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Abstract
We present new action principles for unimodular gravity, defined in the chiral
Plebański formulation based on (complex) two-forms and a complex SO(3)
connection. In these theories, just as in their analogues in the metric formu-
lation, the cosmological constant does not take a prescribed value but is an
integration constant whose value can differ between different (classical) solu-
tions. We discuss some subtleties when identifying Lorentzian solutions in the
generally complex theory, and show how these theories can be reduced to a
‘pure connection’ form similar to Krasnov’s pure connection formalism for
general relativity.

Keywords: unimodular gravity, Plebański formulation, cosmological constant

1. Introduction

General relativity is most commonly thought of as a diffeomorphism-covariant theory of
Lorentzian metrics whose curvature tensors satisfy the Einstein equations, but there exist a
large number of known formulations in terms of different variables or different symmetry prin-
ciples. Rather than working with the metric, lengths and angles can be measured with a tetrad
(frame) field, and curvature can be encoded in an independent connection that may have torsion
or non-metricity. The tetrad itself can be encoded into a set of two-forms, or integrated out com-
pletely. Many of these formalisms are reviewed in [1] and in particular in the recent textbook
[2]. The diffeomorphism symmetry can be extended to Weyl transformations by including an
additional ‘dilaton’ scalar field, or reduced to a set of volume-preserving diffeomorphisms by
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fixing a preferred volume form [3] (see also [4]). Introducing a preferred volume form leads
to unimodular gravity, which differs in some important aspects from usual general relativity;
most importantly, the cosmological constant appears as an integration constant rather than a
fundamental parameter of Nature [5–7]. For a single classical solution, unimodular gravity is
indistinguishable from general relativity, but there has been some debate on equivalence at the
quantum level or implications for the so-called cosmological constant problem [8–12]1.

In this short note, we show that the (chiral) Plebański formulation of general relativity [2, 14,
15] admits various straightforward extensions to unimodular gravity, mirroring the ideas for-
mulated traditionally in themetric theory: one can either introduce a preferred volume form and
reduce the symmetry of the theory from the full diffeomorphism group to volume-preserving
diffeomorphisms; or one can follow a ‘parametrised’ formalism à la Henneaux–Teitelboim
[16] in which the cosmological constant Λ is promoted to a dynamical field, with a Lagrange
multiplier enforcing its constancy. In this latter approach, first dicussed in [17], the volume
form is related to this new Lagrange multiplier.

Apart from intrinsic interest in defining yet another way of formulating the dynamics of
general relativity, the actions presented here have various interesting applications. First of all,
they allow for the construction of new ‘pure connection’ theories analogous to those found by
Krasnov [18]. The unimodular pure connection actions are in some sense more immediately
defined than the one proposed in [18], which requires picking an arbitrary volume form to
define the Lagrangian; the unimodular setting provides a preferred volume form that can be
used for this purpose. The more minimalistic viewpoint offered by unimodular gravity com-
pared to standard general relativity—the overall conformal factor present in general relativity
carries no degrees of freedom, so might be seen as redundant [3, 19]—carries over to these
connection-based formulations.

Given that the traditional Plebański formulation is the basis for attempts to quantise gravity
through spin foams [20], the new actions also present a route towards definition of spin foam
models for unimodular gravity. In particular, the interpretation of the simplicity constraints
of Plebański gravity changes in the unimodular approach, where they involve the preferred
volume form. It would be very interesting to study how this new viewpoint could be imple-
mented at the discrete level of spin foams, leading potentially to new models which are not
equivalent to the traditionally studied models.

2. Chiral Plebański gravity

The (Lorentzian) chiral Plebański action for gravity in four dimensions is given by [2]2

S [A,Σ,M,ω] =
−i
8πG

ˆ

Σi ∧F i − 1
2
MijΣ

i ∧Σj+
1
2
ω (trM−Λ) , (1)

where Σi is a 2-form valued in the complex Lie algebra so(3,C), Fi are the components of the
curvature of an SO(3,C) connection Ai,Mij is a symmetric matrix field and ω is a complex 4-
form (to be identified, up to a constant, with the spacetime volume form).Λ is a fixed parameter
representing the cosmological constant, usually taken to be real;G denotes Newton’s constant.

1 Many arguments point towards equivalence at least of a perturbative quantisation of unimodular gravity and general
relativity [11, 13].
2 Lowercase indices i, j run from 1 to 3 whereas uppercase indices I,J will run from 0 to 3.
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The field equations of chiral Plebański gravity are (indices are raised and lowered by the
Kronecker delta δij)

F i =MijΣj , DAΣ
i = 0 , Σi ∧Σj = δijω , trM= Λ (2)

where DA is the exterior covariant derivative (here in the adjoint representation) with respect
to the connection A. The third equation says that the 2-forms Σi encode a tetrad EI and hence
a metric; for non-vanishing ω the general solution is given by

Σi = iE0 ∧Ei − 1
2
ϵijkE

j ∧Ek (3)

in terms of some EI such that ω =−2iE0 ∧E1 ∧E2 ∧E3. This result is well-known in the
literature [21]; we sketch the proof in the appendix for completeness.

The second equation of motion then says that A is torsion-free; the first equation says that

the curvature of F is self-dual (i.e. a linear combination only of the Σi and not of Σ
i
) which

encodes the trace-free part of the Einstein equations Rµν − 1
4Rgµν = 0; and finally, the last

equation gives the missing Einstein equation, determining the Ricci scalar in terms of Λ [15].
In order to obtain Lorentzian solutions from these general complex ones, one needs to

impose reality conditions

Re
(

Σi ∧Σi
)

= 0 , Σi ∧Σ
j
= 0 . (4)

Solutions to these split into four cases, whose associated tetrad EI (3) is real up to a phase factor
einπ/4 where n ∈ {0,1,2,3}. The (Urbantke) metric gµν = ηIJEIµE

J
ν associated to EI, where

ηIJ = diag(−1,+1,+1,+1), can have Lorentzian signature (either (−+++) or (+−−−))
or be of the form i times a Lorentzian metric. The same metric can be directly obtained from
Σi via the formula

gΣ (ξ,η) ω =−1
3
ϵijk iξΣ

i ∧ iηΣj ∧Σk (5)

where ξ and η are arbitrary vector fields and iξΣi := Σi(ξ, ·) denotes the contraction of a 2-form
with the vector field ξ; see [2, 22] for more details. The fact that the metric can be reconstructed
explicitly from the Σi allows defining arbitrary matter couplings at least in principle, see, e.g.
[23].

3. Unimodular extensions of Plebański gravity

In the metric formulation, the trace Einstein equation R= 4Λ is almost redundant; the Bianchi
identities applied to the trace-free Einstein equations force the Ricci scalar R to be a constant,
so the trace part only determines the value of this constant. This observation is the basis of the
unimodular formulation in which one does not impose the trace equation, and Λ becomes an
integration constant. It is natural to askwhether a similar reasoning applies to the Plebański for-
mulation; can we recover the trace condition trM= const from the other equations of motion?

If we assume the simplicity constraint Σi ∧Σj = δijω, we know that Σi are of the form (3).
Using this, one can derive the identity

Σi
µ
ρ
Σj

ρν =−δijgµν + ϵijkΣ
k
µν (6)

where gµν is the Urbantke metric, which is also used to raise the ρ index on Σi. We then also
have ΣiµνΣj

µν = 4δij.

3
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Now the Bianchi identity DAF i = 0 and the first two equations of (2) imply that Σj ∧
(DAMij) = 0 and hence

0=Σiµν
(

ΣjµνDρM
ij+ΣjνρDµM

ij+ΣjρµDνM
ij
)

= 4δijDρMij− 2δijDρMij (7)

where we write the exterior covariant derivative of Mij as DAMij = DρMij dxρ and used (6).
Contraction with δij reduces the covariant derivative to a partial derivative, δijDρMij =
∂ρ(δ

ijMij). Hence trM must be a (complex) constant. Just as in metric general relativity, the
trace Einstein equation (with undetermined value of the cosmological constant) can be derived
from the other field equations together with the Bianchi identities and a non-degeneracy con-
dition on the metric.

The simplest way of removing the constraint trM= Λ as a dynamical equation is to replace
the dynamical volume form ω by a fixed (background) volume form ω0. This turns (1) into the
unimodular Plebański action

S [A,Σ,M;ω0] =
−i
8πG

ˆ

Σi ∧F i − 1
2
MijΣ

i ∧Σj+
1
2
ω0 trM (8)

where the term ∝
´

ω0Λ, which is now just an additive constant, was dropped.
(8) leads to the equations of motion

F i =MijΣj , DAΣ
i = 0 , Σi ∧Σj = δijω0 (9)

which, by our previous discussion, correspond to the dynamical equations of unimodular grav-
ity: the volume form ω0 =−2iE0 ∧E1 ∧E2 ∧E3 is now a fixed background field, so that solu-
tions to these equations correspond to solutions of complex general relativity (with some value
ofΛ) subject to the constraint of compatibility with ω0.Λ is an integration constant, so that the
theory contains all solutions for all possible values of Λ. If ω0 is chosen to be nowhere vanish-
ing, only solutions with a nowhere vanishing volume form will be allowed. Instead of having
full diffeomorphism symmetry, the theory is only invariant under (active) volume-preserving
diffeomorphisms which would leave ω0 and hence (8) invariant. All of this is familiar from
discussions in the metric theory [3].

In general, the integration constant Λ can be complex, so the theory has more ‘Lorentzian’
solutions than the usual Plebański theory: recall that the reality conditions (4) imply that
the Urbantke metric is of the form gµν = σg̃µν , where σ ∈ {1,−1, i,−i} and g̃µν is real of
Lorentzian signature (−+++). The trace Einstein equation Rµν = Λgµν is equivalent to
R̃µν = σΛg̃µν where R̃µν is the Ricci tensor of the Lorentzianmetric g̃µν , which is real. Thus, if
Λ is a fixed real parameter, there are no dynamical solutions with σ =±i (but both σ =±1 sec-
tors are always present) [22]. In the unimodular approachΛ cannot be fixed and so ‘Lorentzian’
solutions for all four possible ‘signatures’ σ are present. One could add another reality condi-
tion ImtrM= 0 to exclude the imaginary solutions by hand.

We can obtain further actions by integrating out fields. Substituting the field equation Σi =
M−1
ij F

j back into (8) yields a unimodular first-order action in terms of only A, M and ω0,

SUFO [A,M;ω0] =
−i

16πG

ˆ

M−1
ij F i ∧F j+ω0 trM . (10)

This is the unimodular analogue of the first order chiral connection theory discussed in [2, 22,
24]. The field equations DAΣ

i
F = 0 and Σi

F ∧Σj
F = δijω0, for Σi

F := (M−1)ijFj, are equivalent
to (9).
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We can take another step and also remove the matrix fieldMij from the theory, following the
ideas of the pure connection approach [18]. Define a matrix field Xij such that F i ∧F j = Xijω0;
we can then write the simplicity constraint equation as

(

M−1
)ik
Fk ∧

(

M−1
)jl
Fl = δijω0 ⇔ M−1XM−1 = Id (11)

which has the solution(s)M=
√
X (subject to the ambiguities in defining a matrix square root).

Substituting this relation into (10) yields the unimodular pure connection action

SUPC [A;ω0] =
−i
8πG

ˆ

ω0 tr
√
X . (12)

This yields a single field equationDA
(

(X−1/2)ijF j
)

= 0, which may be rewritten asDAΣ
i
X = 0

defining Σi
X = (X−1/2)ijFj which by definition already satisfy Σi

X ∧Σj
X = ω0δ

ij. Then again,
we have the same field equations as in (9). The condition that before nowwas written dtrM= 0
becomes dtr

√
X= 0 in this formulation. Likewise, imaginary solutions could be excluded by

demanding that tr
√
X should be real.

The relation of (12) to Krasnov’s pure connection action [2, 18],

SPC [A] =
−i

16πGΛ

ˆ

εX

(

tr
√

X̃
)2

, (13)

where εX is a fixed but arbitrary volume form such that F i ∧F j = X̃ij εX, can be understood as
follows. The equation of motion derived from SPC is

DA

(

tr
√

X̃
(

X̃−1/2
)

ij
F j

)

= 0 ; (14)

here the matrix M of the (non-unimodular) chiral first order theory is recovered by defining
MX̃ := Λ

√
X̃/tr

√
X̃. But the quantity tr

√
X̃ can be set to any desired value by changing εX

(which was arbitrary) and hence X̃ij. The choice for which tr
√
X̃= Λ is precisely the unim-

odular gauge we are in when defining (12). Conceptually, we might say that defining SUPC is
simpler than defining SPC since SUPC comes with a preferred volume form, so there is no need
to choose an arbitrary εX . This more minimalistic viewpoint comes at the price of losing the
full diffeomorphism symmetry of SPC. In particular, the theory defined by SUPC is not in the
class of diffeomorphism-invariant gauge theories discussed in [25].

4. Parametrised unimodular Plebański gravity

An interesting variant of unimodular gravity was proposed by Henneaux and Teitelboim [16].
In this approach, one restores the full diffeomorphism symmetry of gravity by replacing the
fixed volume form ω0 by an auxiliary dynamical field, which can be thought of as a vec-
tor density or a dual 3-form. The cosmological constant Λ is promoted to a dynamical field,
but required to be constant by an additional constraint. The Henneaux–Teitelboim action for
(Lorentzian) ‘parametrised unimodular’ gravity reads

S [g,Λ,T ] =
1

16πG

ˆ

d4x
{√−g (R− 2Λ)+ 2Λ∂µT µ

}

(15)

where T µ is a vector density. Notice that the last term does not involve
√−g. In addition to

the Einstein equations, one finds equations of motion
√−g= ∂µT µ , ∂µΛ = 0 . (16)

5
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The volume element d4x
√−g is no longer fixed a priori but determined dynamically in terms

of T , and the action has full diffeomorphism symmetry.
One can replace T by its dual 3-form, which we will call T; this viewpoint is more suitable

when working with differential forms. We can then define an Henneaux–Teitelboim analogue
of the Plebański action (1), namely

S [Σ,A,M,ω,Λ,T] =
−i
8πG

ˆ

Σi ∧Fi −
1
2
MijΣ

i ∧Σj+
1
2
ω (trM−Λ)+

1
2
dTΛ . (17)

As in the metric case, Λ is now promoted to a dynamical field but forced to be constant by
the equation of motion dΛ = 0 coming from variation with respect to T. Variation with respect
to Λ leads to ω = dT, so again the volume form is determined in terms of T. We see that ω is
redundant and we could also work with the simpler parametrised unimodular Plebański action

S [Σ,A,M,T] =
−i
8πG

ˆ

Σi ∧Fi −
1
2
MijΣ

i ∧Σj+
1
2
dT trM , (18)

which we could have also obtained by substituting ω0 = dT into (8)3. This action was first dis-
cussed (without an imaginary prefactor) in [17]. All these actions are evidently diffeomorph-
ism invariant and no longer depend on background fields.

The field equations arising from (18) are

F i =MijΣj , DAΣ
i = 0 , Σi ∧Σj = δij dT , dtrM= 0 . (19)

In this formulationwe get the condition dtrM= 0 as a field equation, without requiring Bianchi
identities or a non-degenerate volume form. For a non-degenerate volume form ω ∝ dT, we
have seen already that the field equation dtrM= 0 would be redundant. Notice that the volume
form is now required to be globally exact, so by Stokes’ theorem the volume of any spacetime
region could be evaluated by integrating the 3-form T over its boundary4. This restriction on
global quantities such as the spacetime volume is the analogue of constraints coming from
a fixed volume form ω0 in the non-parametrised setting (see, e.g. [3]), and is related to the
appearance of a new global degree of freedom in terms of Λ. For a spacetime manifoldM with
two boundary hypersurfaces associated to times t0 and t1, the volume can be written as

V4 (M)∝
ˆ

M
dT=

ˆ

t=t1

T−
ˆ

t=t0

T . (20)

The integral of T over 3-dimensional hypersurfaces can be seen as defining a global ‘volume’
time proportional to spacetime volume, as in [16].

The elimination of fields in the 3-form approach proceeds in the sameway as in the preferred
volume form approach, except we replace ω0 with dT wherever it appears. We get actions

SPUFO [A,M,T] =
−i

16πG

ˆ

M−1
ij F i ∧F j+ dT trM , (21)

SPUPC [A,T] =
−i
8πG

ˆ

dT tr
√
XT , (22)

3 The same procedure applied to (15) yields the bona fide unimodular gravity action S[g,T ] = 1
16πG

´

d4x(∂µT µ)R.
4 In particular, the total volume of a compact spacetime without boundary would be zero. This curiosity might be
more relevant in the Euclidean than in the Lorentzian setting, where compact manifolds are of limited interest.

6
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where the matrix XijT is defined via F i ∧F j = dTXijT. This implies that for the variation,

dTδXijT = DAδA
i ∧F j+F i ∧DAδA

j− dδTXijT . (23)

The field equations arising from these actions are the same as those discussed below (10)
(with ω0 replaced by dT) and (12), respectively, plus an additional equation dtrM= 0 or
d
(

tr
√
XT
)

= 0, which would anyway arise from the Bianchi identities for a non-degenerate
dT.

5. Minisuperspace model

We can restrict these theories to a homogeneous isotropic Friedmann–Lemaitre–Robertson–
Walker (FLRW) Universe, as was done for pure connection cousins of Plebański gravity
in [22].

Consider an FLRW Universe with spatial slices of positive curvature k> 0 (the flat case
can be obtained as a limit k→ 0 in all expressions below). One can fix a Cartan frame ea

satisfying dea +
√
kϵabc eb ∧ ec = 0. Then εe = e1 ∧ e2 ∧ e3 defines a volume form andwe have

a ‘fiducial’ (coordinate) volume V=
´

εe. Variables of the model should be defined so as to
not depend on the value of V, which is arbitrary.

We can work in formalisms where the 2-forms Σi have been integrated out. Then a homo-
geneous isotropic ansatz for the connection Ai and matrix Mij is given by

Ai =

(

V−1/3 ic
3
+
√
k

)

ei , Mij =
c2 + 9V2/3k
8πG · 9p δij . (24)

The parametrised unimodular action (21), which has the full diffeomorphism symmetry of
general relativity, leads to a particularly transparent minisuperspace model. The other formula-
tions we have discussed are dynamically equivalent, but require introduction of new variables
or elimination of redundant ones. We may choose the 3-form T to be given by

T=−(8πG)2 · 2iV−1Πεe . (25)

The free functions c, p and Π only depend on time t.
The curvature 2-form associated to this choice of Ai is given by

F i = iV−1/3 ċ
3
dt∧ ei − 1

2
ϵijke

j ∧ ek
(

V−2/3 c
2

9
+ k

)

(26)

and the action (21) reduces to

S [c,p,Π] =
ˆ

dt

(

ċp+Π̇
c2 + 9V2/3k

3p

)

, (27)

which shows that the variable p introduced in the ansatz for the matrixM is just the canonical
momentum for c. Moreover, the definition of c is such that, if the dynamical variables c, p and
Π are chosen to be real, the two-forms Σi

F = (M−1)ijFj correspond to a real tetrad EI given by

Ei = V−1/3
√

8πGpei , E0 =
3
√
8πGp

c2 + 9V2/3k
dc=

√
8πG
p3/2

dΠ (28)

using the equation of motion for c. The spacetime volume between two initial and final hyper-
surfaces becomes V4 = (8πG)2(Π(tf)−Π(ti)) as discussed in the general case of (20).

7
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In a Hamiltonian analysis, introducing a canonical momentum λ for Π gives a primary
constraint

λ− c2 + 9V2/3k
3p

≈ 0 . (29)

This is the usual Hamiltonian constraint for the FLRW Universe with dimensionless cosmo-
logical constant λ= 8πGΛ [22]. We can pass to an extended Hamiltonian action

S [c,p,Π,λ,N] =
ˆ

dt

(

ċp+Π̇λ−N

(

λ− c2 + 9V2/3k
3p

))

; (30)

this is the standard minisuperspace action for gravity with cosmological constant [22] (see also
[26] for a more general viewpoint), with the cosmological constant promoted to a dynamical
variable conjugate to Π. This addition of a new global degree of freedom associated to the
cosmological constant is familiar from all unimodular extensions of general relativity.

We can immediately derive transition amplitudes or two-point functions encoding the
quantisation of this model, using a path integral approach. Let us consider a two-point function
for fixed boundary values of c and λ. The structure of (30) implies that this is given by

G(cf,λf|ci,λi) =
ˆ

DΠDλ exp

(

i
ˆ

dt Π̇λ

)

Gλ (cf|ci) = δ (λf−λi)Gλf (cf|ci) (31)

whereGλ(cf|ci) is the two-point function of the minisuperspace model with fixed λ. The result
for the latter can be found in the literature [22, 27], and depends on the type of two-point func-
tion one is interested in. For a two-point function that solves the Wheeler–DeWitt equation,
one would integrate N over the whole real line and find

Gλ (cf|ci) = exp

[

i
3λ

(

c3f − c3i
3

+ 9V2/3k (cf− ci)

)]

. (32)

The discussion here is similar to the one given for unimodular gravity in [27]. Note that ‘no
boundary’ initial data (trying to set pi = 0 initially and using the constraint) would correspond
to the two possible choices ci =±3iV1/3

√
k which (depending on the sign) lead to either

exponential suppression or enhancement.
As a final remark, for a fixed λ model the two-point function could be understood from

the observation that the minisuperspace action could be reduced to a pure boundary term after
inserting the solution for p in terms of c [22]. This reflected the fact that such a model has no
independent degrees of freedom. In the unimodular setting we have a global degree of freedom
given by λ, and no such reduction to a boundary term is possible.

6. Conclusions

We have shown how to incorporate the main ideas behind unimodular gravity—a fixed volume
form and a cosmological constant that appears as an integration constant, rather than a funda-
mental parameter—into the (chiral) Plebański formulation. Our constructions mirror closely
what is done in the metric approach; one can either introduce a background field ω0 repres-
enting the volume form, or one can promote Λ to a field constrained to be constant by a new
Lagrange multiplier-like field which then also determines the volume form. Classically, these
theories are equivalent to the usual theories based on the chiral Plebański formulation, includ-
ing a first order chiral connection theory obtained from integrating out the 2-form Σi, and the

8
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pure connection action studied by Krasnov. There is an important difference when trying to
restrict to Lorentzian solutions via reality conditions; the usual reality conditions now allow
for solutions corresponding to purely imaginary metrics, which could be excluded by hand by
adding further constraints.

All of the actions discussed above have a Euclidean signature counterpart, leading to tetrads
encoding a positive-definite (or negative-definite) metric tensor. To construct these actions,
we simply require that all of the fields be real valued, and we omit the factor of −i present
in the constant prefactors5. For example when working with homogeneous spacetimes, which
have a well-defined notion of time, it may be easiest to first work in the Euclidean regime
where computations are simpler, and use a Wick rotation (or a choice of complex boundary
conditions) to transform the results into the Lorentzian regime [22].

While equivalence of the classical unimodular and standard formulations of general relativ-
ity is more or less straightforwardly understood, whether there is equivalence at the quantum
level is more of an open question [11]. Since the Plebański formulation and its descendants are
the starting point for the construction of spin foammodels for general relativity, one interesting
question is whether one could now construct spin foam models for unimodular gravity. These
might suggest different implementations of simplicity constraints, which involve the preferred
volume form in the setting illustrated here. On a more foundational level, one key property
of unimodular formulations is that they provide a globally valid time coordinate related to
the total spacetime volume, and a Schrödinger-type interpretation of quantisation becomes
available [28]. Quantisation of such models, whether through spin foams or otherwise, could
hence be studied in terms of (potentially unitary) evolution in unimodular time.

There is also the question of how to incorporate matter into these formulations. In the for-
mulations in which the 2-forms Σi are dynamical variables, for instance (8) and (18), one may
construct a metric tensor via the Urbantke formula (5). One may then use this metric to couple
scalar and tensor fields in the usual way, as in [23]. The coupling of fermions was discussed in
[21]. In the cases where Σi are not independent variables, as in (10) or (12) for example, one
may reconstruct Σi via Σi = (M−1)ijFj or Σi = (X−1/2)ijFj respectively; one can then define
the Urbantke metric and follow the same approach. While consistent coupling of matter fields
can be achieved for all actions we consider, the complexity of the expression for the Urbantke
metric increases as we descend the hierarchy from Plebański-like to first-order and ultimately
pure connection formulations. All this is very similar to the usual Plebański formulation.
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Appendix. Solving the simplicity constraints

This summary follows [2, 21]. Assuming Σi ∧Σj = δijω with non-zero ω, construct two 2-
forms

Σ± =Σ1 ± iΣ2 . (A1)

These are both simple, Σ+ ∧Σ+ =Σ− ∧Σ− = 0, and so can be written as wedge products of
two one-forms

Σ+ = θ0 ∧ θ1 , Σ− = w2 ∧w3 . (A2)

We then also have Σ+ ∧Σ− = θ0 ∧ θ1 ∧w2 ∧w3 = 2ω. From Σ3 ∧Σ+ =Σ3 ∧Σ− = 0 we
then get

Σ3 =
1
2

(

O11 θ
0 ∧w3 +O12 θ

0 ∧w2 +O21 θ
1 ∧w3 +O22 θ

1 ∧w2
)

(A3)

with undetermined coefficients Oαβ . The last condition Σ3 ∧Σ3 = ω tells us O11O22 −
O12O21 = 1 so these coefficients form a matrix O ∈ SL(2,C), which can be used to define
new one-forms

(

θ3

θ2

)

= O

(

w3

w2

)

, θ2 ∧ θ3 = w2 ∧w3 =Σ− . (A4)

In terms of this new basis, we findΣ3 = 1
2

(

θ0 ∧ θ3 + θ1 ∧ θ2
)

. These one-forms define a tetrad
via, e.g.

θ0 =−E1 − iE2 , θ1 = i
(

E0 −E3
)

, θ2 = E0 +E3 , θ3 = iE1 +E2 (A5)

such that (3) holds. By self-consistency we then also have ω =−2iE0 ∧E1 ∧E2 ∧E3.
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[10] Jiroušek P 2023 Unimodular approaches to the cosmological constant problem Universe 9 131
[11] Carballo-Rubio R, Garay L J and García-Moreno G 2022 Unimodular gravity vs general relativity:

a status report Class. Quant. Grav. 39 243001
[12] Alvarez E and Velasco-Aja E 2023 A primer on unimodular gravity (arXiv:2301.07641)
[13] Kugo T, Nakayama R and Ohta N 2021 BRST quantization of general relativity in unimodular

gauge and unimodular gravity Phys. Rev. D 104 126021
Kugo T, Nakayama R and Ohta N 2022 Covariant BRST quantization of unimodular gravity:

Formulation with antisymmetric tensor ghosts Phys. Rev. D 105 086006
Kugo T, Nakayama R and Ohta N 2022 Covariant BRST quantization of unimodular gravity. II.

Formulation with a vector antighost Phys. Rev. D 105 106006
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[15] KrasnovK 2011 Plebański formulation of general relativity: a practical introductionGen. Rel. Grav.

43 1–15
[16] Henneaux M and Teitelboim C 1989 The cosmological constant and general covariance Phys. Lett.

B 222 195–9
[17] Smolin L 2011 Unimodular loop quantum gravity and the problems of time Phys. Rev.D 84 044047
[18] Krasnov K 2011 Gravity as a diffeomorphism-invariant gauge theory Phys. Rev. D 84 024034

Krasnov K 2011 Pure connection action principle for general relativity Phys. Rev. Lett.
106 251103

[19] van der Bij J J, van Dam H and Ng Y J 1982 The exchange of massless spin-two particles Physica
A 116 307–20

[20] Perez A 2013 The spin-foam approach to quantum gravity Living Rev. Relativ. 16 3
[21] Capovilla R, Dell J, Jacobson T and Mason L 1991 Self-dual 2-forms and gravity Class. Quantum.

Grav. 8 41–57
[22] Gielen S and Nash E 2023 Quantum cosmology of pure connection general relativity Class. Quant.

Grav. 40 115009
[23] Tennie F and Wohlfarth M N R 2010 Consistent matter couplings for Plebanski gravity Phys. Rev.

D 82 104052
[24] Herfray Y, Krasnov K and Shtanov Y 2016 Anisotropic singularities in chiral modified gravity

Class. Quant. Grav. 33 235001
[25] Krasnov K 2012 A gauge-theoretic approach to gravity Proc. R. Soc. A 468 2129–73
[26] Alexandre B, Gielen S and Magueijo J 2023 The meaning of imaginary space (arXiv:2306.11502)
[27] Isichei R and Magueijo J 2023 Minisuperspace quantum cosmology from the Einstein–Cartan path

integral Phys. Rev. D 107 023526
[28] Unruh W G and Wald R M 1989 Time and the interpretation of canonical quantum gravity Phys.

Rev. D 40 2598–614

11


	Unimodular Plebaski gravity
	1. Introduction
	2. Chiral Plebaski gravity
	3. Unimodular extensions of Plebaski gravity
	4. Parametrised unimodular Plebaski gravity
	5. Minisuperspace model
	6. Conclusions
	Appendix. Solving the simplicity constraints
	References


