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A B S T R A C T   

Not only is the global population ageing, but also the built environment infrastructure in many cities and 
communities are approaching their design life or showing significant deterioration. Such built environment 
conditions often become an environmental barrier that can either cause stress and/or limit the mobility of older 
adults in their neighbourhood. Current approaches to detecting stressful environmental interactions are less 
effective in terms of time, cost, labour, and individual stress detection. This study harnesses the recent advances 
in wearable sensing technologies, machine learning intelligence and hotspot analysis to develop and test a more 
efficient approach to detecting older adults’ stressful interactions with the environment. Specifically, this study 
monitored older adults’ physiological reactions (Photoplethysmogram and electrodermal activity) and global 
positioning system (GPS) trajectory using wearable sensors during an outdoor walk. Machine learning algo
rithms, including Gaussian Support Vector Machine, Ensemble bagged tree, and deep belief network were trained 
and tested to detect older adults’ stressful interactions from their physiological signals, location and environ
mental data. The Ensemble bagged tree achieved the best performance (98.25% accuracy). The detected stressful 
interactions were geospatially referenced to the GPS data, and locations with high-risk clusters of stressful in
teractions were detected as risk stress hotspots for older adults. The detected risk stress hotspot locations cor
responded to the places the older adults encountered environmental barriers, supported by site inspections, 
interviews and video records. The findings of this study will facilitate a near real-time assessment of the outdoor 
neighbourhood environment, hence improving the age-friendliness of cities and communities.   

1. Introduction 

The global population is ageing; the proportion of the global popu
lation aged 65 years or over (referred to as older adults in this study) is 
projected to increase from 9.3% in 2020 to 16% in 2050 [1]. Globally, 
one in six people is expected to age 65 years by 2050 [1]. With the 
changing age structure of the projected population, many countries are 
confronted with unprecedented challenges. An effective local approach 
for responding to population ageing is by creating environments that are 
inclusive and accessible to promote active ageing [2,3]. The 
Age-friendly Cities and Communities (AFCC) concept was proposed in 
pursuit of developing communities and cities that support active ageing 
[4]. The WHO proposed eight groups of features to promote active 

ageing: outdoor spaces and buildings; transportation; housing; social 
participation; respect and inclusion; civic participation and employ
ment; communication and information; and community supports and 
health services [2]. Other concepts similar to the AFCC include the 
elder-friendly community [5–7]; liveable community [8], lifetime 
neighbourhood [9] and positive ageing framework [10]. All these AFCC 
concepts share a common aim to develop cities and communities that 
support active ageing [11]. 

The AFCC features broadly span from the physical environment to 
the social environment [11]. However, this study focuses on the outdoor 
environment, which is one of the key features of the city and com
munity’s physical environment that strongly influence personal 
mobility, safety from injury, security from crime, health behaviour and 
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social participation [2,12,13]. In this research, the outdoor environ
ment, built environment, and physical environment are used 
interchangeably. 

Not only is the global population ageing, but also the built envi
ronment infrastructure in many cities and communities are approaching 
their design life or showing significant deterioration [14]. This phe
nomenon is referred to as “double ageing” [15]. Most of the infra
structure in the developed economies are aged 40 years or more [16]. 
Ageing built environment infrastructure with defects are likely to result 
in environmental barriers with excessive demands (an environmental 
barrier is an environmental condition or physical feature that can 
impede an individual’s mobility [17] [18,19]. Research has shown that 
older adults residing in areas with environmental barriers, such as poor 
sidewalk conditions, high hills, and heavy traffic, are at a greater risk of 
reporting mobility limitations [17,20]. An environmental barrier is 
relative to a person’s functional capability [21,22]; when the demands 
of an environmental condition or physical feature meet a person’s 
functional capability, the person achieves successful mobility. 
Conversely, when the demands of the environmental condition or 
physical feature exceed a person’s functional capability, the person 
experience stress and/or their mobility is limited [21,23–25]. Stress is a 
relationship between a person and the environment; it is experienced 
when demands tax or exceed the person’s capability [26]. People with 
declined functional capacity, such as older adults, must contend with 
many environmental barriers that may result in stress and/or hinder 
older adults’ participation in outdoor activities [27,28]. This study aims 
to identify such environmental barriers as a means to reshape our cities 
and communities to be more inclusive and accessible to people of all 
ages and abilities. In this research, the term detecting older adults’ 
stressful interactions means detecting the stress of older adults while 
interacting with the built environment. 

1.1. Assessing the built environment to promote mobility 

Since the 1980s, urban planners and travel behaviour researchers 
have studied how the built environment affects people’s outdoor phys
ical activities, recreational behaviours, and quality of life [29,30]. In 
recognition of the importance of physical activity, planners have 
developed conceptualisations of community design such as walkability, 
that is, the extent to which the built environment supports and en
courages mobility by walking [31]. Mobility is defined as the ability to 
achieve access to the desired place [17]. Conceptual models on the built 
environment and mobility postulate that mobility is affected by different 
built environment attributes [32,33]. To understand the effect of the 
built environment on mobility, it is of paramount importance to develop 
a high-quality assessment approach [30]. Of central concern among the 
active living researchers is developing accurate and efficient built 
environment assessment approaches [29,30]. Four categories of built 
environment assessment approaches are being used: perceived envi
ronment assessment approach, systematic observational assessment 
approach, Geographical information systems (GIS)-based assessment 
approach, and bodily response-bases assessment approach. 

The perceived (also known as self-report) environment assessment 
approach often requires untrained raters to judge the extent to which the 
built environment promotes or hinders their mobility [29]. The 
perceived environment assessment approach is mainly collected using 
interviews or self-administered questionnaires [30,34]. The systematic 
observational assessment approach, also known as environmental audit, 
often requires trained observers to quantify the attributes of the built 
environment. Trained observers use predefined protocols or tools to 
assess the built environment attributes as it is directly observed 
(in-person observation) [30,35]. These audit tools have enabled a sys
tematic and objective assessment of the built environment. The 
GIS-based assessment often relies on archived (existing) data that have 
spatial reference to assess the built environment [36]. Data such as 
infrastructure-based data (e.g., air quality and sound level), 

user-generated data (e.g., GPS) and street view imagery (e.g., Google 
Street View, Google Earth, and Bing Map) are often used to audit the 
built environment [37–39]. GIS-based assessment enables an objective 
assessment of the built environment dispersed across a large area [30]. 
The fourth category of assessment approach involves data collected from 
users’ direct bodily responses to assess the built environment objectively 
and continuously [40–44]. The bodily responses (i.e., physiological, 
behavioural, or cognitive responses) collected using sensing technolo
gies are spatially matched with GPS data to assess the built environment. 

Each of the built environment assessment approaches has its own 
advantage and disadvantage, which could affect its effectiveness. 
Because the perceived environment assessment involves interviews or 
self-administered questionnaires, its main drawback is declining 
response rates [30]. Also, interviewing or administering questionnaires 
to older adults might obstruct their daily lives; especially in large-scale 
neighbourhood assessment that takes a longer period to complete. 
Although the observational assessment approach is objective, it involves 
in-person observation, which is time-consuming and costly [30]. 
Observational assessment demands investment in staff, training of ob
servers, and transportation to the assessment site, among others. 
Because this approach is time-consuming, labour intensive and costly, it 
may limit the scope and frequency of conducting neighbourhood as
sessments. Although the GIS-based assessment can provide an objective, 
less obstructive, less labour intensive, less time-consuming, and 
large-scale assessment of the built environment [45], it is inefficient in 
detecting older adults’ environmental barriers. Because an environ
mental barrier is relative to an individual’s capability, the GIS-based 
approach cannot adequately distinguish between an environmental 
condition that is a barrier for one person and not a barrier for another 
person [21,22]. Sensing people’s direct bodily responses to the envi
ronment can detect such environmental barriers that could not be 
detected using the GIS-based or observational assessment approach [40, 
42,46,47]. The bodily response-based assessment provides a continuous 
assessment of the built environment and is less obstructive depending on 
the sensing technology adopted. The major limitation of the GIS and 
bodily response-based assessments is the hardware cost. However, the 
decrease in size, cost and miniaturisation of the sensors have made them 
more pervasive in recent times, and they are now embedded into 
wearable devices [48]. 

1.2. Wearable technology for older adults in a real-world ambulatory 
setting 

The human experience in the environment is the human state of 
being affected by the surrounding environments [49]. Signals for 
inferring changes in demanding environmental conditions are regulated 
by the autonomic nervous system (ANS) [50,51]. The ANS consist of the 
sympathetic and parasympathetic nervous systems that usually act 
involuntarily to regulate human response to stress [42,50]. When the 
body is stressed, the ANS provoke responses in humans which are re
flected in the physiological, behavioural and cognitive signals [51,52]. 
The physiological signals are involuntary actions or responses that are 
almost impossible to notice by external observation because they relate 
to how a living organism or bodily part functions. Behavioural signals 
are somewhat voluntary actions that can be externally observed. The 
cognitive signals relate to the activities of the brain or mental state [52]. 

Current generation wearable technology with wireless sensors has 
enabled non-invasive real-time sensing of a person’s physiological, 
behavioural, and cognitive state. Researchers are harnessing these 
wireless sensors to advance the frontiers of knowledge about human- 
environment interaction in ambulatory naturalistic settings. For 
example, pedestrians’ behaviour, mainly gait patterns, has been 
continuously monitored using inertial measurement unit (IMU) sensors 
to assess neighbourhood walkability [40,46,53]. When pedestrians walk 
on a defective sidewalk (for example, broken pavement, an uneven 
sidewalk, or loose brick), their gait becomes unstable and imbalanced. 
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As a result, recent studies have attempted to monitor pedestrians’ gait as 
a means of assessing the environmental condition. Although this is a 
promising approach to detecting defects in sidewalks, it may be inef
fective when the gait data is collected from older adults due to the 
prevalence of gait disorder among people aged over 60 years [54]. Older 
adults exhibit diverse abnormal gait responses, which makes it unreli
able when computing the common gait among multiple older pedes
trians to detect environmental defects [55]. 

The activation of the human brain has been continuously monitored 
using wearable electroencephalogram (EEG) sensors to detect stressful 
environmental conditions [47,56]. The brain’s activities are measured 
by attaching electrodes at specific points on the skin of the head to make 
good contact with the scalp [57]. However, because current EEG sensors 
require good contact with the scalp, their effectiveness can be impacted 
in an ambulatory, real-world setting. For example, recent studies re
ported stability issues and temporary dysfunction of an EEG headset 
while monitoring pedestrians’ brain activation in an ambulatory out
door environment [55,58]. To accurately and reliably monitor older 
adults’ stress due to environmental conditions, it is essential to use 
sensors that are stable in the wild. 

In recent years, an increasing number of studies have measured 
human physiological signals from wireless sensors worn on the wrist. 
For example [41–43,59], and [44] monitored people’s physiological 
response from wristband type sensors in ambulatory, real-world set
tings. These earlier studies prove that physiological signals can be 
monitored from wristband-type sensors in an ambulatory, real-world 
setting and can be extended to capture older adults’ stressful environ
mental conditions. Older adults perceive wristband-type sensors as 
comfortable and easy to use, and, therefore, suitable for long-term use 
[60]. 

1.3. Multimodal physiological sensing and fusion 

Photoplethysmogram (PPG) and electrodermal activity (EDA) are 
the commonly used physiological signals to reflect stressful human- 
environment interactions [41,42]. PPG is an optical and non-invasive 
method that measures the blood volume pulse from which heart rate 
variability (HRV) can be derived. HRV is a reliable indicator of the 
sympathetic and parasympathetic nervous system; it is of huge interest 
in studies of stress [61]. EDA is also known as Galvanic skin response. 
EDA measures the activation of the sympathetic nervous system 
non-invasively and is one of the most frequently employed signals for 
detecting physiological arousal and stress [62,63]. A stimulated sym
pathetic nervous system triggers variation in the eccrine sweat gland 
activity, thus changing the conductivity of the skin [63]. 

Specifically, previous studies have used one physiological modality 
(i.e., PPG or EDA) or one feature extracted from a physiological modality 
(mainly, heart rate extracted from PPG or mean EDA extracted from 
EDA) to understand people’s interaction with the built environment [41, 
46,64]. Although these modalities and features are useful indicators of 
people’s stressful interactions, relying on only one physiological mo
dality or feature might not be enough when it comes to understanding 
stressful human-environment interactions in ambulatory, real-world 
settings because the informativeness of the modality or feature could 
be impacted by human variability (e.g., pace), sensor variability (e.g., 
sensor drift) and environmental condition (e.g., temperature). To 
improve the effectiveness of the bodily response-based assessment 
approach, this study adopts a multimodal information fusion technique. 

Information about stressful human-environment interaction can be 
acquired among others from different types of sensors, under different 
conditions, from multiple participants or experiments. Each acquisition 
framework is termed a modality and is associated with one data set. A 
complete setup of the framework making use of multiple modalities for 
each data set to interact and inform each other is termed multimodal 
[52,65]. Multimodal fusion is a well-established technique. Its effec
tiveness is demonstrated by minimising the effects of incorrect data 

acquisition and providing complementary data (collective knowledge) 
that enhance the diversity of the system. Diversity helps improve the 
reliability, accuracy, robustness, uniqueness and generalisation of the 
system [65]. 

Multimodal information can be fused at three main hierarchical 
levels: signal level (raw) data fusion, feature level fusion and decision 
level fusion [66,67]. Signal level fusion is applied to data measuring the 
same signal property (commensurate data) directly. Feature level fusion 
is applied to combine data measuring separate signal properties (non-
commensurate data). Decision level fusion is implemented at the highest 
level of abstraction from sensor data, and it is more appropriate when 
modalities have differences in time scale [48,66]. In this study, two 
different modalities (i.e., EDA and PPG signals) are measured in a 
synchronised time scale to represent stressful human-environment 
interaction. Feature level fusion strategy is the most appropriate for 
this study because the EDA and PPG signals measure different signal 
properties (i.e., the EDA measures signal property from the skin organ 
and the PPG from the heart organ). In this case, features extracted from 
sensor data are used to form a feature vector and combined using 
parametric or non-parametric machine learning algorithms to discrim
inate and represent the data into higher abstractions [48,66]. 

1.4. Built environment determinant of walking 

The main evidence-based framework of physical environmental 
factors that may influence walking in the local neighbourhood was 
developed by Ref. [32]. Based on published evidence and policy litera
ture, interviews with experts and a Delphi study [32], identified four 
built environmental domains: functionality, safety, aesthetics, and 
destination. Functionality relates to the physical attributes of the street 
and path that reflect the condition of the structural elements of the built 
environment [32,68]. Safety reflects elements of the environment that 
strengthen the feeling of safeness and increase the degree of comfort of 
the older pedestrians [32,68,69]. Aesthetics reflects elements of the 
environment that are visually interesting, and appealing on the human 
scale, and increase the attractiveness of the environment [32,68,69]. 
The destination domain relates to the availability of community and 
commercial facilities in the neighbourhood [32]. The built environ
mental domains and factors that contribute to each of these domains are 
presented in Table 1. 

1.5. Environmental stress hotspot 

Stress can be triggered by several factors [70]. Previous studies have 
successfully distinguished between stressful interactions due to the built 
environment from stress due to other stress factors by using hotspot 
analysis. Hotspot analysis is a spatial analysis technique for identifying 
clusters of spatial phenomena. Getis-Ord Gi* and kernel density esti
mation have been employed to detect environmental stress hotspots 
from people’s physiological responses to the environment [41,58,64]. 

A neighbourhood with significant built environment infrastructure 
approaching their design life is more likely to have several environ
mental stress hotspots for older adults. Given the limited resources 
available to most cities and communities, it will be more beneficial to 
identify the stress hotspots that pose a higher risk to older adults. Such 
stress hotspots can be prioritised and alleviated to improve neighbour
hood walkability for older adults. 

1.6. Research objectives and significance 

This research aims to develop and test a smart and more efficient 
approach to detecting older adults’ stressful interactions with the 
environment. To achieve the aim, this study (1) sensed older adults’ 
physiological reactions using non-invasive wearable wristband-type 
sensors to represent their interaction with the environment, (2) 
trained and tested machine learning algorithms to detect each older 
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adult’s stressful interactions from their multimodal physiological sig
nals, location and environmental data, and (3) spatially matched the 
detected stressful interactions with GPS data and locations with clusters 
of risk stress hotspot were identified. The outcome of this study will be a 
multimodal data collection and computational approach that will 
enhance the effectiveness of the bodily response-based assessment of the 
built environment. More importantly, this study will enable urban 
planners to detect, prioritise and alleviate environmental stress hotspots 
that pose a higher risk to older adults. 

2. Method 

This research is designed to recreate the natural environment as 
realistically as possible to ensure ecological validity. Using an environ
ment that is natural or normal to the participant has higher ecological 
validity. It is more likely to obtain a result representing everyday life; in 

that way, results are more generalisable to the target population and 
other environment settings [71–73]. However, examining naturalistic 
behaviour in natural settings makes it impossible to ensure that the 
outdoor environmental conditions (e.g., weather conditions) remain the 
same for each experiment day and for all participants. An overview of 
the research approach is depicted in Fig. 1. 

2.1. Experiment design 

Through the collaboration with the Institute of Active Ageing, Hung 
Hom, a 570 m walking path was selected in the neighbourhood of Hung 
Hom, Hong Kong. The path was selected because it consists of various 
potential environmental conditions that can hinder older adults’ 
mobility; it is located in an old district currently undergoing urban 
renewal. The description of the path is presented in Fig. 2, Fig. 3, and 
Fig. 4. The Institute of Active Ageing is an interdisciplinary research and 
academic centre for the advancement of knowledge and practice to 
facilitate active ageing. Ten ambulatory older adults aged 65 and above 
were recruited through the networks of the Institute of Active Ageing to 
participate in the environmental walk. This experiment involves older 
adults self-reporting their experience (i.e., perceived assessment of the 
path). The prevalence of subjective cognitive decline among older adults 
could affect their assessment [74,75]. Therefore, the participants had to 
meet the recommended cut-off score for The Mini-Mental State Exami
nation (MMSE) to be eligible to participate in this study. The MMSE is a 
quick, easy-to-use, acceptable, valid, reliable and widely used screening 
instrument for assessing cognitive functions both in clinical and research 
settings [76–78]. The MMSE comprises 11 questions and requires only 
5–10 min to administer. The MMSE consists of two main parts. Part one 
examines the participants’ oral responses focusing on the orientation, 
memory, and attention of the participants. Part two examines the par
ticipants’ ability to name objects, follow verbal and written commands, 
write a sentence, and copy a complex polygon similar to a 
Bender-Gestalt Figure. 

The Cantonese version of the MMSE (CMMSE) [79] was used to 
screen the older adults in Hong Kong. The CMMSE is readily compre
hensible to the older adults in Hong Kong. The scale has been proven to 
have good reliability and validity to detect cognitive impairment among 
Hong Kong elderly [79,80]. A cut-off score of 19/20 is recommended as 
an indication of cognitive impairment among Hong Kong older adults. 
According to Ref. [79]; the educational level of the participants has a 
significant effect on the MMSE scores. In order to factor in this differ
ence, three different cut-off scores were recommended: cut-off score 
≥18 points for the illiterate elders, cut-off score ≥20 points with 1–2 
years of education; and cut-off score ≥22 points with more than 2 years 
of education [80,81]. All of the ten participants scored above the rec
ommended score for the test. The environmental walk was conducted in 
November 2019 between 10 a.m. and 4 p.m. The environment temper
ature ranges from 24◦C to 29 ◦C, and the humidity ranges from 41% to 
55%. The weather condition and the time to complete the walk for each 

Table 1 
Built environment factors that may influence walking.  

Domain Element 

Functionality Path condition (wet and slippery streets) 
Path slope 
Path obstruction 
Major barriers (roadwork, steep staircases) 
Minor barriers (cracks, holes, bumps, parking meters) 
Street crowd 
Motor vehicles parked on footpath 
Hawkers and shops on streets 
Path width 
Path material 
Curb cut features 
Permeability 

Safety Pedestrian crossing 
Traffic load 
Traffic calming devices 
Streetlight 
Directional sign 
Presence of people 
Signs of crime/disorder 
Stray dogs/other animals 

Aesthetics Views 
Building attractiveness 
Attractive natural sights 
Streetscape 
Litter 
Graffiti 
Pollution (noise and air) 
Greenery 

Destination Transport-related 
Public open space 
Recreational 
Government/public services 
Public facilities 
Commercial destinations 

Source: [32,68]. 

Fig. 1. Overview of the research.  
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participant are provided in the online supplementary material. A 
shopping voucher was offered as compensation for participation. 

Before the environmental walk, a practice session was held to 
demonstrate the wearable sensors to the participants and to familiarise 
the participants with the experimental procedures. The participants 
were also briefed on the definition of stress adopted in this study. The 
participants completed and signed an informed consent form after 
obtaining written and spoken information about the experimental pro
cedures. The environmental walk was conducted in two stages: (1) 
physiological sensing; and (2) ground truth collection. During the first 
stage, the participants walked the path while equipped with wearable 
sensors for physiological sensing, location and environmental data 
collection. The participants walked the path from start to finish, as 
shown in Fig. 2, at a self-directed pace. Two researchers accompanied 
the participants. One of the researchers was responsible for providing 
directions if needed, and troubleshooting any technical malfunction 
with the wearable sensors. The other researcher recorded a video of the 
environmental walk and took notice of any abnormal activity or event. 

During the second stage, the participants were asked to walk the 
same route without wearing the sensors. Instead, the participants were 
asked to identify locations where they experienced stressful interactions 
with the environment. The participants also stated the intensity of the 
perceived stress (low or high intensity). A researcher accompanied and 
assisted the participants to document their responses. Participants’ re
sponses from the second stage combined with the recorded video were 
used to label their physiological signals as (1) non-stress and stress; and 
(2) low-stress and high-stress. Note that none of the participants has 
previously experienced or is familiarised with the path. The walking 
path and experimental procedures were reviewed and approved by the 
Human Subjects Ethics Sub-committee of The Hong Kong Polytechnic 
University (Reference Number: HSEARS20190826002). 

2.2. Data collection 

Two biosensors—a PPG sensor and an EDA sensor—were used to 
recognise the physiological states of older adults. A commercial-off-the- 
shelf wearable, the Empatica E4 wristband, was selected for this study 
because it has both PPG and EDA sensors that synchronously measure 
and provide a continuous stream of PPG and EDA data. The E4 wrist
band is non-invasive and easy to use for older adults in everyday and 
outdoor conditions. All participants wore the E4 wristband on their non- 

dominant hands to minimise motion artefacts [82]. This wristband re
cords the PPG signal at 64 Hz and the EDA signal at 4 Hz. Ambulatory, 
real-world measurements of physiological signals using non-invasive 
wearables are susceptible to external interferences such as motion ar
tefacts, electrode popping, and environmental noise [83]. To suppress 
the external interferences in the physiological signal, the EDA signal was 
filtered using a Butterworth low-pass filtered with a cut-off frequency of 
0.28 Hz and smoothed with a moving average filter to remove non-EDA 
related sensor readings. Note that the most valuable EDA signal infor
mation is typically below 0.28 Hz during low-intensity activities such as 
walking [84]. For the PPG, the authors first computed the instantaneous 
heart rate (at 1 Hz) from the inter-beat interval obtained from the PPG 
signal with a proprietary algorithm [85]. Artefacts and ectopic beats 
were detected and corrected using another proprietary algorithm [86]. 

In addition to the physiological data, location and environmental 
data were collected. GPS coordinates were logged using Qstarz BT- 
Q1000XT at 1 Hz. Generally, the infrastructure of the urban environ
ment and season where the walking route is located is uniform. How
ever, the experiment was conducted on different days and at different 
time-of-day, which may affect the participants’ bodily responses. 
Therefore, the environment temperature (◦C) and humidity (%) for each 
experiment day and time of day were recorded from the Hong Kong 
Observatory. Participants’ PPG and EDA were recorded during a 10-min 
rest period for baseline measurement. Participants’ PPG, EDA and GPS 
coordinates were recorded during the first stage of the environmental 
walk. Each participant’s PPG and EDA were baseline normalised to 
reduce inter-individual variance. 

2.3. Feature extraction 

2.3.1. Physiological data 
The filtered instantaneous heart rate signal and EDA signal were used 

for feature extraction. The best possible indicators of stress (physiolog
ical state) in this study would be a physiological feature that continu
ously fluctuated, proportional to the pedestrian’s physiological state 
throughout the environmental walk. To extract the features with such 
characteristics, continuous calculations were conducted on each of the 
physiological signals at 1 s intervals throughout the entire duration of 
each pedestrian’s walk on the path (to correspond to the 1 Hz GPS data). 
To create a continuous time series, Welch’s periodograms [86] were 
calculated using 60 s windows of instantaneous heart rate data and 

Fig. 2. Field experiment overview. (a) Predefined path for environmental walk. (b) An older adult equipped with wearable sensors. Participants walked through an 
alley (segment A), a street (segment B), a sidewalk beside a high traffic road (segment C), a pedestrian crossing with a traffic signal (segment D), a sidewalk beside a 
construction site (segment E), an alley (segment F), a green space (segment G), and a subway (segment H). Basemap data copyrighted Esri, DigitalGlobe, GeoEye, 
Earthstar Geographics, CNES/Air bus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community. Photographs by authors. (For interpretation of the references 
to colour in this figure legend, the reader is referred to the Web version of this article.) 
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advanced by 1 s for each second of the entire pedestrian’s walk. A total 
of 31 HRV features were extracted from the 60 s window. For the EDA 
signal, the authors first applied a continuous decomposition analysis to 
decompose the EDA signal into two components [87]: skin conductance 
response (SCR) and skin conductance level (SCL). The SCR and SCL were 
segmented into a continuous time series of 10 s windows and advanced 
by 1 s for each second of the entire pedestrian’s walk. A total of nine EDA 
features were extracted from the 10 s window. The 60 s (for HRV) and 
10 s (for EDA) windows were used because it is expected that the 
physiological effect of an environmental stressor would occur slightly 
after the pedestrians interact with the environmental stressor. Based on 
previous studies, a 60 s (for HRV) and 10 s (for EDA) physiological effect 
window is sufficient to fully capture the older adults’ reaction to envi
ronmental stressors [88,89]. 

2.3.2. Location and environmental data 
The time a participant was present at a location, the environment 

temperature and humidity were extracted as features. These features 
were important in this study because previous studies have confirmed 

that weather affects mood [90]. 

2.4. Feature selection 

Feature selection was conducted to optimise the validation accuracy 
and to reduce the chances of overfitting the supervised learning algo
rithms. While there are various methods to select features, correlation- 
based feature selection (CFS) was used in this study. CFS ranks 
optimal subsets of features according to a heuristic evaluation function 
based on correlations. The CFS function (equation (1)) evaluates subsets 
of features that are correlated with the class label but independent of 
each other [91]. 

MeritS =
krcf

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
k + k(k − 1)rff

√ (1)  

where MeritS is the heuristic merit of a feature subset S containing k 
features, rcf is the average correlation value between feature and class 
labels, and rff represents the average correlation value between two 

Fig. 3. Photo description of path segment A to D. Photographs by authors.  
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features (feature-feature intercorrelation). 

2.5. Machine learning algorithms for feature fusion and stress detection 

The selected features were fused using machine learning algorithms 
to detect (1) stress and non-stress samples from the collected data; and 
(2) low-stress and high-stress samples from the stress samples. The 
following supervised machine learning algorithms were tested: Decision 
Tree, Gaussian Support Vector Machine (SVM), k-Nearest Neighbour 
(KNN), and Ensemble bagged tree. These supervised machine learning 
algorithms were tested because previous studies have reported that they 
can detect stress from people’s physiological data [92]. Recently, the 
automatic discovery of representative features through deep learning 
methods has been successfully used to analyse physiological signals in 
multiple modalities for several detection and prediction tasks [93]. A 
deep belief network (DBN) was also tested in this study to detect stress 
and high-stress samples. 

k-fold cross-validation (k = 10) was conducted to evaluate the per
formance of the machine learning algorithms. k-fold cross-validation is a 

validation procedure using randomised subsets of data to estimate the 
robustness (i.e., accuracy and classification success) of a model when 
applied to new situations [94]. It is a computationally powerful and 
widely accepted validation procedure [95]. In general, as the value of k 
increases (i.e., varies from 2 to n – 1 fold subsets), the bias decreases, and 
the variance and computation time increases. In practice, the value of k 
= 10 is very common in machine learning because it produces validation 
results that suffer neither from excessively high bias nor very high 
variance [96]. This validation process involves partitioning the dataset 
into ten equal bins and performing ten separate rounds of learning ex
periments. Nine of the bins were employed during each round as a 
training dataset and the remaining one bin as a test dataset. Three 
performance indicators: accuracy, precision, and recall, were calculated 
to evaluate the performance of the machine learning algorithms. The 
definitions of the indicators are 

Accuracy=
TP + TN

TP + FP + FN + TN
(2)  

Fig. 4. Photo description of path segment D to H. Photographs by authors.  
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Precision=
TP

TP + FP
(3)  

Recall=
TP

TP + FN
(4)  

whereTP represent true positive, FP represent false positive, FN repre
sent false negative and TN represent true negative. The trained algo
rithm with the highest accuracy, precision and recall was used for stress 
detection. 

2.6. Identifying spatial clusters of risk stress hotspot 

Spatial relative risk (SRR) is a well-understood concept and has been 
applied in spatial epidemiology to determine where spatial clustering is 
likely to occur [97–99]. The essential attribute of the SRR is its ability to 
estimate ratios of risks from two sample groups (e.g., case and control 
groups) without having access to their population denominators [100]. 
The estimator of SRR is a ratio of two kernel-estimated density functions 
of two distinct samples of point locations defined on a common spatial 
window [100,101]. Based on the definition of SRR, this study defined 
SRR stress hotspot as the ratio of kernel density estimates of stress 
samples and non-stress samples of point locations in a common study 
area (e.g., a neighbourhood). The statistical power of the SRR stress 
hotspot was computed to assess the probability of a stress hotspot 
occurring within a study area [97]. 

The focus here is on the locations where clusters of SRR high-stress 
hotspot is likely to occur. The detected high-stress samples (i.e., the 
case) and control samples (i.e., non-stress and low-stress samples) for 
each participant were associated with the corresponding GPS positions 
(Latitude and Longitude) for the entire path. Based on the case and 
control samples of point locations within the study window, the authors 
randomly generated simulated point locations (assuming complete 
spatial randomness) to reflect the expected study design at a resolution 
of (128 × 128 grid). The simulation-based approach was adopted to 
ensure realistic study power analyses [97,102]. The bandwidth calcu
lation was based on the maximal smoothing principle [103]. The SRR 
function [101]—originally developed to study the spatial variation of 
larynx and lung cancer in the UK [104,105]—has been successfully 
employed to detect local clustering in many spatial analyses [97,106, 
107]. The SRR function was used to estimate the SRR high-stress hotspot 
for each grid cell within the simulated data area. The statistical signif
icance of the spatial clustering of each grid cell was tested—the alpha 
level was set to 0.05. The authors repeated these steps for 10,000 iter
ations (recommended for power calculation [ [97]]). The statistical 
power (power threshold of 0.8) of the SRR high-stress hotspot at each 
grid cell was calculated as the proportion of rejected null hypotheses 
from the simulated 10,000 iterations. 

3. Results 

The demographic information of the ten participants is presented in 
Table 2. Participant seven’s (Table 2) data was not analysed due to 
missing physiological data during the environmental walk. A total of 
5518 geo-located physiological data observations were collected from 
the participants. 

3.1. Performance of the stress detection algorithms 

Given the rich, multimodal nature of the data collected, careful 
feature extraction is critically important. First, an initial set of 43 fea
tures was extracted from the physiological data, location and environ
mental data based on a literature review. Feature selection was 
conducted using CFS. A complete list of the extracted features and re
sults of the CFS is presented in the online supplementary material. The 
highest-ranked feature subset with at least one feature from each 

modality (i.e., PPG data, EDA data, location and environmental data) 
was selected. The selected feature subset contains 12 features, which are 
listed in Table 3. 

The distribution of the collected data across the class samples was 
unequal [(3691 samples were labelled as stress while 1827 samples were 
labelled as non-stress), (1938 samples were labelled as low-stress while 
1753 samples were labelled as high-stress)]. The high number of stress 
samples compared to the non-stress samples is probably because the 
path is located in an old district and it is currently undergoing urban 
renewal. To avoid an imbalance classification, the authors randomly 
under-sampled the majority class to make the classes have equal dis
tribution. The under-sampling was repeated 20 times, resulting in 20 
random train/test splits of the equally distributed data. 10-fold cross- 
validation was conducted to evaluate the performance of the machine 
learning algorithms. The average performance indicators of each ma
chine learning algorithm over the 20 random train/test split data were 
computed. The stress detection performance of the algorithms deployed 
in this study is summarised in Table 4. The result indicates that the 
Ensemble bagged tree algorithm outperformed the other algorithms, 
achieving a classification accuracy of 98.13% (for detecting stress and 
non-stress samples) and 98.25% (for detecting low and high-stress 
samples). The confusion matrix of the best performance Ensemble bag
ged tree algorithm among the 20 random train/test split data is depicted 
in Fig. 5. 

Table 2 
Participants’ demographic information.  

Participant Gender Age 
(years) 

Height 
(cm) 

Weight 
(kg) 

Body Mass Index 
(kg/m2) 

1 Female 65 162.0 57.0 21.7 
2 Female 65 158.0 62.0 24.8 
3 Male 66 160.0 71.0 27.7 
4 Female 75 161.1 67.5 26.0 
5 Male 68 173.0 83.0 27.7 
6 Female 72 157.5 54.4 21.9 
7 Female 71 152.4 60.5 26.0 
8 Female 66 157.5 59.0 23.8 
9 Female 66 154.9 60.0 25.0 
10 Male 66 175.0 77.7 25.4 
Mean  68 161.1 65.2 25.0 
SD  3.5 7.4 9.4 2.1 

Note. SD = standard deviation. 

Table 3 
Selected 12 features.  

Modality Feature Description [unit] 

PPG data HR Instantaneous heart rate values [1/min]  
Mean RR The mean of RR intervals [ms]  
Min HR Minimum heart rate computed using five 

beat moving average [1/min]  
Max HR Maximum heart rate computed using five 

beat moving average [1/min]  
HF (Hz) Absolute power of high frequency band 

(0.15–0.4 Hz) [Hz]  
LF (log) Natural logarithm transformed value of 

absolute power of low frequency band 
(0.04–0.15 Hz) [log]  

HF (n.u.) Power of high frequency band (0.15–0.4 
Hz) in normalised units [n.u.]  

Total 
power 

Total spectral power [ms2] 

EDA data PhasicMax Maximum value of phasic activity within 
response window [muS]  

Tonic Mean tonic activity within response 
window of decomposed tonic component  

Global 
Mean 

Mean skin conductance (SC) value within 
response window 

Location and 
environmental data 

Time Time of day [Unix time]  
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3.2. Spatial clusters of risk stress hotspot 

Given the impressive performance of the Ensemble bagged tree al
gorithm, the authors deployed the best performance Ensemble bagged 
tree algorithm (the confusion matrix is depicted in Fig. 5) to classify each 
of the participant’s collected data into (1) non-stress and stress; and (2) 
low-stress and high-stress. The deployed algorithm detected 66.35% of 
stress samples and 26.73% of high-stress samples from all participants’ 
data. The detection result for each participant is shown in Table 5. The 
detected high-stress samples (i.e., the case) and control samples (i.e., 
non-stress and low-stress samples) for all participants were geographi
cally referenced with their corresponding GPS coordinates. The first 
iteration of the simulated randomly generated point-level physiological 
data is shown in Fig. 6. The proportion of the significant SRR high-stress 
hotspot clusters for the 10,000 simulation iterations is presented in 
Fig. 7(a). The areas within the study area that are sufficiently powered to 
detect spatial clustering of a high-stress hotspot are shown in Fig. 7(b). 
These results demonstrate that the path for the environmental walk has 
some real spatial clusters of high-stress hotspots. 

3.3. Examination of spatial clusters of risk stress hotspot 

Upon examining the risk stress hotspot locations, the authors iden
tified some environmental barriers relating to the functionality, safety, 
and aesthetics of the path conditions (Fig. 8 and Fig. 9). Environmental 
barriers A1, S1, and F1, were identified in risk stress hotspot 1. The 
authors found that the risk stress hotspot 1 was mainly caused by a 
restaurant. Old gas cylinders, broken furniture, and several old or 
broken restaurant equipment were found outside the restaurant and on 
the path (barriers A1 and F1). The path surface was wet (barrier F1). 

Some of the participants were observed taking precautionary measures 
by slowing their pace. About three dogs were spotted in this location 
during the environmental walk (S1). All the participants reported that 
they felt stressed while walking through this spot. For instance, one of 
the participants commented that she would not have been able to walk 
this segment of the path alone. “Why would someone eat here?” one of 
the participants asked rhetorically. 

Risk stress hotspot 2 consists of environmental barriers A2-A5, 
S2–S4, and F2–F6, extending from segment C to F as shown in Figs. 8 
and 9. This spot has a gas station and a bus stop beside path segment C. 
The authors noticed that some of the participants interacted with ve
hicles entering or exiting the gas station; this interaction could be 
stressful, especially if not perceived in advance (barrier S2). Another 
group of participants mentioned that they realised it was a gas station 
from a distance, and they were hoping they would not encounter any car 
entering or exiting the gas station. This anticipation about what will 
happen in the near distance could have resulted in stress (barrier S2). 
Path obstructions such as traffic cones and bollard barricades were 
identified on the sidewalk beside the gas station (barrier F2). The par
ticipants that engaged in the environmental walk in the midmorning 
remarked that the bus stop was too crowded and was stressful to navi
gate (barrier F3). The view from this spot is a bamboo scaffolding with 
screen nets on a high-rise building, which at first glance, seems a little 
frightening (barrier A2). Although the pedestrian crosswalk (segment D) 
has traffic calming devices (traffic signal and traffic island), it was still 
detected in the risk stress hotspot 2. Some of the participants mentioned 
that the waiting time (which was about 68 s) at the traffic signal was 
stressful (barrier S3). Segment E—an ongoing construction—was sur
rounded by unattractive views (barrier A3 and barrier A4) with heavy 

Table 4 
Performance of the stress detection algorithms.   

Algorithm 20 trains average score 

Accuracy 
(%) 

Precision 
(%) 

Recall 
(%) 

Detecting non-stress 
and stress samples 

Decision tree 92.16 93.36 90.77 
Gaussian SVM 95.47 94.31 96.79 
KNN 95.96 96.00 95.90 
Ensemble 
bagged tree 

98.13 98.59 97.65 

DBN 83.38 82.58 84.61 
Detecting low and 

high-stress samples 
Decision tree 89.45 90.61 88.56 
Gaussian SVM 95.94 96.83 95.14 
KNN 96.54 97.26 95.87 
Ensemble 
bagged tree 

98.25 98.30 98.20 

DBN 73.76 75.01 74.08  

Fig. 5. Confusion matrix of the best performance Ensemble bagged tree algorithm for (a) detecting non-stress and stress samples; (b) detecting low and high- 
stress samples. 

Table 5 
Classification of participant’s physiological responses into (1) non-stress and 
stress; and (2) low-stress and high-stress samples based on Ensemble bagged tree 
algorithm.  

Participant 
ID 

Total 
sample 

Detected stress and non- 
stress samples 

Detected low and high- 
stress samples 

Non-stress 
samples 

Stress 
samples 

Low-stress 
samples 

High-stress 
samples 

1 700 210 490 270 220 
2 527 142 385 241 144 
3 599 208 391 187 204 
4 535 198 337 170 167 
5 827 264 563 563 0 
6 596 220 376 199 177 
8 657 211 446 220 226 
9 537 206 331 164 167 
10 540 198 342 172 170  
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trucks entering or exiting the construction site (S4). Most of the par
ticipants reported feeling stressed at this spot. There were inconsistent 
path surface materials (F4), a dumpster and barricades (barrier F5) that 
obstructed the participants during the walk. There was a flower shop in 
segment F. The authors identified that several flower wreaths and 
wooden stands were obstructing the path (barrier F6 and barrier A5). 
The path surface was also wet (barrier F6). One participant described 
her interaction with this spot as: “I felt uncomfortable when I saw the 
funeral flower wreath on the street—It made me picture death and 
burial”. 

Risk stress hotspot 3 is located at the end of segment F. This hotspot 
was caused by a stair with about 11 steps (barrier F7). While some 

participants reported this stair to be good for their fitness, others re
ported feeling stressed. An increase in participants’ physiological re
sponses was observed at this spot. Lastly, risk stress hotspot 4 is located 
in a subway (segment H). The subway has dominant graffiti features 
(barrier A6), resulting in stress among the participants. 

4. Discussion 

In the future, cities and communities will have to be more efficient in 
assessing and maintaining the built environment to remain age-friendly. 
Sensing human physiology is one method of accomplishing this goal. 
This study tested the applicability of sensing human physiology for 
determining older pedestrians’ stressful interaction with the built 
environment in a real-world setting using non-invasive wearable sen
sors. In particular, the authors deployed machine learning intelligence 
to detect moments of stress in older adults’ physiological signals, loca
tion and environmental data collected while they were interacting with 
the built environment. 

Several machine learning algorithms were trained using supervised 
and unsupervised learning methods. The results showed that the 
Ensemble bagged tree algorithm achieved the highest performance 
among other tested algorithms. Accuracy on the held-out test data (i.e., 
the proportion of collected samples in which the algorithm prediction 
matches the true label) provides an estimation of the stress detection 
result to be expected on a new data; therefore, the Ensemble bagged tree 
algorithm would be able to detect older pedestrians’ stressful moments 
with an accuracy of 98.13% (for detecting stress and non-stress samples) 
and 98.25% (for detecting low and high-stress samples). The high per
formance of the Ensemble bagged tree algorithm is possible because it 
combines several decision trees (bootstrap aggregation) to produce 
better predictive performance; this approach helps to reduce the vari
ance of a model [108]. The high performance of the ensemble method 
means that it can be used for data collected in an ambulatory, real-world 
setting. Ambulatory, real-world sensing of human physiology pose 
several methodological challenges such as missing and noisy data. For 
instance, if a modality is missing data for a given pedestrian or on a 
sample day, the ensemble method is able to abstain that classifier in 
order to achieve better performance. 

This sensing approach has several potential applications in cities and 
communities. For example, urban planners and municipal decision- 
makers can use this approach to detect stressful locations in the envi
ronment, prioritise the high-stress locations and allocate resources to 
improve neighbourhood walkability. The effectiveness of the interven
tion can be monitored by observing how the stress levels change over 

Fig. 6. The first iteration of simulated randomly generated point-level physi
ological data assuming complete spatial randomness. Simulated case (i.e., high- 
stress samples) locations are red-coloured circles, and simulated control (i.e., 
non-stress and low-stress samples) locations are blue-coloured circles. (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.) 

Fig. 7. Clusters of SRR high-stress hotspots within 
the study area (i.e., path segment A to H). (a) The 
proportion of simulation significant SRR high-stress 
hotspot clusters for the simulated 10,000 iterations. 
(b) Areas within the study area that are sufficiently 
powered to detect spatial clustering of a high-stress 
hotspot. Simulated case (i.e., high-stress samples) lo
cations are red-coloured circles, and simulated con
trol (i.e., non-stress and low-stress samples) locations 
are blue-coloured circles. (For interpretation of the 
references to colour in this figure legend, the reader is 
referred to the Web version of this article.)   
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time. Streets in cities and communities can be labelled based on the 
stress level to minimise encounters with environmental conditions that 
exceed older pedestrians’ functional ability. The physiological sensing 
approach is user-centred, thus leading to interventions that meet pe
destrians’ needs. Urban design guidelines can be revised based on the 
physiological sensing approach. This approach is time and cost-effective 
because physiological signals can be collected continuously, resulting in 
a near real-time built environment assessment. Digital twin cities and 
communities can potentially incorporate the physiological sensing 
approach into their models to improve the planning and management of 
healthy, age-friendly cities and communities. 

Although the Ensemble bagged tree algorithm performed better than 
the deep learning algorithm, the Ensemble bagged tree algorithm 
required sufficient labelled data for training while the deep learning 
required little or no labelled data. Collecting sufficient labelled data 
from pedestrians in cities and communities is somewhat impractical and 
may hinder a large-scale deployment of the stress detection algorithm in 
smart age-friendly cities. Furthermore, supervised learning required 
careful engineering and considerable domain expertise to extract and 
select handcrafted features that are important for discrimination. This 
implies that failure to extract and select the important features may 
affect the performance of the supervised learning algorithm. However, 
the deep learning algorithm automatically learns good features and 

produces representations that are selective to the relevant aspect of 
signal pattern important for discrimination. Going forward, using an 
unsupervised deep learning approach is imperative for the efficient 
deployment of the stress detection algorithm in cities and communities. 
To encompass this, a future study will be conducted to improve the 
performance of the deep learning algorithm. The authors hypothesise 
that developing a deep learning algorithm that accounts for interindi
vidual variability can improve the detection of stressful interactions for 
pedestrians. The authors intend to deploy a multi-task learning tech
nique to train a personalised machine learning model tailored specif
ically for each pedestrian but still learn from all available data. 

Given that the built environment infrastructure in many cities and 
communities are approaching their design life, sampling peoples’ 
physiological interactions for the entire built environment is currently 
impossible. The simulation-based approach adopted in this study shows 
promising results in generating reproducible physiological point-level 
data to reflect an entire study area. Detecting risk hotspot locations 
with high statistical power will be useful for researchers and urban 
planners to detect real urban stress hotspots that pose a higher risk to 
older adults and understand the association between built environment 
and stress. While identifying these high-risk stress hotspots is essential, it 
is only the first step to creating an AFCC. How the identified environ
mental barriers are addressed is critical to improving the well-being and 

Fig. 8. Environmental barriers at locations of risk stress hotspot. Base map and data copyrighted 2020 Esri, OpenStreetMap contributors and the GIS 
user community. 
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participation of older adults in outdoor activities. Table 6 presents a few 
recommendations based on the WHO AFCC guide [2] to address the 
identified environmental barriers in this study. Although these recom
mendations can be adapted and adopted in other cities and commu
nities, it not a gold standard. 

It is important to mention that the stress hotspots were identified 
through older adults-centred approach; this is motivated by the fact that 
involving older adults is very important in evaluating the age- 

friendliness of the environment [2,11]. Therefore, urban planners 
should adopt a bottom-up approach—with a supportive top-down 
back-up—throughout the process of addressing these stress hotspots; 
in this way, older adults become place-makers. As with many inclusive 
features, identifying older adults’ stress hotspots and adopting 
age-friendly initiatives to address these stress hotspots could be advan
tageous for all generations. If a street is ‘friendly’ to older adults, it is 
likely to be ‘friendly’ to everyone. For example, a street that older adults 

Fig. 9. Pictures of environmental barriers at locations of risk stress hotspot. Photographs by authors.  
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find easy to use might be more walkable for someone carrying luggage 
or a parent with a toddler in a stroller. 

The authors acknowledge that some of the limitations of this 
research are the relatively small number of older participants, the un
equal number of male and female participants and the limited physio
logical sensing per participant. Gender differences can influence human 
responses to environmental conditions, therefore the findings should be 
interpreted bearing in mind that the experiment was dominated by 
women. With data from more older participants and longer sensing 
periods, it may be possible to develop high-performance and personal
ised stress detection models. For the purpose of this study, it was 
necessary to have pedestrians interact with the same walking path for a 
more direct comparison. Although restricting participants to a specific 
path could affect their interaction with the environment, it was an 
essential step before deploying this physiological sensing approach on a 
large scale. In the second stage of this study, data will be collected in a 
free-form environment where participants will not be restricted to any 
particular path. 

5. Conclusions 

This paper presented a smart and more efficient approach to 
detecting older adults’ stressful environmental hotspots that may restrict 
their mobility in the built environment. Towards this goal, wrist-worn 
wearable physiological sensors were employed to continuously 
monitor older adults’ interactions with the built environment. This 
study adopts a multimodal information fusion technique (specifically, 
feature level fusion of EDA signal, PPG signal, location and environ
mental data using parametric or non-parametric machine learning al
gorithms) to minimise the effects of incorrect data acquisition and 
provide complementary data during human-environment interactions in 
ambulatory, real-world settings. The spatial relative risk function was 
adapted to detect stress hotspots that pose a higher risk to older adults. 
Several machine learning algorithms, including Gaussian SVM, 
Ensemble bagged tree and DBN, were trained to detect older adults’ 
stressful interactions from their physiological signals, location and 
environmental data. Based on three statistical performance evaluation 
indicators, the results produced by the machine learning algorithms 
were evaluated. The obtained results show that the machine learning 
algorithms can achieve satisfactory performance in detecting older 
adults’ stressful interactions (over 70% accuracy), with Ensemble bag
ged tree achieving the best performance (98.25% accuracy). The 
detected stressful interactions were spatially matched with GPS data. A 
simulation-based risk hotspot analysis was used to identify environ
mental barriers within the study area that pose a high risk to older 
adults. The results demonstrate that urban planners and municipal 
decision-makers can use this approach to more efficiently detect and 
alleviate stressful environmental features; as a result, improving older 
adults’ mobility in the built environment. With more advancements in 
wearable sensors and machine learning intelligence to come, this work is 
paving the way towards assessing and improving neighbourhood envi
ronments in smart AFCC, where machine intelligence can help urban 
planners and policymakers make data-driven decisions. 
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Table 6 
Age-friendly recommendations to address environmental barriers.  

Domain Environmental barrier [2] Age-friendly guide 

Functionality  ⁃ Path condition (wet and 
slippery streets)  

⁃ Well-maintained paths with 
smooth, level, and non-slip surface  

⁃ Path slope  ⁃ The path width should be 
sufficient to accommodate 
wheelchairs  

⁃ Path obstruction  ⁃ The path should have dropped 
curbs that taper off to be level with 
the road  

⁃ Major barriers 
(roadwork, steep 
staircases)  

⁃ The path should be free from 
obstructions such as street 
vendors, parked cars, trees, dog 
droppings, snow  

⁃ Minor barriers (cracks, 
holes, bumps, parking 
meters)  

⁃ Pedestrians have priority of use  

⁃ Street crowd   
⁃ Motor vehicles parked 

on footpath   
⁃ Hawkers and shops on 

streets   
⁃ Path width   
⁃ Path material   
⁃ Curb cut features   
⁃ Permeability  

Safety  ⁃ Pedestrian crossing  ⁃ Roads should have a non-slip, 
regularly spaced pedestrian 
crossing  

⁃ Traffic load  ⁃ Roads should have well-designed 
and appropriately placed physical 
structures, such as traffic islands, 
overpasses, or underpasses, to 
assist pedestrians in crossing busy 
roads  

⁃ Traffic calming devices  ⁃ Pedestrian crossing lights should 
allow sufficient time for older 
adults to cross the road  

⁃ Streetlight  ⁃ Pedestrian crossing lights should 
have visual and audio signals  

⁃ Directional sign  ⁃ Strict enforcement of traffic rules 
and regulations  

⁃ Presence of people  ⁃ Drivers should give way to 
pedestrians  

⁃ Signs of crime/disorder  ⁃ Good street lighting and visible 
directional sign  

⁃ Stray dogs/other 
animals  

⁃ Police patrols to ensure safety   

⁃ Enforcement of by-laws, support 
for community and personal safety 
initiatives 

Aesthetics  ⁃ Views  ⁃ Regular cleaning of city and 
community  

⁃ Building attractiveness  ⁃ Enforce regulations to limit noise 
levels and unpleasant odours  

⁃ Attractive natural sights  ⁃ Well-maintained and safe green 
spaces with easily accessed 
seating, shelter, and toilet  

⁃ Streetscape  ⁃ Graffiti removal  
⁃ Litter   
⁃ Graffiti   
⁃ Pollution (noise and air)   
⁃ Greenery  

Destination  ⁃ Transport-related  ⁃ Available and well-maintained 
outdoor seating spaced at regular 
intervals and patrolled to ensure 
safe access by all  

⁃ Public open space  ⁃ Services are easily accessed and 
located near older adults  

⁃ Recreational  ⁃ Special customer service 
arrangement for older adults  

⁃ Government/public 
services   

⁃ Public facilities   
⁃ Commercial destinations   
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