Proc.

ACM/IEEE 13th Int. Conf. Cyber-Physical Syst. (ICCPS), Piscataway,
NJ, USA: IEEE Press, 2022, pp. 92–103.

1394 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 6, JUNE 2024

[23] C. Daws, “Symbolic and parametric model checking of discrete-time
Markov chains,” in Proc. Int. Colloq. Theor. Aspects Comput., 2005,
pp. 280–294.

[24] “DeepDECS project website.” GitHub. [Online]. Available: https://
ccimrie.github.io/DeepDECS/

[25] C. Dehnert, S. Junges, J.-P. Katoen, and M. Volk, “A STORM is coming:
A modern probabilistic model checker,” in Proc. 29th Int. Conf. Comput.

Aided Verification (CAV), 2017, pp. 592–600.
[26] A. Der Kiureghian and O. Ditlevsen, “Aleatory or epistemic? Does it

matter?” Structural Saf., vol. 31, no. 2, pp. 105–112, Mar. 2009.
[27] V. D’Silva, D. Kroening, and G. Weissenbacher, “A survey of automated

techniques for formal software verification,” IEEE Trans. Comput.-

Aided Des. Integr. Circuits Syst., vol. 27, no. 7, pp. 1165–1178,
Jul. 2008.

[28] R. Ehlers, “Formal verification of piece-wise linear feed-forward neural
networks,” in Proc. Automated Technol. Verification Anal., D. D’Souza
and K. Narayan Kumar, Eds., Cham, Switzerland: Springer-Verlag, 2017,
pp. 269–286.

[29] A. Filieri et al., “Software engineering meets control theory,” in Proc.

IEEE/ACM 10th Int. Symp. Softw. Eng. Adaptive Self-Manag. Syst.,
Piscataway, NJ, USA: IEEE Press, 2015, pp. 71–82.

[30] S. Gallotti, C. Ghezzi, R. Mirandola, and G. Tamburrelli, “Quality pre-
diction of service compositions through probabilistic model checking,”
in Proc. Int. Conf. Qual. Softw. Archit., Berlin, Germany: Springer-
Verlag, 2008, pp. 119–134.

[31] J. Garcia and F. Fernández, “A comprehensive survey on safe rein-
forcement learning,” J. Mach. Learn. Res., vol. 16, no. 1, pp. 1437–
1480, 2015.

[32] S. Gerasimou, R. Calinescu, and G. Tamburrelli, “Synthesis of proba-
bilistic models for quality-of-service software engineering,” Automated

Softw. Eng., vol. 25, no. 4, pp. 785–831, 2018.
[33] S. Gerasimou, G. Tamburrelli, and R. Calinescu, “Search-based synthesis

of probabilistic models for quality-of-service software engineering,”
in Proc. 30th IEEE/ACM Int. Conf. Automated Softw. Eng. (ASE),
Piscataway, NJ, USA: IEEE Press, 2015, pp. 319–330.

[34] M. Gleirscher and R. Calinescu, “Safety controller synthesis for collab-
orative robots,” in Proc. 25th Int. Conf. Eng. Complex Comput. Syst.

(ICECCS), Piscataway, NJ, USA: IEEE Press, 2020, pp. 83–92.
[35] M. Gleirscher et al., “Verified synthesis of optimal safety controllers

for human-robot collaboration,” Sci. Comput. Program., vol. 218, Jun.
2022, Art. no. 102809.

[36] M. Gleirscher, N. Johnson, P. Karachristou, R. Calinescu, J. Law, and J.
Clark, “Challenges in the safety-security co-assurance of collaborative
industrial robots,” in The 21st Century Industrial Robot: When Tools

Become Collaborators. Intelligent Systems, Control and Automation:

Science and Engineering. Cham, Switzerland: Springer-Verlag, 2022,
pp. 191–214.

[37] D. Gopinath, G. Katz, C. S. Pasareanu, and C. Barrett, “DeepSafe: A
data-driven approach for assessing robustness of neural networks,” in
Proc. Int. Symp. Automated Technol. Verification Anal. (ATVA), 2018,
pp. 3–19.

[38] S. Grigorescu, B. Trasnea, T. Cocias, and G. Macesanu, “A survey
of deep learning techniques for autonomous driving,” J. Field Robot.,
vol. 37, no. 3, pp. 362–386, Apr. 2020.

[39] C. M. Grinstead and J. L. Snell, Introduction to Probability. Rhode
Island: American Mathematical Soc., 1997.

[40] C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger, “On calibration
of modern neural networks,” in Proc. 34th Int. Conf. Mach. Learn.,
JMLR.org, 2017, vol. 70, pp. 1321–1330.

[41] H. Hansson and B. Jonsson, “A logic for reasoning about time and
reliability,” Formal Aspects Comput., vol. 6, no. 5, pp. 512–535,
Sep. 1994.

[42] C. Hensel, S. Junges, J.-P. Katoen, T. Quatmann, and M. Volk, “The
probabilistic model checker Storm,” Int. J. Softw. Tools Technol. Trans-

fer, vol. 24, pp. 589–610, Aug. 2022.
[43] S. M. Hezavehi, D. Weyns, P. Avgeriou, R. Calinescu, R. Mirandola,

and D. Perez-Palacin, “Uncertainty in self-adaptive systems: A research
community perspective,” ACM Trans. Auton. Adaptive Syst., vol. 15,
no. 4, pp. 1–36, 2021.

[44] C. Hsieh, Y. Li, D. Sun, K. Joshi, S. Misailovic, and S. Mitra, “Verifying
controllers with vision-based perception using safe approximate abstrac-
tions,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 41,
no. 11, pp. 4205–4216, Nov. 2022.

[45] X. Huang, M. Kwiatkowska, S. Wang, and M. Wu, “Safety verification
of deep neural networks,” in Proc. Int. Conf. Comput. Aided Verification

(CAV), R. Majumdar and V. Kuncak, Eds., Cham, Switzerland: Springer-
Verlag, 2017, pp. 3–29.

[46] R. Ivanov, T. Carpenter, J. Weimer, R. Alur, G. Pappas, and I. Lee,
“Verisig 2.0: Verification of neural network controllers using taylor
model preconditioning,” in Proc. Int. Conf. Comput. Aided Verification,
Cham, Switzerland: Springer-Verlag, 2021, pp. 249–262.

[47] R. Ivanov, T. J. Carpenter, J. Weimer, R. Alur, G. J. Pappas, and I.
Lee, “Verifying the safety of autonomous systems with neural network
controllers,” ACM Trans. Embedded Comput. Syst., vol. 20, no. 1,
pp. 1–26, 2020.

[48] R. Ivanov, K. Jothimurugan, S. Hsu, S. Vaidya, R. Alur, and O. Bastani,
“Compositional learning and verification of neural network controllers,”
ACM Trans. Embedded Comput. Syst., vol. 20, no. 5s, pp. 1–26, 2021.

[49] R. Ivanov, J. Weimer, R. Alur, G. J. Pappas, and I. Lee, “Verisig:
Verifying safety properties of hybrid systems with neural network
controllers,” in Proc. 22nd ACM Int. Conf. Hybrid Syst., Comput.
Control, 2019, pp. 169–178.

[50] D. N. Jansen, J.-P. Katoen, M. Oldenkamp, M. Stoelinga, and I. Zapreev,
“How fast and fat is your probabilistic model checker? An experimental
performance comparison,” in Proc. Haifa Verification Conf., Berlin,
Germany: Springer-Verlag, 2007, pp. 69–85.

[51] S. Jha, V. Raman, D. Sadigh, and S. A. Seshia, “Safe autonomy
under perception uncertainty using chance-constrained temporal logic,”
J. Automated Reasoning, vol. 60, no. 1, pp. 43–62, 2018.

[52] M. A. Johnson and M. H. Moradi, PID Control. London, U.K.:Springer-
Verlag, 2005.

[53] V. R. Joseph, “Optimal ratio for data splitting,” Statist. Anal. Data

Mining, ASA Data Sci. J., vol. 15, no. 4, pp. 531–538, 2022.
[54] K. D. Julian and M. J. Kochenderfer, “Reachability analysis for neural

network aircraft collision avoidance systems,” J. Guid., Control, Dyn.,
vol. 44, no. 6, pp. 1132–1142, 2021.

[55] K. D. Julian, M. J. Kochenderfer, and M. P. Owen, “Deep neural network
compression for aircraft collision avoidance systems,” J. Guid., Control,

Dyn., vol. 42, no. 3, pp. 598–608, 2019.
[56] G. Katz et al., “The Marabou framework for verification and analysis of

deep neural networks,” in Proc. Int. Conf. Comput. Aided Verification

(CAV), Cham, Switzerland: Springer-Verlag, 2019, pp. 443–452.
[57] S. M. Katz, A. L. Corso, C. A. Strong, and M. J. Kochenderfer,

“Verification of image-based neural network controllers using generative
models,” J. Aerosp. Inf. Syst., vol. 19, no. 9, pp. 574–584, 2022.

[58] M. Keegan, V. Braberman, N. D’Ippolito, N. Piterman, and S. Uchitel,
“Control and discovery of environment behaviour,” IEEE Trans. Softw.

Eng., vol. 48, no. 6, pp. 1965–1978, Jun. 2022.
[59] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”

in Proc. 3rd Int. Conf. Learn. Representations (ICLR), San Diego, CA,
USA, Y. Bengio and Y. LeCun, Eds., 2015. [Online]. Available: http://
arxiv.org/abs/1412.6980

[60] F. Küppers, J. Kronenberger, A. Shantia, and A. Haselhoff, “Multivari-
ate confidence calibration for object detection,” in Proc. IEEE/CVF

Conf. Comput. Vis. Pattern Recognit. (CVPR) Workshops, Jun. 2020,
pp. 326–327.

[61] M. Kwiatkowska, G. Norman, and D. Parker, “Controller dependability
analysis by probabilistic model checking,” Control Eng. Pract., vol. 15,
no. 11, pp. 1427–1434, Nov. 2007.

[62] M. Kwiatkowska, G. Norman, and D. Parker, “PRISM 4.0: Verification
of probabilistic real-time systems,” in Proc. 23rd Int. Conf. Comput.

Aided Verification, vol. 6806. Berlin, Germany: Springer-Verlag, 2011,
pp. 585–591.

[63] K. Leino, Z. Wang, and M. Fredrikson, “Globally-robust neural networks,”
in Proc. 38th Int. Conf. Mach. Learn. (ICML), 2021, pp. 6212–6222.

[64] Z. Marvi and B. Kiumarsi, “Safe reinforcement learning: A control
barrier function optimization approach,” Proc. Int. J. Robust Nonlinear

Control, vol. 31, no. 6, pp. 1923–1940, 2021.
[65] R. Michelmore, M. Wicker, L. Laurenti, L. Cardelli, Y. Gal, and

M. Kwiatkowska, “Uncertainty quantification with statistical guarantees
in end-to-end autonomous driving control,” in Proc. IEEE Int. Conf.

Robot. Automat. (ICRA), 2020, pp. 7344–7350.
[66] V. Mnih et al., “Human-level control through deep reinforcement learn-

ing,” Nature, vol. 518, no. 7540, pp. 529–533, 2015.
[67] J. Moody and P. J. Antsaklis, Supervisory Control of Discrete Event

Systems Using Petri Nets (The International Series on Discrete Event
Dynamic Systems), vol. 8. New York, NY, USA: Springer Science &
Business Media, 1998.

[68] M. N. Müller, C. Brix, S. Bak, C. Liu, and T. T. Johnson, “The third
international verification of neural networks competition (VNN-COMP
2022): Summary and results,” 2022, arXiv:2212.10376.

[69] G. Norman, D. Parker, and X. Zou, “Verification and control of par-
tially observable probabilistic systems,” Real-Time Syst., vol. 53, no. 3,
pp. 354–402, 2017.

CALINESCU et al.: CONTROLLER SYNTHESIS FOR AUTONOMOUS SYSTEMS WITH DEEP-LEARNING PERCEPTION COMPONENTS 1395

[70] Taxonomy and Definitions for Terms Related to Driving Automa-

tion Systems for On-Road Motor Vehicles, SAE International Stan-
dard J3016_202104, 2018. [Online]. Available: https://www.sae.org/
standards/content/j3016_201806/preview/

[71] A. M. Ozbayoglu, M. U. Gudelek, and O. B. Sezer, “Deep learning
for financial applications: A survey,” Appl. Soft Comput., vol. 93, Aug.
2020, Art. no. 106384.

[72] P. Habeeb, N. Deka, D. D’Souza, K. Lodaya, and P. Prabhakar, “Verifica-
tion of camera-based autonomous systems,” IEEE Trans. Comput.-Aided

Des. Integr. Circuits Syst., vol. 42, no. 10, pp. 3450–3463, Oct. 2023.
[73] E. Pakdamanian, S. Sheng, S. Baee, S. Heo, S. Kraus, and L. Feng,

“DeepTake: Prediction of driver takeover behavior using multimodal
data,” in Proc. CHI Conf. Human Factors Comput. Syst., 2021,
pp. 1–14.

[74] C. S. Pasareanu et al., “Closed-loop analysis of vision-based autonomous
systems: A case study,” in Computer Aided Verification, C. Enea and
A. Lal, Eds., Cham, Switzerland: Springer Nature Switzerland, 2023,
pp. 289–303.

[75] C. Paterson, R. Calinescu, and C. Picardi, “Detection and mitigation
of rare subclasses in deep neural network classifiers,” in Proc. IEEE

Int. Conf. Artif. Intell. Testing, Piscataway, NJ, USA: IEEE Press, 2021,
pp. 9–16.

[76] P. J. Ramadge and W. M. Wonham, “The control of discrete event
systems,” Proc. IEEE, vol. 77, no. 1, pp. 81–98, Jan. 1989.

[77] U. Santa Cruz and Y. Shoukry, “NNLander-VeriF: A neural network
formal verification framework for vision-based autonomous aircraft
landing,” in Proc. NASA Formal Methods Symp., Cham, Switzerland:
Springer-Verlag, 2022, pp. 213–230.

[78] G. Singh, T. Gehr, M. Püschel, and M. Vechev, “An abstract domain
for certifying neural networks,” Proc. ACM Program. Lang., vol. 3,
no. POPL, pp. 1–30, 2019.

[79] G. F. Solano, R. D. Caldas, G. N. Rodrigues, T. Vogel, and P. Pelliccione,
“Taming uncertainty in the assurance process of self-adaptive systems:
A goal-oriented approach,” in Proc. IEEE/ACM 14th Int. Symp. Softw.

Eng. Adaptive Self-Manag. Syst. (SEAMS), Piscataway, NJ, USA: IEEE
Press, 2019, pp. 89–99.

[80] E. Stevens, L. Antiga, and T. Viehmann, Deep Learning with PyTorch.
New York, NY, USA: Manning Publications, 2020.

[81] M. Svorenova and M. Kwiatkowska, “Quantitative verification and
strategy synthesis for stochastic games,” Eur. J. Control, vol. 30,
pp. 15–30, Jul. 2016.

[82] D. Tabernik and D. Skocaj, “Deep learning for large-scale traffic-sign
detection and recognition,” IEEE Trans. Intell. Transp. Syst., vol. 21,
no. 4, pp. 1427–1440, Apr. 2020.

[83] “ECE/TRANS/WP.29/2020/81—United Nations Regulation on Uniform
provisions concerning the approval of vehicles with regard to Automated
Lane Keeping Systems.” UNECE. [Online]. Available: https://undocs.
org/ECE/TRANS/WP.29/2020/81

[84] D. A. V. Veldhuizen, “Multiobjective evolutionary algorithms: classifi-
cations, analyses, and new innovations,” Ph.D. dissertation, Air Force
Institute of Technology, Wright-Patterson AFB, OH, USA, 1999.

[85] Q. Xu, Y. Yang, C. Zhang, and L. Zhang, “Deep convolutional neural
network-based autonomous marine vehicle maneuver,” Int. J. Fuzzy

Syst., vol. 20, no. 2, pp. 687–699, 2018.
[86] E. Zitzler, D. Brockhoff, and L. Thiele, “The hypervolume indicator

revisited: On the design of Pareto-compliant indicators via weighted
integration,” in Evolutionary Multi-Criterion Optimization, S. Obayashi,
K. Deb, C. Poloni, T. Hiroyasu, and T. Murata, Eds., Berlin, Germany:
Springer-Verlag, 2007, pp. 862–876.

[87] E. Zitzler and L. Thiele, “Multiobjective optimization using evolutionary
algorithms — A comparative case study,” in Parallel Problem Solving

from Nature — PPSN V, A. E. Eiben, T. Bäck, M. Schoenauer, and H.-P.
Schwefel, Eds., Berlin, Germany: Springer-Verlag, 1998, pp. 292–301.

Radu Calinescu (Senior Member, IEEE) is a Pro-
fessor in computer science with the University of
York, U.K. His research interests include formal
methods for self-adaptive, autonomous, secure and
dependable software, cyber-physical and AI sys-
tems, and in performance and reliability software
engineering. He is an Active Promoter of formal
methods at runtime as a way to improve the integrity
and predictability of self-adaptive, autonomous and
AI systems and processes.

Calum Imrie is a Researcher with the Centre for
Assuring Autonomy, the University of York, U.K.
He investigates robotics and autonomous systems
with a particular focus on the safety and assurance
of deploying these systems. This includes both the
learning phases, such as reinforcement learning, and
at runtime particularly for AI components, and self-
adaptive mechanisms. He has a special interest in
robotics and autonomous systems being utilized for
managing and protecting the environment.

Ravi Mangal received the Ph.D. degree in computer
science from Georgia Institute of Technology, in
2020. He is a Postdoctoral Researcher with Carnegie
Mellon University, the Security and Privacy Insti-
tute (CyLab). He is interested in all aspects of
designing and applying formal methods for assuring
the correctness and safety of software systems. His
research interests include developing algorithms and
methodologies for formally analyzing the safety and
trustworthiness of learning-enabled systems.

Genaína Nunes Rodrigues received the Ph.D. de-
gree from the University College London. She is an
Associate Professor with the University of Brasilia.
Her research interests include the mutual collabora-
tion between smart autonomous systems engineer-
ing and software engineering, mainly through model
checking, runtime verification, and goal-oriented
requirements engineering.

Corina Păsăreanu is an ACM Fellow and an IEEE
ASE Fellow, working at NASA Ames. She is affil-
iated with KBR and Carnegie Mellon University’s
CyLab. Her research interests include model check-
ing, symbolic execution, compositional verification,
probabilistic software analysis, autonomy, and secu-
rity. She is on the steering committees for the ICSE,
TACAS and ISSTA conferences, and is currently
an Associate Editor for IEEE TRANSACTIONS ON

SOFTWARE ENGINEERING and for STTT, Springer
Nature.

Misael Alpizar Santana received the Ph.D. degree
from the University of York. He is currently a Post-
doctoral Research Associate with the Department
of Engineering, Durham University. His research
interests include machine learning, particularly deep
neural networks, secure and resilient autonomous
and AI systems, self-adaptation, and formal verifi-
cation.

Gricel Vázquez received the M.Sc. degree in com-
putational intelligence and robotics with the Uni-
versity of Sheffield with distinction. She is a Ph.D.
Student and a Research Associate in computer sci-
ence with the University of York, U.K. Her research
interests include model-driven engineering, formal
methods, task allocation and planning, and self-
adaptive and critical systems.

