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Conformational fingerprinting with Raman
spectroscopy reveals protein structure as a
translational biomarker of muscle pathology†
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Neuromuscular disorders are a group of conditions that can result in weakness of skeletal muscles.

Examples include fatal diseases such as amyotrophic lateral sclerosis and conditions associated with high

morbidity such as myopathies (muscle diseases). Many of these disorders are known to have abnormal

protein folding and protein aggregates. Thus, easy to apply methods for the detection of such changes may

prove useful diagnostic biomarkers. Raman spectroscopy has shown early promise in the detection of

muscle pathology in neuromuscular disorders and is well suited to characterising the conformational

profiles relating to protein secondary structure. In this work, we assess if Raman spectroscopy can detect

differences in protein structure in muscle in the setting of neuromuscular disease. We utilise in vivo Raman

spectroscopy measurements from preclinical models of amyotrophic lateral sclerosis and the myopathy

Duchenne muscular dystrophy, together with ex vivo measurements of human muscle samples from indi-

viduals with and without myopathy. Using quantitative conformation profiling and matrix factorisation we

demonstrate that quantitative ‘conformational fingerprinting’ can be used to identify changes in protein

folding in muscle. Notably, myopathic conditions in both preclinical models and human samples manifested

a significant reduction in α-helix structures, with concomitant increases in β-sheet and, to a lesser extent,

nonregular configurations. Spectral patterns derived through non-negative matrix factorisation were able to

identify myopathy with a high accuracy (79% in mouse, 78% in human tissue). This work demonstrates the

potential of conformational fingerprinting as an interpretable biomarker for neuromuscular disorders.

1 Introduction

Neuromuscular disorders are a complex, heterogeneous group

of conditions that can be difficult to diagnose and monitor.

Examples include amyotrophic lateral sclerosis (ALS), in which

weakness is caused by a progressive loss of the motor neurones

controlling movement; mitochondrial disease, in which cellu-

lar energy production is comprised leading to multi-system

pathology; and primary myopathies in which alterations to

muscle proteins result in functional impairment of the

muscle. Neuromuscular disorders can present to clinicians

with a wide range of different symptoms and several different

investigations may be used in the diagnostic work up. For

example, imaging (e.g. MRI), blood tests (e.g. autoimmune

antibody testing) and neurophysiology (electromyography) may

be utilised in differing combinations to complement clinical

acumen, while genetic testing is now often used as a frontline

test when a genetic component is suspected. Regardless of the

approach, significant diagnostic delays are experienced across
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most neuromuscular conditions.1–4 In addition, translational

biomarkers of disease that can cross the divide between pre-

clinical research and clinical trials are lacking.5

Raman spectroscopy is an emerging biomarker for neuro-

muscular diseases that derives a biochemical fingerprint from

the sample of interest via the vibration of chemical bonds.

Work from our group and others has also demonstrated the

potential of Raman to identify several neurological diseases

from a range of tissues, including serum,6–8 saliva9 and tears.10

We have recently developed in vivo muscle recordings for the

assessment of preclinical mouse models11–13 and demonstrated

efficacy in human biopsy samples.14 Spontaneous Raman spec-

troscopy is an attractive potential biomarker for neuromuscular

disease as it is simple to implement, requiring no sample

preparation or tissue labelling. Technological advancements are

starting to overcome the inherently weak Raman scattering

effect and make the instrumentation suitable for deployment in

clinical environments.

While a range of compositional features are assessed in a

Raman spectrum, Raman spectroscopy has long been used to

probe protein structure. With peak fitting techniques, spectra

can provide information on secondary and tertiary arrange-

ments, which have been termed a ‘conformational finger-

print’.15 The amide I region is particularly well suited for this

purpose, with protein rich tissues manifesting a strong peak

between 1600–1700 cm−1.16 This region has been extensively

used to study the secondary structure of proteins through the

contribution of α-helical, β-sheet and non-regular

components.17,18 In recent years, this has been applied to

neurological conditions characterised by protein misfolding,

for example in studies on the pathological protein aggregates

observed in Alzheimer’s disease.19

As a protein rich tissue, in which α-helices are the predomi-

nant secondary structure,20 muscle is highly suitable for protein

conformation profiling. Using Raman, protein structures have

been studied in the context of the handling and storage of

muscle foods, using both isolated protein preparations and

intact whole tissue.21 However, the study of protein confor-

mations in human neuromuscular diseases has not yet been

performed with Raman spectroscopy. Despite this, alterations

to protein structure are a common pathological feature of many

muscle diseases. Indeed, some can be considered confor-

mational disorders characterised by protein unfolding, misfold-

ing and aggregation, leading to the label ‘protein aggregate

myopathies’.22,23 Specific examples include inclusion body myo-

pathies and myofibrillar myopathies. Many myopathies outside

this group also demonstrate evidence of protein misfolding,

these include dystrophic24–26 and inflammatory myopathies.27

In this study we have tested the hypothesis that myopathies

will result in an altered secondary protein structure or ‘confor-

mational fingerprint’ detectable through Raman spectroscopy

which can be used to identify disease. Using a combination of

peak fitting and matrix factorisation techniques across pre-

clinical models and human samples, we show that muscle

disease manifests a reduction in α-helical content that can be

quantified at both a group and individual sample level.

2 Methods
2.1 Fibre optic Raman spectroscopy

The fibre optic Raman system utilised a 0.5 mm probe

housed within a 21-gauge hypodermic needle (Fig. 1).28

A 830 nm semiconductor laser was used (Innovative

Photonics Solutions), with two low-OH fibres (cladding dia-

meter 125 µm, core diameter 105 µm) providing the delivery

and collection light paths. In-line bandpass filters were

used to remove inelastically scattered light and fluorescence

associated with the fibres (Semrock Inc.). The collection

fibre was optically coupled to the spectrometer (Raman

Explorer Spectrograph, Headwall Photonics, Inc.) and iDus

420BR-DD CCD camera (Andor Technology, Ltd). The spec-

tral resolution across the fingerprint region was 2.3 cm−1.

Laser power at the probe end was 60 mW and the acqui-

sition time for the collection of spectra was 40 seconds for

all studies. The probe was constructed such that the fibre

optics were able to be deployed around 1 mm from the top

of the needle.

Fig. 1 Schematic of the experimental set up. (A) An 830 nm semi-

conductor laser and two low-OH fibres (shown in the cylinder) were

used, with filters to remove inelastically scattered light and fluorescence.

Preclinical recordings were made in vivo under anaesthesia, while

human muscle biopsy measurements were made on calcium fluoride

slides. The collection fibre was optically couple to the spectrometer and

CCD. Created with BioRender.com. (B) Raw spectra (mean, standard

deviation shaded) within the fingerprint region are shown with the

amide I region highlighted (red box). This region was selected, spectra

from each sample averaged and background subtracted (Rubber band

algorithm), followed by smoothing (second order Savitzky–Golay filter,

5 data point window width) and vector normalisation. The resulting

mean (±standard deviation) of the amide I region is shown to the right.
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2.2 Preclinical recordings

Procedures were undertaken with University of Sheffield

Ethical Review Sub-Committee and UK Home Office approval

(licence number 70/8587), as per the Animal (Scientific

Procedures) Act 1986. Experiments were performed following

the ARRIVE guidelines.29 Breeding was undertaken in a speci-

fied pathogen-free environment and experimental work was

undertaken in a standard preclinical facility (12-hour light/

dark cycle and room temperature 21 °C). As a model of muscle

disease, the mdx model of Duchenne muscular dystrophy was

utilised. Mice were aged between 30–90 days, during which

time pathological changes are evident (total n = 32).30

Corresponding wild-type healthy control mice (C57BL/

10ScSnOlaHsd) were used with the same age range (total n =

32). The SOD1G93A model of motor neurone disease was used

as a model of ‘neurogenic’ disease (disease relating to nerve or

motor neurone pathology) at 90 days, when pathological

changes are clearly evident (n = 16),11 together with non-trans-

genic healthy littermate control mice (n = 16). For analysis,

spectra from the two colonies of healthy mice were combined

into one ‘healthy’ group. A total of 96 mice were used, all of

which were female. This was done as female SOD1G93A mice

display less variability in their phenotype than male mice31

and female mdx mice manifest prominent pathological

changes (as unlike in the human disease – Duchenne muscu-

lar dystrophy – the mutation in mdx is not sex-linked).32 By

using female mice from both colonies, we were therefore able

to avoid any confounding effects relating to gender.

Recordings were undertaken as detailed previously.11

Briefly, mice were anaesthetised using 2% isoflurane and hind-

limb fur removed. The needle probe was then inserted through

the skin and into the gastrocnemius muscles and the optical

fibres were deployed. Two insertions were made in each

muscle (the medial and lateral heads of the gastrocnemius

muscle) and both legs were studied (recordings undertaken by

JJPA, MP and JCD).

2.3 Human muscle sample recordings

Samples from 54 participants were studied. Briefly, these com-

prised 10 healthy volunteers with no neurological disease and

17 patients investigated for myopathy but found to have

alternative conditions. These were combined to form a ‘not

myopathy’ group. The age range of this group was 23–80 years,

details regarding diagnoses can be found in ESI Table 1.† 27

patients with a final diagnosis of myopathy (age range of

22–80 years) contributed samples. The most common form of

myopathy was mitochondrial myopathy (n = 15), other diag-

noses included dystrophic and inflammatory conditions.

Further details are in ESI Table 1.† Biopsies were collected

either during surgery for a joint injury (healthy volunteers), or

via conchotome needle or open biopsy (in patients investigated

for/diagnosed with muscle disease at Newcastle and Sheffield,

respectively). Samples were snap frozen and stored at −80 °C

until use. In addition, three samples from boys with DMD

were also obtained. The study was approved by NHS Research

Ethics committees (references 16/YH/0261 and 09/H0906/75)

and Good Clinical Practice (GCP) guidelines were followed. All

participants provided informed consent. For the acquisition of

spectra, the fibre optics were pressed gently against the muscle

sample. A total of 2–6 sites were studied, depending upon the

size of the sample.

2.4 Data analysis

Spectral pre-processing, matrix factorisation and classification

were undertaken using custom code in MATLAB (R2023a).

Spectra were collected between 900–1800 cm−1, with the lower

bound set at 900 cm−1 to avoid the silica-related background

from the fibre optics. Spectra were interpolated to even wave-

number spacings and then windowed in the amide I region

1590–1720 cm−1.17 Averaging (mean) was then performed such

that one mouse/human muscle sample presented one spec-

trum to the subsequent analysis. Background removal was

undertaken using the Rubber band algorithm,33 followed by

smoothing (second order Savitzky–Golay filter, 5 data point

window width) and vector normalisation, with a minimum

arbitrary intensity of zero for each spectrum.

Peak fitting was undertaken with Origin (2023). First, group

means were generated and scaled (0–1). A mixed Lorentz/

Gaussian (Voigt) function was used. For preclinical data, six

peaks centred on 1601 and 1615 cm−1 (aromatic amino side

chains), 1635 cm−1 (nonregular), 1652 cm−1 (α-helix),

1663 cm−1 (β-sheet) and 1677 cm−1 (nonregular) were

used.15,17,19 For human sample analysis, an additional peak at

1705 cm−1 (nonregular) was included.34 In both preclinical

and clinical analyses, the starting height for each peak was the

amide I spectral intensity at that wavenumber. Full width at

half maximum was enabled to an upper limit of 30 cm−1. The

percentage of aromatic amino acids and secondary structure

components were reported as the percentage of a given peak

relative to all peaks utilised in the fitting. Secondary structure

ratios were calculated using the percentage integrated area

under the peaks of interest (as a proportion of all peaks).

Spectral patterns were derived through a hierarchical alter-

nating least squares non-negative matrix factorisation (NMF)

algorithm optimised for low rank solutions.35 Briefly, non-

negative matrix factorisation approximates the original data (A,

an n × m matrix where n is the number of samples and m is

the matrix length or number of observations per sample) as

the product of two lower rank matrices, A = WH, where W rep-

resents the derived non-negative spectral patterns (modes) and

the matrix H represents the relative importance (the weights,

or coefficients) of those patterns to each sample. The number

of selected spectral patterns (rank) was determined by calculat-

ing the root mean square residual of randomly divided healthy

samples in both the preclinical and human datasets, since the

difference between two such matrices can be considered to

represent biological noise.13 To estimate the relative contri-

butions of different secondary structures within each spectral

pattern (mode), two approaches were employed, First, the

second derivative of each mode was calculated and subjected

to a Savitzky–Golay smooth (second order, 5 data points).
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Peaks were then identified using a 20% threshold, which

excluded minor peaks, and a Voigt fitting function utilised.

Peaks were allocated to α-helix (1650–1658 cm−1), β-sheet

(1664–1673 cm−1) and nonregular (1630–1640, 1674–1689 and

1700–1710 cm−1) structures.15,17,19,34 A simpler approach was

also used in which the area under those wavenumber regions

was integrated. Lastly, principal component analysis over the

amide I region was also performed for comparison with the

NMF approach. Mode coefficients (weights) were compared

using unpaired t-tests (GraphPad Prism, version 9).

For classification, the NMF weights were fed into a linear

discriminant model and performance statistics derived

through a 10-fold cross validation with stratification, which

preserves the balance of classes across the folds (MATLAB,

2023a). For the three-group mouse analysis, the area under the

receiver operating characteristic curves (AUROCs) was com-

puted using a one-versus-all approach in which the multiclass

classification is reduced to a set of binary classifications.

3 Results and discussion
3.1 In vivo preclinical data

In vivo Raman spectra were collected from the mdx model of

Duchenne muscular dystrophy (a form of primary muscle

disease), the SOD1G93A model of ALS (a ‘neurogenic’ condition

arising due to the loss of motor neurones) and age-matched

non-transgenic/wild type healthy mice. Peak fitting of the

amide I region was performed to explore secondary protein

structure through four mixed Gaussian/Lorentz profiles, repre-

senting α-helical, β-sheet and non-regular (NR) structures

(Fig. 2). In addition, two further curves representing aromatic

amino acids were included. Detailed peak characteristics are

shown in supplemental Table 2; of note, full width at half

maximum was within the resolution of the system. Utilising the

percentage area under each curve, a reduction in the α-helical

content in the mdx model was seen (48.3%for mdx versus 73.2%

for healthy muscle). A smaller reduction in α-helical was

observed for SOD1G93A muscle (68%; Fig. 1). There was a corres-

ponding increase in β-sheet content in mdx (19.3% in mdx

versus 4.6% for healthy muscle and 5.6% for SOD1G93A muscle).

Nonregular content was increased in mdx (20.3% in mdx versus

10.8% in healthy muscle) and to a lesser degree in SOD1G93A

(14.2%). These changes can also be appreciated through α-helix:

β-sheet and β-sheet: NR ratios (Fig. 1E).

Of relevance to the dystrophic myopathy model employed

herein (mdx), protein studies have demonstrated significant

misfolding in Duchenne muscular dystrophy, with reduced

α-helical content and aggregation of intermolecular β struc-

tures of the dystrophin protein and associated protein

complex.24,36,37 The dystrophic associated complex interacts

with many important proteins (e.g. structural, scaffolding pro-

teins) either directly or indirectly and, as a result, a deficiency

of dystrophin leads to a loss of the structural integrity of the

muscle cells.38 By taking measures from intact muscle, we are

not able to say whether our results stem directly from altera-

tions to the dystrophin-associated protein complex or follow-

on effects upon other muscle cell proteins. Notwithstanding

this uncertainty, in the closely related Becker form of muscular

dystrophy, more profound structural modifications in the

mutated dystrophic protein are associated with a more severe

form of the disease,39 raising the possibility that confor-

Fig. 2 Preclinical peak fitting of healthy, neurogenic and myopathic muscle shows a reduction in α-helix conformation in myopathy. (A–C) Amide I

fitting using standard peaks centred on 1601, 1615, 1635, 1652, 1663 and 1677 cm−1. For the analysis, each mouse presented one spectrum to the

analysis (healthy n = 48, mdx n = 32 and SOD1G93A n = 16). A group average was created which was used in the fitting process. (D) Each of the peaks

resolved as a percentage of the total area. A reduction of α-helix and concomitant increase in β-sheet can be seen in the model of myopathy (mdx).

(E) Ratios of different protein conformations. The reduced α-helix/increased β-sheet is evident in the mdx model of myopathy, which also manifests

an increase in the β-sheet/nonregular ratio.
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mational fingerprinting may be useful for the monitoring of

disease state. Our observations are also in agreement with the

preclinical Raman data of Gautam et al., who observed a

reduction in α-helical content across a several fly models of

human myopathy.40

In our analysis, the changes to protein folding appear

different in myopathy and neurogenic disease models. In mdx,

a large increase in both β-sheet and nonregular structures was

observed. By contrast, SOD1G93A largely manifested a more

selective increase in nonregular structures. Protein misfolding

is a feature of SOD1 ALS, with accumulations particularly pro-

minent within the spinal cord in both human patients and

rodent models.41–43 Increases in misfolded proteins have also

been reported in the context of denervation due to nerve lig-

ation.44 Thus, it is possible that the more modest structural

alterations we observed in SOD1G93A mice are a general

phenomenon relating to denervation, rather than specific to

ALS. In future work it will be worthwhile to ascertain if this

difference is present in animal and human tissues, as the myo-

pathy changes appear to be (see section 3.2). In both myo-

pathic and neurogenic conditions it will be of interest to ascer-

tain whether the structural modifications change with pro-

gression of the underlying disease.

Quantification at the individual mouse level was under-

taken using non-negative matrix factorisation. As evident in

Fig. 3, spectral modes which were dominant (i.e. had higher

scores) in mdx, manifested patterns associated with β-sheet

and nonregular conformations (e.g. modes 3 and 5; see ESI

Fig. 1 for mode profiles with peak wavenumbers labelled†). By

contrast, mode 2, which was more dominant in SOD1G93A had

no β-sheet region. Feeding these modes into a three-group

linear discriminant analysis algorithm demonstrated an

average area under the receiver operating characteristic curve

(AUROC) of 0.75 (Table 1), with the identification of mdx most

successful. An equivalent analysis with principal component

analysis (arguably the standard dimensional reduction tech-

nique in Raman spectroscopy) is shown in ESI Fig. 2,† demon-

strating a lower classification performance (AUROC – 0.70).

The matrix factorisation technique employed constrains the

outputs to a non-negative distribution. The result is a more

interpretable profile than would be obtained through, for

example, principal component analysis.45 Thus, the spectral

modes provide a profile for peak fitting (as shown in Fig. 3), or

a simpler integration of the area under specific wavenumber

windows (ESI Fig. 3†). Both approaches align with a simple

visual inspection of the modes and their peaks, as well as the

more traditional peak fitting data. A benefit of utilising the

non-negative approach is that the importance of each spectral

mode to each sample allows for quantitation at the level of

individual samples (mice in this instance), something not

possible with peak fitting, unless broad wavenumber window

smoothing is employed.15

Fig. 3 Non-negative matrix factorisation derived spectral patterns show conformational differences in preclinical models. Using the amide I spectra

from all mice (n = 96), non-negative matrix factorisation was performed. The five unique spectral patterns (A–D, ‘modes’) output are shown. Peak

fitting profiles are shown within the pattern profiles. In this analysis, the peaks for fitting were identified through examination of the second deriva-

tive (see methods). The integrated area for each protein structure is then shown as a bar chart, allowing clear differences in conformational content

to be appreciated. The mode scores, representing the importance of a given mode to each sample, were then subjected to statistical testing. Each

mouse presented one score for each mode (healthy n = 48, mdx n = 32 and SOD1G93A n = 16). *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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3.2 Ex vivo human muscle biopsy data

In the preclinical part of our study, we used the well character-

ised mdx model of DMD. As DMD is diagnosed in childhood,

and often from a genetic blood test, obtaining human muscle

samples can be challenging. After consultation with UK bio-

banks, we were able to obtain three samples. Inclusion of

these alongside the mouse data showed a promising agree-

ment with the preclinical results (ESI Fig. 4).

In order to undertake a more detailed assessment of

whether changes to protein secondary structures are evident in

human tissue, we studied muscle biopsies from adult patients.

As patients under investigation for ‘neurogenic’ (e.g. nerve/

motor neurone related) conditions such as ALS rarely undergo

muscle biopsies, our human analysis focused on myopathy.

Samples were divided into ‘not myopathy’ and ‘myopathy’

groups (see methods and ESI Table 2 for details†). Peak fitting

once again demonstrated a reduced α-helix: β-sheet ratio in the

myopathy group, together with a decrease in the in the α-helix:

NR ratio (Fig. 4; see ESI Table 3 for further peak details†). On

this occasion, an increase in the aromatic amino acid side

chains was also evident. These residues cluster in the core of

folded proteins46 and play an important role in the stability of

the protein structure.47 During modifications, such as unfold-

ing, these amino acids become exposed40 and as such may

also represent a marker of muscle health.

Non-negative matrix factorisation spectral modes were

derived and the mode with the greatest dominance in the

‘not myopathy’ group demonstrated a relatively balanced con-

formational fingerprint (Fig. 5; see ESI Fig. 5 for peak labels

and ESI Fig. 6 for the area integrated approach to confor-

mational profiling†). Using these three spectral modes within

a linear discriminant classifier demonstrated a classification

accuracy of 78% (Table 2), a result comparable to use of the

whole spectrum,14 with the advantage that the data are more

biologically interpretable. Of note, in this instance, a

PCA-LDA based analysis manifested a lower performance

(classification accuracy 67%, ESI Fig. 7†). It is worth also con-

sidering that, while the amide I region appears to comprise

biologically relevant information useful in identifying

disease, combination with other spectral regions (e.g. amide

III) may improve performance. In addition, alternative algor-

ithms, particularly non-linear methods, may provide

improved disease identification. Thus, while the data herein

represent a promising start, we hypothesise that with further

development our approach can be augmented and diagnostic

performance improved further.

Table 1 Three-group classification performance for in vivo preclinical

data using the non-negative matrix

Accuracy Sensitivity Specificity AUROC

Healthy 64% 48% 79% 0.68
Mdx 79% 75% 81% 0.83
SOD1G93A 76% 62% 79% 0.74
Average 73% 62% 80% 0.75

Fig. 4 Peak fitting from Raman muscle spectra from human samples obtained from patients with and without myopathy. (A and B) Amide I fitting

using standard peaks centred on 1601, 1615, 1635, 1652, 1663, 1677 and 1705 cm−1. For the analysis, each biopsy sample presented one spectrum to

the analysis (not myopathy n = 28, myopathy = 27). A group average was created which was used in the fitting process. (C) Each of the peaks

resolved as a percentage of the total area. A reduction of α-helix and increases in other conformations and aromatic amino acids can be seen in the

myopathy group. (D) Ratios of different protein conformations. The reduction in α-helix and increased β-sheet/nonregular structures is evident in

myopathy.
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Drawing a direct comparison with established investi-

gations for muscle disease is difficult as the literature is highly

variable and depends upon the patient group studied. Studies

on EMG performance typically report sensitivity in the region

of 0.74–0.87 and specificity in the region of 0.58–0.67.48–50

Muscle imaging results also vary (e.g. sensitivity 0.4–0.92 and

specificity 0.32–0.99).51–53 Only around half of muscle biopsies

may contribute to a specific diagnosis.54 As well as being

broadly comparable to these reports, the results we present

here provide a unique insight into the pathological changes

occurring in muscle. In the UK, the Rare Diseases Framework

(which many neuromuscular diseases fall within) highlights

the need for better diagnostic tools.55 Similarly, outcome

measures for clinical trials are also required.56 With further

development, Raman spectroscopy of muscle may provide a

unique means of identifying and characterising muscle

disease and meeting these challenges.

It is worth noting that our human sample set comprised a

range of different human myopathies, for example, mitochon-

drial myopathy (n = 15), muscular dystrophies (n = 5) and

inflammatory myopathies (n = 3). It is possible that different

myopathies may have different alterations in protein secondary

structure, however, the small numbers of samples available

means that we have not assessed this in the current study. If

there are slightly different patterns across the groups, then

pooling them as one group may make the matrix factorisation

more challenging, and, by extension, the classification more

difficult. For the same reason, having biopsies from the same

muscle might also improve the class discrimination.

Human muscle diseases are relatively uncommon and

muscle biopsies are invasive, making it difficult to obtain large

numbers of samples from individual classes of myopathy.

Progression of our in vivo preclinical protocol into human

testing may help us obtain a greater number of samples/

measurements in the future. In turn, this would permit a more

detailed characterisation of the spectral changes across

different conditions. Furthermore, human muscle pathology is

not homogeneous within a sample (or muscle) and pathology

can be missed.53 Thus, targeting the Raman probe to areas of

interest, for example, through concomitant use of electromyo-

graphy (‘optical EMG’56), may also improve detection of disease.

4 Conclusions

We have demonstrated the potential of conformational assess-

ments of the Raman amide I region to assess disease related

changes to muscle. The approach translates from an in vivo

preclinical paradigm to human ex vivo tissue, using a fibre

optic system with the potential for in vivo human recording.

Through the application of matrix factorisation, we demon-

strate that quantitative information on biologically relevant

changes in protein secondary structure can be obtained and

used to identify muscle pathology. We propose conformational

fingerprinting as a new, translational biomarker for neuromus-

cular diseases and, in particular, for myopathy. Testing this

approach in additional animal models and in vivo in human

patients will ascertain its value as an output measure of

muscle health.

Fig. 5 Non-negative matrix factorisation derived spectral patterns (modes) in human muscle. Using the amide I spectra from all sample (n = 54),

non-negative matrix factorisation was performed. The three unique spectral patterns (A–C, ‘modes’) output are shown. Peak fitting profiles are

shown within the pattern profiles, identified through examination of the second derivative (see Methods). The integrated area for each protein struc-

ture is then shown (bar chart), clear differences in conformational content can be appreciated. The mode scores, representing the importance of a

given mode to each sample, were then subjected to statistical testing. Each sample presented one score for each mode (not myopathy n = 27, myo-

pathy n = 27). A significant difference was observed for mode 1 (***P < 0.001).

Table 2 Two-group classification performance for human ex vivo

samples using the non-negative matrix factorisation modes and a linear

discriminant model

Accuracy Sensitivity Specificity AUROC

Myopathy vs. not
myopathy

78% 92% 64% 0.80
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