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Abstract 

Urban public transport systems, characterised by their complexity, generate vast data sets that pose 

challenges to traditional analytical methods. To address this issue, our research introduces an 

innovative natural feature profile framework, leveraging a comprehensive, data-driven approach 

that incorporates big data, data mining, machine learning, and correlation analysis. This approach 

provides detailed insights essential for transport planning and policy development. The framework's 

core is its three-layered structure: the data layer, the feature layer, and the application layer, 

complemented by a unique four-level feature tagging system. This system investigates correlations, 

significance, and sensitivities amongst feature tags. It facilitates the extraction of natural feature 

profiles from voluminous data sets, rendering the framework highly applicable in practical scenarios. 

The implementation of this framework in Suzhou and Lianyungang demonstrated its adaptability 

and effectiveness. The findings underscored distinct city-specific transport patterns, highlighting 

the necessity for customised transport strategies. Furthermore, our framework excels at capturing 

spatial-temporal dynamics, offering essential insights grounded in evidence. Overall, this paper 

introduces a methodical, adaptable, and data-oriented framework, signalling a promising future for 

the development of intelligent and sustainable urban public transport systems. 
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1. Introduction 

The agenda of Transit Metropolis has emerged as a pivotal focal point in the pursuit of sustainable 

urban transport systems (Cervero, 1998). One primary solution, embraced by major cities globally 

to address their transport system challenges, is the promotion of public transport-based trips (Mo et 

al., 2021; Wang, 2022; Wang and Tang, 2023). 

Public transport systems not only offer a safer transit for passengers, as evidenced by reduced 

accident-related fatalities (Johnson, 2021), but also contribute to the reduction of carbon emissions 

and air pollutants, particularly through bus electrification (McGrath et al., 2022; Xylia et al., 2019). 

However, numerous regions have experienced bottlenecks in bus patronage, exemplified by declines 

of 52% in Shenzhen, 31% in Shanghai, and 49% in England (Johnson, 2021; STC, 2015; Xue, 2021). 

Scholars like Shiftan et al. (2015) argue that passengers' perceptions influenced their choice of trip 

modes, and Tao et al. (2017) posit that the level-of-service (LoS) affected passengers' loyalty 

towards bus travel. Thus, understanding the inherent features of ridership patterns, as our study 

proposes, can provide the granular insights necessary for refining LoS, making bus travel more 

appealing and improving patronage (Arana et al., 2014; Erhardt et al., 2022). 

Efforts to enhance bus LoS have led to initiatives aimed at providing reliable bus services, 

reducing passenger waiting times, and expending bus network coverage (Liu and Sinha, 2007; Wu 

et al., 2017). Nevertheless, earlier research has largely depended on oversimplified models of bus 

networks or restricted survey data, which may lead to a disparity between theoretical models and 

the realities of real-world scenarios (Saberi et al., 2020). The advent of multi-source data has 

transformed public transport systems, offering a broader range of data, from smart card transactions 

and surveillance footage for ridership analysis, to road traffic data for estimating arrival times and 

even weather data for studying changes in passenger boarding and alighting patterns (Tang et al., 

2023, 2021, 2020). However, the rapid expansion and variety of data introduce a new challenge: 

pinpointing and deriving meaningful insights from pertinent data (Gu et al., 2022, 2018; Qin et al., 

2022). 

In this scenario, the concept of Natural Features in public transport ridership becomes 

particularly insightful. Natural features in the realm of data analysis are defined as the inherent 

characteristics and patterns that are found within datasets, which remain unaffected by any external 

influence or alteration. Essentially, these features present an unadulterated, organic representation 

of the data at hand. When applied to public transport ridership, these features elucidate the 

unscripted behaviours, preferences, and trends apparent among passengers. Recognising and 

understanding these natural features is foundational, as it offers a genuine snapshot of ridership 

dynamics, thereby enabling more aligned and effective transport planning and policy-making. 

The natural features of public transport ridership encapsulate the inherent characteristics, 

behavioural tendencies, and patterns exhibited within a public transport system. The crux of natural 

features, lies in an in-depth understanding of the essential characteristics and behavioural patterns 
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embedded within the public transport ridership, illuminating the foundational rules and the norms 

of its operation. These nature features typically emerge from the intricate dynamics of public 

transport ridership, influenced by a host of factors including, but not limited to, passenger 

preferences, temporal and spatial variability, urban morphology, service reliability, and network 

design (Lyu et al., 2022). 

Deciphering these natural features provides crucial understanding of the operational patterns 

and interactions within the public transport network. This understanding is pivotal to advancing 

transport services and decision-making, thereby fostering sustainable urban transport development. 

By offering a true representation of the public transport system, these natural features facilitate 

informed decision-making for policymakers, urban planners, and transport operators, which in turn 

enhances the efficiency of urban transport planning and management (He et al., 2022; Peled et al., 

2021). 

To address the challenges posed by the diverse, large-scale, and complex data in public 

transport systems, this paper proposes a problem-oriented, data-driven framework for the in-depth 

analysis of public transport ridership's natural features. Our goal is to extract valuable information 

that enhances public transport services, improves control mechanisms, and refines decision-making 

processes. We aim to advance a precise understanding of public transport dynamics. 

Our objectives include: (i) developing a scenario-based label system for bus ridership's natural 

feature profile, (ii) exploring effective methods for extracting and interpreting insights from multi-

source data, (iii) examining multi-source data processing techniques considering the relationships 

between various ridership features, and (iv) suggesting standardised methods for profiling natural 

features and comprehensive evaluation across different data collection platforms and technological 

contexts 

The remainder of this paper is structured as follows. Section 2 reviews the analysis 

characteristics of bus ridership and their impacts on individual boarding behaviour. Section 3 

introduces the framework of natural feature profiling. Two case studies of the public transport 

systems in the cities of Suzhou and Lianyungang, China, are presented in Section 4. Section 5 

discusses the implications of the natural feature, and Section 6 offers the conclusion of this study 

and outlines future work. 

2. Literature review 

2.1. Characteristics analysis on bus ridership 

A deep understanding of bus ridership characteristics is vital for improving bus services and 

fostering sustainable urban transport. Numerous methods and models have been employed to 

analyse bus ridership, which can be generally classified into three categories: regression models, 

machine learning models, and travel demand models (Taylor and Fink, 2013). 

Regression models, encompassing multiple linear regression (MLR) and Poisson regression, 
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have been widely utilised to determine the relationship between ridership and an array of factors, 

including socio-economic, land use, and service quality characteristics (Hu and Chen, 2021; Kim et 

al., 2016; Yang et al., 2021). For example, Boisjoly and El-Geneidy (2017) employed MLR to 

investigate the correlation between bus stop amenities and ridership, revealing that shelters and 

benches positively impact ridership. Vergel-Tovar and Rodriguez (2018) discovered that built 

environment characteristics, such as the mixture of land uses surrounding Bus Rapid Transit (BRT) 

stations and their integration into the urban fabric, are crucial determinants of BRT ridership and 

the necessity for sustainable mass transit systems. Zhou et al. (2017) emphasised that metro stations 

in urban areas are more susceptible to outdoor weather concerning ridership, while regular transit 

users exhibit resilience to weather changes. However, these models often suffer from small sample 

sizes or aggregate-level data limitations, which may not fully capture the complexity and dynamics 

of urban travel behaviour (Gutiérrez et al., 2011). 

Machine learning models, comprising decision trees, support vector machines, and artificial 

neural networks, have gained popularity in recent years for predicting bus ridership (Chen et al., 

2022; Tang et al., 2021; Ullah et al., 2022). For instance, Tang et al. (2020) utilised a tree-based 

model, gradient boosting decision tree (GBDT), to estimate potential alighting stops for individual 

bus trips. Their study demonstrated that time-dependent variables were of greater importance than 

others, and point-of-interest (POI)-related variables exhibited weaker correlations with alighting 

choice behaviour. Wu et al. (2021) proposed a novel scaled stacking GBDT model to predict bus 

passenger flow using multi-source datasets, which effectively addressed the multicollinearity issue 

with multi-source data and prioritised influential factors for passenger flow prediction. Although 

these models provide enhanced accuracy and adaptability for handling non-linear relationships and 

large-scale data compared to traditional regression models, some approaches may not adequately 

address the interactions and spatial-temporal dependencies among factors influencing bus ridership 

(Sivakumar Nair et al., 2023; Yousefzadeh Barri et al., 2022). 

Travel demand models, such as four-step and activity-based models, have been applied to 

forecast bus ridership by simulating individual travel behaviour and capturing intricate interactions 

between travellers, land use, and transport systems (Chen et al., 2023; McNally, 2007; Pinjari and 

Bhat, 2021). For example, Deepa et al. (2022) developed a direct demand model for bus transit 

ridership in Bengaluru, India, and examined the impact of service frequency and inter-route 

relationships on ridership. Berrebi and Watkins (2020) analysed the decline in bus ridership in four 

US cities between 2012 and 2018, finding that the principal cause of the decline predominantly 

affected white bus riders, while neighbourhoods with non-white, carless, and high-school-educated 

residents were more likely to exhibit high ridership. Nonetheless, activity-based models may not 

fully capture the complexity of human travel behaviour and decision-making processes, which can 

be influenced by factors such as social norms, perceptions of safety, and individual preferences 

(Bradley et al., 2010; Malayath and Verma, 2013). 
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2.2. Impacts on bus ridership prediction 

Accurate prediction of bus ridership is essential for improving public transport planning and policy-

making. The factors influencing individual choices for bus travel cover a broad spectrum, including 

mode choice, travel purpose, boarding and alighting stops, travel distance, and travel time, etc. 

Researchers have employed an assortment of models and methods to examine these factors and their 

implications on overall travel demand (Carpio-Pinedo, 2014; Wei et al., 2019; Zhou et al., 2013). 

Discrete choice models have been extensively employed to study mode choice behaviour, 

emphasising the effects of service quality attributes, socio-economic characteristics, and individual 

preferences (Boisjoly and El-Geneidy, 2017; Xue et al., 2015). For instance, Shiftan et al. (2015) 

applied a nested logit model to investigate the influence of service quality attributes and socio-

economic characteristics on mode choice. While these models have yielded valuable insights, 

potential biases in data sources and model assumptions may affect the generalisability and 

robustness of the findings. 

Structural equation modelling has been utilised to explore the impact of the level of service on 

passengers’ loyalty and satisfaction with bus travel (Currie and Delbosc, 2011; Tao et al., 2017). 

These studies have underscored the importance of service quality, reliability, and accessibility in 

shaping travellers' perceptions and choices. However, these models may not capture the full range 

of factors influencing bus ridership, including the interactions and spatial-temporal dependencies 

among various determinants. 

Machine learning techniques, e.g., decision trees, support vector machines, and artificial neural 

networks, have emerged as promising approaches for predicting bus ridership due to their capacity 

to handle large-scale data, non-linear relationships, and complex interactions (Khalil et al., 2021; 

Toqúe et al., 2016). For example, Liu et al. (2019) and Zhang and Cheng (2020) applied deep 

learning models to forecast bus ridership, demonstrating improved prediction accuracy compared 

to traditional regression models. However, few studies have effectively integrated multi-source data, 

such as smart card data, road traffic data, and weather conditions, to provide a more comprehensive 

understanding of bus ridership and its influencing factors (M. Zhang et al., 2022). 

In summary, despite the use of various methods to predict bus ridership and inverstigate factors 

affecting travel choices, there remains a need for further research to address challenges associated 

with data sources, model assumptions, and contextual factors (Kuo et al., 2023). Incorporating a 

data-driven approach using large-scale, multi-source data and advanced modelling techniques can 

potentially reveal new insights into the determinants of bus ridership, including the identification of 

natural features that influence travel behaviour. By uncovering these natural features, researchers 

and policymakers can devise more effective strategies to improve the accuracy of ridership 

predictions and enhance the overall quality of bus services. 
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3. Methodology: Natural feature profile framework 

The methodological framework presented herein aims to analyse the natural feature profile of public 

transport ridership. Utilising a bottom-up approach, it is firmly grounded in the real-world data, to 

thoroughly represent every facet and situation of the actual public transport system. This approach 

is particularly designed to support applications in public transport systems, including policy-making 

and strategic planning. The framework is structured systematically into three distinct layers, 

comprising the data layer, the feature layer, and the application layer, as depicted in Figure 1. The 

Data layer pertains to data acquisition and preprocessing; the feature layer centres on feature 

construction and analysis, and the application layer guides the problem analysis of public transport 

ridership. 

 

Figure 1 A framework of the natural feature profiling in the public transport ridership. 

3.1. Data layer 

With the advancement of communication and sensor technologies, an increasing number of devices 

are being equipped in vehicles, stations, and on roads, thereby facilitating comprehensive 

monitoring of public transport systems. In this section, we introduce five, but not limited, principal 

data sources ubiquitously accessible and pertinent to most public transport systems (Iliashenko et 

al., 2021; Welch and Widita, 2019): 

l Network Information: This encompasses fundamental data of public transport networks, 

documenting the attributes of stations (e.g., position, length, type, etc.) and bus lines (e.g., 

length, total number of stations, average travel time, etc.). Additionally, the network 

topology ought to be discernible, for example, the subordination and sequence of stations 

to service lines and the interconnections amongst stations. 
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l Scheduling Information: This dataset contains information on schedules, including 

planned arrival and departure times at each station, headway between buses, and other 

timetable-related data. 

l Transaction Records: Fares are primarily paid in three main ways: cash, pre-paid tickets 

(monthly paid tickets), and smart cards. Cash payments and pre-paid tickets yield limited 

useful information, while smart-card data, recording intricate boarding information and 

sometimes alighting information, is invaluable for bus ridership analyses. 

l Mobile Data: This data, sourced from smartphones and other mobile devices, provides 

real-time insights into public transport passenger movements, enabling a more detailed 

understanding of users’ travel activities and patterns (Wang et al., 2022; J. Zhang et al., 

2022). 

l Mobility Data: This dataset combines the intricacies of urban transit, encapsulating 

micro-mobility's role in bridging public transport gaps, shared mobility's rise via 

rideshares and carpooling, and the personal travel choices reflecting urban transport 

patterns (Huo et al., 2020; Ma and Zhang, 2022; Zhong and Sun, 2022). 

l Other Environmental Factors: This dataset typically contains point-of-interest (POI) 

information and weather factors, both significantly influencing passengers' travel 

behaviour and the running status of bus vehicles. 

Public transport system databases typically utilise incremental backups for data storage, which 

can lead to the presence of duplicate and expired data. Additionally, these databases may contain 

noise data, which are irrelevant or incorrect information that can skew analysis results. It is crucial 

to eliminate such invalid data before proceeding with any analysis. Besides these issues, other data 

challenges such as missing information and errors often arise. Addressing these requires tailored 

strategies for either supplementing or removing data, depending on the specific conditions of the 

dataset (Wang et al., 2022). Finally, it is necessary to integrate data from various sources. This 

integration is achieved by leveraging the relationships between corresponding fields across different 

tables within the database, ensuring a cohesive and comprehensive data set for analysis. 

3.2. Feature layer 

3.2.1. Feature tagging system 

In this section, we craft an elaborate feature tagging system for the public transport system. As 

illustrated in the middle stage of Figure 1, we initially identify an extensive range of features based 

on expert experience and findings from previous studies. Each individual feature or a combination 

thereof delineates a specific aspect of the transport system. For instance, 'weather events' may 

potentially instigate alterations in travel choice, whereas‘departure time’ and ‘arrival time’ 

exemplify network reliability. Subsequently, we extract the values of these features. The selected 

features from the prior step should be easily measurable, implying that they can be directly measured 
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from the data or through a straightforward data fusion method. Cities adopt different architectural 

approaches for the digitalisation and informatisation of their public transport systems. Considering 

the differences in data field structures and information content among cities, this section proposes a 

public transport system feature tagging system that is compatible with data and accommodates 

differences. The feature tagging system primarily encompasses four levels of structure, namely 

system elements, feature objects, feature tags, and tag entities. This feature tagging system serves 

as the cornerstone for our analysis and modelling of the public transport system. 

l System elements 

For urban public transport systems, the principal system elements to be considered comprise 

network structure, passenger behaviour, operation plans, and other factors. Network structure 

delineates the spatial topology of infrastructure, such as bus lines, stations, and depots, forming the 

foundational framework of the transit system. Passenger behaviour characterises the temporal, 

spatial, and volumetric traits of passenger flow at individual, station, line, and regional levels, 

serving as the demand source for the transit system. Operation plans encompass the scheduling plans 

and actual operating conditions of bus routes and vehicles, representing the service supply of the 

transit system. Other factors include external factors beyond the transit system that may impact the 

supply and demand of transit, such as changes in land use and weather conditions. 

l Feature objects 

Feature objects are the intricate aspects within each system element, which specifically identify 

different aspects of information. For example, when describing ‘network structure’, the feature tags 

should cover objects such as bus stops and routes in the transit network. When describing "service 

supply," feature tags can be divided into planning schemes and actual situations. When describing 

"travel demand," feature tags can be divided into individual travel, station demand, regional demand, 

route passenger flow, etc., according to different top-level design requirements. "External 

environment" can be classified and summarised based on data foundation and application objectives. 

l Feature tags 

Feature tags are specific descriptions of physical or logical variables in the transit system, and 

they also constitute the basic information obtained directly from the data. For instance, the previous 

layer of "station information" merely summarises and categorises variables that describe relevant 

information of a station. To define a station in the network, specific information such as station 

name, range, location, sequence number, and relationship with routes needs to be relied upon. In 

addition, some feature tags are obtained through simple statistics or inference. For example, when 

calculating station passenger flow, individual travel needs to be aggregated and summed up. 

l Tag entities 

Tag entities are the specific representations of feature tags. Different forms of presentation may 

exist for the same feature tag, so it is necessary to choose a representation that is easy to obtain, 
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convenient for analysis, and accurately expresses the information. For example, when describing 

station location, it can be described based on reference objects (such as "near the east gate of 

People's Park"), or street guidance (such as "120 meters north of the intersection of Wuyi Road and 

Labour Road"). However, the most precise representation is through latitude and longitude 

positioning. 

3.2.2. Feature analysis 

Within the context of big data, public transport systems exhibit a wide array of feature tags. The 

selection of these labels is informed by both available data and expert experience. Nevertheless, the 

relationships amongst these labels, as well as their connection to the application objectives, often 

remain ambiguous. Thus, it is crucial to examine and assess these feature tags within their specific 

application context. Subsequently, three evaluation methods and indicators are proposed to derive 

a natural feature profile from the intricate system of feature tags. 

l Correlation among feature tags 

An examination of the correlation amongst feature tags necessitates the consideration of the 

correlation between feature tags and application objectives, in addition to the correlation among 

disparate feature tags. The correlation between feature tags is primarily ascertained through 

correlation coefficients. Depending on the data types of the feature tags, they can be categorised as 

ordered or unordered variables. Ordered variables encompass continuous variables and ordered 

categorical variables, whilst unordered variables predominantly consist of nominal variables. The 

methods for calculating the correlation coefficients between feature tags and application objectives, 

as well as among different feature tags, depend on the data types. 

Spearman’s rank correlation coefficient is suitable for the analysis of correlation between 

ordered variables, such as the day of the week and passenger flow at a station. This coefficient 

facilitates linear correlation analysis utilising the rank order of two variables and does not 

necessitate any assumptions regarding the distribution of the original variables. It constitutes a non-

parametric statistical method. The formula for calculating Spearman's rank correlation coefficient 

is as follows: 

𝜌! = 1 −
6∑ 𝑑"#$

"%&
𝑛(𝑛# − 1)

(1) 

where 𝑛 represents the sample size, and 𝑑" symbolises the rank difference between 𝑋" and 𝑌", 

i.e., the position of this number in the column after sorting from smallest to largest. 

l Importance of feature tags 

In the context of the corresponding application, the significance of feature tags is indicative of 

their importance. Feature tags with higher significance should be accorded greater attention in 

model construction and decision-making processes. The extreme gradient boosting (XGBoost) 

model calculates the importance of feature tags, employing the gain of split scores to determine the 



Accepted by Transportation Research Part A: Policy and Practice 

10 

 

feature transition at the splitting point (Tang et al., 2020). The importance of a specific feature is 

ascertained by its role across all trees, meaning that the more frequently an attribute is utilised in 

constructing decision trees within the model, the higher its importance. The xgboost feature 

importance index typically evaluates the average reduction in loss when a feature is employed as a 

splitting attribute, that is, the information gain of the feature. The calculation of its importance can 

be expressed as: 

𝑉(𝑘) =
1
2

∑ ∑ 𝐼(𝛽(𝑡, 𝑖) = 𝑘) 5
𝐺'(),",+)
#

𝐻'(),",+) + 𝜆
+

𝐺'(),",-)
#

𝐻'(),",-) + 𝜆
−

𝐺'(),")
#

𝐻'(),") + 𝜆
:.())

"%&
/
)%&

∑ ∑ 𝐼(𝛽(𝑡, 𝑖) = 𝑘).())
"%&

/
)%&

(3) 

where 𝑘 represents a node, 𝑇 denotes the total number of trees, 𝑁(𝑡) signifies the number of 

non-leaf nodes in the 𝑡-th tree, 𝛽(𝑡, 𝑖) represents the splitting feature of the 𝑖-th non-leaf node in 

the 𝑡-th tree, 𝑖 is the indicator function, and 𝜆 is the regularisation term hyperparameter. 𝐺'(),") 

and 𝐻'(),") represent the sum of first- and second-order derivatives of all samples that fall into the 

𝑖-th non-leaf node in the 𝑡-th tree, respectively. 𝐺'(),",+) and 𝐺'(),",-) signify the sum of first-order 

derivatives of samples that fall into the left and right child nodes of the	 𝑖-th non-leaf node in the 𝑡-

th tree, respectively. Similarly, 𝐻'(),",+)  and 𝐻'(),",-)  represent the sum of second-order 

derivatives of samples that fall into the left and right child nodes of the 𝑖-th non-leaf node in the 𝑡-

th tree, respectively. Therefore, the following equations hold: 

𝐺'(),0) = 𝐺'(),0,+) + 𝐺'(),0,-) (4)	

𝐻'(),0) = 𝐻'(),0,+) +𝐻'(),0,-) (5) 

Information gain is employed in Gain-method, which can readily identify the most direct 

features. In practice, the values at the beginning and end of the ranking of Gain-method often exhibit 

significant differences, as the optimisation of subsequent features may not occur on the same scale. 

This discrepancy is similar to the variation of magnitudes in neural networks when optimising loss 

functions, which may differ by tens or hundreds of times. 

l The Sensitivity of feature tags 

Feature tags’ sensitivity analysis entails examining the effectiveness of each feature tag within 

the application context, identifying feature tags with negligible or no impact on the decision-making 

process for the application target. This approach can considerably reduce model complexity, 

diminish the workload of data analysis and processing, and significantly enhance model accuracy. 

Furthermore, the differences in sensitivity of feature tags among various city bus systems are vital 

considerations in intrinsic profiling, as they can inform the development of city-specific planning 

and management strategies. 

The proposed framework employs feature ablation experiments to demonstrate the role and 

impact of each feature tag within the application context. These experiments aid in understanding 

causality within the system and provide a direct means of generating reliable knowledge about the 

target application. During feature ablation experiments, each feature tag is systematically removed, 
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and the first-order indicators of the underlying passenger flow prediction model's performance are 

analysed, measuring the contribution of each feature tag variable to the output. This analysis 

measures the contribution of each feature tag to the model's output, thereby elucidating the role and 

relationship of each feature tag variable. 

Conducting feature ablation experiments enables the determination of each feature tag’s 

contribution to model performance and the assessment of their sensitivity. If the ablation of a 

particular feature tag has little significant impact on the model performance, it indicates that this 

feature tag has negligible or no influence on the decision-making for the application target, and it 

may be considered for removal from the model to reduce complexity. Simultaneously, by comparing 

the effects of ablation of different feature tags, the differences in their roles within the application 

context can be evaluated, which can help gain insights into the sensitivity differences of various 

feature tags and inform the development of city-specific planning and management strategies. 

By employing these methods, a comprehensive understanding of the natural features in public 

transport systems and their relationships can be developed. This knowledge will prove essential for 

further analysis and application in various scenarios and objectives, such as demand estimation, 

travel choice analysis, reliability analysis, and more.  

Whilst we present certain models as part of our general framework, we recognise that the 

landscape of analytical techniques is broad and multifaceted. For instance, when determining feature 

importance, aside from the models mentioned, other algorithms based on decision trees, like 

LightGBM, could also be considered. Depending on the type of data, there might be a need to choose 

appropriate correlation measures; for continuous data, Pearson's coefficient could be suitable, while 

for non-linear relationships, the Maximal Information Coefficient (MIC) might be more pertinent 

(Mao et al., 2022). We urge researchers to evaluate and select techniques that best align with the 

characteristics of their data and the specific research questions at hand. 

3.3. Application layer 

The application layer serves as the final component in the natural feature acquirement framework. 

This layer is responsible for integrating and processing data and features from the data layer and 

feature layer to generate valuable insights that support informed decision-making.  

To provide a more grounded understanding, reference can be made, but not limited, to several 

applications in the current environment. 

l Real-time Urban Planning Platforms: Applications that leverage real-time data to 

recommend adjustments in urban transit schedules, ensuring optimal bus timings in 

accordance with dynamic urban patterns (Kwon et al., 2023; Lian et al., 2023). 

l Predictive Analytics Tools: Solutions that employ advanced algorithms to forecast 

passenger flow during peak and off-peak times. By anticipating surges, transit authorities 

can better allocate resources and manage crowd control (Jiang et al., 2023). 
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l Integrated Data Visualisation: Applications that amalgamate diverse data streams to 

visually represent potential bottlenecks, traffic patterns, or passenger preferences. These 

visual tools are essential for decision-makers to identify challenges swiftly. 

l User Experience Enhancers: Tools that focus on passenger experience, collecting 

feedback in real-time, and suggesting immediate remedial measures. This ensures the 

transport system remains responsive to user needs. 

The application layer encompasses more than raw analysis; it also orchestrates the deployment 

of various analytical techniques and machine learning algorithms. By exploring relationships, 

pinpointing trends, and crafting predictive models using the assimilated data and cherry-picked 

features, one can glean insights into the bus network's functioning, discern passenger flow 

trajectories, and spotlight potential enhancement zones. 

The applications birthed from this layer are invaluable. They shed light on the bus network’s 

efficacy, paint a picture of passenger mobility patterns, and highlight areas ripe for improvement. 

The advice that emanates from these insights can tackle myriad facets of the bus network. This 

might span from dissecting demand patterns to enhancing the overall user experience of the public 

transport ecosystem. 

In essence, the application layer is pivotal. It transforms data and features from its preceding 

layers into tangible insights and advice. This is achieved through a symphony of data amalgamation, 

feature sifting, intricate analysis, adept modelling, vivid visualisation, and astute decision support. 

By doing so, the natural feature acquisition framework promises to be a catalyst in refining and 

streamlining the bus network 

4. Case study 

In this section, we present two distinct case studies of bus networks in the cities of Suzhou and 

Lianyungang, China. These cities differ significantly in city size, population, bus network structure, 

and public transport ridership, as illustrated in Table 1.  

Table 1 Statistical indicators of urban and public transport network development in the cities of 
Suzhou and Lianyungang1. 

Descriptions Suzhou Lianyungang 
City size 4,652.84 km2 3,032.42 km2 
Population 5.2 million 2.3 million 
Disposable income per capita 6,8191 RMB 39,862 RMB 
Transport expenditure 5,946 RMB 1,390 RMB 
Number of bus lines 252 116 
Number of bus stop 4,233 2,121 
Daily ridership ≈300,000 ≈50,000 

 

1 Open Data Source: Suzhou City Statistics Bureau (http://tjj.suzhou.gov.cn/sztjj/tjnj/2022/zk/indexce.htm)  

and Lianyungang City Statistics Bureau (http://tjj.lyg.gov.cn//tjxxw/upload/ad0e70de-a800-4141-88f8-3e9c244

de7ad.pdf), 2021. 
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Suzhou, located in eastern China, is a rapidly developing city renowned for its rich history, 

cultural heritage, and picturesque gardens. In recent years, Suzhou has experienced substantial 

economic growth, resulting in an increase in population and urbanisation. As the city expands, 

transport and public transit have become indispensable components of Suzhou's development. 

Lianyungang, one of the most important port cities on the eastern coast, connects major railway 

lines such as the China-Europe Railway Express and Longhai Railway, as well as the Port of 

Lianyungang, which operates numerous international shipping routes. Lianyungang serves as the 

eastern bridgehead of the Second Eurasian Land Bridge, responsible for transporting over 90% of 

transit containers. Lianyungang is the junction of multimodal transport for rail and shipping. 

However, Lianyungang is not a large city in terms of size and population. 

4.1. Bus network in Suzhou and Lianyungang 

Before exploring the detailed descriptions of the bus networks in Suzhou and Lianyungang, we first 

compare the primary features of both systems in a consolidated Table 2: 

Table 2 Comparative Overview of Bus Networks in Suzhou and Lianyungang. 

Descriptions Suzhou Lianyungang 
Daily Passengers Over 300,000 Approximately 40,000 
Total Bus Routes Over 200 6 BRT lines + Over 100 regular 
Bus Stops Over 4,000 300 BRT stations + 1,500 regular 
Specialised Buses Night, tourist, customised lines BRT 
Sustainability Initiatives Electrification, ITS Modern BRT system 
Popular Payment Modes Cash, smart cards Over 80% mobile payments 
Special Discounts Students, seniors, frequent riders Not mentioned 
Heatmap Reference Figure 2 Figure 3 

Transport in Suzhou is well-developed, boasting a comprehensive network of roads, railways, 

and waterways that connect the city to its surrounding areas. The city possesses an efficient public 

transit system, crucial in meeting the transport demands of its residents and visitors. Suzhou's bus 

network serves as a vital mode of transport, accommodating an impressive volume of passengers 

daily. With over 300,000 passengers per day, Suzhou’s bus system addresses the mobility 

requirements of a significant portion of the city’s population, as mapped in the heatmap of Figure 

2. The network comprises over 200 bus routes, including night buses, tourist lines, and customised 

buses, encompassing a wide range of destinations within and beyond the city. These routes serve 

over 4,000 bus stops, offering extensive coverage across Suzhou and its surrounding areas. The 

buses are modern, well-maintained, and equipped with amenities such as air conditioning and real-

time information displays. Affordable fares, payment options including cash and smart cards, and 

special discounts for students, seniors, and frequent riders render the bus system convenient and 

accessible. Suzhou’s bus system also emphasises sustainability, with initiatives like route 

optimisation, upgrading to electrification buses, and implementing intelligent transport systems. 

Overall, Suzhou’s bus network provides a reliable, convenient, and sustainable mode of transport 

for residents and visitors alike, accommodating a substantial number of passengers daily. 
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Figure 2 The average daily boardings at bus stations in the city centre of Suzhou. Map produced by © 
kepler.gl, Map tiles by © Mapbox, Data by © OpenStreetMap. 

Lianyungang’s bus system is an integral component of the city’s transport infrastructure, 

offering reliable and convenient services to approximately 40,000 passengers daily. The system 

encompasses a diverse fleet of buses, including six BRT lines with 300 BRT bus stations and over 

100 regular bus lines with over 1,500 conventional bus stops. The BRT system in Lianyungang is a 

modern and efficient mode of transport that delivers fast and reliable services through dedicated bus 

lanes, advanced fare collection systems, and well-designed stations. The BRT lines cover key routes 

in the city, connecting major commercial, residential, and transport hubs, making it a popular choice 

for commuters and travellers alike. In addition to the BRT lines, Lianyungang’s bus system also 

incorporates a comprehensive network of regular bus lines that serve various destinations within the 

city. These conventional bus lines provide extensive coverage across different neighbourhoods, 

linking residential areas, business districts, educational institutions, and other essential locations, 

catering to the diverse mobility needs of the local population. Lianyungang’s bus system has 

witnessed significant adoption of mobile payment, with over 80% of passengers opting for this 

convenient mode of fare payment. Figure 3 shows the heatmap of the average daily boarding among 

a month at bus stations in the city centre of Lianyungang. 

 
Figure 3 The average daily boardings at bus stations in the city centre of Lianyungang. Map produced 
by © kepler.gl, Map tiles by © Mapbox, Data by © OpenStreetMap. 
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Suzhou and Lianyungang, each possessing unique urban dynamics, have been chosen to 

validate our natural feature profile framework. Suzhou represents an example of urban 

sophistication, boasting an advanced public transport system. In contrast, Lianyungang, as a 

developing city, is actively working on improving its transportation infrastructure. This deliberate 

contrast serves two purposes: firstly, to highlight the wide applicability of our framework in 

different urban contexts, and secondly, to enhance understanding of ridership patterns through the 

comparative analysis of insights drawn from these two distinct cities. 

4.2. Data description 

This study employs a diverse range of data sources to craft a multi-dimensional picture of public 

transport ridership. For the purposes of this investigation, the acquired data has been 

compartmentalised into three critical categories: smart-card data, POI data, and network data. The 

following details each type of data utilised, the manner in which they were procured, and the 

subsequent processing and analysis steps that have been undertaken. Notably, the data considered 

are derived from Suzhou in October 2021 and Lianyungang in January 2022, offering us an 

opportunity to examine public transport dynamics in two distinct urban settings. Figure 4 provides 

a summarised snapshot of the smart card data utilised in this study in Suzhou and Lianyungang. 

 
(a) 

 
(b) 

Figure 4 Summary of the hourly ridership (i.e., the number of smart card records) of the public 
transport systems in (a) Suzhou and (b) Lianyungang. 
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Smart card data, an crucial data source in modern public transport studies, offers unparalleled 

insight into passenger travel behaviour. This data records critical variables such as the time of 

transactions, boarding time and locations, and vehicle and line identification in our case cities. Table 

3 and Table 4 present the structures of (masked) smart card data of Suzhou and Lianyungang. After 

data cleaning to ensure validity and reliability of the information, these granular details allow us to 

generate a detailed passenger flow model across the public transport network.  

Table 3 The data structure of masked smart card record used in Suzhou. 
Card ID Station Boarding time Bus line Line 

name 
Station 

No. Direction Vehicle 

21**850 78c**b80 2021-10-01 
06:41:52 c31**cf7 34 20 1 d39**b77 

21**938 793**d9c 2021-10-01 
06:37:40 AB9**F58 63 4 0 a64**d8a 

21**130 540**e35 2021-10-01 
17:46:08 6AC**034 629 8 0 f4d**3d0 

21**153 6ae**f37 2021-10-01 
10:26:54 50d**5b6 308 3 1 bd2**ab9 

21**956 fd2**308 2021-10-01 
16:46:02 2b9**bef 302 37 1 7D0**D57 

Table 4 The data structure of masked smart card record used in Lianyungang2. 
Card ID Transaction time Bus line Subline Station Vehicle Operation trip 

22****240 2022/1/7 08:35 930 93001 10****072 17****47 930****17 

22****930 2022/1/7 08:35 930 93001 10****072 15****57 930****17 

22****930 2022/1/7 09:45 236 23611 21****325 18****74 236****23 

22****924 2022/1/7 10:31 27 02702 14****626 14****31 027****26 

13****400 2022/1/7 13:22 183 18302 23****705 17****47 183****43 

4.3. Results on the natural feature profiles 

4.3.1. Feature tagging systems of Suzhou and Lianyungang 

With a comprehensive and detailed understanding of the varied data utilised in our case studies of 

Suzhou and Lianyungang, we subsequently construct the corresponding feature tagging systems for 

each city following the approach delineated in Section 3.2.1. Drawing from the variety of data 

sources mentioned, the feature tagging system depicted in Figure 5 and Figure 6 comprehensively 

capture the distinct characteristics and dynamics of the public transport systems in each of these 

cities. 

 

2 For convenience of understanding, the names of the variables do not use the names of their field names within 

the database. 
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Figure 5 The four-level feature tagging systems utilised for Suzhou’s bus system. The different feature 

tags are highlighted and outlined in white. 

 

Figure 6 The four-level feature tagging systems utilised for Lianyungang’s bus system. The different 

feature tags are highlighted and outlined in white. 
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In consideration of the constraints of our available data, certain individual information (e.g., 

gender, age), and data on other modes of travel (e.g., subway, ride-hailing services) remain unknown 

in this study. Hence, our analysis in this case primarily revolves around four system elements: 

network structure, passenger behaviour, operation plans, and other factors. Notably that in other 

urban contexts or scenarios, there might be access to a richer dataset. In such cases, additional 

potential feature labels can be procured based on requirements and seamlessly integrated into this 

four-level feature tagging system. 

Our innovative four-level feature tagging system provides an efficacious and robust platform 

that effectively covers a broad spectrum of factors influencing public bus ridership, facilitating a 

rational categorisation and amalgamation of these factors. It is noteworthy that, within this 

overarching system, there are subtle discrepancies between the tag entities specific to Suzhou and 

Lianyungang. For instance, Suzhou incorporates grade divisions for features such as ‘bus line’ and 

‘bus station’ a categorisation absent in the Lianyungang system. Such discrepancies underscore the 

versatility and adaptability of our four-tiered feature tagging system, demonstrating its capability to 

accommodate diversity and variance inherent in different cities and their corresponding datasets. 

The system, therefore, affirms its flexibility and adaptability, mirroring the unique aspects of distinct 

public transport systems while maintaining a uniform structure. This balanced methodology has 

been both thorough and precise, successfully capturing the subtleties of individual public transport 

ridership scenarios in the cities under study. 

Having established these robust feature tagging systems, we proceed to leverage the techniques 

proposed in Section 3.2.2. Guided by the problem-oriented approach of the Application Layer 

outlined in Section 3.3, our focus shifts to an exhaustive feature analysis, centring on passenger flow 

at stations. In the forthcoming sections, we utilise these methods to draw conclusions about the 

natural feature profiles of public transport ridership in both Suzhou and Lianyungang. This cogent, 

data-driven approach allows us to surface insightful conclusions about the unique aspects of public 

transport ridership in each city, thereby providing a foundation for informed policy 

recommendations. 

4.3.2. Feature analysis in Suzhou’s bus system 

In this section, we explore the natural features of Suzhou’s bus system by examining the correlations, 

importance, and sensitivity of feature tags. These insights into bus ridership will enable city planners 

and policymakers to make informed decisions regarding public transport network improvements 

and adjustments, highlighting key indicators that impact the performance and efficiency of Suzhou's 

bus network. 

l Correlation analysis by Spearman's rank correlation coefficient 

Figure 7 illustrates a comprehensive correlation analysis amongst various feature tags utilised 

in Suzhou's bus system. This correlation matrix is a crucial element of the feature importance 
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evaluation in the framework for acquiring natural features of bus ridership in Suzhou. It provides 

an in-depth insight into the interactions between different feature tags and their collective impact on 

ridership patterns. 

 

Figure 7 Correlation matrix illustrating the relationships among feature tags in Suzhou's bus system. 

Upon the application of hierarchical clustering, it is observed that each cluster predominantly 

contains feature tags pertaining to a singular system element within the feature tagging systems. For 

example, tag entities associated with POI coalesce into a distinct cluster (visible in the top left corner 

of the matrix), with a similar congregation observed among tag entities relating to ‘passenger 

behaviour’. While feature tags from ‘network structure’ and ‘operation plans’ exhibit some overlap 

in clustering, feature tags of a more granular nature, such as those related to 'bus station', nonetheless 

preserve their affinity and are clustered together. 

A notable observation from our correlation matrix is the prevailing trend of positive correlation 

among tag entities within the same cluster or system element. In contrast, a mild negative correlation 

characterises the relationship between tag entities from disparate clusters. This pattern provides a 

discernible indication of the specific interplay of features within individual system elements and 

their potential independence or divergent influence in relation to features from other system 

elements. Thus, these findings further underline the specificity and structure inherent in our feature 

tagging system, showcasing its capacity to effectively differentiate and categorise feature tags in 

relation to their source system elements. 

l Importance analysis by Gain indicator in the XGBoost model 

Figure 8 presents an insightful ranking of the feature tags employed in the natural feature 

profile of Suzhou's bus system. This ranking, derived from the Gain indicator within the XGBoost 
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model, measures the relative importance of each feature tag in the context of public transport 

ridership in Suzhou. 

 
(a) 

 
(b) 

Figure 8 Relative importance ranking of feature tags to profile the natural feature of Suzhou's bus 
ridership via the Gain indicator within the XGBoost model. (a) Intra-group rankings, and (b) overall 
rankings. 
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The ‘hour’ tag emerges as the most influential, accounting for nearly a fifth of the total relative 

importance. It's twice as important as the second most significant tag, ‘day’. Even though there are 

fewer feature tags under ‘passenger behaviour’, their overall relative importance is highest, 

accounting for 0.37 in total. Therefore, passenger travel time and location play a critical role in 

influencing the bus ridership in Suzhou. Subsequent tags of significance are network structure-

related, e.g., ‘station series’, ‘longitude’, and ‘latitude’. These location-associated tags reflect that 

bus ridership is closely tied to geographical variables. Contrarily, some feature tags describing 

station attributes, like ‘lough’, ‘station length’, ‘line grade’, carry a low relative importance. This 

suggests that while the station infrastructure may add to the convenience of waiting passengers, they 

do not significantly impact the bus ridership in Suzhou. Within ‘operation plans’, ‘shift numbers’ is 

the most significant feature tag, ranking fifth and surpassing other tags in this category by a wide 

margin—it's 2.4 times more important than ‘low headway’.  

The feature tags related to ‘operation plans’ in Suzhou’s bus ridership system generally have 

lower overall rankings. Within this system, there are 14 distinct feature tags, but collectively, they 

account for only 0.17 of the relative importance. This indicates that operational factors are not major 

influencers of bus ridership patterns in the city. On the other hand, feature tags related to POIs 

usually hold a moderate level of importance. Among these, ‘living’ and ‘medicine’ carry greater 

importance, ranking ninth and tenth, respectively. Conversely, ‘scenery’ and ‘finance’ are less 

influential, occupying the 27th and 28th positions (within the top two-thirds). The overall relative 

importance of POI-related tags exceeds that of the other two system element categories, ‘operation 

plans’ and ‘network structure’. This finding highlights the significant role that POIs have in 

influencing public bus ridership trends in Suzhou. 

l Sensitivity analysis by feature ablation experiment 

Our analysis scrutinises the sensitivity of feature tags in contributing to the understanding of 

Suzhou's bus passenger flow. Figure 9 represents the root mean square error (RMSE) derived from 

the XGBoost model used to predict hourly passenger flow at bus stops based on different feature 

tags. In this representation, the x-axis sequentially introduces the feature tags into the model, ordered 

in descending significance according to their relative importance, as determined by the rankings in 

Figure 8. 

Despite ‘hour’ being the most significant feature, its individual contribution is insufficient for 

a comprehensive profiling of natural features in bus passenger flow. Following the integration of 

the fourth and fifth most important features, the RMSE value exhibits a substantial reduction by 33% 

and 41% respectively, compared to the initial value. Correspondingly, the cumulative relative 

importance indicators increase to 0.39 and 0.43. With the integration of the top 11 significant feature 

tags, the RMSE plunges from 7.13 to 3.96 (a reduction by 56%) as the cumulative relative 

importance indicator reaches 64%. The feature tags of high significance encompass those belonging 

to the ‘passenger behaviour’ category, however, none from the ‘operation plans’ category. 
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Furthermore, the POI-related feature tags of ‘living’ and ‘medicine’ are observed to exert a 

substantial influence on Suzhou’s bus passenger flow. Beyond this point, the addition of further 

feature tags does not enhance the model's performance. To summarise, the profiling of natural 

features in bus passenger flow necessitates a holistic incorporation of relevant and critical feature 

tags, rather than a reliance on singular, albeit significant, tags. The robustness and precision of such 

a model are optimised by the thoughtful inclusion of diverse and interrelated feature tags that capture 

the multifaceted nature of bus passenger flow. 

 

Figure 9 Sensitivity analysis of feature tags in Suzhou's bus passenger flow. 

For Suzhou, the natural features of public transport demand highlight the significant influence 

of the surrounding POIs, especially medical facilities, on bus station passenger flows, with temporal 

fluctuations emphasizing intra-day variations in ridership. 

4.3.3. Feature analysis in Lianyungang’s bus system 

This section investigates the natural feature of Lianyungang's bus network, with a focus on the 

correlations, significance, and sensitivity of diverse feature tags in relation to the intrinsic passenger 

flow dynamics.  

l Correlation analysis by Spearman's rank correlation coefficient 

Figure 10 presents the correlations among different tag entities within the system elements 

utilised in the Lianyungang bus system. The fundamental characteristics of this figure bear a 

resemblance to those observed in Figure 7. Tag entities that fall within the same system elements 

are predominantly clustered together.  

Within the context of Lianyungang's feature tags, those belonging to ‘network structure’ and 

‘operation plans’ system elements tend to cluster together, rather than showing the interweaving 

pattern observed in the data from Suzhou. However, the associations between these tag entities do 
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not exhibit the same strength as in the case of Suzhou, with most showing a weak negative 

correlation. The vast majority of tag entities related to POI-related form a distinct cluster and exhibit 

a positive correlation amongst themselves. Yet, three POI-related tags (i.e., accommodation, facility, 

and scenery) exhibit minimal correlation with other POI-related tags. Furthermore, POI-related tag 

entities generally demonstrate a mild or weak negative correlation with tag entities belonging to 

other systems. This analysis illuminates the differential behavioural characteristics of feature tags 

between Lianyungang and Suzhou, thereby emphasising the flexibility and adaptability of the 

applied feature analysis in capturing public transport ridership variations across different urban 

contexts. 

 

Figure 10 Correlations among different tag entities within the systems elements utilised in 
Lianyungang’s bus system' 

l Importance analysis by Gain indicator in the XGBoost model 

Figure 11 showcases the importance of various factors in determining the intrinsic passenger 

flow patterns within Lianyungang's bus network, based on the Gain indicator of the XGBoost model. 

Paralleling the patterns identified in Suzhou, ‘hour’ emerges as the most salient factor, denoting 

those fluctuations in Lianyungang’s bus ridership over the course of the day are distinctly 

pronounced. Tag entities within the ‘passenger behaviour’ system maintain a significant presence, 

amassing a collective relative importance of 0.48. Notably diverging from the case of Suzhou, 

however, are the tag entities associated with the ‘network structure’, which exhibit heightened 

importance in Lianyungang. Longitude of the bus stations, for instance, ranks second among all tags, 

and the total relative importance for the entire ‘network structure’ system stands at 0.45. 

In terms of the ‘operation plans’, while the operation duration of bus routes secures the sixth 

position in terms of individual importance, the remaining tag entities within this system are of 

substantially diminished importance, appearing mostly in the lower rankings. The importance of 
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POI-related tag entities in Lianyungang also deviates from those observed in Suzhou. In 

Lianyungang, POI-related tags generally do not significantly influence bus ridership patterns. These 

results, taken together, indicate the distinctive nature of public transport ridership dynamics in 

Lianyungang. 

 
(a) 

 
(b) 

Figure 11 Relative importance of various feature tags in the natural feature profile of Lianyungang's 
bus ridership based on the Gain indicator in the XGBoost model. (a) Intra-group rankings, and (b) 
overall rankings. 
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l Sensitivity analysis by feature ablation experiment 

The sensitivity analysis illustrated in Figure 12 shows a consistent marginal impact of high-

dimensional feature tags on bus ridership in Lianyungang. The RMSE, a measure of prediction 

accuracy, undergoes a stair-step change as feature tags are incrementally included into the model. 

A notable reduction of 31% in RMSE is witnessed following the integration of the tag entity 

of ‘longitude,’ at this point, the cumulative relative importance index stands at 39%. Upon the 

inclusion of two additional significant tag entities, the RMSE experiences a further decline of 64% 

from its initial value, leading the cumulative relative importance index to reach 48%. When the ten 

most crucial tag entities are considered, the cumulative relative importance index ascends to 81%, 

and the RMSE significantly drops from its initial 4.61 to 0.65, representing a decrease of 86%. 

Mirroring the trends observed in Suzhou, the addition of further tag entities does not confer any 

substantial improvements to the model's predictive accuracy. This suggests that the variance of some 

subsequent tag entities does not provide a reliable reflection of their impact on fluctuations in bus 

ridership.  

 

Figure 12 Sensitivity analysis of high-dimensional feature tags in Lianyungang's bus network. 

The results of the sensitivity analysis underscore the influence of tag entities such as ‘hour’, 

‘longitude’, ‘day’, ‘dual serial no’, ‘station', 'duration’, ‘distance to next’, ‘weekday’, ‘latitude’, and 

‘line’ on the ridership of Lianyungang's buses. These factors characterise the natural features of bus 

ridership in Lianyungang, providing vital insights into the city’s public transport dynamics. 

Drawing a comparative analysis with the findings from Suzhou, we can discern that, despite 

employing the same feature analysis methods, the resultant conclusions bear both commonalities 

and differences. This highlights the distinct characteristics that define bus ridership natural features 
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in different cities. Our framework, therefore, demonstrates remarkable versatility and adaptability, 

suitable for application in varied urban settings. Importantly, it showcases a refined capacity to 

capture the subtle variations and distinct characteristics that differentiate one city from another in 

terms of public transport ridership dynamics. This emphasises the need for a context-specific 

approach when analysing and interpreting public transport data, reinforcing the validity and 

applicability of our methodology across a range of scenarios. 

In summary, the dominant natural features for Lianyungang emphasise the importance of route 

design and bus station placement, with ridership also showing pronounced intra-day fluctuations 

but being more influenced by the spatial distribution of bus routes and stations. 

4.3.4. Diversity of natural features between cities of Suzhou and Lianyungang 

Comparing the diversity of natural features between Suzhou and Lianyungang reveals significant 

differences in the scale and layout of these two cities, as well as the distribution of POIs and bus 

station locations. Suzhou’s bus network covers a large portion of residents' travel routes, facilitating 

commuting, leisure activities, and errands through public transport. In contrast, Lianyungang’s bus 

network focuses more on daily activities such as commuting and shopping for residents. Moreover, 

while Suzhou’s bus network is larger and more complex overall, the correlations between different 

feature tags are more apparent, allowing for consolidation and simplification in data analysis, model 

building, and policy-making. 

Further explorations of the natural features of bus passenger flows between Suzhou and 

Lianyungang yield striking similarities. Both cities' bus ridership prominently demonstrates intra-

day fluctuations, reflecting daily oscillations in ridership volume. Although the influence of specific 

days and weekdays is discernible, its impact is not as potent. Such understanding of bus ridership 

patterns has significant implications for the operational strategies of public transport systems in both 

cities. It is suggested that both Suzhou and Lianyungang transit authorities could consider 

implementing measures to adapt to the prominent intra-day fluctuations. This may include dynamic 

scheduling and frequency adjustments, ensuring that the supply of bus services aligns with the 

demand throughout the day. Furthermore, even though the influence of specific days and weekdays 

is less substantial, transport authorities could still enhance service efficiency by making modest 

adjustments to accommodate these minor variations in demand. 

In terms of spatial distribution, Suzhou exhibits a stronger relationship between bus station 

passenger flows and surrounding POI attributes and quantities, especially medicine and facilities. 

This suggests that the location of essential services, such as healthcare facilities, exerts a notable 

influence on passenger flow, potentially driving demand in their vicinity. Conversely, the spatial 

distribution of bus passenger flows in Lianyungang is more dependent on the relationship between 

bus stations and routes, indicating that the route design and bus station placement may have a more 

prominent influence on passenger flows in Lianyungang. Therefore, public transit planning in 

Lianyungang might be more effectively optimised by focusing on the strategic allocation of bus 
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stations and the rational design of bus routes, to better correspond with passenger demand patterns. 

Suzhou, an economically developed city, offered us a window into how established urban 

infrastructures impact bus ridership. Our natural feature profile of Suzhou revealed some telling 

patterns. The dominance of the ‘hour’ feature underscores the critical role of time-specific factors, 

such as office hours and commercial activities. Interestingly, while the ‘passenger behaviour’ 

category had fewer tags, features like travel time and location stood out in their influence on 

ridership. This emphasis on temporal and behavioural attributes contrasts with the geographical 

variables, where tags such as ‘longitude’ and ‘latitude’ indicate the significance of the city’s 

geography on ridership. Operationally, certain tags like 'shift numbers' were notably crucial, but as 

a whole, operational factors didn't significantly sway Suzhou's bus ridership. 

In contrast, Lianyungang, presented a different developmental backdrop, allowing us to discern 

varied influences on its public transport ridership. Here too, the ‘hour’ feature was pivotal, 

highlighting the universal significance of daily patterns in public transportation. However, the city’s 

natural feature profile diverged in other aspects, notably in the network structure. The heightened 

influence of tags like the longitude of bus stations paints a different picture compared to Suzhou. 

Moreover, the diminished role of Points of Interest (POIs) and the lower ranking of most operational 

plan tags underscore the distinctive nature of Lianyungang's public transport dynamics. 

Comparing these insights side-by-side, a few observations stand out. Both cities reiterate the 

importance of time-based factors (e.g., ‘hour’) in influencing bus ridership, pointing towards 

universally significant daily patterns in urban areas. However, the increased significance of network 

structure attributes in Lianyungang suggests that geographical dynamics play a more influential role 

in cities undergoing rapid urbanisation. The contrasting importance of POIs between the two cities 

further illustrates this: while established urban centres like Suzhou exhibit considerable influence 

from surrounding amenities and services, cities like Lianyungang, in their growth phase, might not 

exhibit the same dependencies. 

These findings highlight the importance of considering both similarities and differences in 

public transport planning and policy-making for different cities. While expert experience can still 

provide valuable insights, the era of big data presents opportunities for fine-grained analysis and 

discussion of natural features of bus passenger flows. The proposed basic technical framework in 

this section can facilitate the customisation of natural feature profiles for different cities and 

different feature data, allowing for more targeted and effective strategies in improving public 

transport systems. 

Conclusively, the comparison of the diversity of natural features between Suzhou and 

Lianyungang reveals significant differences in their scale, layout, and the distribution of POIs and 

bus station locations. While both cities exhibit similarities in the correlations between bus passenger 

flows and time and space, there are differences in the details. Spatially, Suzhou shows a stronger 

relationship between bus station passenger flows and surrounding POI attributes and quantities, 

while Lianyungang’s bus passenger flows are more influenced by route design and bus station 
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placement. These findings underscore the importance of considering both similarities and 

differences in public transport planning and highlight the opportunities and challenges presented by 

big data in improving public transport systems. 

5. Discussions and implications 

The natural feature profile framework for data-driven urban transport system analysis presents a 

distinctive and invaluable instrument for discerning the inherent characteristics of transport systems 

across cities. Its adaptability to varying cities and time periods, dependence on core key technologies, 

and case-specific application render it a potent resource for guiding transport planning and policy-

making. The ramifications of this framework for implementation and decision-making are 

substantial. 

One primary implication of the natural feature profile framework lies in its capacity to capture 

the unique attributes of different cities. By analysing extensive datasets, the framework can extract 

natural feature profiles reflecting the particular aspects of a city’s transport system, such as bus 

passenger flows, temporal and spatial correlations, and spatial distribution patterns. This city-

specific understanding can inform bespoke strategies and policies for enhancing transport efficiency 

and effectiveness, tailored to the requirements and characteristics of each city. 

Moreover, the framework’s capability to analyse data from disparate time periods enables 

temporal analysis and comprehension of transport system dynamics. By comparing bus passenger 

flows during weekdays versus weekends, or across distinct seasons or holidays, the framework can 

unveil insights into shifting travel patterns and demand fluctuations. This temporal analysis can 

prove invaluable in guiding transport planning and policy-making, particularly in dynamic urban 

environments where transport needs evolve over time. 

The core key technologies underpinning the natural feature profile framework, such as data 

mining, machine learning, and spatial analysis, provide the foundation for its ability to extract 

meaningful insights from large-scale datasets. These technologies facilitate the identification of 

patterns and correlations within the data, the creation of predictive models for transport system 

attributes, and the exploration of spatial dynamics of urban transport. This accentuates the 

importance of harnessing big data and advanced technologies in urban transport research and the 

implications for advancing the field. 

Our proposed methodology serves as a foundational blueprint for understanding the natural 

feature profile of public transport ridership. We emphasise that every city, with its unique 

characteristics ranging from population density to transportation infrastructures, demands a tailored 

approach. Recognising this, the case-specific application of our framework offers significant 

implications. It can be adapted and customised to diverse urban settings, enabling not just a 

standalone analysis, but also facilitating comparisons across cities. Such comparative insights can 

reveal both similarities and differences in various transport systems, playing a pivotal role in 

identifying best practices and facilitating knowledge transfer among cities. Harnessing local data 
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and gaining an in-depth understanding of city-specific transport challenges are pivotal for the 

optimal application of our framework. Moreover, its flexibility extends to its applicability over 

varying time periods, offering a longitudinal perspective on transport system evolutions and trends. 

This inherent versatility and adaptability make our framework a robust tool for delving deep into 

the idiosyncrasies of different cities and their transport dynamics. 

The natural feature profile framework serves as a pivotal tool for urban planners and 

policymakers. This framework allows us to dive deep into the intricacies of public transport 

ridership, offering a dual perspective by capturing both spatial and temporal dynamics. As these 

main points are revealed, we gain enhanced capability to pinpoint the underlying reasons for 

changes in passengers' preferences, the variations in ridership at different times of day or week, and 

the impact of external elements such as urban events or infrastructural modifications. 

One of the profound revelations of our research is the potential areas of intervention in the LoS. 

As we understand more about ridership characteristics, it becomes evident where improvements in 

LoS can be most impactful. For instance, if a certain route consistently witnesses low ridership 

despite high potential demand, it might be an indicator of sub-optimal service frequency or quality. 

Alternatively, patterns of high patronage during certain times might point towards the need for more 

vehicles or increased frequency during peak hours. 

The data-driven nature of the natural feature profile framework also bears implications for 

decision-making in transport planning and policy-making. By delivering evidence-based insights 

and recommendations grounded in actual data, the framework can facilitate more targeted and 

efficacious strategies for ameliorating urban transport systems. This focus on evidence-based 

decision-making can contribute to the development of intelligent and sustainable cities, where 

transport planning and policy-making are rooted in data and empirical analysis. 

Furthermore, the findings from our natural feature profile framework offer pivotal insights for 

policy-making in the realm of Intelligent Transportation Systems (ITS). By integrating this 

framework into ITS development, we can significantly improve the efficiency and effectiveness of 

urban public transport systems. The framework's ability to analyse and interpret complex, multi-

source data sets enables a deeper understanding of urban transport dynamics, which is crucial for 

ITS-related policy development. Policies concerning data management, system design, and service 

optimization can greatly benefit from the refined insights provided by our framework. Particularly, 

the framework's capacity to identify and analyse the intrinsic patterns of public transport ridership 

can aid policymakers and urban planners in crafting data-driven, evidence-based strategies for ITS 

implementation. These strategies could encompass advanced traffic management systems, dynamic 

route planning, and real-time passenger information systems, all tailored to the specific needs of 

individual cities. The integration of our framework into ITS policy-making and planning processes 

marks a significant stride towards intelligent, efficient, and user-centric urban transport systems. 

As we transition towards sustainable urban ecosystems, the role of public transport becomes 

even more pronounced. Our research lays down a pathway not just for understanding but for acting 
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upon the challenges faced by public transport systems. Through evidence-backed interventions, we 

can reinvigorate bus patronage, making public transport the preferred choice for urban dwellers and 

advancing the vision of a sustainable transit metropolis. 

6. Conclusion 

Urban public transport systems, comprising elements such as passengers, stations, and routes, are 

influenced by a multitude of factors. The extensive data generated by these systems presents 

challenges due to diverse sources, storage methods, and heterogeneous data types. Addressing the 

challenges associated with multi-source, heterogeneous, massive, holistic, high-temporal, and high-

spatial correlation data, this paper presents a problem-oriented framework to obtain comprehensive 

natural feature profiles of public transport ridership. This framework enables the extraction of 

valuable information pertinent to urban transport services, management, and decision-making, 

facilitating a precise perception of urban transport systems. 

A key contribution of this research is the introduction of a novel natural feature profile 

framework for data-driven public transport ridership analysis. This innovative approach enables the 

identification of natural features of bus ridership across different cities. By utilising big data and 

advanced technologies such as data mining, machine learning, and spatial analysis, the framework 

proves effective in guiding transport planning and policy-making. 

Furthermore, this research fills a crucial gap often overlooked in current studies. While many 

investigations delve into city-specific issues, such as the impact of weather on bus travel in cities 

like Suzhou, they tend to focus intensely on particular cases or the development of model details. 

Such studies rarely consider broader applicability or transferability to other contexts. Our natural 

feature profile framework, however, offers a solution to this limitation. It is designed to connect 

complex data, varied technological approaches, and diverse application scenarios within a universal 

framework. This holistic approach extends the utility of our research beyond specific case studies, 

making it adaptable to a wide array of urban contexts. This universality represents a key innovation 

of our framework, distinguishing it from narrower studies and enabling broader implementation 

across various urban settings. 

Through case studies conducted in Suzhou and Lianyungang, key and interesting findings have 

emerged. For instance, while both cities exhibit similarities in the correlations between bus 

passenger flows and time and space, there are differences in the details. Spatially, Suzhou shows a 

stronger relationship between bus station passenger flows and surrounding POI attributes and 

quantities, while Lianyungang’s bus passenger flows are more influenced by route design and bus 

station placement. 

The research problem addressed herein necessitates a customisable and adaptable framework 

capable of capturing city-specific characteristics, analysing temporal dynamics, and providing 

evidence-based insights for transport planning and policy-making. The key findings and results of 

this research underscore the potential of the natural feature profile framework in fulfilling these 
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objectives. 

A principal contribution and innovation of this research is the development of the natural 

feature profile framework itself, furnishing a systematic and data-driven method for comprehending 

urban transport systems. Although the tripartite division of our framework, encompassing the data 

layer, feature layer, and the application layer, might resonate with conventional structures, its 

essence encapsulates profound novelty. Most existing research ventures into addressing tailored 

problems, pivoting around unique case-specific conditions. However, the absence of a holistic, 

adaptable framework in existing literature underscores the pioneering nature of our approach. What 

sets our framework apart is its inherent versatility. It embraces a wide gamut of data conditions and 

feature variances, thereby offering a canvas expansive enough to cater to myriad applications. The 

framework’s adaptability to varying cities and time periods, dependence on core key technologies, 

and case-specific application render it a distinctive and invaluable resource for transport analysis. 

By virtue of this adaptability, it transcends the limitations of specificity, rendering it an 

indispensable, all-encompassing tool that champions practicality in diverse real-world transport 

scenarios. 

In addition to its adaptability, another aspect that bolsters the innovation is the intricate 

interlinking between its constituent layers. This facilitates a transformative journey, transmuting 

raw, often nebulous, data into structured insights and, subsequently, actionable strategies. Such a 

cohesive and fluid transition, bridging the chasm between data and real-world application, is seldom 

found in other frameworks. 

Additionally, our approach’s granularity, evident in the four-level feature tagging system, sets 

a new benchmark. It champions a depth of analysis that transcends merely scratching the surface. 

By delving into minute patterns and correlations, our framework brings to light often-overlooked 

intricacies in transportation data, enriching our understanding and enhancing our strategies’ efficacy. 

Another pivotal innovation is our accentuated focus on spatial and temporal dynamics within the 

feature layer. While many frameworks might acknowledge these aspects, the profundity with which 

our structure incorporates them is unique. By capturing these fleeting yet impactful trends, we are 

better positioned to anticipate and cater to the ever-evolving demands of urban transportation, 

ensuring that our strategies remain not just relevant but pioneering in the face of rapid urban 

metamorphoses. 

The ramifications of this research are considerable for implementation and decision-making in 

transport planning and policy-making. By harnessing our framework’s adaptive nature, it becomes 

possible to accommodate the ever-evolving transportation needs of cities. Its distinctive capacity to 

capture city-specific characteristics and decipher temporal dynamics equips stakeholders with a 

detailed understanding, facilitating the design of bespoke strategies and policies. These are not 

generic; they are tailored to the unique attributes and requirements of each urban environment. The 

tangible, evidence-based insights put forth by our framework pave the way for not only more 

efficient transport planning but also more effective policy-making. Through this integration, cities 
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are empowered to progress toward being smarter, more responsive, and ultimately, more sustainable 

in their transport initiatives. 

Nonetheless, this research exhibits certain limitations. One constraint is the reliance on large-

scale datasets, which may not be obtainable or accessible for all cities or time periods. Another 

limitation is the dependence on the quality and accuracy of the data employed in the analysis, as 

well as the assumptions made during the modeling process. These limitations ought to be considered 

when applying the natural feature profile framework in practice. 

For future research, several avenues can be explored. Firstly, further refinement and validation 

of the natural feature profile framework can be undertaken to enhance its accuracy and reliability. 

Secondly, the framework can be applied to additional cities and time periods to broaden its 

generalisability and applicability. Furthermore, integrating other pertinent factors, such as socio-

economic and environmental variables, into the framework can yield a more comprehensive 

understanding of urban transport systems. While our framework provides a comprehensive 

overview of public transport ridership, we acknowledge that the breadth of potential analytical 

techniques exceeds our present scope. Subsequent research will delve deeper into these specific 

technical details, enriching the overall framework’s substance and depth. Lastly, examining the 

potential of integrating the natural feature profile framework with other decision support tools or 

models can further augment its effectiveness in informing transport planning and policy-making. 

The natural feature profile framework for data-driven public transport ridership analysis 

presents a promising approach to understanding the natural features of mobility within urban public 

transport systems in different cities. The framework’s adaptability, reliance on core key 

technologies, case-specific application, and evidence-based decision-making hold significant 

implications for transport planning and policy-making. While this research has limitations, it 

contributes to the advancement of the field and provides a foundation for future studies in this area. 

Through the case studies conducted in Suzhou and Lianyungang and the interesting findings 

obtained, the natural feature profile framework demonstrates its potential to uncover valuable 

insights and facilitate informed decision-making in urban transport systems. 
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