
This is a repository copy of The worst-case data-generating probability measure in 
statistical learning.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/210922/

Version: Accepted Version

Article:

Zou, X., Perlaza, S.M., Esnaola, J. orcid.org/0000-0001-5597-1718 et al. (2 more authors) 
(2024) The worst-case data-generating probability measure in statistical learning. IEEE 
Journal on Selected Areas in Information Theory, 5. pp. 175-189. ISSN 2641-8770 

https://doi.org/10.1109/JSAIT.2024.3383281

© 2024 The Authors. Except as otherwise noted, this author-accepted version of a journal 
article published in IEEE Journal on Selected Areas in Information Theory is made 
available via the University of Sheffield Research Publications and Copyright Policy under 
the terms of the Creative Commons Attribution 4.0 International License (CC-BY 4.0), 
which permits unrestricted use, distribution and reproduction in any medium, provided the 
original work is properly cited. To view a copy of this licence, visit 
http://creativecommons.org/licenses/by/4.0/

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



1

The Worst-Case Data-Generating Probability

Measure in Statistical Learning
Xinying Zou, Samir M. Perlaza, Iñaki Esnaola, Eitan Altman, and H. Vincent Poor.

Abstract—The worst-case data-generating (WCDG) probability
measure is introduced as a tool for characterizing the generaliza-
tion capabilities of machine learning algorithms. Such a WCDG
probability measure is shown to be the unique solution to two
different optimization problems: (a) The maximization of the
expected loss over the set of probability measures on the datasets
whose relative entropy with respect to a reference measure is
not larger than a given threshold; and (b) The maximization of
the expected loss with regularization by relative entropy with
respect to the reference measure. Such a reference measure can
be interpreted as a prior on the datasets. The WCDG cumulants
are finite and bounded in terms of the cumulants of the reference
measure. To analyze the concentration of the expected empirical
induced by the WCDG probability measure, the notion of (ϵ, δ)-
robustness of models is introduced. Closed-form expressions are
presented for the sensitivity of the expected loss for a fixed
model. These tools result in the characterization of a novel
expression for the generalization error of arbitrary machine
learning algorithms. This exact expression is provided in terms
of the WCDG probability measure and leads to an upper bound
that is equal to the sum of the mutual information and the lautum
information between the models and the datasets, up to a constant
factor. This upper bound is achieved by a Gibbs algorithm. This
finding reveals that an exploration into the generalization error
of the Gibbs algorithm facilitates the derivation of overarching
insights applicable to any machine learning algorithm.

Index Terms—Supervised Machine Learning, Worst-Case, Gen-
eralization Gap, Relative Entropy, Gibbs Algorithm, and Sensi-
tivity.

I. INTRODUCTION

The problem of supervised machine learning is often formu-

lated as an empirical risk minimization (ERM) problem in

which the optimization domain is a set of models [3]. This

formulation is based on the observation that the empirical
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risk is the expectation of the loss function with respect to

the empirical probability measure induced by the training

dataset. See for instance, Lemma 7. This empirical measure

is known in the realm of information theory as a type [4]

(see Definition 3). If the ground-truth data-generating (GTDG)

probability measure were available, optimal models would be

the minimizers of the expectation of the loss with respect

to the GTDG probability measure, also known as the true

risk or population risk [3]. From this perspective, the type

induced by the training dataset is a replacement for the

GTDG probability measure. That is, models are chosen as

the minimizers of the empirical risk instead of minimizers of

the true risk. Interestingly, large datasets might lead to types

that are sufficiently close to the GTDG probability measure

with high probability [5]. Typically, such a closeness is often

measured in terms of a statistical distance, e.g., the relative

entropy of the type with respect to the GTDG probability

measure.

The driving idea in this work is that the GTDG probability

measure is likely to be within a neighbourhood of the type

induced by the training dataset. Side information might also

lead to a prior on the data, and thus, the GTDG probability

measure is also likely to be within a neighbourhood of such

a prior. From this perspective, one can adopt a reference

measure, which can be the type, a prior, or a mixture of both,

and form a unique neighbourhood around such a reference

measure. This neighbourhood includes all probability mea-

sures on the datasets that are at a statistical distance smaller

than or equal to a given threshold. A robust choice of models

is choosing them as the minimizers of the expectation of the

loss with respect to the worst-case data-generating (WCDG)

probability measure within such a neighbourhood. In this

case, the WCDG probability measure is assumed to be the

measure that maximizes the expectation of the loss for a fixed

model. This problem formulation is a distributionally robust

optimization (DRO) problem [6], [7] in which the statistical

distance might be the relative entropy as in [8], a Wasserstein

distance as in [9], [10], an f -divergence as in [11], [12], among

others. This problem can also be formulated via the maximum

entropy principle [13], [14] as in [15], [16]. Every choice of

statistical distance leads to a WCDG probability measure with

particular properties.

When the statistical distance is the relative entropy, the result-

ing WCDG probability measure exhibits numerous properties

that are central in the analysis of key generalization metrics,

namely, the generalization gap (GG); the expected general-

ization gap (EGG); and the doubly-expected generalization
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gap (D-EGG). In the literature, the D-EGG is also referred

to as the generalization error (GE). The GG is calculated

for a specific model and training dataset as the difference

between the true risk and the empirical risk induced by

the model on such a training dataset. While the GG does

not provide a generalization guarantee for a given model,

it allows studying the impact of the training dataset on the

generalization capabilities. This observation is central to the

results presented in this work. When models are chosen by

sampling a probability measure conditioned on the training

dataset, the EGG is the expectation of the GG with respect

to such a probability measure. This probability measure is

often referred to as the statistical learning algorithm. In this

setting, the dependence of the EGG on the training dataset

is twofold. Firstly, via the algorithm, which depends on the

training dataset; and secondly, via the GG, which involves the

calculation of the empirical risk on the training dataset. The D-

EGG is the expectation of the EGG with respect to the GTDG

probability measure.

A. Existing Results

The GG, EGG, and D-EGG (or GE) are central performance

metrics for the analysis of the generalization capabilities of

machine learning algorithms, see for instance [17]–[21] and

[22]. In particular, the D-EGG characterizes the ability of

the learning algorithm to correctly find patterns in datasets

that are not available during the training stage. Closed-form

expressions for the EGG are only known for the Gibbs

algorithm in the case in which the reference measure is

a probability measure [17]; and for the case in which the

reference measure is a σ-finite measure [23]. In the case

of other algorithms, the D-EGG is characterized by various

upper-bounds leveraging different techniques. The metric of

mutual information is first proposed in [24], further developed

in [19] and combined with chaining methods in [25], [26].

Similar bounds are obtained in [20], [27]–[30] and references

therein. Other information measures such as the Wasserstein

distance [18], [31], [32], maximal leakage [33], [34], mutual f -

information [35], and Jensen-Shannon divergence [36] are also

explored in the literature. Unfortunately, none of the existing

bounds has been shown to be uniformly tight in relevant

practical cases [37], [38].

To circumvent the dependence of the D-EGG on the statistical

description of the training dataset and the specific learning

algorithm in generalization analyses, tools from combinatorics

[39]; probability theory [40]–[42]; and information theory

[17], [19], [43] have been used with partial success. The main

drawback of these analytical approaches is that they provide

guarantees that entail worst-case dataset generation analysis

but do not identify the data-generating measures that curtail the

generalization capability of the algorithm [38]. This, in turn,

results in descriptions of the D-EGG for which the dependence

on the training dataset and the selected algorithm is not made

evident. Recent efforts for highlighting the dependence of

generalization capabilities on the training dataset have led to

explicit expressions for the GG and EGG when the models are

sampled using the Gibbs algorithm in [22], [44]. This line of

work paved the way to the study in this paper of the WCDG

probability measures and their effect on the D-EGG.

B. Contributions

The first contribution consists of the derivation of a probability

measure over the datasets coined WCDG probability measure.

The WCDG probability measure can be defined as the measure

that maximizes the expectation of the loss over a set of

measures that are at a “statistical distance” with respect to

a reference measure that is not larger than a given threshold.

Alternatively, the WCDG probability measure can be defined

as the measure that maximizes the expectation of the loss

subject to a regularization by such a “statistical distance”

with respect to the reference measure. When the “statistical

distance” is the relative entropy, both definitions are shown to

be identical, under specific conditions. Despite the limitations

of relative entropy concerning its asymmetry [12], [45] and

the need of absolute continuity with respect to the reference

measure [11], the resulting WCDG probability measure is a

Gibbs probability measure (Theorem 1) parametrized by the

reference measure; the regularization parameter; and the loss

function. This Gibbs probability measure is shown to exhibit

relevant properties in statistical machine learning. In particular,

for a fixed model, the loss resulting from the assumption that

datapoints are sampled from the WCDG probability measure

is a sub-Gaussian random variable. Moreover, the variation

of the expectation of the loss when the probability measure

changes from the WCDG probability measure to an alternative

measure has an explicit expression involving relative entropy

terms. Using this result, the variation of the expectation of the

loss when the measure changes from an arbitrary measure to

any alternative measure is presented (Theorem 8). This is a sig-

nificant result as the reference measure and the regularization

parameter can be arbitrarily chosen, which leads to numerous

closed-form expressions for such a variation.

The second contribution leverages the observation that under

the assumption that datasets are tuples of independent and

identically distributed datapoints, datasets can be represented

by their corresponding types, which are empirical probability

measures [4]. Interestingly, the empirical risk induced by a

model with respect to a given dataset is proved to be equal to

the expectation of the loss with respect to the corresponding

type (Lemma 7). This observation allows using Theorem 8 to

provide an explicit expression to the difference between two

empirical risks induced by the same model on two different

datasets. This difference is referred to as the sensitivity of

the empirical risk. Using the same arguments, closed-form

expressions involving relative entropy terms are provided for

the GG induced by a fixed model.

The final contribution consists in using the WCDG probability

measure to obtain an exact expression of the D-EGG for any

machine learning algorithm. This exact expression is provided

in terms of information measures involving the WCDG prob-

ability measure and leads to an upper bound on the D-EGG

that is equal to the sum of the mutual information and the

lautum information between the models and the datasets, up
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to a constant factor. This upper bound is shown to be achieved

by a Gibbs algorithm whose parameters satisfy particular con-

ditions. This reveals the central place of the Gibbs algorithm

in statistical machine learning. Indeed, the Gibbs algorithm

facilitates the derivation of overarching insights into the D-

EGG applicable to any machine learning algorithm.

C. Notation

Given a measurable space (Ω,F ), the notation △ (Ω) is used

to represent the set of σ-finite measures that can be defined

over (Ω,F ). Often, when the sigma-algebra F is fixed, it

is hidden to ease notation. Given a measure Q ∈ △ (Ω), the

subset △Q (Ω) of △ (Ω) contains all σ-finite measures that are

absolutely continuous with respect to the measure Q. Given a

second measurable space (X ,G ), the notation △ (Ω|X ) is used

to represent the set of σ-finite measures defined over (Ω,F )
conditioned on an element of X .

II. PROBLEM FORMULATION

Let M, X and Y , with M ⊆ R
d and d ∈ N,

be sets of models, patterns, and labels, respectively. A

pair (x, y) ∈ X × Y is referred to as a labeled pattern or

as a data point. Given n data points, with n ∈ N, denoted

by (x1, y1), (x2, y2), . . ., (xn, yn), a dataset is represented by

the tuple:

z =
(

(x1, y1) , (x2, y2) , . . . , (xn, yn)
)

∈ (X × Y)
n
. (1)

Let the function f : M × X → Y be such that the label

assigned to the pattern x according to the model θ ∈ M
is

y = f(θ, x). (2)

Let also the function

ℓ̂ : Y × Y → [0,+∞] (3)

be such that given a data point (x, y) ∈ X×Y , the loss induced

by a model θ ∈ M is ℓ̂ (f(θ, x), y). In the following, the loss

function ℓ̂ is assumed to be nonnegative and for all y ∈ Y ,

ℓ̂ (y, y) = 0.

For the ease of notation, let the function ℓ : M×X × Y →
[0,+∞] be such that for all (x, y) ∈ X × Y ,

ℓ(θ, x, y) = ℓ̂ (f(θ, x), y) . (4)

The empirical risk induced by the model θ ∈ M, with respect

to the dataset z in (1), is determined by the function L :
(X × Y)

n ×M → [0,+∞], which satisfies

L(z,θ) =
1

n

n
∑

i=1

ℓ (θ, xi, yi) , (5)

where the function ℓ is defined in (4).

Using this notation, the model selection problem is formu-

lated as an empirical risk minimization ERM problem, which

consists of the following optimization problem:

min
θ∈M

L (z,θ) . (6)

The ERM problem is prone to overfitting since the set of

solutions to (6) are models selected specifically for the given

data set z in (1), which limits the generalization capability

of the resulting optimal model. One way to compensate for

overfitting and adding more stability to the learning algorithm

is by adding a regularization term to the optimization problem

in (6). Such a regularization term can be represented by a

function R : M → R, which yields the regularized ERM

problem

min
θ∈M

L (z,θ) + λR (θ) , (7)

where λ is a nonnegative real that acts as a regularization

parameter. The regularization function constraints the choice

of the model, which can be interpreted as requiring a finite

space for the models or limiting the “complexity” of the

model [3]. One common choice for R is R (θ) = ∥θ∥p,

with p ≥ 1. The norm is often used to account for the

model complexity. Alternatively, the regularization parameter

λ determines the weight that regularization carries in the model

selection.

The main interest in this work is to study the generalization

capability for a given model θ ∈ M independently from how

such a model is chosen.

III. THE WORST-CASE DATA-GENERATING PROBABILITY

MEASURE

A. General Discussion

Given a probability measure PS ∈ △ (X × Y), which can

be interpreted as a prior on the set of data points, and a

model θ ∈ M, looking for a WCDG probability measure

might lead to two different optimization problems. Both can

be defined in terms of the expected loss induced by a measure

P ∈ ∆(X × Y), for a given a model θ ∈ M.

Definition 1 (Expected Loss): Let P be a probability measure

in ∆(X × Y). The expected loss with respect to a fixed model

θ ∈ M induced by the measure P is

Rθ (P ) =

∫

ℓ(θ, x, y)dP (x, y), (8)

where the function ℓ is defined in (4).

Firstly, a neighborhood around PS is established through a

statistical distance d : △ (X × Y) ×△ (X × Y) → [0,+∞).
In view of this, the WCDG measure is a probability measure

that maximizes the expectation of the loss within such a

neighborhood. This view leads to the following problem:

max
P∈∆(X×Y)

Rθ (P ) (9a)

s.t. d (P, PS) ⩽ γ, (9b)

where γ > 0 determines the neighborhood around PS as

the set {P ∈ △ (X × Y) : d (P, PS) ⩽ γ} and the functional

Rθ is defined in (8). Secondly, a WCDG measure is also

interpreted as a probability measure that trades off the maxi-

mization of the expectation of the loss and the minimization
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of the statistical distance with respect to PS . This point of

view leads to an optimization problem of the form:

max
P∈∆(X×Y)

Rθ (P )− βd (P, PS) , (10)

where the functional Rθ is defined in (8); and β > 0 deter-

mines the trade-off between maximization of the expectation

of the loss and the statistical distance to PS . In this case, the

convexity of d (P, PS) with respect to P is a valuable property

for solving the optimization problem.

Depending on the choice of the statistical distance d in (9)

and (10), numerous WCDG probability measures might be

obtained. In either case, such WCDG probability measures

are subject to the limitations concerning the asymmetry of d;

limitations concerning the absolute continuity requirements

with respect to PS ; or limitations derived from the need for

X × Y to be equipped with a metric so as to form a Polish

metric space. These limitations can lead the problems in (9)

and (10) to be ill posed, difficult to solve, to exhibit no

solution, or to exhibit solutions with poor properties for the

analysis of generalization in statistical machine learning. In

particular, the statistical distance d can be chosen as an f -

divergence [46]. See for instance the examples in [11]. In this

case,

d (P, PS) =

∫

f

Å

dP

dPS

(x, y)

ã

dP (x, y), (11)

where the function f : (0,+∞) → R is assumed to be concave

and f(1) = 0; and the function dP
dPS

: X × Y → [0,+∞)
is the Radon-Nikodym derivative of P with respect to PS .

For some choices of the function f , the corresponding f -

divergence can be symmetric, e.g., Jeffrey’s divergence [47];

or be asymmetric, e.g., Kullback-Leibler divergence [48]. An

interesting discussion on the impact of asymmetry in optimiza-

tion problems similar to the one in (10) is presented in [11]

and [12]. In any case, if d is chosen as an f -divergence, the

optimization domain shall be restricted to the set of measures

that are absolutely continuous with PS . This is essentially

because the existence of a Radon-Nikodym derivative with

respect to PS is required.

An alternative choice for the statistical distance d in (9) and

(10) is

d (P, PS) (12)

= sup

ß∫

f(x, y)dP (x, y)−

∫

f(x, y)dPS(x, y) : f ∈ D

™

,

where D is a particular set of functions X ×Y → R. In such

a formulation for d in (12), while P is not required to be

absolutely continuous with respect to PS , other requirements

must be ensured. For instance, in the case in which the set D
is such that if f ∈ D, then for all (x, y) ∈ X × Y and for all

(u, v) ∈ X × Y ,

|f(x, y)− f(u, v)|⩽d ((x, y), (u, v)) , (13)

with d being a metric on the set X ×Y , the resulting statistical

distance is the Kantorovich-Rubinstein distance, also known as

the Wasserstein distance of order one [49, Remark 6.5]. Note

that this choice of D imposes the need of the set X × Y to

be equipped with the metric d in (13). Moreover, (X × Y, d)
must be a Polish metric space.

From the above, it becomes clear that every choice for the

statistical distance d comes with particular requirements. Thus,

the search for an optimal choice for d reduces to evaluating

the properties of the resulting WCDG probability measures

and their impact in the analysis of generalization of machine

learning algorithms. In the following, it is argued that the

choice of d as the relative entropy, despite the limitations con-

cerning its asymmetry and the restriction of the optimization

domains to measures that are absolutely continuous with PS ,

leads to a variety of properties that are central in the analysis

of generalization.

B. Relative Entropy Case

This section focuses on the special cases in which the statisti-

cal distance d in (9) and (10) is chosen as the relative entropy.

The relative entropy is the f -divergence resulting from the

choice of f(x) = x log(x) in (11). See for instance [50]. Given

two probability measures P and Q on the same measurable

space such that P is absolutely continuous with respect to Q,

the relative entropy of P with respect to Q is

D (P∥Q) =

∫

dP

dQ
(x) log

Å

dP

dQ
(x)

ã

dQ(x), (14)

where the function dP
dQ is the Radon-Nikodym derivative

of P with respect to Q. Using this notation, the optimization

problems of interest are

max
P∈△PS

(X×Y)
Rθ (P ) (15a)

s.t. D (P∥PS) ⩽ γ, (15b)

and

max
P∈∆PS

(X×Y)
Rθ (P )− βD (P∥PS) . (16)

The optimization problems in (15) and (16) exhibit a major

difference in the following case. If for all P ∈ △PS
, the func-

tional Rθ in (8) is such that Rθ (P ) = c, for some fixed c ⩾ 0,

then all the measures in {P ∈ △ (X × Y) : D (P∥PS) ⩽ γ}
are solutions to the optimization problem in (15). Alternatively,

the problem in (16) exhibits a unique solution, which is PS .

Hence, while the former exhibits infinitely many solutions,

the latter exhibits only one. Although this difference holds

substantial mathematical importance, its practical relevance is

limited, as it only emerges in settings for which the expectation

of the loss Rθ(P ) is the same independently of the measure

P . In order to avoid the above case, the notion of separable

loss functions, which is analogous to [23, Definition 4.1], is

introduced as follows.

Definition 2: Given a model θ ∈ M, the function ℓ in (4), is

said to be separable with respect to the probability measure

P ∈ ∆(X × Y), if there exist a positive real c > 0 and two

subsets A and B of X ×Y that are nonnegligible with respect

to P , and for all ((x1, y1), (x2, y2)) ∈ A× B,

ℓ(θ, x1, y1) < c < ℓ(θ, x2, y2) < +∞. (17)
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When the function ℓ in (4) is nonseparable with respect to

the reference measure PS , it is a constant almost surely with

respect to such a measure. More specifically, there exists a

real a ≥ 0, such that

PS ({(x, y) ∈ X × Y : ℓ(θ, x, y) = a}) = 1, (18)

and as a consequence, for all probability

measures P ∈ △PS
(X × Y), it holds that

P ({(x, y) ∈ X × Y : ℓ(θ, x, y) = a}) = 1. With this

pathological case of nonseparable loss functions out of the

way, the optimization problems in (15) and (16) exhibit

considerable similarity. This similarity is formalized in

Theorem 1 below. Given a model θ ∈ M, let JPS ,θ : R → R

be the function

JPS ,θ(t) = log

Å∫

exp (tℓ(θ, x, y))dPS(x, y)

ã

, (19)

where the function ℓ is defined in (4). The following lemma

describes some properties of the function JPS ,θ in (19).

Lemma 1: The function JPS ,θ in (19) is convex, nondecreasing,

and differentiable infinitely many times in the interior of {t ∈
R : JPS ,θ (t) < +∞}. If the function ℓ in (4) is separable

with respect to PS , then the function JPS ,θ is strictly convex.

Proof: The proof is presented in [51, Appendix A].

Let also the set JPS ,θ be the set

JPS ,θ≜

ß

t ∈ (0,+∞) : 0 ≤ JPS ,θ

Å

1

t

ã

< +∞

™

, (20)

which exhibits the following property.

Lemma 2: The set JPS ,θ in (20) is either the empty set or an

interval satisfying (b,+∞) ⊆ JPS ,θ , for some b ∈ [0,+∞).

Proof: The proof is presented in [51, Appendix B].

Using this notation, the following theorem formalizes the fact

that the optimization problems in (15) and (16) exhibit the

same unique solution.

Theorem 1: If the function ℓ in (4) is separable with respect to

the measure PS and β ∈ JPS ,θ , with JPS ,θ in (20), then the

probability measure P
(PS ,β)

Ẑ|Θ=θ
∈ △PS

(X × Y) that satisfies for

all (x, y) ∈ suppPS ,

dP
(PS ,β)

Ẑ|Θ=θ

dPS

(x, y)= exp

Å

1

β
ℓ(θ, x, y)− JPS ,θ

Å

1

β

ãã

, (21)

with the function JPS ,θ defined in (19) and

D
(

P
(PS ,β)

Ẑ|Θ=θ
∥PS

)

= γ, (22)

is the unique solution to the optimization problems in (15)

and (16).

Proof: A proof can be found at [8, Proposition 1]. An

alternative proof is presented in [51, Appendix C].

The probability measure PS in Theorem 1 can be arbitrarily

chosen, that is, independent of the model θ. From this per-

spective, when the measure PS is interpreted as a prior on

the datasets, the WCDG probability measure P
(PS ,β)

Ẑ|Θ=θ
can be

interpreted as the worst probability measure for model θ in

the neighborhood of the prior PS . The reference measure PS

can also be chosen to be dependent on the models. This case

is studied in Section VII-B.

The parameter γ of the optimization problem in (15) does

not explicitly appear in the expression of the solution P
(PS ,β)

Ẑ|Θ=θ

in (21). Nonetheless, the probability measure P
(PS ,β)

Ẑ|Θ=θ
does

depend on γ. This dependence is shown via the equality in

(22). Later, in Lemma 6, it is shown that D
(

P
(PS ,β)

Ẑ|Θ=θ
∥PS

)

in (22) is monotone with β. More importantly, if the function

ℓ in (4) is separable, the relative entropy D
(

P
(PS ,β)

Ẑ|Θ=θ
∥PS

)

is strictly decreasing with β. This implies that there exists a

one-to-one mapping between β and γ, and thus, the analysis

can be indistinctly carried out either for β or γ.

The probability measure P
(PS ,β)

Ẑ|Θ=θ
in (21) is a Gibbs probability

measure [52]. In the remainder of this work, the probability

measure P
(PS ,β)

Ẑ|Θ=θ
is referred to as the WCDG probability

measure and the function JPS ,θ in (19) is referred to as the

log-partition function [53]. The WCDG probability measure

exhibits a number of interesting properties. The following

lemma introduces two of these properties, which are shown

to be central in the remainder of this work.

Lemma 3: The probability measures P
(PS ,β)

Ẑ|Θ=θ
and PS in (21)

are mutually absolutely continuous. Moreover, they satisfy

βJPS ,θ

Å

1

β

ã

= Rθ

(

P
(PS ,β)

Ẑ|Θ=θ

)

− βD
(

P
(PS ,β)

Ẑ|Θ=θ
∥PS

)

(23)

= sup
P∈∆PS

(X×Y)

Rθ (P )− βD (P∥PS) (24)

= Rθ(PS) + βD
(

PS∥P
(PS ,β)

Ẑ|Θ=θ

)

, (25)

where the functional Rθ and the function JPS ,θ are defined in

(8) and (19), respectively.

Proof: The proof of (24) follows from Theorem 1. The proofs

of (23) and (25) are presented in [51, Appendix D].

In Lemma 3, the equality

βJPS ,θ

Å

1

β

ã

= sup
P∈∆PS

(X×Y)

Rθ (P )− βD (P∥PS) (26)

also appears in [49, Equation (22.7)] obtained using the

Legendre representation of the relative entropy.

Lemma 3 implicitly characterizes the difference of the ex-

pected losses induced by the WCDG probability measure and

the reference measure. That is,

Rθ

(

P
(PS ,β)

Ẑ|Θ=θ

)

− Rθ (PS)

= β
(

D
(

P
(PS ,β)

Ẑ|Θ=θ
∥PS

)

+D
(

PS∥P
(PS ,β)

Ẑ|Θ=θ

))

, (27)

where D
(

P
(PS ,β)

Ẑ|Θ=θ
∥PS

)

+ D
(

PS∥P
(PS ,β)

Ẑ|Θ=θ

)

is Jeffrey’s di-

vergence between P
(PS ,β)

Ẑ|Θ=θ
and PS .
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In the remainder of this work, the GTDG probability measure

of the datapoints is denoted by PZ ∈ △ (X × Y). The

probability measure PZ is the measure induced by a random

variable Z on the measurable space of the datapoints. Under

the assumption that datasets are formed by n independent

and identically distributed datapoints, the GTDG probability

measure of such datasets is denoted by PZ ∈ △ ((X × Y)
n
),

which is a product measure formed by PZ . Alternatively, the

probability measure P
(PS ,β)

Ẑ|Θ=θ
in (21) is induced by a random

variable Ẑ on the measurable space of the datapoints. Under

the assumption that datasets are formed by n independent

datapoints sampled from the WCDG probability measure

P
(PS ,β)

Ẑ|Θ=θ
, the probability measure of such datasets is denoted

by P
(PS ,β)

Ẑ|Θ=θ
, which is the product measure formed by P

(PS ,β)

Ẑ|Θ=θ
.

In a nutshell, datapoints and datasets sampled from the GTDG

probability measure are represented by the random variables Z

and Z, respectively. Similarly, datapoints and datasets sampled

from a WCDG probability measure are represented by the

random variables Ẑ and Ẑ, respectively.

C. Choice of the Reference Measure

Probably, the most intuitive choice of PS is to be based on

the training datasets. In order to introduce this intuition, the

notion of a type induced by a dataset [4] is presented in the

following.

Definition 3 (Type of a dataset): The type induced by the

dataset z in (1) is a probability measure in △ (X × Y),
denoted by Pz , such that for all measurable subsets A of

X × Y ,

Pz (A) =
1

n

n
∑

t=1

1{(xt,yt)∈A}. (28)

For large values of n, it might be expected that the type Pz

induced by the training dataset z ∈ (X × Y)
n

be within a

neighborhood of the GTDG probability distribution PZ . More

specifically, under the assumption that the sets X and Y are

discrete, such a neighborhood might be of the form

N (PZ , γ)≜{P ∈ △ (X × Y) : D (P∥PZ) ⩽ γ} , (29)

for some γ > 0. Nonetheless, the GTDG probability measure

PZ being unknown, it appears reasonable to choose the

reference measure PS identical to the type Pz . This leads to an

optimization problem of the form in (15), whose optimization

domain is

N (Pz, γ)≜{P ∈ △Pz
(X × Y) : D (P∥Pz) ⩽ γ} . (30)

This choice presumes that the training dataset is sufficiently

large to consider that the GTDG probability measure is ab-

solutely continuous with respect to the type Pz such that the

GTDG probability measure PZ is within N (Pz, γ). Another

alternative for the choice of PS in the optimization problems

in (15) and (16) is for instance a convex combination between

the type Pz and an arbitrary probability measure known to be

absolutely continuous with PZ .

In any case, the choice of PS imposes a condition on the

optimization domain of the problems in (15) and (16) that

translates into a strong inductive bias that dominates the

evidence provided by the training data. More specifically, the

optimization domain becomes a subset of the set of measures

that are absolutely continuous with respect to PS .

IV. CUMULANTS OF THE EXPECTED LOSS

The log-partition function JPS ,θ in (19) can be interpreted

also as the cumulant generating function of the random vari-

able

Vθ ≜ ℓ (θ, X, Y ) , (31)

with the function ℓ in (4) and (X,Y ) ∼ PS , with PS in (21),

for some given model θ that remains fixed. In particular, if the

function JPS ,θ is differentiable around zero, its derivative of

order n evaluated at zero reveals the n-th cumulant of the

random variable Vθ in (31). More interestingly, the function

JPS ,θ in (19) is intimately related to the cumulant generating

function of the random variable

Wθ ≜ ℓ (θ, X, Y ) , (32)

where (X,Y ) ∼ P
(PS ,β)

Ẑ|Θ=θ
, with P

(PS ,β)

Ẑ|Θ=θ
in (21), for some

given model θ that remains fixed. In particular, the cumulant

generating function of the random variable Wθ , which is

denoted by J
P

(PS,β)

Ẑ|Θ=θ
,θ

: R → R, satisfies

J
P

(PS,β)

Ẑ|Θ=θ
,θ
(t) = log

Å∫

exp (tℓ(θ, x, y))dP
(PS ,β)

Ẑ|Θ=θ
(x, y)

ã

, (33)

where the function ℓ is defined in (4). The following lemma

shows the exact relation between these two cumulant generat-

ing functions.

Lemma 4: The function JPS ,θ in (21) and the function

J
P

(PS,β)

Ẑ|Θ=θ
,θ

in (33) satisfy

J
P

(PS,β)

Ẑ|Θ=θ
,θ
(t) = JPS ,θ

Å

t+
1

β

ã

− JPS ,θ

Å

1

β

ã

. (34)

Proof: The proof is presented in [51, Appendix E].

Let the m-th derivative of the function JPS ,θ in (19) be denoted

by J
(m)
PS ,θ , with m ∈ N. Hence, for all t ∈ R such that

JPS ,θ (t) < +∞,

J
(m)
PS ,θ (t)≜

dm

dsm
JPS ,θ (s)

∣

∣

∣

s=t
. (35)

Moreover, let the m-th derivative of the function J
P

(PS,β)

Ẑ|Θ=θ
,θ

in (19) be denoted by J
(m)

P
(PS,β)

Ẑ|Θ=θ
,θ

, with m ∈ N. Hence, for

all t ∈ R such that JPS ,θ

Ä

t+ 1
β

ä

< +∞,

J
(m)

P
(PS,β)

Ẑ|Θ=θ
,θ
(t)≜J

(m)
PS ,θ

Å

t+
1

β

ã

. (36)

The following lemma capitalizes on the observations above

and provides explicit expressions for the first, second and third

derivatives of the function JPS ,θ in (19) and its connections
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with the cumulants of the random variables Vθ and Wθ in (31)

and (32), respectively.

Lemma 5: For all t ∈ JPS ,θ , with JPS ,θ in (20), the first,

second and third derivatives of the function JPS ,θ in (19),

denoted respectively by J
(1)
PS ,θ , J

(2)
PS ,θ and J

(3)
PS ,θ , satisfy that

J
(1)
PS ,θ

Å

1

t

ã

=

∫

ℓ(θ, x, y)dP
(PS ,t)

Ẑ|Θ=θ
(x, y), (37)

J
(2)
PS,θ

Å

1

t

ã

=

∫ Å

ℓ(θ,x,y)−J
(1)
PS,θ

Å

1

t

ãã2

dP
(PS,t)

Ẑ|Θ=θ
(x,y), (38)

and

J
(3)
PS,θ

Å

1

t

ã

=

∫ Å

ℓ(θ,x,y)−J
(1)
PS,θ

Å

1

t

ãã3

dP
(PS,t)

Ẑ|Θ=θ
(x,y), (39)

where the function ℓ is in (4) and the measure P
(PS ,t)

Ẑ|Θ=θ
is

in (21). The value J
(2)
PS ,θ

(

1
t

)

is strictly positive if and only

if the function ℓ is separable with respect to PS . Moreover,

if there exists real δ > 0 such that the function JPS ,θ is

differentiable within (−δ, δ), then

J
(1)
PS ,θ (0) =

∫

ℓ(θ, x, y)dPS(x, y), and (40)

J
(2)
PS ,θ (0) =

∫

Ä

ℓ(θ, x, y)− J
(1)
PS ,θ (0)

ä2
dPS(x, y), and (41)

J
(3)
PS ,θ (0) =

∫

Ä

ℓ(θ, x, y)− J
(1)
PS ,θ (0)

ä3
dPS(x, y). (42)

Proof: The proof is presented in [51, Appendix F].

From Lemma 5, it follows that the random variable Wθ in (32)

possesses a mean, variance, and third cumulant that are equiv-

alent to J
(1)
PS ,θ

Ä

1
β

ä

in (37), J
(2)
PS ,θ

Ä

1
β

ä

in (38), and J
(3)
PS ,θ

Ä

1
β

ä

in (39), respectively. Alternatively, under the assumptions of

the lemma, the random variable Vθ in (31) possesses a mean,

variance, and third cumulant that are equivalent to J
(1)
PS ,θ (0) in

(40), J
(2)
PS ,θ (0) in (41), and J

(3)
PS ,θ (0) in (42), respectively. The

following corollary of Lemma 5 highlights the monotonicity

of J
(1)
PS ,θ

Ä

1
β

ä

with respect to β.

Corollary 1: The expected loss J
(1)
PS ,θ

(

1
t

)

in (37)

is nonincreasing with respect to t in the interior of
{

s ∈ R : JPS ,θ

(

1
s

)

< +∞
}

. Moreover, if the loss function ℓ

in (4) is separable with respect to PS , J
(1)
PS ,θ

(

1
t

)

is strictly

decreasing with t in
{

s ∈ R : JPS ,θ

(

1
s

)

< +∞
}

.

More generally, under the assumptions of the lemma, the

random variables Vθ in (31) and Wθ in (32) possess finite

cumulants of all orders. That is, the values J
(m)
PS ,θ(0) and

J
(m)
PS ,θ

Ä

1
β

ä

, which are the m-th cumulants of the random vari-

ables Vθ and Wθ , respectively, for all integers m > 0, are both

finite. This observation together with the mean value theorem

[54, Theorem 5.10] lead to the following characterization of

the cumulants J
(m)
PS ,θ

Ä

1
β

ä

and J
(m)
PS ,θ(0).

Theorem 2: Assume that there exists real δ > 0 such that the

function JPS ,θ in (19) is differentiable within (−δ, δ). Then,

for all m ∈ N, the function J
(m)
PS ,θ in (35) satisfies for all

t ∈ JPS ,θ , with JPS ,θ in (20),

J
(m)
PS ,θ(0) +

1

t
cm,2 ≤ J

(m)
PS ,θ

Å

1

t

ã

≤ J
(m)
PS ,θ(0) +

1

t
cm,1, (43)

and

cm,1 = max
s∈(β,+∞)

J
(m+1)
PS ,θ

Å

1

s

ã

, and (44)

cm,2 = min
s∈(β,+∞)

J
(m+1)
PS ,θ

Å

1

s

ã

, (45)

are both finite.

Proof: The proof is presented in [51, Appendix G].

In Theorem 2, the case m = 1 is of little interest as J
(1)
PS ,θ(0) =

Rθ (PS) and J
(1)
PS ,θ

Ä

1
β

ä

= Rθ

(

P
(PS ,β)

Ẑ|Θ=θ

)

, and thus, the

difference Rθ

(

P
(PS ,β)

Ẑ|Θ=θ

)

− Rθ (PS) is well characterized by

Jeffrey’s divergence in (27). Nonetheless, while the inequality

J
(1)
PS ,θ(0) < J

(1)
PS ,θ

Ä

1
β

ä

is always verified, Theorem 2 shows

that such inequality is not necessarily observed on the higher

order cumulants. In the case of the variance (m = 2), it

might be observed that J
(2)
PS ,θ(0) > J

(2)
PS ,θ

Ä

1
β

ä

if c2,1 < 0.

That is, the WCDG probability measure P
(PS ,β)

Ẑ|Θ=θ
in (21)

leads to a larger expected loss than the one obtained with

the reference measure PS and at the same time it induces a

lower variance than the variance associated with the reference

measure PS . Interestingly, the case in which the WCDG

probability measure induces both a larger expected loss and

higher variance is also possible when c2,2 > 0. A similar

observation holds for cumulants of order m > 2.

The following theorem shows that the cumulant generating

function J
P

(PS,β)

Ẑ|Θ=θ
,θ

of the random variable Wθ in (32) exhibits

an important upper bound.

Theorem 3: For all t ∈ {α ∈ R : J
P

(PS,β)

Ẑ|Θ=θ
,θ
(α) < +∞}, the

function J
P

(PS,β)

Ẑ|Θ=θ
,θ

in (33) satisfies the following inequality:

J
P

(PS,β)

Ẑ|Θ=θ
,θ
(t) ≤ tJ

(1)
PS ,θ

Å

1

β

ã

+
1

2
t2ζ2PS ,θ, (46)

where ζPS ,θ is finite, and satisfies

ζPS ,θ ≜ sup

{

√

J
(2)
PS ,θ (ξ) : ξ ∈

Å

−∞, b−
1

β

ã

}

, (47)

with

b ≜ sup {α ∈ R : JPS ,θ (α) < +∞}, (48)

and the functions J
(1)
PS ,θ and J

(2)
PS ,θ are defined in (35).

Proof: The proof is presented in [51, Appendix H].

The relevance of Theorem 3 lies on the fact that it implies

that the random variable Wθ in (32) is a sub-Gaussian ran-

dom variable with sub-Gaussian parameter ζPS ,θ in (47). An

interesting discussion on the impact of the random variable Wθ

being sub-Gaussian is presented in [19, Theorem 1].
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Finally, leveraging the properties of sub-Gaussian random

variables, e.g., [55, Equation 2.9], the following holds for all

α > 0:

P
(PS ,β)

Ẑ|Θ=θ

Åß

(x,y)∈X ×Y :

∣

∣

∣

∣

ℓ(θ,x,y)−J
(1)
PS ,θ

Å

1

β

ã
∣

∣

∣

∣

≥α

™ã

⩽2 exp

Ç

−
α2

2ζ2PS ,θ

å

, (49)

where ζPS ,θ is defined in (47) and J
(1)
PS ,θ

Ä

1
β

ä

is the expected

loss in (37). This type of concentration inequality allows the

study of the robustness of the model θ when it faces data

sampled from WCDG probability distributions, which leads

to interesting guidelines for algorithm design.

V. (ϵ, δ)-ROBUSTNESS AND ALGORITHM DESIGN

An important observation on the dependence of the WCDG

probability distribution P
(PS ,β)

Ẑ|Θ=θ
in (21) on the parameter γ

in (22) is that for all P ∈ N (PS , γ), with N (PS , γ) given

by

N (PS , γ) ≜ {P ∈ △ (X × Y) : D (P∥PS) ⩽ γ} , (50)

it holds that

Rθ (P ) ⩽ Rθ

(

P
(PS ,β)

Ẑ|Θ=θ

)

. (51)

Essentially, the WCDG probability measure P
(PS ,β)

Ẑ|Θ=θ
is the

measure that induces the largest expected loss within the

neighborhood N (PS , γ) of PS . The following lemma unveils

the fact that such a neighborhood expands as γ increases or

equivalently, as β decreases.

Lemma 6: The relative entropy D
(

P
(PS ,β)

Ẑ|Θ=θ
∥PS

)

in (22)

satisfies

d

dβ
D

(

P
(PS ,β)

Ẑ|Θ=θ
∥PS

)

= −
1

β3
J
(2)
PS ,θ

Å

1

β

ã

⩽ 0, (52)

where the function J
(2)
PS ,θ is defined in (38). Moreover, the

inequality is strict if and only if the function ℓ in (4) is

separable with respect to PS .

Proof: The proof is presented in [51, Appendix I].

The key observation from Lemma 6 is that if the function ℓ is

separable with respect to PS , there exists a bijection between

γ and β induced by the equality in (22). Another interesting

observation is that the variations of D
(

P
(PS ,β)

Ẑ|Θ=θ
∥PS

)

in (22)

and the expected loss J
(1)
PS ,θ

Ä

1
β

ä

in (37), with respect to β (or

γ), obey a revealing relation. Note that

d

dβ
D

(

P
(PS ,β)

Ẑ|Θ=θ
∥PS

)

=
1

β

d

dβ
J
(1)
PS ,θ

Å

1

β

ã

, (53)

which implies that both D
(

P
(PS ,β)

Ẑ|Θ=θ
∥PS

)

and J
(1)
PS ,θ

Ä

1
β

ä

are

decreasing with β. Nonetheless, their variations to changes

in β significantly differ. For values of β around one, given

that 1 ∈ JPS ,θ , with JPS ,θ in (20), the variations of

D
(

P
(PS ,β)

Ẑ|Θ=θ
∥PS

)

and J
(1)
PS ,θ

Ä

1
β

ä

to changes in β are identical.

On the contrary, for values away from one, the variations of

these quantities might be radically different.

The following definition describes a performance metric for a

given data-generating probability measure P ∈ △ ((X × Y)
n
)

and a model θ ∈ M that leverages the observations above

and provides guidelines for the choice of the values of β

(or γ).

Definition 4 ((ϵ, δ)-Robustness): Given a pair of positive reals

(δ, ϵ) with ϵ < 1, a model θ ∈ M is said to be (δ, ϵ)-robust

to a probability measure P ∈ △ ((X × Y)
n
), if

P ({z ∈ (suppPS)
n
: L (z,θ) ≥ δ}) ≤ ϵ. (54)

This notion of robustness enables the study of the perfor-

mance guarantees that a model θ yields when faced with

data generated by the WCDG probability measure for specific

parameters β and PS . An important issue that arises from this

definition is the characterization of the largest value of γ (or

smallest value of β) that achieves (ϵ, δ)-robustness, i.e. how

much can the WCDG probability measure deviate from the

reference PS while the guarantee still holds. The following

theorem establishes a link between β, the reference PS , the

expected loss, and the (ϵ, δ)-robustness that a given model θ

achieves.

Theorem 4: The probability measure P
(PS ,β)

Ẑ|Θ=θ
in (21) satisfies

that for all δ > J
(1)
PS ,θ

Ä

1
β

ä

, with J
(1)
PS ,θ

Ä

1
β

ä

in (37),

P
(PS ,β)

Ẑ|Θ=θ

(

{z ∈ (X × Y)
n
: L (θ, z) ⩾ δ}

)

≤ exp
(

−nD
(

P
(PS ,β∗)

Ẑ|Θ=θ
∥P

(PS ,β)

Ẑ|Θ=θ

))

, (55)

where β∗ ∈ (0, β) ∩ JPS ,θ , with JPS ,θ in (20), satisfies

J
(1)
PS ,θ

Å

1

β∗

ã

= δ; (56)

the function L is defined in (5); and the measure P
(PS ,β)

Ẑ|Θ=θ
∈

△ ((X × Y)
n
) is a product measure formed by P

(PS ,β)

Ẑ|Θ=θ
.

Proof: The proof is presented in [51, Appendix J].

Theorem 4 describes the (ϵ, δ)-robustness of a model θ to

the WCDG probability measure P
(PS ,β)

Ẑ|Θ=θ
∈ △ ((X × Y)

n
).

Note such a probability measure describes test datasets that

are formed by n datapoints independently and identically

distributed with P
(PS ,β)

Ẑ|Θ=θ
in (21). Notably, such a description is

in terms of another WCDG probability distribution P
(PS ,β∗)

Ẑ|Θ=θ
,

where β∗ < β. Interestingly, the WCDG probability measure

P
(PS ,β∗)

Ẑ|Θ=θ
induces an expected loss that is equal to δ and is

greater than the expected loss induced by the WCDG proba-

bility measure P
(PS ,β)

Ẑ|Θ=θ
. In a nutshell, for all t ∈ (0, β)∩JPS ,θ ,

let δt = J
(1)
PS ,θ

(

1
t

)

and ϵt = exp
(

−nD
(

P
(PS ,t)

Ẑ|Θ=θ
∥P

(PS ,β)

Ẑ|Θ=θ

))

.

Then, the model θ is (ϵt, δt)-robust to the WCDG probability

measure P
(PS ,β)

Ẑ|Θ=θ
.
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The following theorem provides a (ϵ, δ)-robust guarantee to

any product probability measure formed by a measure in the

neighborhood N (PS , γ) in (50).

Theorem 5: For all models θ ∈ M and for all PZ ∈
N (PS , γ), with N (PS , γ) in (50) and β in (22), it follows

that for all δ > J
(1)
PS ,θ

Ä

1
β

ä

, with J
(1)
PS ,θ

Ä

1
β

ä

in (37),

PZ ({z ∈ (X × Y)
n
: L (θ, z) ⩾ δ}) ≤

1

δ
J
(1)
PS ,θ

Å

1

β

ã

, (57)

where the function ℓ is defined in (4) and the product proba-

bility measure PZ is formed by PZ .

Proof: The proof is presented in [51, Appendix K].

The relevance of Theorem 5 is that given a model θ, it

establishes that for all δ > J
(1)
PS ,θ

Ä

1
β

ä

and ϵδ ≜ 1
δ
J
(1)
PS ,θ

Ä

1
β

ä

,

such a model θ is (ϵδ, δ)-robust to all probability measures

in N (PS , γ), with N (PS , γ) in (50). This observation raises

the question of whether performing model selection based on

the minimization of J
(1)
PS ,θ

Ä

1
β

ä

is an alternative for classical

approaches based on empirical risk minimization (ERM) as in

[56]; or statistical ERM as in [23] and [11].

VI. SENSITIVITY OF THE EXPECTED LOSS

Given a model θ ∈ M, the variation of the expected loss when

the probability measure from which data points are sampled

from varies to another measure is referred to as the sensitivity

of the expected loss. Such a sensitivity can be quantified using

the functional G : M×∆(X × Y)×∆(X × Y) → R,

G(θ, P1, P2) = Rθ(P1)− Rθ(P2), (58)

where the functional Rθ is defined in (8). The

value G(θ, P1, P2) represents the sensitivity of the expected

loss Rθ when the data-generating probability measure

changes from P2 to P1. This section characterizes the

sensitivity G(θ, P1, P2) for arbitrary measures P1 and P2. To

achieve this goal, the first result is the characterization of the

sensitivity of the expected loss to variations from the measure

P
(PS ,β)

Ẑ|Θ=θ
in (21) to an alternative measure, which is presented

in the following theorem.

Theorem 6 (Sensitivity of the Expected Loss): The probability

measure P
(PS ,β)

Ẑ|Θ=θ
in (21) satisfies, for all P ∈ ∆PS

(X × Y),

G
(

θ, P, P
(PS ,β)

Ẑ|Θ=θ

)

=β
(

D(P∥PS)−D
(

P∥P
(PS ,β)

Ẑ|Θ=θ

)

−D
(

P
(PS ,β)

Ẑ|Θ=θ
∥PS

))

, (59)

where the functional G is defined in (58).

Proof: The proof is presented in [51, Appendix L].

The following theorem introduces an upper bound on the

absolute value of the sensitivity G
(

θ, P, P
(PS ,β)

Ẑ|Θ=θ

)

⩽ 0

in (59), which requires the calculation of only one of the

relative entropies in Theorem 6.

Theorem 7: The probability measure P
(PS ,β)

Ẑ|Θ=θ
in (21) satisfies

for all P ∈ ∆PS
(X × Y),

∣

∣

∣G
(

θ, P, P
(PS ,β)

Ẑ|Θ=θ

)∣

∣

∣ ≤

…

2ζ̂2PS ,θD
(

P∥P
(PS ,β)

Ẑ|Θ=θ

)

, (60)

where ζ̂PS ,θ satisfies

ζ̂2PS ,θ≜sup

{

√

J
(2)
PS ,θ (ξ) : ξ ∈

Å

0, b−
1

β

ã

}

, (61)

with

b ≜ sup{α ∈ (0,+∞) : JPS ,θ (α) < +∞}, (62)

where the function JPS ,θ is defined in (19); the function J
(2)
PS ,θ

is defined in (38); and the functional G is defined in (58).

Proof: The proof is presented in [51, Appendix M].

Equipped with the exact characterization of the sensitivity

from the measure P
(PS ,β)

Ẑ|Θ=θ
to any alternative measure P

provided by Theorem 6, it is possible to characterize the

variation from and to arbitrary measures, as shown by the

following theorem.

Theorem 8: For all P1 ∈ ∆PS
(X × Y) and P2 ∈

∆PS
(X × Y), and for all θ ∈ M,

G(θ, P1, P2) = β
(

D
(

P2∥P
(PS ,β)

Ẑ|Θ=θ

)

−D
(

P1∥P
(PS ,β)

Ẑ|Θ=θ

)

−D (P2∥PS) +D (P1∥PS)
)

, (63)

where the functional G is defined in (58); and the parameter

β, the model θ, and the measures PS and P
(PS ,β)

Ẑ|Θ=θ
satisfy (21).

Proof: The proof is presented in [51, Appendix N].

Note that the parameters β and PS in (63) can be arbitrarily

chosen. This is essentially because only the right-hand side

of (63) depends on PS and β. Another interesting observation

is that none of the terms in the right-hand side of (63) depends

simultaneously on both P1 and P2. Interestingly, these terms

dependent exclusively on the pair formed by Pi and PS ,

with i ∈ {1, 2}. These observations highlight the significant

flexibility of the expression in (63) to construct closed-form

expressions for the sensitivity G(θ, P1, P2) in (58). The only

constraint on the choice of PS is that both measures P1

and P2 must be absolutely continuous with respect to PS .

The following corollary follows by adopting particular choices

for PS . Two choices of PS for which the expression in the

right-hand side of (63) significantly simplifies are PS = P1

and PS = P2, which leads to the following corollary of

Theorem 8.

Corollary 2: If P1 is absolutely continuous with P2, then the

value G(θ, P1, P2) in (58) satisfies:

G(θ, P1, P2)

=β
(

D
(

P2∥P
(P2,β)

Ẑ|Θ=θ

)

−D
(

P1∥P
(P2,β)

Ẑ|Θ=θ

)

+D(P1∥P2)
)

. (64)

Alternatively, if P2 is absolutely continuous with P1 then,

G(θ, P1, P2)

=β
(

D
(

P2∥P
(P1,β)

Ẑ|Θ=θ

)

−D
(

P1∥P
(P1,β)

Ẑ|Θ=θ

)

−D(P2∥P1)
)

, (65)
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where for all i ∈ {1, 2}, the probability measure P
(Pi,β)
Z|Θ=θ

satisfies (21) under the assumption that PS = Pi.

Interestingly, absolute continuity of P1 with respect to P2

or P2 with respect to P1 is not necessary for obtaining

an expression for the value G(θ, P1, P2) in (58). Note by

choosing PS as a convex combination of P1 and P2, always

guarantees an explicit expression for G(θ, P1, P2) indepen-

dently of whether these measures are absolutely continuous

with respect to each other.

A. Sensitivity of the Empirical-Risk

The following lemma shows that the empirical risk L(z,θ)
in (5) can be written as the expectation of the loss with respect

to the type Pz in (28). This is formalized by the following

lemma.

Lemma 7 (Empirical Risks and Types): The empirical

risk L(z,θ) in (5) satisfies

L(z,θ) =

∫

ℓ(θ, x, y)dPz(x, y) = Rθ(Pz), (66)

where the measure Pz is the type induced by the dataset z;

and the function ℓ and the functional Rθ are defined in (4)

and (8), respectively.

Proof: The proof is presented in [51, Appendix O].

Equipped with the result in Lemma 7, for a fixed model, the

sensitivity of the empirical risk to changes on the datasets can

be characterized using the function G in (58). Consider two

datasets z1 ∈ (X × Y)
n1 and z2 ∈ (X × Y)

n2 that induce

the types Pz1 and Pz2 , respectively. The sensitivity of the

empirical risk when the dataset changes from z2 to z1, for a

fixed model θ ∈ M, is

G(θ, Pz1
, Pz2

) = L(z1,θ)− L(z2,θ). (67)

where the functional G is defined in (58). The following theo-

rem characterizes the sensitivity of the empirical risk.

Theorem 9: Given two datasets z1 ∈ (X × Y)
n1 and z2 ∈

(X × Y)
n2 , whose types Pz1

and Pz2
are absolutely contin-

uous with respect to the measure PS in (21), it holds that for

all θ ∈ M,

G(θ, Pz1 , Pz2) = β
(

D
(

Pz2
∥P

(PS ,β)

Ẑ|Θ=θ

)

−D
(

Pz1
∥P

(PS ,β)

Ẑ|Θ=θ

)

−D (Pz2
∥PS) +D (Pz1

∥PS)
)

, (68)

where the functional G is in (58); the model θ, and the

measures PS and P
(PS ,β)

Ẑ|Θ=θ
satisfy (21).

Proof: The proof follows from the equality in (67), which

together with Theorem 8 completes the proof.

In Theorem 9, the reference measure PS can be arbitrarily

chosen as long as both types Pz1
and Pz2

are absolutely

continuous with PS . A choice that satisfies this constraint is

the type induced by the aggregation of both datasets z1 and z2,

which is denoted by z0 = (z1, z2) ∈ (X × Y)
n0 , with n0 =

n1 + n2. The type induced by the aggregated dataset z0,

denoted by Pz0
, is a convex combination of the types Pz1

and Pz2
, that is, Pz0

= n1

n0
Pz1

+ n2

n0
Pz2

[22], which satisfies

the absolute continuity condition in Theorem 9.

From Theorem 9, it appears that the difference between a test

empirical risk L(z1,θ) and the training empirical risk L(z2,θ)
of a given model θ is determined by two values: (a) the

difference of the “statistical distance” from the types induced

by the training and test datasets to the WCDG probability

measure, i.e., D
(

Pz2
∥P

(PS ,β)

Ẑ|Θ=θ

)

−D
(

Pz1
∥P

(PS ,β)

Ẑ|Θ=θ

)

; and (b)

the difference of the “statistical distance” from the types to the

reference measure PS , i.e., D (Pz1
∥PS)−D (Pz2

∥PS).

B. Analysis of the Generalization Gap

Given a model θ ∈ M obtained from the training dataset z ∈
(X × Y)

n
, the generalization gap it induces, under the as-

sumption that training and test datapoints are independent

and identically distributed according to the probability mea-

sure PZ ∈ △ (X × Y), is

G(θ, PZ , Pz) = Rθ(PZ)− Rθ(Pz). (69)

where the functional G is defined in (58) and the function

Rθ is defined in (8). The term Rθ(Pz) = L(z,θ) is the

training empirical risk, see for instance [3, Equation (3.4)].

Alternatively, the term Rθ (PZ) is the expected loss under the

assumption that the data-generating probability measure is the

GTDG probability measure PZ . This term is often referred to

as the true risk or population risk. In view of this, the value

G(θ, PZ , Pz) in (69) describes the variation of the expected

empirical risk when the distribution of the datasets changes

from the type Pz to the GTDG probability measure PZ , which

is characterized by the following lemma.

Lemma 8: The generalization gap G(θ, PZ , Pz) in (69) satis-

fies:

G(θ, PZ , Pz) =

β
(

D
(

Pz∥P
(PZ,β)

Ẑ|Θ=θ

)

−D(Pz∥PZ)−D
(

PZ∥P
(PZ,β)

Ẑ|Θ=θ

))

, (70)

where the measure P
(PZ ,β)

Ẑ|Θ=θ
is defined in (21) under the

assumption that PS = PZ .

Proof: The proof follows from Corollary 2 by noticing that the

type Pz is absolutely continuous with respect to PZ .

Lemma 8 highlights the intuition that if the type Pz induced by

the training dataset z is at arbitrary small “statistical distance”

of the GTDG probability measure PZ , the generalization

gap G(θ, PZ , Pz) in (69) is arbitrarily close to zero. This

is revealed by the facts that D (Pz∥PZ) would be arbitrarily

small; and so would be the difference D
(

Pz∥P
(PZ ,β)

Ẑ|Θ=θ

)

−

D
(

PZ∥P
(PZ ,β)

Ẑ|Θ=θ

)

.

A more general expression for the generalization

gap G(θ, PZ , Pz) in (69) is provided by the following

corollary of Theorem 8.
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Corollary 3: The generalization gap G(θ, PZ , Pz) in (69)

satisfies:

G(θ, PZ , Pz) = β
(

D
(

Pz∥P
(PS ,β)

Ẑ|Θ=θ

)

−D
(

PZ∥P
(PS ,β)

Ẑ|Θ=θ

)

−D (Pz∥PS) +D (PZ∥PS)
)

, (71)

where the measure P
(PS ,β)

Ẑ|Θ=θ
is in (21).

Note that several expressions for the generalization

gap G(θ, PZ , Pz) in (69) can be obtained from Corollary 3 by

choosing the reference PS and the parameter β in (71).

VII. THE WORST-CASE DATA-GENERATING PROBABILITY

MEASURE AND GENERALIZATION

Consider a conditioned probability measure PΘ|Z , such

that given a training dataset z ∈ (X × Y)
n

, the mea-

sure PΘ|Z=z ∈ △ (M) is used to perform model selection,

e.g., by sampling such a measure. Hence, the conditional

measure PΘ|Z is referred to as a statistical learning algorithm.

This section provides explicit expressions for the generaliza-

tion gap induced by the algorithm PΘ|Z=z , for some training

dataset z; and also explicit expressions for the generalization

gap induced by the algorithm PΘ|Z when training datapoints

are assumed to be sampled from a particular probability

measure in △ (X × Y). These generalization metrics are re-

ferred to as expected generalization gap and doubly-expected

generalization gap.

In order to formally define the expected generalization gap,

let G : △ (M) × △ (X × Y) × △ (X × Y) → R be a

functional such that

G(Q,P1, P2)=

∫

G(θ, P1, P2)dQ (θ) , (72)

where the functional G is defined in (69). Using this nota-

tion, the expected generalization gap induced by the algo-

rithm PΘ|Z , when the training dataset is z, is

G(PΘ|Z=z, PZ , Pz)=

∫

G(θ, PZ , Pz)dPΘ|Z=z (θ) . (73)

From Corollary 3, by strategically choosing the reference

measure PS and the parameter β in (71), numerous closed-

form expressions for the expected generalization gap induced

by the algorithm PΘ|Z , when the training dataset is z, are

obtained.

The expected generalization gap G(PΘ|Z=z, PZ , Pz) in (73)

depends on the training dataset z. The doubly-expected

generalization gap is obtained by taking the expectation

of G(PΘ|Z=z, PZ , Pz) when z ∈ (X × Y)
n

is sampled

from PZ ∈ △ ((X × Y)
n
), which is assumed to be a product

distribution formed by PZ in (73).

In order to formally define the doubly-generalization gap,

let G : △ (M| (X × Y)
n
)×△ (X × Y)

n → R be a function

such that

G(PΘ|Z , P )=

∫ ∫

G(θ,P,Pz)dPΘ|Z=z(θ)dP (z), (74)

where Pz is the type induced by a dataset z ∈ (X × Y)
n

and

the functional G is defined in (69).

Using this notation, the doubly-expected generalization gap

induced by the algorithm PΘ|Z , when the training and test

datasets are both formed by independent and identically dis-

tributed datapoints sampled from the measure PZ , is

G(PΘ|Z , PZ)=

∫ ∫

G(θ,PZ,Pz)dPΘ|Z=z(θ)dPZ(z), (75)

where the generalization gap G(θ, PZ , Pz) is defined in (69);

and PZ is a product measure formed by PZ . In existing litera-

ture, the doubly-expected generalization gap is simply referred

to as generalization gap or generalization error, and thus, the

distinction with generalization gaps that are dependent on

specific models and training datasets is often neglected. See

for instance [17], [19] and [23]. In this work, such a distinction

is important.

A. An Exact Expression for the Doubly-Expected Generaliza-

tion Gap

As in the case of the expected generalization gap, Corollary 3

leads to numerous closed-form expressions for the doubly-

expected generalization gap induced by an algorithm PΘ|Z ,

when the training and test datasets are both formed by indepen-

dent and identically distributed datapoints sampled from the

measure PZ . One of such expressions is of particular interest

and is thoroughly studied in this subsection. Nonetheless,

before presenting this expression, the following notation is

introduced:

I
(

PΘ|Z ;PZ

)

≜

∫

D
(

PΘ|Z=ν∥PΘ

)

dPZ(ν) (76)

=

∫

D
(

PZ|Θ=θ∥PZ

)

dPΘ(θ); and (77)

L
(

PΘ|Z ;PZ

)

≜

∫

D
(

PΘ∥PΘ|Z=ν

)

dPZ(ν) (78)

=

∫

D
(

PZ∥PZ|Θ=θ

)

dPΘ(θ), (79)

where PZ is the product measure formed by PZ ; and PΘ is

a probability measure such that for all measurable subsets A
of M,

PΘ (A) =

∫

PΘ|Z=ν (A) dPZ (ν) ; (80)

and the conditional probability measure PZ|Θ satisfies for all

measurable subsets B of (X × Y)
n

,

PZ (B) =

∫

PZ|Θ=θ (B) dPΘ (θ) . (81)

Note that for all θ ∈ M, the measure PZ|Θ=θ is a prod-

uct measure formed by a probability measure PZ|Θ=θ ∈
△ (X × Y). More especifically, for all measurable sets Ai in

X × Y , with i ∈ {1, 2, . . . , n}, it follows that

PZ|Θ=θ (A1 ×A2 × . . .×An) =
n
∏

t=1

PZ|Θ=θ (At) . (82)

The quantity I
(

PΘ|Z ;PZ

)

in (76) is the mutual informa-

tion [57] between the random variables Θ and Z, which
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represent the models and (training and test) datasets, when

they are jointly sampled from the probability measure

PΘZ ∈ △ (M× (X × Y)
n
), whose marginals are PΘ and

PZ in (80) and (81), respectively. Alternatively, the quantity

L
(

PΘ|Z ;PZ

)

in (78) is the lautum information [58] between

such random variables Θ and Z. The equality in (82) justifies

the following equalities

1

n
I
(

PΘ|Z ;PZ

)

=

∫

D
(

PZ|Θ=θ∥PZ

)

dPΘ(θ) and (83)

1

n
L
(

PΘ|Z ;PZ

)

=

∫

D
(

PZ∥PZ|Θ=θ

)

dPΘ(θ), (84)

which are well known properties of mutual information [59]

and lautum information [58].

Using this notation, the main result of this section is presented

by the following theorem.

Theorem 10: The doubly-expected generalization

gap G(PΘ|Z , PZ) in (75) satisfies

1

β
G(PΘ|Z , PZ)=

1

n
L
(

PΘ|Z ;PZ

)

+

∫

D

Å

PZ|Θ=θ∥P
(PZ|Θ=θ,β)
Ẑ|Θ=θ

ã

dPΘ (θ)

−

∫

D

Å

PZ∥P
(PZ|Θ=θ,β)
Ẑ|Θ=θ

ã

dPΘ (θ) (85)

where the term L
(

PΘ|Z ;PZ

)

is in (78); the measure PZ|Θ is

defined in (82); and the measure P
(PZ|Θ=θ,β)
Ẑ|Θ=θ

is the WCDG

probability measure in (21), with reference measure PZ|Θ=θ

and

β∈

ß

t>0:∀θ∈M,

∫

exp

Å

1

t
ℓ(θ,x,y)

ã

dPZ|Θ=θ(x,y)<+∞

™

.(86)

Proof: The proof is presented in [51, Appendix P].

Theorem 10 appears to be the first exact characterization of

the generalization gap induced by an arbitrary algorithm PΘ|Z

in terms of information measures. The following corollary of

Theorem 10 unveils an upper bound, which is shown to be

intimately linked to the celebrated Gibbs algorithm, and adds

interest to the characterization of the generalization gap via

the WCDG probability measure.

Theorem 11: The doubly-expected generalization

gap G(PΘ|Z , PZ) in (75) satisfies

G(PΘ|Z , PZ) ⩽
β

n

(

I
(

PΘ|Z ;PZ

)

+ L
(

PΘ|Z ;PZ

))

, (87)

where the terms I
(

PΘ|Z ;PZ

)

and L
(

PΘ|Z ;PZ

)

are in

(76) and (78); and β satisfies (86) and for all θ ∈ M,

D

Å

PZ∥P
(PZ|Θ=θ,β)
Ẑ|Θ=θ

ã

= 0, with the measures PZ and

P
(PZ|Θ=θ,β)
Ẑ|Θ=θ

defined in (85).

Proof: The proof is presented in [51, Appendix Q].

Note that the exact calculation of the expression in Theo-

rem 10, and even the upper bound in Theorem 11, requires

solving a problem of the form in (15) or (16), with reference

measure PZ|Θ=θ , for all θ ∈ M and some regularization

parameter β > 0 that satisfies (86). In a nutshell, one WCDG

probability measure must be calculated for each element of the

set of models M. Calculating the upper bound in Theorem 11

is not easier. Obtaining the β in (87) requires solving the

equality D

Å

PZ∥P
(PZ|Θ=θ,β)
Ẑ|Θ=θ

ã

= 0 at least once for all

models in M to verify (86). Despite this disproportionate

complexity, thanks to this characterization in terms of the

WCDG probability measure, it is easy to show that there exists

a Gibbs probability measure that achieves such an upper bound

in Theorem 11.

B. The Gibbs Algorithm

A typical example of a statistical learning algorithm is

the Gibbs algorithm, which is parametrized by a positive

real λ and by a σ-measure Q ∈ △ (M,B (M)) [23]. In

the following, the focus is on the case in which Q is a

probability measure. Under this assumption, the probability

measure representing such an algorithm, which is denoted

by P
(Q,λ)
Θ|Z with λ > 0, satisfies for all θ ∈ suppQ and for

all z ∈ (X × Y)
n

,

dP
(Q,λ)
Θ|Z=z

dQ
(θ)=exp

Å

−KQ,z

Å

−
1

λ

ã

−
1

λ
L (z,θ)

ã

, (88)

where the dataset z represents the training dataset; and the

function KQ,z : R → R satisfies

KQ,z (t) = log

Å∫

exp (t L (z,θ)) dQ(θ)

ã

. (89)

The doubly-expected generalization gap induced by the Gibbs

algorithm with parameters Q and λ, under the assumption

that datasets are sampled from a product distribution PZ ∈
△ ((X × Y)

n
) formed by the measure PZ is

G(P
(Q,λ)
Θ|Z , PZ), (90)

where the fuctional G is defined in (75). Such a doubly-

expected generalization gap satisfies the following prop-

erty.

Lemma 9 (Generalization Gap of the Gibbs Algorithm): The

generalization gap G(P
(Q,λ)
Θ|Z , PZ) in (90) satisfies

G(P
(Q,λ)
Θ|Z , PZ)=λ

Ä

I
Ä

P
(Q,λ)
Θ|Z ;PZ

ä

+L
Ä

P
(Q,λ)
Θ|Z ;PZ

ää

, (91)

where the terms I
Ä

P
(Q,λ)
Θ|Z ;PZ

ä

and L
Ä

P
(Q,λ)
Θ|Z ;PZ

ä

are,

respectively, a mutual information and a lautum information:

I
Ä

P
(Q,λ)
Θ|Z ;PZ

ä

≜

∫

D
Ä

P
(Q,λ)
Θ|Z=ν

∥P
(Q,λ)
Θ

ä

dPZ(ν); and (92)

L
Ä

P
(Q,λ)
Θ|Z ;PZ

ä

≜

∫

D
Ä

P
(Q,λ)
Θ

∥P
(Q,λ)
Θ|Z=ν

ä

dPZ(ν), (93)

with P
(Q,λ)
Θ

being a measure such that for all measurable

subsets A of M,

P
(Q,λ)
Θ

(A) =

∫

P
(Q,λ)
Θ|Z=z

(A) dPZ (z) . (94)
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Proof: This result has been proved before in the case in

which Q is a probability measure in [17]; and in the more

general case in which Q is a σ-finite measure in [23]. A proof

for the particular case in which Q is a probability measure and

datasets are formed by independent and identically distributed

datapoints is presented in [1]

Note that I
Ä

P
(Q,λ)
Θ|Z ;PZ

ä

in (92) and L
Ä

P
(Q,λ)
Θ|Z ;PZ

ä

in (93)

also satisfy that

I
Ä

P
(Q,λ)
Θ|Z ;PZ

ä

= I
Ä

P
(Q,λ)
Z|Θ=θ

;P
(Q,λ)
Θ

ä

(95)

=

∫

D
Ä

P
(Q,λ)
Z|Θ=θ

∥PZ

ä

dP
(Q,λ)
Θ

(ν); and (96)

L
Ä

P
(Q,λ)
Θ|Z ;PZ

ä

= L
Ä

P
(Q,λ)
Z|Θ=θ

;P
(Q,λ)
Θ

ä

(97)

=

∫

D
Ä

PZ∥P
(Q,λ)
Z|Θ=θ

ä

dP
(Q,λ)
Θ

(ν), (98)

where P
(Q,β)
Z|Θ ∈ △ ((X × Y)

n |M) is the conditional proba-

bility measure that satisfies

PZ (B) =

∫

P
(Q,β)
Z|Θ=θ

(B) dP
(Q,β)
Θ

(θ) . (99)

Moreover, for all θ ∈ M, the measure P
(Q,β)
Z|Θ=θ

∈

△ ((X × Y)
n |M) is a product measure formed by a measure

P
(Q,β)
Z|Θ=θ

∈ △ (X × Y|M) that satisfies for all measurable sets

Ai in X × Y , with i ∈ {1, 2, . . . , n},

P
(Q,β)
Z|Θ=θ

(A1 ×A2 × . . .×An) =

n
∏

t=1

P
(Q,β)
Z|Θ=θ

(At) . (100)

Using this notation, Theorem 11 and Lemma 9 lead to the

following theorem.

Theorem 12: Assume that there exits a λ > 0 that satisfies

λ∈

ß

t>0:∀θ∈M,

∫

exp

Å

1

nt
ℓ(θ,x,y)

ã

dP
(Q,t)
Z|Θ=θ

(x,y)<+∞

™

,

(101)

where the function ℓ is defined in (4); and the measure P
(Q,λ)
Z|Θ=θ

is defined in (100). Let the measure P

Ä

P
(Q,λ)

Z|Θ=θ
,nλ
ä

Ẑ|Θ=θ
be the

WCDG probability measure of the form in (21). If λ satisfies

for all θ ∈ M,

D

Å

PZ∥P

Ä

P
(Q,λ)

Z|Θ=θ
,nλ
ä

Ẑ|Θ=θ

ã

= 0, (102)

then, for all PΘ|Z ∈ △ (M| (X × Y)
n
), the doubly-expected

generalization gaps G(PΘ|Z , PZ) in (75) and G(P
(Q,λ)
Θ|Z , PZ)

in (90) satisfy

G(PΘ|Z , PZ)⩽G(P
(Q,λ)
Θ|Z ,PZ). (103)

Proof: The proof follows by choosing λ = β
n

in Theorem 11

and verifying that under such a choice the resulting expres-

sions in (87) and (91) are identical.

Theorem 12 shows that, under the assumption that datasets are

sampled from PZ , the doubly-expected generalization gap of

any algorithm PΘ|Z is upper-bounded by the doubly-expected

generalization gap induced by a particular Gibbs algorithm

P
(Q,λ)
Θ|Z . Such a particular Gibbs algorithm induces a posterior

for a given model θ, denoted P
(Q,λ)
Z|Θ=θ

in (100). When such a

posterior is used as a reference measure to build the WCDG

probability measure for such a model θ, with parameter nλ, it

leads to the probability measure P

Ä

P
(Q,λ)

Z|Θ=θ
,nλ
ä

Ẑ|Θ=θ
. Surprisingly,

from (102), it follows that for all θ ∈ M, such a WCDG

probability measure P

Ä

P
(Q,λ)

Z|Θ=θ
,nλ
ä

Ẑ|Θ=θ
is identical to the actual

GTDG probability measure PZ . Hence, one can conclude that

by choosing the reference measure PS in (21) to be dependent

on the models, e.g., PS = P
(Q,λ)
Z|Θ=θ

, it is possible to observe

that the resulting WCDG probability measure P

Ä

P
(Q,λ)

Z|Θ=θ
,nλ
ä

Ẑ|Θ=θ

becomes invariant with respect to θ. This is reminiscent of

the principle of indifference over which is built the notion

of equilibrium in zero-sum games with noisy observations.

Nonetheless, this game-theoretic analysis is beyond the scope

of this paper. The interested reader is referred to [60] and

references therein.

The inequality in (103) reveals the central role of the Gibbs

algorithm in statistical machine learning. Essentially, by study-

ing the Gibbs algorithm P
(Q,λ)
Θ|Z , for which its parameters

Q and λ are chosen to satisfy (102), the doubly-expected

generalization gap of any algorithm facing data sampled

from PZ = P

Ä

P
(Q,λ)

Z|Θ=θ
,nλ
ä

Ẑ|Θ=θ
can be upper bounded.

VIII. CONCLUSIONS AND FINAL REMARKS

The WCDG probability measure in Theorem 1 has been shown

to be a cornerstone of statistical machine learning. This is

backed by the fact that fundamental performance metrics,

such as the sensitivity of the expected loss, the sensitivity of

the empirical risk, the expected generalization gap, and the

doubly-expected generalization gap are shown to have closed-

form expressions involving such a measure. Interestingly, the

WCDG probability measure is a Gibbs probability measure

that, for a fixed model, induces an empirical risk that is a sub-

Gaussian random variable. All the cumulants of the WCDG

are finite and explicit expressions for upper and lower bounds

on all cumulants are derived in terms of the cumulants of

the reference measure. This analysis has led to the notion of

(ϵ, δ)-robustness, which allows the study of the generalization

capabilities of any model when it faces data generated from

the WCDG probability measure. Finally, thanks to the WCDG,

the first explicit expression in terms of information measures

of the doubly-expected generalization gap (or generalization

error) for any statistical learning algorithm has been presented.

This expression has been distilled to obtain an upper-bound on

the doubly-expected generalization gap consisting of the sum

of the mutual information and the lautum information between

the models and the datasets. The bound is shown to be tight

for a Gibbs algorithm. This observation reveals the central role

of the Gibbs algorithm in the characterization of the doubly-

expected generalization gap.
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