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ABSTRACT
This paper presents a novel framework for predicting metro pas-
senger flow that is both interpretable and computationally efficient.
The proposed method first uses a correlation-based spatiotempo-
ral feature selection strategy (Cor-STFS) to identify the optimal input
scheme for the prediction model, effectively reducing unnecessary
interference. The framework then introduces a newmultivariate pas-
senger flow prediction architecture called STA-PTCN-BiGRU, which
combines a spatiotemporal attention (STA)mechanism, parallel tem-
poral convolutional networks (PTCN), and bidirectional gated recur-
rent units (BiGRU) to capture the dynamic internal patterns of pas-
senger flow. By utilising parallel computing, this architecture signif-
icantly reduces resource consumption. The effectiveness of the pro-
posed approach is evaluated using four datasets from the Shanghai
Metro. Experimental results show that the newmethod outperforms
baseline approaches in terms of root mean square error (RMSE),
mean absolute error (MAE), and symmetric mean absolute percent-
age error (SMAPE), achieving average reductions of 9.98%, 8.08%,
and 13.29% in these metrics, respectively.
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1. Introduction

With the construction and widespread adoption of public transportation systems, modern
citizens have grown accustomed to and regularly rely on metros due to their punctuality,
cost-effectiveness, and environmental friendliness (Hao, Lee, and Zhao 2019; Liu, Liu, and
Jia 2019). However, the increasing frequency of usage has led to capacity limitations during
peak hours, resulting in congestion and inconvenience for passengers at stations (He, Zhao,
and Tsui 2023; Shi et al. 2020). Both the supply side (operating company) and the demand

CONTACT Shuguang Zhan shuguangzhan@hfut.edu.cn School of Automotive and Transportation
Engineering, Hefei University of Technology, Hefei, People’s Republic of China

© 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License
(http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium,
provided the original work is properly cited, and is not altered, transformed, or built upon in anyway. The terms onwhich this article has been
published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/23249935.2024.2335244&domain=pdf&date_stamp=2024-04-03
http://orcid.org/0000-0002-6393-7883
http://orcid.org/0000-0001-8252-2782
mailto:shuguangzhan@hfut.edu.cn
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 C. XIU ET AL.

side (passengers) of the public transportation systems must address this congestion issue
to improve overall passenger service levels (Li, Zheng, and Jia 2024; Shi et al. 2020).

Currently, intelligent transportation systems are widely deployed in smart cities to
reduce traffic congestion of metro systems (Nagy and Simon 2018; Tedjopurnomo et al.
2020). As a crucial component of these systems, passenger flow forecasting plays a vital
role in providing scientific data support for both the supply side and the demand side.
By obtaining and analysing data on passengers’ usage patterns within the metro net-
work, the supply side can make adjustments to the timetable, operational plans, and even
expand the existing infrastructure to enhance passenger service capabilities. Simultane-
ously, the demand side can leverage the data to optimise travel options and routes, thereby
mitigating potential travel congestion. Therefore, accurate traffic forecasting, specifically
passenger flow forecasting, has emerged as a prominent research focus in the field of
intelligent transportation (Liu et al. 2022; Xiu, Sun, and Peng 2022a; Zeng and Tang 2023).

Traffic forecasting has been extensively investigated by scholars from various perspec-
tives (Nagy and Simon 2018; Zhang et al. 2011). Initially, research primarily concentrated
on machine learning and statistical methods. With the availability of vast amounts of traf-
fic data from intelligent transportation systems, data-driven traffic forecasting techniques,
particularly deep learning (DL), have emerged as the dominant approach s. This includes
recurrent neural networks (RNN), convolutional neural networks (CNN), graph convolu-
tional neural networks (GCN), as well as their variations and combinations. These deep
learning-basedmethods are widely applied in forecasting tasks such as traffic flow (Belletti
et al. 2018; Lv et al. 2021), traffic congestion (Guo et al. 2021; Yang 2013), traffic speed (Ahn,
Ko, and Kim 2016; Yu et al. 2017), passenger flow (Liu et al. 2022; Xue et al. 2022; Zhang
et al. 2020), and passenger demand (Ke et al. 2017; Tang et al. 2021), yielding remarkable
advantages and superior performance.

However, there are three key issues that require more attention in the research on
passenger flow forecasting using deep learning.

• First, the selection of appropriate and interpretable data as input to neural network-
based models is a challenging task (Tang, Alelyani, and And 2014). Traditional methods
oftenuse rawdata directly as input, leading to the inclusionof irrelevant information and
compromising prediction accuracy. Moreover, for large-scalemetro networks, including
all available input data results in a significant computational burden. Furthermore, due
to the black-box nature of neural networks, users are unable to conductmeaningful and
interpretable analysis of the model’s output based on the initial input data.

• Second, relying solely on a single model makes it difficult to achieve further improve-
ments in accuracy (Ma et al. 2022). It is necessary to develop an efficient combination
framework that can effectively handle the spatial-temporal characteristics of passenger
flow (Lee andRhee2022). Existing researchon combiningmodels often suffers from long
computation time and excessive memory consumption.

• Third, when considering global external features, current approaches often fail to incor-
porate domain knowledge specific to the object being predicted (Liu, Liu, and Jia 2019).
Previous studies have focused solely on advanced forecasting models for metro pas-
senger flow prediction, neglecting the unique operational properties of metros. For
instance, trains adhere to precise timetables, and stations with similar characteristics
may exhibit similar passenger flow distributions over time and space.
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To address the challenges mentioned above, this paper presents a novel deep learning-
based framework for predicting passenger flow inmetro systems, drawing inspiration from
the works of Guo et al. (2022) and Ma et al. (2022). First, a spatial-temporal feature selec-
tion algorithm (Cor-STFS) is introduced into the framework to extract highly correlated data
in an interpretable manner. Specifically, this algorithm determines the best input frame-
work for the model based on the Pearson correlation coefficient, which can significantly
improve the model’s performance. Second, a parallel computing-based model called STA-
TCN-BiGRU is proposed for the prediction framework. Unlike traditionalmodels that rely on
RNNs for capturing contextual information, this model leverages temporal convolutional
networks (TCN). TCNshavea longermemory andare capableof avoidinggradientproblems
encountered by RNNs (Bai, Kolter, and Koltun 2018). Moreover, TCNs support layer-wise
computation, allowing for simultaneous weight updates at each time step and enabling
parallel computation. To further enhance prediction accuracy, an attention mechanism is
introduced to assign varying importance to different features. The attention mechanism
requires fewer parameters than RNNs and supports efficient parallel computing without
relying on previous space-time steps (Vaswani et al. 2017). Spatial and temporal attention
(STA) are combined in a parallel computingmanner to capture spatial-temporal dependen-
cies. Additionally, bidirectional gated recurrent units (BiGRU) are incorporated to effectively
capture bidirectional temporal dependencies, which are commonly used in combination
models (Guo et al. 2022). Thus, the DL-based framework STA-PTCN-BiGRU is proposed for
metro passenger flow prediction. Third, train timetable information is extracted to con-
struct external features related to train activities, which are then integrated into the model
using feature engineering and one-hot encoding. To reduce dimensionality, an embedding
layer is employed due to the sparsity of these external features. Finally, the feasibility and
effectivenessof theproposedmethodare validatedusing real data from fourdifferent types
of stations in the Shanghai metro network in China. Importantly, our approach differs from
those that solely rely on black-box neural network-based models by introducing two key
modules to enhance interpretability. First, ourmethod employs the Cor-STFR feature selec-
tion technique to identify specific spatiotemporal features that influence passenger flow
predictions. Second, our model incorporates unique metro system attributes, such as train
timetable data, as external features within the prediction framework, thereby integrating
these crucial aspects. The main contributions can be summarised as follows:

• The Cor-STFS, a feature selectionmethod based onmaximum correlation information, is
introduced to improve the quality of input data. Specifically, interference from irrelevant
information is reduced by retaining the most relevant spatial-temporal information as
input for prediction using the Cor-STFS.

• The network framework, STA-PTCN-BiGRU, is designed for metro passenger flow pre-
diction. Notably, a parallel architecture is employed in the STA-PTCN-BiGRU, effectively
reducing the computational burden and achieving favourable results in prediction
accuracy.

• Train timetable features are developed as global external features for passenger flow
prediction. In particular, the train timetable feature, which considers the characteristics
of the metro system, is incorporated into the prediction framework, further enhancing
prediction accuracy.
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• Excellent generalisation properties have been demonstrated for different types ofmetro
stations by our model. The feasibility and effectiveness of the proposed method are
evaluated using real data from the Shanghai Metro, providing detailed insights into its
performance.

The rest of this paper is organised as follows. In Section 2, relevant research on traffic
forecasting is reviewed. Section3describes the statement of themetropassenger flow fore-
casting problem. Section 4 explains the proposed framework and relatedmethods. Section
5 presents the data description and experimental settings. Section 6 provides some numer-
ical results to verify the effectiveness of the proposed method. In Section 7, the paper is
concluded, and future work is discussed.

2. Literature review

2.1. Traffic state prediction

Traffic state prediction methods can be broadly categorised into two types: model-based
and data-driven methods (Tedjopurnomo et al. 2020). Earlier research primarily focused
on the former, such as the cell transmission model (Wei, Cao, and Sun 2013) and store-
and-forwardmodel (Aboudolas, Papageorgiou, and Kosmatopoulos 2009). Thesemethods
perform well when there are consistent traffic state changes. However, they struggle to
accurately describe complex real-world traffic states and fail when changes are irregular
(Lv et al. 2014). Consequently, data-driven methods have gradually replaced model-based
methods in recent years.

With the advancements in data acquisition technology and the availability of traffic-
related big data, data-driven methods have gained popularity(Zhang et al. 2011). Unlike
model-based methods, data-driven methods leverage statistical regularities and distribu-
tions inhistorical data to infer changes in traffic states (Jianget al. 2022; Shahriari et al. 2020).
Existing data-driven methods fall into two categories: parametric-based models and non-
parametric models (Nagy and Simon 2018; Zhang et al. 2011). Parametric models employ
regression functions to forecast traffic based on historical data, like the autoregressive inte-
gratedmoving average (ARIMA) and its variants, e.g. the Kohonen ARIMA (Lee and Fambro
1999), ARIMAX (Williams 2001) and seasonal ARIMA (Williams and Hoel 2003). Although
these models are user-friendly, their predictive performance is limited due to their inabil-
ity to handle nonlinearity and non-stationarity in traffic data. Non-parametric models have
emerged as a solution to this problem (Shi et al. 2020; Zhang and Liu 2009). Machine
learning-based approaches are the most representative, e.g, K-nearest neighbour (KNN),
support vector machine (SVM) and Kalman filter method. With sufficient historical data,
KNN (Arroyo and Maté 2009; Yu et al. 2019), SVM (Castro-Neto et al. 2009; Wu, Ho, and Lee
2004) andKalman filtermodels (Kumar 2017) can learn statistical patterns andachievemore
accurate predictions.

Inspired by the success of DL in computer vision and natural language processing,
researchers have shown a preference for DL-based models based on neural networks due
to their strong learning and generalisation capabilities (Lv et al. 2014; Tedjopurnomo et al.
2020). RNN and its variants, e.g. long short-term memory (LSTM) and gated recurrent unit
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(GRU), have been widely used for traffic prediction (Sheu, Lan, and Huang 2009), demon-
strating excellent performance in capturing long-term time dependencies. For example,
the LSTM network is utilised for traffic speed prediction (Ma et al. 2015), travel time pre-
diction (Duan, Lv, and Wang 2016), traffic flow prediction (Fu, Zhang, and Li 2016) and
passenger flowprediction (Xiu et al. 2022b). However, existingmethods that solely focus on
temporal dependence while neglecting spatial dependence still have scope for improve-
ment in terms of prediction accuracy. To address this, researchers have gradually intro-
duced combined CNN and LSTM models, where CNN captures spatial dependence and
LSTMcaptures temporal dependence (Sattarzadeh et al. 2023). For example, LSTMandCNN
are combined for taxi demand prediction, and their method could benefit frommodelling
both spatial and temporal relations (Yao et al. 2018). Similar models are designed for net-
work speedprediction (Ma et al. 2017), traffic flow forecasting (Zhang et al., 2019) and travel
time prediction (Guo et al. 2022). As traffic networks are non-Euclidean, CNN-basedmodels
alone fail to fully capture spatial-temporal dependencies (Ye et al. 2022). To address this,
GCN was proposed to construct spatial relationships between nodes (Chen et al. 2023).
Li et al. (2017) proposed a diffusion convolutional recurrent neural network (DCRNN) that
combinesGCNandGRU inaSeq2Seq framework topredict traffic flow. The similar approach
proposed by Zhao et al. (2020), namely T-GCN, has attracted extensive attention.

Furthermore, since TCNs can manage sequences in a causal manner and avoid the leak-
age of future information, they are comparable with LSTM frameworks in terms of the
robustness and accuracy in modelling sequence problems (Bai, Kolter, and Koltun 2018).
TCNs gradually replace RNN and its variants and combine with GCN for capturing spatial-
temporal feature. Wu et al. (2019) proposed the graph wavenet (GWN), which combines
TCN and GCN to capture spatial-temporal dependencies for traffic prediction. Additionally,
attention mechanisms have proven effective in building dependencies in sequences and
have been incorporated into traffic prediction models. For example, the attention based
spatial-temporal graph convolutional network (ASTGCN) and its improvement, spatial-
temporal graph networks (ASTGNN), utilise spatial and temporal attention mechanism to
enhance network-level traffic prediction accuracy (Guo et al. 2019; 2021). Other similar
models, such as graph multi-attention network (GMAN) and multivariate timeseries-based
graph neural network (MTGNN), have also been developed and obtained advanced effects.
Zheng et al. (2020) designed the GMAN model that combines temporal and spatial atten-
tion to capture associations between traffic sensors. Wu et al. (2020) introduced the use
of a graph learning layer in MTGNN to adaptively construct a graph structure for traffic
flow prediction. Despite the encouraging results achieved in current research, there are
still some limitations. While these deep learning methods have yielded excellent perfor-
mance, little attention has been paid to improving the prediction performance from the
view of input features. Some researchers aim to enhance the quality of model input by
combining models through feature selection (Zhang et al., 2019; Kim et al. 2020; Ma et al.
2022). However, these studies lacked adequate selection of spatial-temporal analysis fea-
tures and did not establish a close integration with deep learning models. Furthermore,
existing frameworks that involve model stacking require significant computing resources
and entail lengthy training times (Tedjopurnomo et al. 2020). In terms of external features,
the existing studies typically consider external factors such as theweather (Yuan et al. 2011;
Zhang, Zheng, andQi 2017) and points of interest (Geng et al. 2019; Lin et al. 2019) as global
features. The inherent properties of a traffic system are rarely considered owing to the lack



6 C. XIU ET AL.

of external data resources. In practice, a metro system possesses various unique operating
characteristics that affect short-term passenger flow, such as the punctuality of trains.

Table 1 provides a summary of studies closely related to our work. Specifically, we com-
pare existing works based on three aspects: predicted goals, model structures (including
spatial dependency and temporal dependency), and special techniques (such as external
features, feature selection, and parallel architecture). Note that the predicted goal of the
studies listed in Table 1 focuses on road or rail transportation systems. Several key points
can be inferred from the table.

To capture temporal and spatial dependencies, the majority of advanced research
employs a combination of GCN-based, CNN-based, or RNN-basedmodels, with the notable
exceptionof the studybyKimet al. (2020). Furthermore, only a small number of papers (Guo
et al. 2021;Hao, Lee, andZhao2019) incorporate attentionmechanisms toenhance the cap-
ture of temporal and spatial dependencies. Unlike the existing research listed in Table 1, our
model combines TCN, BiGRU, and attention mechanisms simultaneously, fully leveraging
the unique strengths of eachmodule. Regarding external features, prevalent studies utilise
time-related factors (Guo et al. 2021; Kim et al. 2020; Wu et al. 2019; Yu et al. 2017) or con-
sider weather conditions (Hao, Lee, and Zhao 2019) to improve prediction performance.
However, few papers incorporate the distinctive properties of the metro system, such as
train events, to construct external features. As for specially designed feature selectionmeth-
ods, existing studies demonstrate that appropriate feature selection can increase the upper
limit of predictive models (Tang, Alelyani, and And 2014). However, only a few studies (Kim
et al. 2020; Ma et al. 2022) consider specialised feature selection with the aim of obtain-
ing a comprehensive range of relevant information while avoiding unwanted interference.
In terms of computational efficiency, existing forecasting models in Table 1 typically rely
on stacked architectures with temporal and spatial dependencies. However, these archi-
tectures necessitate extensive training time and computing resources, thus limiting their
practical applicability.

To clearly understand the focus of this research, we differentiate our study from two
closely related recent pieces by Guo et al. (2022) and Ma et al. (2022). Specifically, the pri-
mary distinctions between our approach and Guo et al. (2022) are as follows: our research
targets passenger flow prediction in a metro system, while Guo et al. (2022) and Ma et al.
(2022) focus on traffic state prediction, such as travel time and traffic speed in a road sys-
tem. Notably, neither Guo et al. (2022) nor Ma et al. (2022) consider external features with
specific properties of the transportation system, such as train events. Moreover, feature
selection and parallel architecture are not considered in the work of Guo et al. (2022), while
our approach incorporates both techniques. Lastly, we deviate from Guo et al. (2022) and
Ma et al. (2022) in the choice of the prediction model. In addition to CNN and RNN-based
networks, we design a novel parallel architecture based on temporal and spatial attention
modules.

3. Problem statement

Considering the limitations of the existingmodels, this section describes the concept intro-
duced in the model and constructs the designed forecasting form. It is proposed that
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Table 1. Comparison with relevant studies.

Publication Goal Model
Spatial

dependency
Temporal

dependency
External
features FS PA

Li et al. 2017 Traffic flow DCRNN GCN GRU Time No No
Wu et al. 2019 Traffic flow GWN GCN TCN Time No No
Hao, Lee, and Zhao 2019 Metro passenger flow ASeq2Seq Attention+LSTM-BiGRU Attention LSTM-BiGRU Time+Weather No No
Kim et al. 2020 Passenger demand LR-LSTM LSTM LSTM Time Yes No
Tang et al. 2021 Passenger demand MC-STGCN GCN GRU No No No
Guo et al. 2021 Traffic flow ASTGNN Attention+ TCN Attention+ TCN Time No No
Guo et al. 2022 Travel time CNN-BiLSTM CNN BiLSTM No No No
Ma et al. 2022 Traffic speed STFSA-CNN-GRU CNN-GRU CNN-GRU No Yes No
This study Metro passenger flow STA-PTCN-BiGRU Attention+ TCN-BiGRU Attention+ TCN-BiGRU Time+Train Event Yes Yes

Note: FS denotes feature selection; PA denotes parallel architecture
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passenger flow prediction consists of three components: passenger state of the target sta-
tion, short-term context-aware trend influenced by the network, and the combined impact
of unexpected events.
Definitions:

(1) Passenger state of target station Vt : The goal of this paper is to forecast the rid-
ership (inflow/outflow) of a specific station (target station) for a future time period
based on historical data. Passenger state is a general concept that can refer to either
inflow or outflow. The passenger state of the target station at time step t is denoted
as Vt .

(2) Short-term context-aware trend Rt : The state of the target station is susceptible
to the conditions of other stations within the network. Additionally, the short-term
trends of the target station are influencedbydifferent stations in thenetworkduring
different time periods. Hence, incorporating the short-term trends resulting from
network effects into the prediction task provides a significant advantage compared
to solely relying on the target station’s historical data. Ametro network is defined as
a directed graph. The node set of the network can be denoted as S = {S1, S2, .., Sn},
and each node represents a metro station. The short-term context-aware trend is
obtained by the aggregation of the passenger flow characteristics for each station
and is defined as Rt = {R(1)

t , R(2)
t , . . . , R(n)

t } at time step t.
(3) External events Et : External events at the target station, e.g. train activities, time-

of-day and day-of-week, also influence the passenger state of target station. This
paper incorporates station train activities as external features using metro domain
knowledge. The external events of target station at time step t are denoted as Et .

Thus, on the basis of passenger state of target station Vt , short-term context-aware trend Rt
and external events Et , the state features of the target station are defined as Xt = {Vt , Rt , Et}.
In this way, the multi-step forecasting problem can be considered as learning the key
parameters of prediction model on the historical data and the observed state features, as
shown in (1).

[Xt−τ+1, Xt−τ+2, . . . , Xt]
f→[Vt+1, Vt+2, . . . , Vt+L] (1)

where f (.) is amapping function aimedat learning, τ denotes the input lengthof themodel,
and L represents the output horizon.

4. Methodology

Theoverviewof our proposed approach formetropassenger flowprediction is illustrated in
Figure 1. As depicted, our approach begins with applying Cor-STFR to process raw passen-
ger data from themetro AFC system. This initial step involves extracting passenger features
with high correlation to initialise the input for the STA-PTCN-BiGRU prediction model.
This prediction model consists of a parallel spatial-temporal attention module, a stacked
TCN module, and a Bi-GRU module. Through parallel computing, the model captures the
passenger-related spatiotemporal characteristics of the input sequence. Furthermore, the
timetable feature is utilised to extract metro operation features using the one-hot encod-
ing method, serving as external features. Finally, a feature fusion module is employed
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Figure 1. Overview of the proposed prediction approach.

to combine the spatiotemporal features with the external features, ultimately generating
passenger flow prediction results.

4.1. Cor-STFSmethod

In real-world operation, the passenger flow state of a station is influenced by contextual
trends within the network, which encompass both spatially and temporally correlated fac-
tors (Nagy and Simon 2018; Tedjopurnomo et al. 2020; Zhang et al. 2011). In the spatial
dimension, the passenger flow state of the target station is dependent on the passenger
flow status of other stations in the metro network, reflecting the spatial-temporal correla-
tion of passenger flow between stations. In the temporal dimension, the current passenger
flow state is often a continuation of previous states, indicating the temporal proximity and
closeness of passenger flow state. Therefore, considering only the historical data of a sin-
gle station would limit the performance of the predictive model. However, directly using
raw spatial-temporal data from the metro network as prediction input has two drawbacks.
First, it contains a significant amount of low-correlation noise that hinders the performance
of the prediction model. Second, due to the large scale of real-world metro networks and
the massive amount of historical data, directly feeding the data into the prediction model
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Figure 2. The flowchart of Cor-STFS.

would rapidly consume computing resources. To address these challenges, a feature selec-
tion method called Cor-STFS is proposed, which is based onmaximising correlations in the
spatial-temporal domain. Cor-STFS serves as a preprocessing algorithm to identify input
data that exhibits high predictive accuracy on the validation set.

As shown in Figure 2, theCor-STFS algorithmconsists of twomainparts: spatial-temporal
correlation analysis anddeterminationof the optimal input. The correlation analysis assigns
importance to input data by analysing the correlation coefficient between the passenger
flow of each station and the target station. Through an iterative algorithm, the best input
can be determined by considering both the temporal and spatial dimensions.

Spatial-temporal correlation analysis considering the context-aware trend feature
enables the quantitative assessment of spatial and temporal factors. The context-aware
trend feature of the metro network is denoted as RT = {R(1)

T , R(2)
T , . . . , R(j)

T , . . . , R(N)
T }and

is obtained by the aggregation of the passenger flow characteristics for each station
within a specific period. Here, N represents the number of stations in the network, R(j)

T =
[r(j)1 , r(j)2 , . . . , r(j)T ] denotes thepassenger flowcharacteristics of the j-th station, and T denotes
the number of time steps in the series feature. The historical passenger flow state of the
target station is denoted as VT = [v1, v2, . . . , vT ].

In this study, the Pearson correlation coefficient is employed as the criterion to measure
the strength of the correlation, which is defined as follows:

ρ(VT , R
(j)
T ) =

T∑
t=1

(vt − v̄)(r(j)t − r̄(j))√
T∑

t=1
(vt − v̄)2

√
T∑

t=1
(r(j)t − r̄(j))

2
(2)

where vtand r
(j)
t represent the passenger flow value of the target station and the j-th station

at time step t, respectively. v̄ and r̄(j) represent themean of the passenger flow value of the
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target station and the j-th station across all time steps T, respectively. The Pearson coef-
ficient allows for the assessment of the correlation between two time series, with values
closer to 1 indicating a higher degree of correlation.

Since not all stations have strong spatial-temporal correlations with the target station,
it is reasonable to set a correlation threshold. This allows us to extract information from
stations in the network that have a relatively high impact on the target station. The filtered
set of stations can be defined as follows:

Jπ = {j|ρ(VT , R
(j)
T ) ≥ π , j = 1, 2, . . . ,N} (3)

where π represents the spatial association threshold, Jπ represents the set of selected
stations.

Further, based on the correlation analysis, the aim of spatial-temporal feature selection
is to identify the input features I∗with the smallest prediction error in the raw data. In this
study, the feature selection scheme isbasedon theLasVegasmethod (Maet al. 2022),which
can be formulated as follows:

I∗ = argmin
I

(Error(f (I), Ŷ)), I ∈ R (4)

where Error(·)represents the error function (MAE is selected as the evaluationmetrics in this
study), f (·) represents the neural network for prediction task, Ŷ represents the real value,
and R represents the raw data.

The Cor-STFS algorithm follows these specific steps: First, the best selective parameters
are initialised, i.e. time lag and spatial association threshold. Note that the number of spa-
tial correlations can be obtained using formula (2). Additionally, the initial spatial-temporal
characteristics can be determined based on the number of spatial correlations and time
lag. The initial spatial-temporal features are then inputted into the trained neural network
to obtain the initial error, which serves as the initial value of global minimum error. Next, an
iterative search is performed. In each iteration, the search begins in the temporal dimen-
sion, incrementing the value of the current time lag by 1. Considering the change in time
lag during association analysis, the current input features are updated, and the newpredic-
tion error is obtained. If the newly-generated error is not greater than the minimum error,
the current best time lag and the global minimum error are simultaneously updated. The
spatial association threshold is then gradually reduced by 0.05, updating the current input
features based on changes in the number of spatial associations and obtaining the new
error of the predictivemodel. If the new error is not greater than the global minimum error,
the current best space threshold and the globalminimumerror value are updated. The iter-
ative search continuesuntil the termination condition ismet.Once the condition is satisfied,
the programme exits the loop and outputs the best data features. The pseudocode of the
Cor-STFS algorithm is given in Algorithm 1.

ThroughCor-STFS, the final input features for the trained predictionmodel are obtained,
where the temporal length, i.e. time lag, is denoted as T, and the number of spatial corre-
lations is denoted as n. Note that the temporal length and spatial number of the features
at this stage are different from the unprocessed ones, although similar notation is used to
represent them for simplicity. Overall, Cor-STFS allows for the reconstruction of the spatial-
temporalmatrix using the validation dataset. Thematrix contains themaximumcorrelation
information from the original data.
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Algorithm 1: Cor-STFS algorithm.

Input:1. The original input data R; 2. The trained prediction model f ; 3. Termination condition: maximum number of
iterations�and tolerance value ε

Output: The best input data I∗
Step 1: Initialization;

Initialize the iteration number θ = 1; Initialize the local time lag T = T0and the local spatial association thresh-
old π = π0; Initialize the best time lag T∗ = T0and the best spatial association threshold π∗ = π0; Initialize the
local input feature I = R(T0,π0)and the best input feature I∗ = R(T0,π0); Initialize the global minimum error
E∗ = Error(f (I), Ŷ)and the error record E0 = Error(f (I), Ŷ)

Step 2: Search for input that shows the lowest prediction error;
Step 2.1: Search in temporal dimension

Increase current time lag T = T + 1, and then update current input feature I = R(T ,π∗)
Calculate current error in temporal dimension ET = Error(f (I), Ŷ)
If Current error is not larger than the least error ET ≤ E∗
Update the best time lag T∗ = T and the minimum error E∗ = ET

End If
Step 2.2: Search in spatial dimension

Decrease current spatial association threshold π = π − 0.05, and then update current input feature I = R(T∗ ,π)

Calculate current error in spatial dimension ES = Error(f (I), Ŷ)
If Current error is not larger than the minimum error ES ≤ E∗

Update the best spatial association threshold π∗ = π and the least error E∗ = ES
End If

Step 3: Record the best input data I∗ = R(T∗ ,π∗)and the global minimum error in this iteration Eθ = E∗ ;
Step 4: Termination condition
If θ ≥ � or Eθ−1 - Eθ ≤ ε, then terminate the algorithm and output the best input data I∗ ; Otherwise, θ = θ + 1, go to
Step 2.

4.2. STA-PTCN-BiGRU architecture

The STA-PTCN-BiGRU architecture comprises parallel computations of temporal attention
and spatial attention module, as well as stacked TCN module and BiGRU module. The
DL-based architecture feeds amultivariate spatiotemporal sequence into twoparallel back-
bones. One backbone employs spatial attention module to capture the spatial correlation
between network state and the target station state. The other backbone utilises tem-
poral attention module to extract the temporal correlation among all time steps within
the prediction window, i.e. temporal length. The outputs of the two attention blocks are
then forwarded to two parallel and stacked TCN layers with identical structures. Following
dilated convolution and residual connection operations of TCN, the results are passed and
aggregated into Bi-GRU layers.

For simplicity, it is assumed that the input of eachmodule, denoted as It , represents pas-
senger flow data or its features at time step t. Meanwhile, Ĩtrepresents the output of each
module at time step t.

4.2.1. Spatial-Temporal attentionmodule
An attention mechanism can alleviate the complexity of the neural network model (Bah-
danau, Cho, and Bengio 2014). Not all the input information needs to be fed to the network,
as only certain task-related information is required to be selected as the input for the neu-
ral network. Figure 3 and Figure 4 illustrate the inter-layer transformation details of the
temporal attention module and the spatial attention module, respectively.

As shown in Figure 3, for the spatial attention module, the input is denoted as It =
[I(1)t , I(2)t , . . . , I(n)t ], where n represents the number of spatial correlations, and t represents
the time step within the current time window. First, a spatial attention weight vector pt ,
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Figure 3. Data processing details in spatial attention module.

Figure 4. Data processing details in temporal attention module.

which signifies the importance of each feature at time step t, is obtained through a linear
transformation of the initial input It as follows:

pt = Wp ∗ It + bp (5)

where Wpand bpare parameters that require learning. Then, the spatial weight pt is nor-
malised using the softmax function to ensure that the sum of all attention values is 1. Given
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the feature sequence index k, a regularised weight vectorμ(k)
t can be generated as follows:

μ
(k)
t =

exp(p(k)
t )∑

k
exp(p(k)

t )
(6)

Theoutput of the spatial attentionmodule is obtainedbyweighting the initial inputwith
the normalised spatial attention vector μ(k)

t , as calculated by the following equation:

Ĩt = [μ(1)
t · I(1)t ,μ(2)

t · I(2)t , . . . ,μ(n)
t · I(n)t ] (7)

As shown in Figure 4, the temporal attentionmodule takes the form I(k) = [I(k)1 , I(k)2 , . . . , I(k)T ]
as input, where k represents the k-th sequence, and T represents the temporal length.
Similar to spatial attention module, a linear transformation is applied to the input to gen-
erate the temporal attention weight vector q(k), representing the importance of the k-th
sequence at all time steps within the time window:

q(k) = Wq ∗ I(k) + bq (8)

The normalised temporal attention vectors are then processed through the softmax
function:

υ
(k)
t =

exp(q(k)
t )∑

t
exp(q(k)

t )
(9)

The output of the time attentionmodule is obtained by weighting the initial input with the
normalised time attention vector υ(k)

t , calculated as follows:

Ĩt = [υ(1)
t · I(1)t , υ(2)

t · I(2)t , . . . , υ(n)
t · I(n)t ] (10)

4.2.2. Stacked TCNmodule
TCN, as a novel sequence modelling method, leverages the advantages of CNNs, offering
increased parallelism and flexible receptive fields (Bai, Kolter, and Koltun 2018). The main
components of TCN are casual dilated convolution and residual connection.

Casual dilated convolution is the combination of casual convolution and dilated convo-
lution. The casual convolutionensures that there is no information leakage.Only the state at
or before time step t is considered in casual convolution to calculate the output at time step
t, whichmeans that the feature extraction process excludes any future information. Dilated
convolution is employed to address the challenge of processing exponentially growing
long sequence data while preventing the network from becoming excessively deep. By
using larger receptive fields, the network can achieve comparable performance with fewer
training parameters and layers, which proves advantageous during training. The effective
history length in casual dilated convolution is determined by (K − 1) · d, where K repre-
sents the kernel size and d is the dilated factor. To control the number of parameters, a fixed
value for K is chosen and the value of d is exponentially increased layer by layer. Specifically,
d = 2l , where l denotes the level of the network.
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Figure 5. Illustration of causal dilated convolutional structure.

Figure 6. Illustration of residual connection structure.

Figure 5 illustrates interval sampling of causal dilated convolution. In comparison to
traditional convolution methods that involve multilayer convolution and pooling, inter-
val sampling effectively reduces information loss while preserving the same number of
input and output time steps. Given the filter F = {f0, f1, . . . , fk , . . . , fK−1}, the causal dilated
convolution process can be described as follows:

gh,t =
K - 1∑
k=0

fk · gh−1,t−k·d (11)

where gh,t represents the series value of the h-th layer in the network at time step t, K
denotes the size of the convolution kernel, d signifies the convolution dilation factor, and
t − k · d accounts for the direction of the past.

However, causal dilated convolution alonemay not sufficewhen dealingwith extremely
long sequences, as it requires a deeper structure. Nonetheless, deepmodels can encounter
the issue of gradient disappearance or explosion. To address this problem, residual connec-
tions are employed. The structure of residual connections is depicted in the Figure 6. TCN
incorporates three layers of causal dilated convolution with dilation rates set to 1, 2, and 4,
respectively. A unit convolution kernel of size 1× 1 is utilised to process the original input,
ensuring that the sequence structure remains consistent across the two paths during the
summation operation. Residual connections enable the network to effectively propagate
cross-layer information.

The residual connection is defined as summing input information and processing infor-
mation through the TCNmodule as follows:

Ĩt = ReLU(It + G(It)) (12)
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Figure 7. Illustration of BiGRU structure(a) and GRU structure(b).

where It represents the input of the TCNmodule, and G(It)represents the processing result
of the causal dilated convolution.

4.2.3. BiGRUmodule
As an alternative to LSTM, the GRU network, with gate mechanisms e.g. reset gate and
update gate and recurrent structures, learns relatively long-term dependencies (Cho et al.
2014). Moreover, the BiGRU is bidirectional, enabling the input sequences to be processed
in both the forward and backward directions, thereby obtaining more comprehensive
feature information. The structures of BiGRU and GRU are shown in Figure 7.

Specifically, reset gate Rt = {R(1)
t , R(1)

t , . . . , R(n)
t }, update gate Zt = {Z(1)

t , Z(1)
t , . . . , Z(n)

t },
new information H̃t = {H̃(1)

t , H̃(1)
t , . . . , H̃(n)

t } and hidden state Ht = {H(1)
t ,H(1)

t , . . . ,H(n)
t } can

be calculated as follows:

⎧⎪⎪⎨
⎪⎪⎩
Rt = σ(Wrx ∗ It +Wrh ∗ Ht−1 + br)
Zt = σ(Wzx ∗ It +Wzh ∗ Ht−1 + bz)
H̃t = tanh(Wnx ∗ It + Rt � (Wnh ∗ Ht−1 + bh))
Ht = (1− Zt)� H̃t + Zt � Ht−1

(13)

where σand tanhare activation functions, Ht−1represents the hidden state of the last iter-
ation t-1.Wrxdenotes the parameters between hidden state and input, andWrh represent
the parameters between Rt and Ht−1. Other parameters Wzx , Wzh, Wnx and Wnhshare sim-
ilar function that need to be learned. br , bz and bh represent bias terms. � denotes the
HadamardProduct, that is,multiplying the correspondingelements in theoperationmatrix.

Then, the hidden state resulting from the combined forward and backward calculations
is fed into a fully connected layer, yielding the output of the BiGRU. This output can be
computed using the following formula:

Ĩt = FC(⊕(
−→
Ht ,
←−
Ht )) (14)

where⊕(·)represents the concatenate operation,−→Ht and
←−
Ht represent the forward and the

backward hidden state, respectively. FCrepresents the fully connected layer.
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4.3. External feature fusion

In previous studies, the usefulness of external features for traffic prediction has been
demonstrated (Liu et al. 2022; Tedjopurnomo et al. 2020). However, existing research often
overlooks the inherent characteristics of the transportation system (Liu, Liu, and Jia 2019;
Xiu, Sun, and Peng 2022a). When predicting metro passenger flow, it is crucial to consider
the influence of accurate timetables on passenger flow dynamics. With the availability of
real-time timetable data, it is possible to extract this data to construct the disturbance char-
acteristics caused by train activities on passenger flow. Therefore, in this study, the external
features encompass both the train timetable features designed and the conventional time-
of-day and day-of-week factors that have proven to be effective. The following section
provides a detailed explanation of the construction of the train activity disturbance feature.

The operation of themetro possesses a unique feature, as trains strictly adhere to precise
timetables. Consequently, passenger movement into and out of the station is constrained
by the interference causedby train activity. To examine the influenceof themetro timetable
data on thepassenger flowprediction, an analysis of the correlationbetween thepassenger
flow data and metro timetable data is conducted. The train arrival activity and outbound
passenger flow for station A are used for data exploration. Figure 8(a) shows the timetable
data between 7:30 and 8:30 am, obtained through the train schedule, in which different
states characterise the variation in the train arrival interval. Figure 8(b) shows the fluctua-
tions in the outbound passenger flow in the same period. Figure 8 shows a local peak in
the alighting passenger flow when the train arrives. The peak occurs more frequently as
the train’s arrival interval decreases. For instance, as shown in Figure 8(a), two trains arrive
at station A between 7:30 and 7:40 am (state 1), and three trains arrive in the 7:40–7:50
am period (state 2). Figure 8(b) shows that in the same period, the outbound flow of the
same station (aggregated in 1min intervals) has two peaks in states 1 and 3 in state 2. This
correspondence indicates that train arrival events affect the appearance of passenger flow
peaks. However, the time at which the train arrives (t1) and that at which the peak occurs
(t2) do not coincide. This lack of coincidence is attributable to the fact that the peak passen-
ger flow associated with the train occurs later than the arrival time of the corresponding
train owing to the different walking speeds of various passenger groups and variation in
the platforms’ crowding conditions at different times of the day. Therefore, feature mod-
elling is performed to characterise the correlation between the train arrival activities and
passenger flow peaks. The feature is constructed considering two aspects: the location and
intensity of train arrivals.

The first aspect is the temporal location characteristics of train arrivals, defined as the
following binary vector:

Ut = [ut,1, ut,2, . . . , ut,q, . . . , ut,d] (15)

ut,q =
{
1, atrainarrivesatq− thpositionoft − thtimeinterval
0, otherwise

(16)

For example, given a time interval of 10min and discrete time unit of 1min (rounded up),
the temporal position of the two trains (marked as green in Figure 4) that arrive at 7:32:00
and 7:36:40 is denoted as [0, 1, 0, 0, 0, 0, 1, 0, 0, 0]. In this vector, the 2nd and 7th positions
equal 1 and other positions are set as zero.
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Figure 8. Correlation between (a) passenger flow data and (b) metro timetable data (1-min interval,
7:30–8:30; a state denotes a time interval of 10min). Stations A and B are two adjacent stations on a
metro network.

The second aspect is the intensity of train arrival, expressed as.

Pt =
d∑

q=1
ut,q (17)

where Ptis the total number of train arrivals in the t-th time interval.
The train temporal location and intensity characteristics are merged to establish the

final train timetable featuresMt = [Ut ; Pt] for a target station, where operator [; ] represents
concatenation operator.

Regarding the time-of-day and day-of-week factors, specific rules are followed for clas-
sifying these factors based on previous studies (Liu, Liu, and Jia 2019; Xiu, Sun, and Peng
2022a), considering the timing and duration of passenger peaks throughout the day. The
classification method is presented in Appendix A. One-hot encoding is utilised for the
other external features (day-of-week and time-of-day), denoted as Tt = [T1t ; T

2
t ], where

T1t = onehot(T̃1t ), T2t = onehot(T̃2t ). T̃1t and T̃2t represent the original day-of-week and time-
of-day variables, while T1t and T2t represent the corresponding encoded external factor
vectors.

The train timetable features and time-related external factors are then combined into a
heterogeneous information matrix Et = [Mt ; Tt], which enriches the multi-source features
and serves as input for an embedding layer. It is important to note that, due to the high
sparsity of the external factors, this study employs the embedding layer to transform the
external factor matrix Etinto a vector of the same dimension as the preliminary prediction
result.
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As for the fusionmodule of the proposedmethod, the embedded external factor vector
and the preliminary prediction result vector are concatenated to obtain the intermediate
result ft = [̃It , Et]. Finally, the intermediate results are fed into a fully connected layer neural
network to generate the final prediction results for metro passenger flow.

5. Experiments

5.1. Data description

5.1.1. Data source
The case study focuses on the Shanghai Metro, which is one of the largest urban rail tran-
sit systems globally, serving Shanghai, China, and the surroundingmetropolitan area. With
daily peak passenger numbers exceeding tens of millions, the Shanghai Metro provides an
ideal case to validate the proposed method. The dataset used for this research was care-
fully compiled from verifiable, real-world data obtained from the Shanghai Metro system.
This comprehensive dataset contains billions of transaction records collected from a net-
work of 415 individual stations across 17 lines. The data collection period for this study
spanned three months, from July 1 to September 30, 2019. Each transaction record in this
dataset includes specific elements such as the transaction ID, entry and exit times, as well
as the names of the corresponding entry and exit stations. The focus of the investigation
is strategically centered on the time bracket of 6:00–23:00, as it has a significant impact on
passenger forecasting. This operational focus aligns with previous relevant research in the
field.

Table 2 shows a detailed overview of the experimental dataset. The dataset is organ-
ised by dividing the daily data into 102 distinct intervals, with each interval representing
a duration of 10min. The passenger data was sourced from an automatic fare collection
system (AFC), while the train schedule data was obtained from an automatic vehicle loca-
tion system (AVL). These extracted datasets were then combined to create comprehensive
passenger flow and timetable datasets. The passenger flow dataset has a temporal dimen-
sion of 9384, covering 92 days with 102 observations per day. The spatial dimension of the
dataset corresponds to the 415 stations in the metro system. The feature dimension of the
passenger flow dataset consists of two features: inbound and outbound passenger flows.
On the other hand, the timetable dataset includes two features: arrival temporal position
and intensity. The experimental dataset was divided as follows: data from July 1 to Septem-
ber 2, 2019 (64 days) are used as the training set, data from September 3 to September 16
(14 days) are allocated as a validation set for model selection during the training process,
and the remaining data from September 17 to September 30 (14 days) are used as the test
set.

Further, to evaluate the effectiveness of the proposedmethod, four sample stations (Sta-
tion S1, S2, S3, and S4) were selected, representing various passenger patterns within the
metro network, as shown in Figure 9. Station S1 and Station S3 are transfer type, while Sta-
tion S2 and Station S4 are non-transfer type. The inclusion of different station types allows
for testing the generalisation and generality of our method.

5.1.2. Data spatial-temporal analysis
The spatiotemporal associations are also analysed using the validation dataset. The spa-
tial distribution of impact levels for different target stations is shown in Figure 10. The
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Table 2. Experimental dataset based on the Shanghai metro network in 2019.

Parameter Value

Number of stations in the network 415
Time period for daily record 6:00 am–23:00 pm
Number of days in record 92 days
Tested time interval 10min/ time step
Shape of overall passenger dataset (9384,415,2)
Shape of timetable features (9384,10)
Time period of training set 2019/7/1–2019/9/2 (64 days)
Time period of validation set 2019/9/3–2019/9/16 (14 days)
Time period of test set 2019/9/17–2019/9/30 (14 days)

Figure 9. Distribution of tested stations in Shanghai metro system and the passenger patterns.

correlation coefficient indicates the strength of the connection between the station and
the target station. A correlation coefficient closer to 1 signifies a stronger association. The
analysis reveals distinct spatial associations among different station types. Figure 10(a,c)
illustrate the spatial relationships of transfer-type stations, while Figure 10(b,d) represent
non-transfer stations. For transfer-type target stations, those in proximity to the metro’s
core area tend to exhibit higher correlation coefficients, whereas stations farther away dis-
play lower coefficients. Conversely, non-transfer stations located further from the metro’s
core area generally exhibit higher correlation coefficients, likely due to shared traffic pat-
terns. Interestingly, unlike road transportation systems, the correlation coefficient between
twometro stations does not exhibit a significant relationshipwith their distance.Moreover,
regardless of station type, the number of highly correlated stations is much smaller than
the total number of stations, emphasising the importance of conducting spatial correlation
analysis on the original data to reduce input factors in the spatial dimension.

Additionally, the Pearson correlation coefficient between the current passenger flow at
time step t and theprevious 12 timesteps (with each step representing 10min) is calculated.
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Figure 10. Spatiotemporal relationship results of the other stations in the network. (a) Station S1 (trans-
fer type); (b) Station S2(non-transfer type); (c) Station S3(transfer type); (d) Station S4(non-transfer
type).

Table 3. Pearson coefficients of passenger flow at different time intervals.

Time interval Pearson coefficient Time interval Pearson coefficient

t-1 (0-10 min) 0.95 t-7 (60-70 min) 0.84
t-2 (10-20 min) 0.96 t-8 (70-80 min) 0.81
t-3 (20-30 min) 0.93 t-9 (80-90 min) 0.75
t-4 (30-40 min) 0.89 t-10 (90-100 min) 0.74
t-5 (40-50 min) 0.88 t-11 (100-110 min) 0.72
t-6 (50-60 min) 0.86 t-12 (110-120 min) 0.69

The results are presented in Table 3. It is observed that the correlation coefficient decreases
as the analysis moves away from the current time period t, indicating stronger temporal
correlations. However, in the t-9 period, the correlation coefficient is 0.75 (lower than 0.8),
suggesting a relatively smaller influence of timing. Note that two random variables with
a Pearson coefficient greater than 0.8 are generally considered highly correlated. There-
fore, Therefore, the input factor of the temporal dimension can be reduced by selecting a
reasonable and moderate time lag.

5.2. Experimental settings

5.2.1. Evaluationmetrics
Three metrics are used to evaluate the prediction performance of the proposed method.
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(1) Root mean square error (RMSE):

RMSE =
√√√√ 1





∑
i=1

(ŷi − yi)
2 (18)

(2) Mean absolute error (MAE):

MAE = 1




∑
i=1
|ŷi − yi| (19)

(3) Symmetric mean absolute percentage error (SMAPE):

SMAPE = 1




∑
i=1

|ŷi − yi|
(|ŷi| + |yi|)/2 × 100% (20)

where ŷi and yi are predicted value and actual value, respectively, at the i-th sample.

 denotes the number of samples in the validation or test dataset.

5.2.2. Benchmarkmethods
Three classic machine learning models, four mainstream deep learning models, and three
advanced graph-based learning models are selected as benchmark models. The following
are brief introductions to their implementation details:

(1) Machine learning models:

• ARIMA: This traditional andwidelyusedmethodcombines autoregressionwith amoving
averagemodel for time series prediction. The autoregressive term, difference order, and
moving average term are optimised based on the Akaike information criterion.

• KNN: K-Nearest Neighbours is a classic machine learning approach that calculates simi-
larity using Euclidean distance and predicts by taking the mean value of neighbouring
points. The number of neighbours is tuned from 1 to 14.

• MLP: Multi-layer perception is the most basic deep learning method. An MLP model is
constructed, consisting of one input layer, two hidden layers, and one output layer.

(2) Deep learning models:

• LSTM-FC: This deep learning-based model utilises a long short-term memory network
with fully connected hidden units to address the issue of vanishing gradients in standard
RNNs. The hidden size of each LSTM layer is set to 256.

• GRU-FC: Similar to LSTM, thismodel employs gated recurrent units to capture sequential
dependencies by replacing the LSTM layers. The hidden size of each GRU layer is set to
256.

• ASeq2Seq: A sequence-to-sequencemodel consistingof two fully-connectedGRU layers
with an attention mechanism for time series prediction. The hidden size of each GRU
layer is set to 256.
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• DARNN: This model incorporates dual-stage attention to capture dependencies in both
input data and encoder hidden states.

(3) Graph-based learning:

• DCRNN (Li et al. 2017): Agraph-based learningmodel that captures spatial dependencies
using bidirectional randomwalks on graphs and learns temporal dependencies with an
encoder-decoder architecture. Thismethod is re-implementedbasedon theofficial code
for metro ridership prediction.

• GWN (Wu et al. 2019): This method utilises an adaptive dependency matrix to capture
hidden spatial dependencies and employs stacked dilated 1D convolution components
to handle long sequences. This method is re-implemented based on the official code for
metro passenger flow prediction.

• MTGNN (Wu et al. 2020): A model based on Graph Neural Networks (GNN) and Convolu-
tional Neural Networks (CNN) that uses adaptive graphs, mix-hop propagation layers,
and dilated inception layers to capture spatial-temporal correlations. This method is
re-implemented based on the official code for metro passenger flow prediction.

• ASTGNN (S. Guo et al. 2021): An encoder-decoder architecturewith residual connections
and layer normalisation designed to learn the dynamics and heterogeneity of spatial-
temporal graph data for traffic forecasting. Thismethod is re-implemented based on the
official code for metro passenger flow prediction.

5.2.3. Experimental settings
The proposed method utilises the MAE loss function and the adaptive moment estima-
tion (Adam) optimiser. Historical data is fed into the proposed STA-PTCN-BiGRU network
for training. The optimiser adjusts the parameters based on the training error. An initial
learning rate of 0.001 is set. For the single-step prediction task, the prediction horizon is set
at 10min. In contrast, formulti-step prediction tasks, the horizon extends up to 120min (12
steps). The number of look-back steps is consistently set to 8 (80min before the prediction
time) for all models. Specifically, in the single-step prediction task, we use data from the
past 80min to forecast passenger flow for the next 10min. For multi-step predictions, we
continue to employ the past 80min of data but expand the range of future predictions to
cover up to 120min. The details of experimental parameters are provided in Appendix B.

The experiments were conducted on a desktop computer equipped with an NVIDIA
GeForce RTX 3060 graphics processing unit, 16 GB of memory, and an Intel CPU i9-10900 K
(3.70GHz). All the baseline models were implemented or imported using Python from
existing packages. The proposed model was implemented using PyTorch 1.9.0.

6. Results and analysis

6.1. Computational results

In this section, comparative experiments were conducted to verify the performance of
the proposed models. ARIMA, KNN, MLP, LSTM, GRU, ASeq2Seq, DARNN, DCRNN, GWN,
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MTGNN, and ASTGNN were used as baseline models. The results of the one-step fore-
casting in terms of RMSE, MAE, and SMAPE are summarised in the Table 4, with the best
performance marked in bold. Several interesting findings are as follows:

• Machine learning-basedmodels such as KNNperformedworse than other types ofmod-
els, indicating the difficulty of traditional linear models in capturing the dynamics of
short-term passenger flow.

• Models based on RNN architectures, including LSTM-FC and GRU-FC, which incorporate
time-dependent modelling, outperformed KNN and MLP models in most tasks. GRU, as
a variant of LSTM, showed comparable predictive power to LSTM.

• Incorporating the attention mechanism in the network, particularly the time atten-
tion mechanism, significantly improved the RNN’s ability to capture time dependence.
ASeq2Seq and DARNN, which utilise attention mechanisms, performed significantly
better than single RNN architectures. e.g. LSTM and GRU.

• Embedding spatial modelling into short-term forecasting, e.g. GCRNN and GWN, effec-
tively improved model performance by considering spatial dependence. Furthermore,
graph learning-based models, which consider both temporal and spatial dependen-
cies, outperformed the best DL models, i.e. ASeq2Seq and DARNN, that only focused
on temporal dependency modelling.

• Models that incorporate both temporal and spatial attention mechanisms further
enhanced the ability to capture temporal and spatial dependencies. ASTGNN, which
includes both temporal and spatial attention mechanisms, outperformed models with-
out attention mechanisms (GCRNN, GWN, and MTGNN) in most prediction tasks.

• Overall, our proposed approach, STA-PTCN-BiGRU, demonstrated the smallest RMSE,
MAE, and SMAPE in all cases, indicating its effectiveness in short-term passenger flow
prediction for metro systems.

Further analysis of our model’s performance is presented in Table 5. The transfer type con-
siders the average improvement of station S1 and S3, the non-transfer type considers the
average improvement of station S2 and S4, and the average column indicates the average
improvement of all four sample stations.

The average improvement can be observed in the ‘Average’ column of Table 5. Com-
pared to the best performance of all ML-based models (ARIMA, KNN and MLP), our
model shows average improvements of 27.32% in RMSE, 29.01% in MAE, and 38.23%
in SMAPE. When compared to the best performance of all DL-based models (LSTM-FC,
GRU-FC, ASeq2Seq and DARNN), our model achieves improvements of 36.53% in RMSE,
31.73% in MAE, and 29.65% in SMAPE. In comparison to the best performance achieved
by all graph-based models (DCENN, GWN, MTGNN and ASTGNN), our model demonstrates
improvements of 9.98% in RMSE, 8.08% in MAE, and 13.29% in SMAPE.

Our experiments confirm the effectiveness of the proposed model for both transfer-
type and non-transfer-type stations. Specifically, in terms of the mean absolute error
(MAE) metric, there is an improvement of 11.07% at transfer stations and 6.42% at non-
transfer stations when compared to the best performance achieved by the baselinemodel,
ASTGNN.
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Table 4. Prediction error of the proposed method and the other baselines.

S1(outflow) S2(outflow) S3(outflow) S4(outflow)

Methods RMSE MAE SMAPE RMSE MAE SMAPE RMSE MAE SMAPE RMSE MAE SMAPE

ARIMA 54.04 39.19 23.52 69.35 43.15 24.56 50.27 35.33 51.18 41.88 25.83 54.42
KNN 71.28 44.87 22.31 91.47 49.40 23.29 66.30 40.45 48.54 55.24 29.57 51.62
MLP 69.63 45.90 25.07 89.35 50.54 26.18 64.77 41.38 54.55 53.96 30.25 58.01
LSTM-FC 65.95 41.95 22.81 84.62 46.26 23.81 61.34 38.04 49.62 51.10 27.89 52.77
GRU-FC 66.02 42.62 23.26 84.71 46.93 24.29 61.40 38.43 50.61 51.16 28.09 53.82
ASeq2Seq 61.89 40.75 19.59 79.41 44.86 20.45 57.56 36.74 42.62 47.96 26.85 45.32
DARNN 63.01 43.50 20.35 80.86 47.89 21.25 58.61 39.22 44.27 48.83 28.67 47.08
DCRNN 44.78 31.59 16.29 57.46 34.79 17.01 41.65 28.48 35.45 34.70 20.82 37.70
GWN 43.64 30.79 17.92 55.99 33.90 18.71 40.59 27.76 38.98 33.82 20.29 41.46
MTGNN 45.94 33.15 18.81 58.95 36.50 19.64 42.73 29.89 40.92 35.60 21.85 43.52
ASTGNN 43.65 30.26 15.89 56.01 33.32 16.59 40.60 27.28 34.58 33.83 19.94 36.77
Proposed 39.42 27.72 13.46 49.35 31.27 14.77 37.72 24.09 30.24 30.17 18.78 31.57
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Table 5. The improvement of the proposed methods over baselines.

Transfer type Non-transfer type Average

Method RMSE MAE SMAPE RMSE MAE SMAPE RMSE MAE SMAPE

ARIMA 26.05% 30.47% 41.50% 28.51% 27.43% 41.33% 27.32% 29.01% 41.41%
KNN 78.36% 64.67% 62.13% 84.50% 57.78% 38.14% 44.90% 38.00% 38.23%
MLP 74.23% 68.47% 82.19% 80.22% 61.42% 44.96% 43.59% 39.40% 45.03%
LSTM-FC 65.00% 54.38% 65.74% 70.68% 48.17% 39.49% 40.44% 33.92% 39.57%
GRU-FC 65.18% 56.44% 69.04% 70.86% 49.89% 40.67% 40.50% 34.73% 40.76%
ASeq2Seq 54.85% 49.55% 42.35% 60.18% 43.29% 29.55% 36.53% 31.73% 29.65%
DARNN 57.66% 59.65% 47.88% 63.09% 52.97% 32.18% 37.66% 36.05% 32.28%
DCRNN 12.03% 15.96% 18.41% 15.89% 11.11% 15.30% 12.27% 11.95% 15.42%
GWN 9.18% 13.00% 30.20% 12.94% 8.27% 22.98% 9.98% 9.65% 23.08%
MTGNN 14.95% 21.69% 36.69% 18.91% 16.59% 26.63% 14.50% 16.10% 26.73%
ASTGNN 9.22% 11.07% 15.49% 12.98% 6.42% 13.17% 10.01% 8.08% 13.29%
Proposed – – – – – – – – –

6.2. Multi-step prediction

To demonstrate the stability of our model, a multi-step forecasting task was conducted
using datasets from four sample stations. The task involved predicting the outbound pas-
senger flow for the next 3 (30min), 6 (60min), and 12 (120min) target stations. ASeq2Seq,
DCRNN, and ASTGNNwere selected as benchmark models due to their superior multi-step
prediction abilities.

The comparison of our method and baseline across different time lengths are shown
in Figure 11. ‘ours’ in the legend represents the proposed model. As expected, the accu-
racy of predictions decreases as the length of the prediction time increases. However, our
proposedmodel consistently outperforms the other three baselinemodels in all multi-step
forecasting tasks. Notably, on the Station S4 (outflow) dataset, our model demonstrates a
significant improvement over the baseline model ASTGNN. This improvement is particu-
larly evident in the long-term prediction task (120min), where our model exhibits stable
prediction performance, which can be observed in Figure 11 (Station S4). Therefore, these
results indicate that our proposed model is well-suited for relatively long prediction tasks
and achieves satisfactory performance in the domain under study.

6.3. Ablation studies

In this section, the aim is to analyse the contributions of each module in our architec-
ture, STA-PTCN-BiGRU. To facilitate this exploration, STA-PTCN-BiGRU is compared with its
variants outlined below:

• w/o Cor-STFS (M1): This variant uses the raw data directly as input, without employing
the Cor-STFS algorithm.

• w/o spatial and temporal attention (M2): In this variant, all attention modules are
removed, retaining only the parallel TCN and BiGRU.

• w/o spatial attention (M3): This variant eliminates the spatial attentionmodel, preserving
only the attention module for temporal features.

• w/o temporal attention (M4): Conversely, this variant discards the temporal attention
model, while maintaining the attention module for spatial features.
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Figure 11. Performance comparison of our method and baselines as the prediction horizon increase.

Figure 12. Ablation results on the variants of proposed method.

• w/o train timetable features (M5): This variant omits the train timetable features of the
external event module within the model.

As shown in Figure 12, it canbeobserved that ourmodel surpassesM1,M2,M3,M4,M5, and
M6 in all test cases, indicating the positive impact of eachmodule on the overall prediction
accuracy.

Upon sophisticateddata analysis, it is discovered that theutilisationofCor-STFS results in
an average RMSE reduction of 9.55%. This demonstrates that Cor-STFS eliminates interfer-
ence from the original data and enhances themodel’s performance. Furthermore, employ-
ing the spatial-temporal attention module leads to an average RMSE reduction of 6.85%.
Specifically, the inclusion of time attention reduces the RMSE by an average of 4.72%, while
the incorporation of the spatial attentionmodule reduces the RMSEby an average of 5.74%.
These findings suggest that capturing temporal features ismore crucial than capturing spa-
tial features in the taskof predictingpassenger flow time series. Simultaneously considering
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Table 6. The performance analysis of different spatial association thresholds ( π ) on the proposed
method.

π RMSE MAE SMAPE Selected stations

0.95 41.75 29.68 14.83 13
0.90 40.23 28.30 13.85 40
0.85 38.34 27.39 12.48 59
0.80 39.42 27.72 13.46 80
0.75 40.41 29.07 15.22 94

temporal and spatial features enables the extraction of comprehensive spatial-temporal
characteristics, thereby significantly improving prediction accuracy. Moreover, incorporat-
ing the train timetable featurewithin the external eventmodule results in an average RMSE
reduction of 3.09%. This underscores the effectiveness of considering the metro’s inherent
nature and extracting features from the timetable when predicting metro passenger flow.

Overall, our analysis highlights the significant contributions of each module to the
model’s accuracy. The Cor-STFS module improves performance by eliminating data
interference, while the spatial-temporal attention, time attention, spatial attention, and
train event feature modules further enhance prediction accuracy by capturing relevant
features and characteristics of the metro system.

6.4. Influence of cor-sTFS

In this section, the effect of using the Corr-STFS algorithm on the prediction performance
of themodel was tested. Cor-STFS serves the purpose of selecting the optimal spatial asso-
ciation threshold and time-lag. The impact of these two values on themodel’s performance
will be demonstrated step by step.

Spatial correlation plays a vital role in determining the input factors related to the spa-
tial dimension. To illustrate this, let’s consider the predicted target station S1. Tests were
conducted to evaluate the effect of different choices of the spatial association threshold
on the model, with a fixed time-lag of 8. The Poor forecast performance arises from overly
pessimistic or strict values. This occurs when the spatial association threshold is excessively
large, resulting in a small number of considered stations and insufficient spatial information
related to the target station. Conversely, a small spatial association threshold incorporates
more site-related information into the network, but it may introduce noise from other sta-
tions that are not highly correlatedwith the target station. This irrelevant data can adversely
affect the model’s inference and prediction, thereby undermining its performance. Based
on the results presented in Table 6, it is found that a spatial association threshold of 0.85
yields the best prediction performance. In this case, 59 stations exhibiting high correlation
are utilised as the spatial input for the model. This value was adopted as the default for the
final model testing.

Time-lag is a crucial parameter for determining input factors related to the time dimen-
sion, as traffic dynamics exhibit strong correlation within nearby time periods. To examine
the impact of different time-lag values while maintaining a spatial association threshold of
0.85, the RMSE, MAE, and SMAPE were assessed. As depicted in Figure 13, the results indi-
cate that a time-lag of 8 yields the smallest errors in RMSE,MAE, and SMAPE. Interestingly, in
the initial stages, the prediction error decreases rapidly as the time-lag increases. However,
when the time-lag exceeds a certain critical point, the prediction error begins to increase
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Figure 13. Influence of time lag on RMSE, MAE and SMAPE of the model when spatial association
threshold equals 0.85.

Figure 14. Effects of Cor-STFS and parallel computing on training time.

gradually. This can be attributed to the incorporation of excessively long temporal input,
which complicates the forecasting model’s ability to capture short-term dependencies.

6.5. Computational efficiency

In this section, tests were conducted to assess the impact of utilising Corr-STFS and par-
allel computing on the training time, as shown in Figure 14. Note that the ‘w/o Cor-STFS’
column implies using the original data directly as input without employing the Corr-STFS
method. Similarly, the ‘w/o parallel computing’ column indicates reconstructing the pro-
posedmodel by stacking temporalmodule and spatialmodule. These testswereperformed
using our approach and two variants on four case stations.

Our findings indicate that parallel computing offers the most substantial reduction in
training time, with an average decrease of 46.98%. Corr-STFS also contributes to reducing
training time, with an average decrease of 14.95%. This reduction can be attributed to Corr-
STFS compressing the spatial-temporal features of themodel, thereby leading to adecrease
in the model’s parameters.

randomness in passenger flow during weekends, which affects the model’s stability.
Similar trends are observed in the dataset for Station S2.
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7. Conclusions

In this paper, we proposed an efficient parallel computing-based framework as an integral
component of an intelligent transportation system for predicting metro passenger flow.
Our framework incorporates relational information within the metro network, utilising the
Cor-STFS algorithm for optimal input data selection and the STA-PTCN-BiGRU structure
for capturing dynamic spatial-temporal characteristics. Through causal dilated convolu-
tion, residual connections, and bidirectional sequence information handling, our model
effectively captures long-termdependencies andovercomes gradient problems associated
with RNNs. External features and fully connected fusion layers are incorporated, provid-
ing comprehensive prediction results. Experiments using a real dataset from the Shanghai
metro network were conducted to evaluate the accuracy and generality of our proposed
method. Various baseline models were compared, and the results showcased the supe-
rior performance of our model. In terms of RMSE, we achieved improvements of 9.18%
and 6.42% for transfer-type and non-transfer-type stations, respectively. Additionally, our
model demonstrated outstanding stability and robustness in multi-step prediction tasks,
outperforming all baseline models. The model ablation experiment highlighted the con-
tributions of train event features and the Cor-STFS method, resulting in significant perfor-
mance improvements. Moreover, the Cor-STFS method and parallel computing approach
effectively reduced training time.

In real-world scenarios, the framework proposed in this paper plays a crucial role
in planning train timetables and facilitating real-time operational rescheduling. It effec-
tively addresses the spatial-temporal imbalance in passenger demand by adjusting train
stop plans and introducing additional trains in daily operations. Moreover, by taking into
account station ridership, the framework aids in improving in-station service facilities and
mitigating potential congestion through the implementation of emergency protective
measures.

However, some areas warrant further exploration in this paper. Our study does not
account for abnormal passenger flow during major incidents, as explored by Pasini et al.
(2022). This limitation can be addressed in future work by investigating the adaptability
of our model for changing passenger conditions, such as dynamics during planned and
unplanned disruptions. Furthermore, we plan to investigate the adaptability of various cor-
relation methods, such as cross-correlation coefficients, and their potential application in
metro passenger flow prediction for our future research.
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Appendix A. Time-of-day factor and day-of-week factor

As shown of Table A.7, the time-of-day factors is divided into the following 7 categories according to
the general Chinesemetro travelmode. As the time-of-day variable is also a discrete variable, the one-
hot method can be used to encode it. For example, the evening peak time period can be expressed
as [0, 0, 0, 0, 0, 1, 0].

The day-of-week factor can be simply divided into two categories, including the workday mode
and the weekend mode. Similar to time-of-day variable, one-hot representation can also be used to
describe it. For example, workdays can be denoted as [1, 0].

Table A7. Time period classification.

Category index Period Description

1 6 am−7 am Pre morning peak
2 7 am - 9 am Morning peak
3 9 am - 10 am End morning peak
4 10 am - 16 pm Flat hump period
5 16 pm - 17 pm Pre evening peak
6 17 pm - 20 pm Evening peak
7 20 pm - 23 pm End Evening peak

Appendix B. Experimental parameters

In this section, we present the parameter settings and details of the proposed approach. The param-
eter settings for the proposed method, including parameters for the neural network, optimiser, and
spatiotemporal feature selection, are presented in Table B.8. Via conducting numerical experiments
and fine-tuning, the best network configuration that yields the lowest error in both the training and
validation sets can be obtained. The best configuration consists of a 3-layer TCNmodule with an opti-
mal kernel size of 3, and the BiGRUmodule has 64 units in each direction. The details of the proposed
architecture used in this paper are shown in Table B.9. Furthermore, the Cor-STFS feature selection
method resulted in a spatial association threshold value of 0.85 and a time lag value of 8.

Table B8. Parameter settings for the proposed method.

Items Settings

TCN layers [1,5]
TCN kernel size [2,7]
Initial learning rate 0.001
Batch_size 128
Dropout 0.2
Optimiser Adam
Loss function MAE
Spatial association threshold 0.75,0.80,0.85,0.90,0.95
Time lag [1,12]

Table B9. Details of the proposed architecture.

Layer Hyperparameter value

Causal dilated conv layer 1 Dilation factor 1
Convolution kernels 64
Kernel size 3

Causal dilated conv layer 2 Dilation factor 2
Convolution kernels 64
Kernel size 3

Causal dilated conv layer 3 Dilation factor 4
Convolution kernels 32
Kernel size 3

BiGRU Each direction unit size 64
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Appendix C. Visual interpretation

In this section, the one-week prediction results of the proposed method on the test set were visu-
alised. Figure C.15 displays the predicted values alongside the corresponding observed values. It can
be observed that the predicted values align with the observed trend for the target station, thus con-
firming themodel’s ability to capture spatial-temporal dynamics of passenger flow. Furthermore, the
visualised results for both transfer station types (S1, S3) andnon-transfer station types (S2, S4) demon-
strate the reliability of the proposed model, with prediction errors being within an acceptable range.
To further examine the performance of the proposedmethod onworkdays andweekends, Station S1
(transfer-type) and Station S2 (non-transfer type) were chosen as examples and visualised the predic-
tive performance for both Monday and Saturday. The detailed prediction results of Station S1 and S2
are shown in Figure C.16 and Figure C.17. It is found that the proposed model effectively captures
traffic bursts in passenger flow on both workdays and weekends at Station S1. However, the model
exhibits better performance onworkdays compared toweekends. This disparitymay be attributed to
the increased randomness in passenger flow during weekends, which affects the model’s stability.

Figure C15. Prediction results compared with observations on all tested datasets.
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Figure C16. The detailed prediction result of passenger flow at Station S1 using the proposed method.

Figure C17. The detailed prediction result of passenger flow at Station S2 using the proposed method.
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