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Abstract

Although considerable effort has been deployed to understand the impact of climate

variability and vegetation change on runoff in major basins across Africa, such studies

are scarce in the Gulf of Guinea Basin (GGB). This study combines the Budyko frame-

work and elasticity concept along with geospatial data to fill this research gap in

44 nested sub-basins in the GGB. Annual rainfall from 1982 to 2021 show significant

decreasing and increasing trends in the northern and southern parts of the GGB,

respectively. Annual potential evapotranspiration (PET) also shows significant

increasing trends with higher magnitudes observed in the northern parts of the GGB.

Changing trends in climate variables corroborates with shift to arid and wetter condi-

tions in the north and south, respectively. From 2000 to 2020 vegetation cover esti-

mated using enhanced vegetation index (EVI) shows significant increasing trends in

all sub-basins including those experiencing a decline in annual rainfall. Vegetation

composition measured using vegetation continuous fields (VCFs) from 2000 to 2020

show an increase in tree canopy cover (TC), a decline in short vegetation cover and

marginal changes in bare ground cover (BG). Elasticity coefficients show that a 10%

increase in annual rainfall and PET may lead to a 33% increase and 24% decline in

runoff, respectively. On the other hand, a 10% increase in EVI may lead to a 4%

decline in runoff while a 10% increase in TC, SV and BG may reduce runoff by 4%

and increase runoff by 3% and 2%, respectively. Even though changes are marginal,

decomposing vegetation into different parameters using EVI and VCFs may lead to

different hydrological effects on runoff which is one of the novelties of this study

that may be used for implementing nature-based solutions. The study also demon-

strates that freely available geospatial data together with analytical methods are a

promising approach for understanding the impact of climate variability and vegeta-

tion change on hydrology in data-scarce regions.
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1 | INTRODUCTION

Runoff is an essential resource used for irrigation and food produc-

tion, water supply, industry, hydropower production and for sustain-

ing environmental flows (Baggio et al., 2021; D'Odorico et al., 2018).

It is also critical for flood and drought forecasting to minimize nega-

tive socio-economic impact (Brunner et al., 2021; Emerton

et al., 2018). However, climate change and variability characterized by

the intensification of the global hydrological cycle and changes in rain-

fall patterns may alter the partitioning of precipitation into runoff and

actual evapotranspiration (ET) with subsequent effects on water avail-

ability at different scales (Allan et al., 2020; Yang et al., 2021; Zheng

et al., 2019). Vegetation cover change and other anthropogenic activi-

ties also exert substantial impact on the partitioning of precipitation

into runoff and ET (Lu et al., 2022; Luo et al., 2020; Wang &

Stephenson, 2018). As such, a better understanding of the different

climatic and environmental factors influencing runoff generation may

be critical for sustainable water management and adaptation planning.

Several studies have investigated the impact of climate variability

and vegetation change on runoff (Luo et al., 2020; Wang &

Stephenson, 2018). However, most existing studies focused on the

impact of vegetation cover change (Gbohoui et al., 2021; Lu

et al., 2022), whereas the impact of changes in vegetation composition

(i.e., the proportion of different vegetation types) on runoff have

received less attention. Vegetation composition is measured using veg-

etation continuous fields (VCFs) and include tree canopy cover (TC),

short vegetation cover (SV) and bare ground cover (BG). In fact, several

studies have shown that changes in vegetation composition may result

in distinct hydrological consequences due to differences in root water

uptake and rainfall interception by canopy among vegetation types

(Chen et al., 2021; Iroumé et al., 2021; Neill et al., 2021; Yue

et al., 2021). Therefore, in addition to understanding the impact of cli-

mate variability and vegetation cover change, there is also a need to

understand how changes in vegetation composition may affect runoff.

Such information may be useful for implementing nature-based solu-

tions such as reforestation to mitigate the effects of climate change.

The most common methods for assessing the impact of climate

variability and vegetation change on water resources include hydro-

logical models (Ebodé et al., 2022; Yonaba et al., 2021), multivariable

statistical methods (Gebremicael et al., 2019a; Shawul et al., 2019),

experimental approaches involving paired catchment studies (Cheng

et al., 2017; Ferraz et al., 2021) and analytical techniques such as the

elasticity concept and Budyko framework (Gbohoui et al., 2021;

Hasan et al., 2018; Wamucii et al., 2021). Despite the uncertainties

associated with hydrological model outputs, they remain the most

widely used method for assessing the impact of climate variability and

vegetation change on water resources due to their ability to explain

physical processes to some extent (Addor & Melsen, 2019). However,

hydrological models require considerable input data such as observed

runoff for model calibration and validation thus, limiting their applica-

tion in poorly gauged basins (Herrera et al., 2022; Nkiaka et al., 2018).

On the other hand, experimental methods involving paired catchment

studies require longer time and resources. As such, the use of

analytical methods to quantify the impact of climate variability and

vegetation change on runoff is becoming increasingly popular

(Gbohoui et al., 2021; Hasan et al., 2018). Unlike hydrological models,

analytical methods use mathematical equations for impact assessment

under the assumption that the catchment water balance remain

under hydrological steady-state conditions for a long period without

significant climate and vegetation changes. However, they cannot

provide a detailed explanation of the underlying physical processes

taking place in the catchment. Despite this limitation, their main

advantage is that they do not require much input data to produce

results that are practically useful in most hydrological applications

(Hasan et al., 2018; Mianabadi et al., 2020). This makes the application

of such methods suitable in data-scarce regions.

Although substantial efforts have been deployed to assess the

impact of climate variability and vegetation change on runoff in most

major hydrological basins in Africa (Bennour et al., 2023; Chawanda

et al., 2023; Hasan et al., 2018), such studies are rare in the Gulf of

Guinea Basin (GGB). The few studies that have attempted to fill this

research gap in the region have focused on individual sub-basins

(Bogning et al., 2021; Ebodé, 2023; Ebodé et al., 2022). The limited num-

ber of studies result to a dearth of knowledge on the hydrology of the

GGB and the impact of climate change and variability and vegetation

change on runoff, thereby impeding adaptation planning. Nevertheless,

recent large-scale hydrometeorological disasters in the region triggered

by increasing precipitation extremes (Bichet & Diedhiou, 2018; Dike

et al., 2020) and vegetation change (Yao et al., 2019) highlight the urgent

need for a regional-scale assessment of the impact of climate variability

and vegetation change on runoff in the GGB. Sparsity in relevant studies

in the GGB may be attributed to some of the following reasons: (1) the

GGB is made up of a cluster of small to medium-size catchments with no

major river or lake draining the region, as such, it is often neglected in

most impact studies, (2) acute scarcity of in situ hydro-climatological data

in the region while the number of existing gauges have declined over the

past decades (Riggs et al., 2023), (3) data from the region is often discon-

tinuous and contains extended gaps (Nkiaka et al., 2016) and (4) access

to data from some countries in the GGB is extremely difficult due to

administrative bottleneck and high cost (first author personal experience).

The availability of several high-resolution and long-term geospatial data-

sets such as the European Centre for Medium-Range Weather Forecast

(ERA5), the Global Land Evaporation Amsterdam Model (GLEAM) and

Climate Hazards Group InfraRed Precipitation with Station data

(CHIRPS) makes this study feasible and extremely timely.

Therefore, the objectives of this study are to: (1) analyse trends in

precipitation, ET and potential evapotranspiration (PET) from 1982 to

2021 and vegetation change from 2000 to 2020, (2) assess shifts in

hydroclimatic regimes in the GGB from 1982 to 2021 and lastly,

(3) quantify the impact of climate variability, vegetation cover change

and change in vegetation composition on runoff from 2000–2020 to

correspond with timescale of MODIS products. The present study

goes beyond the traditional single-catchment study and adopts a

regional-scale approach which may be critical for understanding

regional hydrology and generalizing the impact of climate variability

and vegetation change on runoff.
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2 | MATERIALS AND METHODS

2.1 | Study area

The GGB also referred to as “Central West Coast” in some studies

(Blatchford et al., 2020) covers six countries including Angola, Congo-

Brazzaville, Gabon, Equatorial Guinea, Cameroon and Nigeria with a

population of about 267 million with Nigeria being the most popu-

lated (�225 million). It is located between longitude 6.70�
–15�E and

latitude 6� S–7.5�N covering a surface area of about 699 755 km2

(Figure 1). It is an important ecoregion in Africa recognized for its

unique ecological and biological diversity which has been attributed to

F IGURE 1 Gulf of Guinea Basin showing (a) location in Africa, (b) Digital Elevation Model, (c) sub-basins and river network and (d) Land cover

in the basin. In HydroSHED, sub-basins in colour were further divided into smaller units (Figure 3c). Landcover map in Figure 3d came from

Sentinel-2 10-Meter Land Use/Land Cover for the year 2022.
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its varied topography providing a wide variety of habitats (Cronin

et al., 2014). The highest point in the GGB is the Fako Mountain

standing at 4095 m a s l and is the only active volcano in

Central-West Africa. Other high peaks in the study area include

Mount Muanenguba (2064 m a s l) and the Lebialem highlands. Rain-

fall in the GGB is mostly controlled by the West African Monsoon

System (WAMS) (Dezfuli & Nicholson, 2013). Rainfall distribution is

also strongly influenced by topography (Vondou et al., 2018). The

GGB is one of the wettest regions in Africa with mean annual rainfall

exceeding 1000 mm/year. In fact, rainfall in Debundcha located at the

foothills of Fako Mountain exceeds 10 000 mm/year making it one of

the wettest places on Earth (Richards et al., 1996). Mean annual tem-

perature in the GGB is about 23.5�C. Rain-fed agriculture is the main

source of livelihood for the local population. There are several agro-

industrial plantations specialized in rubber, oil palm, banana and tea

production. Thousands of small-scale farmers are also involved in

cocoa, rubber and oil palm production. Other economic activities in

the region include artisanal fishing, hunting and timber harvesting.

The present study covers 44 nested sub-basins with the smallest

being the Likini (1999 km2) in Cameroon while the largest is the Ivindo

(62 919 km2) in Gabon (Figure 1c). Transboundary basins in the GGB

include Cross River and Andokat (Cameroon and Nigeria), Ivindo

(Gabon and Cameroon) and Ntem (Cameroon and Equatorial Guinea).

Shapefiles of the different sub-basins were collected from Hydro-

SHEDS which provides a seamless global coverage of consistently

sized and hierarchically nested sub-basins using high-resolution Shut-

tle Radar Topographic Mission digital elevation model (Lehner &

Grill, 2013). Shapefiles from HydroSHEDs have been used in several

studies (Gebrechorkos et al., 2020; Odongo et al., 2019). The charac-

teristics of the sub-basin are available in the supporting information

Appendix S1.

2.2 | Data

This study adopts satellite-derived and reanalysis data for all analyses.

2.2.1 | Precipitation

Considering the complex relief in the GGB and the impact that topog-

raphy has on satellite precipitation estimates (Derin et al., 2019; Geb-

remicael, Mohamed, Zaag, et al., 2019), three different precipitation

products with different spatial resolutions were used to provide pre-

cipitation estimates. The products include CHIRPS with a spatial reso-

lution of 0.05�, Precipitation Estimation from Remotely Sensed

Information using Artificial Neural Networks (PERSIANN) with a spa-

tial resolution of 0.25� and Global Precipitation Measurement (GPM)

with a spatial resolution of 0.1�. The precipitation products were

selected based on their relatively better performance in the region

compared with other available products (Camberlin et al., 2019).

Details of the different precipitation products can be found in their

respective publications including (Funk et al., 2015) for CHIRPS,

(Ashouri et al., 2015) for PERSIANN and (Skofronick-Jackson

et al., 2018) for GPM. Among the three products, CHIRPS has the lon-

gest timespan from 1981, followed by PERSIANN from 1983 while

GPM has the shortest timespan from 2000 to present. The ensemble

mean of the three precipitation products was calculated following the

time period when each product became available. Precipitation data

are used for trend analysis and to calculate the aridity and evaporative

ratios.

2.2.2 | Evapotranspiration

ET data was obtained from GLEAM which is a process-based semi-

empirical model used for estimating surface soil moisture, root-zone soil

moisture and terrestrial evaporation using satellite forcing data (Martens

et al., 2017). GLEAM v3.7a was used in the present study because it

covers the longest available time period (1980–2021) at an annual time-

scale at a spatial resolution of 0.25�. GLEAM ET estimates have been val-

idated in many different regions in Africa (Nkiaka et al., 2022). GLEAM

ET data are used to estimate the evaporative ratio.

2.2.3 | Potential evapotranspiration

PET data came from AgERA5 at a spatial resolution of 0.1� covering

the period 1979 to present. AgERA5 is different from ERA5 because

it is tuned to finer topography, land use pattern and land-sea delinea-

tion of the ECMWF HRES model (Boogaard et al., 2020). AgERA5

data have been validated shown to outperform ERA5 parent product

in parts of Africa due to its higher spatial resolution and is therefore

recommended for water resources assessment in Africa (Roffe & van

der Walt, 2023). PET data from AgERA5 are used to calculate the arid-

ity ratio.

2.2.4 | Vegetation cover

Enhanced vegetation index (EVI) is used as a proxy to measure

changes in vegetation cover from 2000 to 2020. EVI used to

measure vegetation greenness with higher scores indicating better

vegetation quality. The advantages of EVI over the commonly used

normalized difference vegetation index (NDVI) are that it (1) corrects

for distortions due to aerosols, (2) minimizes canopy background vari-

ations, (3) employs a soil adjustment and (4) maintains sensitivity over

dense vegetation conditions. These factors make EVI suitable in areas

with dense vegetation such as the GGB. EVI data have been used to

monitor vegetation change in other regions with dense vegetation

(Adams & Garcia-Carreras, 2023), monitor changes in Mangrove For-

ests in the GGB (Lemenkova & Debeir, 2023) and to measure vegeta-

tion change across African cities (Yao et al., 2019). EVI data were

obtained from Moderate Resolution Imaging Spectroradiometer

(MODIS) satellite MOD13A1 V6 product at a temporal resolution of

16 days and 250 m spatial resolution from 2000 to 2020.
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2.2.5 | Vegetation composition

Vegetation continuous fields (VCFs) are used to represent the propor-

tion of vegetation composition in the GGB. It is reported that continu-

ous variables can provide a better description of the mixture of trees,

herbaceous vegetation and non-vegetated surfaces found in most

pixels at all resolutions (DiMiceli et al., 2021). The present study

employs VCFs from MOD44B at 250 m spatial resolution consisting

of a continuous record of fractional vegetation cover including TC, SV

and BG. MOD44B estimates “Percent Tree Cover” in a pixel on an

annual basis and “continuous” means a continuous percent value from

0 to 100. The percent tree cover is the area proportion of tree canopy

cover with tree height equal to or greater than 5 m. VCFs have been

used to assess the hydrological effects of changes in vegetation com-

ponents in global river basins (Chen et al., 2021). MOD44B VCFs have

also been used to study the dynamics of forest cover change in east

Africa (Hirvonen et al., 2022; Ryan et al., 2017). MOD44B VCFs data

are used herein to understand how changes in different vegetation

types affect runoff from 2000 to 2020.

2.3 | Methods

2.3.1 | River network

The river network was created in ArcGIS 10.71 using the freely avail-

able Advanced Land Observing Satellite World 3D-30 m (AW3D30)

DEM produced by the Japan Aerospace Exploration Agency.

AW3D30 version 3.2 with a horizontal resolution of approximately

30 m (1 arc sec) was adopted because it has been shown to outper-

form most freely available DEMs products in complex terrains (Moges

et al., 2023).

2.3.2 | Runoff estimation

Considering the absence of in situ river discharge data in the study

area and the fact that most available water resources reanalysis prod-

ucts have not been validated in the GGB to ascertain their perfor-

mance, the long-term average runoff in each sub-basin is calculated

using the water balance approach. The sub-basin water balance is

therefore calculated as:

Q¼P�ET, ð1Þ

where Q is the runoff, P is the precipitation and ET is the evapotrans-

piration. The above equation is valid under the assumption that basin

storage changes can be neglected over long timescales (>10 years). A

similar approach has been used to estimate annual runoff in several

regions (e.g., Nkiaka et al., 2022; Wamucii et al., 2021; Zhang

et al., 2023).

2.3.3 | Annual runoff coefficient

Annual runoff coefficient is the ratio of annual runoff to annual pre-

cipitation estimated as:

rc¼ Q=P, ð2Þ

where rc is the runoff coefficient, Q is runoff and P is precipitation.

2.3.4 | Data aggregation

Precipitation, PET and EVI data were aggregated to annual timescale

and downloaded at their native spatial resolution using the Climate

Engine (https://app.climateengine.com) (Huntington et al., 2017). Cli-

mate Engine is an open data platform used for accessing, processing,

visualizing and analysing earth observation datasets via a simple web

connection, thereby overcoming the computational burden of big data

and providing the ability to customize data download (Huntington

et al., 2017). Sub-basins shapefiles are uploaded to Climate Engine

directly from a computer folder using a customized user account. ET

data are downloaded from www.gleam.eu and processed using Origin

Pro software. MOD44B VCFs are downloaded using Google Earth

Engine platform.

2.3.5 | Trend analysis

The non-parametric Mann-Kendall test and Sen's slope estimator

were respectively used for trend analysis and to quantify trend magni-

tude and significance at the 5% significance level. Trend analyses

were conducted over a period of four decades for hydroclimatic data

(1982–2021) and two decades for EVI data (2000–2020).

2.3.6 | Estimating change in vegetation composition

using VCFs

To estimate the change in tree cover using VCFs, we calculated the

mean VCFs of the first 5 years (2000–2004) and the last 5 years

(2016–2020) and the difference between the two time periods is con-

sidered as the change in tree cover over the period of our assessment

(2000–2020). A similar approach has been used in other studies (Chen

et al., 2021; Hirvonen et al., 2022) to minimize the year-to-year varia-

tion in tree cover estimates.

2.3.7 | Budyko framework

Several studies have shown that catchment characteristics play a

critical role in the partitioning of rainfall into runoff and ET (Cheng

NKIAKA and OKAFOR 5 of 18
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et al., 2022; Gbohoui et al., 2021), however, understanding how

they play this role remains a challenge (Cheng et al., 2022). The pre-

sent study adopts the Budyko framework to understand how cli-

mate variability and catchment characteristics affect the

partitioning of precipitation. The Budyko framework is based on

the long-term water balance of a catchment and assumes that

water and energy are the dominant factors controlling the parti-

tioning of precipitation into runoff and ET over a long timescale.

Compared with hydrological and land surface models, the Budyko

framework provides a simple but robust tool to describe the parti-

tioning of precipitation into runoff and ET (Bai et al., 2020). Due to

its simplicity, robustness and limited data requirements, the Budyko

framework is widely used in hydrological research (Bai et al., 2020;

Gbohoui et al., 2021).

Since its original formulation (Budyko, 1974), several parametric and

non-parametric Budyko-type models have been proposed in the literature.

See e.g., Gan et al. (2021) for a review of different Budyko-type models.

This study adopts the one parameter Fu's model because of its extensive

application in Africa (Gbohoui et al., 2021; Wamucii et al., 2021) and has

equally been used in several hydro-climatological studies around the

world. Unlike the original non-parametric Budyko model that is applicable

to longer temporal and large spatial scales (>1 year; >10 000 km2), the

parametric model is applicable to a wide range of temporal and spatial

scales (Donohue et al., 2007). The Fu's model is used to partition precipita-

tion into runoff and evapotranspiration using the evaporative ratio (ET/P)

and aridity ratio (PET/P). Other secondary factors mediating this partition-

ing are lumped into a landscape parameter (ωω) which includes climate

variability, soil, vegetation and topographic characteristics of the basin.

The Fu's equation is expressed as:

ET

P
¼1þ

PET

P
� 1þ

PET

P

� �ω� �
1
ω

, ð3Þ

where P, ET, PET and ω are precipitation, actual evapotranspiration,

potential evapotranspiration and landscape parameter, respectively.

Different techniques have been used to estimate ωω such as

machine learning (Bai et al., 2020; Cheng et al., 2022) and the least

square methods (Chen et al., 2021; Gbohoui et al., 2021). The pre-

sent study adopts the least square method because of its simplicity.

The landscape parameter (ω) is calibrated for each sub-basin by

minimizing the mean squared error between the simulated and

observed evaporative ratio at annual timescale using the following

objective function.

obj¼ min
X ET

P
� 1þ

PET

P
� 1þ

PET

P

� �ω� �
1
ω

" #" #2

: ð4Þ

After obtaining ω values for each sub-basin, Equation (3) was re-

adjusted and used to estimate new runoff values. A similar method

has been used in other studies (e.g., Chen et al., 2021; Li &

Quiring, 2021; Ni et al., 2022) to estimate runoff. The new runoff

values are compared with runoff estimates obtained using the water

balance equation. Equation (3) was therefore re-written as:

Q¼ PωþPETωð Þ
1
ω �PET: ð5Þ

Next the calibrated ω values were compared with values obtained

from global basins by (Li et al., 2013) using the following equation:

ω¼2:36Mþ1:16: ð6Þ

In Equation (6), M represents the long-term vegetation cover con-

ditions. Furthermore, the calibrated ω value for each sub-basin are

fitted in Equation (3) to compute new ET values and the results com-

pared with GLEAM ET estimates. A similar approach has been used to

validate calibrated ω values in other studies (Cheng et al., 2022; Li

et al., 2013).

Lastly, the relationship between vegetation coverage and VCFs

and the calibrated ω values was evaluated using a linear regression

model. The relationship between ω values and vegetation charac-

teristics was carried out using mean ω values from 2000–2020 to

correspond with the period when MODIS based products are

available.

Despite the recent resurgence in the use of the Budyko frame-

work in hydrology, it has been criticized for not been reflective of the

dynamic behaviour of individual basins (Mianabadi et al., 2020) and

several unanswered questions have also been raised concerning the

use of Budyko framework (Berghuijs et al., 2020). Notwithstanding its

weaknesses, it was adopted in this study because it has been shown

to produce results that are useful in most hydrological applications

even in data-scarce regions.

2.3.8 | Assessing shifts in hydroclimatic conditions

in the GGB

Shifts in hydroclimatic conditions in the GGB are estimated over a

period of 40 years (1982–2021) using 1982–1986 as the baseline

period and 2017–2021 as the final period. A shift in hydroclimatic

conditions of a basin from period 1 (t1) to period 2* (t2) can be repre-

sented within the Budyko space by a point moving from initial condi-

tions [t1: PET1/P1, ET1/P1] (Figure 2). If the movement is due to

changes in aridity conditions (ΔPET/P), the movement will occur along

the Budyko-type curve to a new point [t2*: PET2/P2*, PET2/P2*]

(Figure 2). However, under a realistic condition which may be a com-

bination of aridity change and changes in basin characteristics, the

hydroclimatic conditions of the basin move to point 2 that does not

fall on the initial Budyko curve. Following the movement within the

Budyko space, it is possible to examine which drivers, climate aridity

or basin characteristics are responsible for shifts in the hydroclimatic

regime of the basin. Using the approach proposed by Jaramillo et al.

(2018), such changes can be characterized by a shift (θ) and magnitude

(ν) calculated as follows:
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θ¼90
�

� arctan

∆
ET

P

� �

∆
PET

P

� �

2

6

6

4

3

7

7

5

∆
PET

P

� �

>0,

θ¼270
�

� arctan

∆
ET

P

� �

∆
PET

P

� �

2

6

6

4

3

7

7

5

∆
PET

P

� �

<0,

ð7Þ

ν¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∆
ET

P

� �� �2

þ ∆
PET

P

� �� �2

:

s

ð8Þ

According to Jaramillo et al. (2018) the magnitude and direction

of change in the Budyko space depends on the hydroclimatic condi-

tions of each basin and the space within which such movement

occurs.

2.3.9 | Quantitative attribution of runoff change

The elasticity concept is used to quantify how a relative change in a

climatic (e.g., precipitation or PET) or environmental variable (e.g., EVI)

affects runoff. The method is widely used in hydrological research to

measure the sensitivity of hydrological systems to changes in climatic

or environmental conditions (Gbohoui et al., 2021; Hasan et al., 2018).

Its extensive use in hydrology may be attributed to its clear physical

meaning and simple formulation (Sankarasubramanian et al., 2001).

Since the non-parametric elasticity model was introduced, several

other elasticity models have been proposed. The present study adopts

the least squares elasticity model because of its ability to overcome

the problem associated with small sample sizes. The model is

expressed as:

ε¼
X

Q
�

P

Xi�X
� �

Qi�Q
� �

P

Xi�X
� �2

¼ ρX,Q� CQ=CX
, ð9Þ

where Qi is the annual runoff and Xi represent the annual climatic or envi-

ronmental variable (precipitation, PET, EVI, TC, SV and BG) and X and Q

represent the multiyear annual mean climatic/environmental variable

and runoff values, respectively. ρX,Q is the correlation coefficient

between the climatic variable and runoff and CX and CQ are the coeffi-

cients of variation of climatic variable and surface runoff, respectively.

3 | RESULTS

3.1 | Mean annual hydroclimatology and

vegetation cover

Figure 3 shows the mean annual climatology from 1982 to 2021 and

mean annual vegetation cover from 2000 to 2021 over the GGB.

Annual precipitation ranges from 1000 to 3000 mm/year. The highest

precipitation is recorded in the north-western part of the study around

Andokat sub-basin where the Fako Mountain is located while the low-

est precipitation is recorded mostly in the southern parts of the GGB

(Figure 3a). However, it is worth highlighting that none of the three

precipitation products was able to capture annual rainfall in Debuncha,

which is one of the wettest places on Earth. Runoff and runoff coeffi-

cient follow the same pattern as precipitation with runoff ranging from

61 to 1500 mm/year while annual runoff coefficients range from 0.07

to 0.55 (Figure 3b,c). PET estimates range from 1200 to 1650 mm/year

with the highest PET recorded in northeastern parts of the study area

around Beli, Djerem, Likini and Lom sub-basins in Cameroon

(Figure 3d). PET is also substantially high in sub-basins located in the

eastern part of the study area than those located in the west. ET ranges

from 945 to 1400 mm/year with sub-basins located around the central

part of the study area showing higher ET rates than other areas

(Figure 3e). EVI scores are quasi uniform throughout the GGB with only

a few sub-basins with exceptionally low EVI scores (Figure 3d). Most

sub-basins in the southern part of the study area show higher EVI

scores than the rest of the sub-basins except in the Andokat sub-basin.

3.2 | Trends in hydroclimatology and change in

vegetation cover and composition

Figure 4 depicts trends in annual climatology and land cover change in

the GGB. It can be observed that there is a strong dichotomy in pre-

cipitation trends between sub-basins located in the northern and

southern parts of the GGB (Figure 4a). Most sub-basins located in

Cameroon show significant decreasing trends while those located

in Equatorial Guinea, Gabon, Congo-Brazzaville and northern Angola

show increasing trends in annual precipitation (Figure 3a).

Trends in annual runoff and runoff coefficient follow the same

pattern as precipitation trends in most sub-basins, however, there is a

significant decline in runoff coefficient in sub-basins located around

Cameroon (Figure 4b,c). Analyses show a strong dichotomy in annual

PET trends between the eastern and the western parts of the GGB in

F IGURE 2 Schematic representation of the direction and

magnitude change within the Budyko space. Vector (ν) describes the

hydroclimatic movement from the baseline to period 2. The length of

ν is expressed as the shift magnitude (r). ET, evapotranspiration; PET,

potential evapotranspiration.
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terms of trend magnitude and direction (Figure 4d). Sub-basins

located in the north-east show consistent increasing trends in PET

with higher magnitudes than the rest of the sub-basins (Figure 4d).

Analyses also reveal strong spatial variability in ET trends throughout

the study area with some sub-basins in the south and northern parts

having higher trend magnitudes compared with those located around

the central part of the study area (Figure 4e). Lastly, sub-basins

located in the centre-eastern part of the GGB show significant

increasing trends in EVI than the rest of the study area.

Figure 5 shows the long-term mean in VCFs and change in

VCFs over the period 2000–2020. It can be observed that SV domi-

nates in most of the sub-basins, followed by TC while BG appears

to be the least among the different land cover types (Figure 5a–c

and Appendix S1). 75% of the sub-basins exhibit an increase in TC

over the study period while the rest show a decline (Figure 5d–f

and Appendix S1). A corresponding percentage of sub-basins show

a decrease in SV suggesting that TC gain was mostly driven by a

decline in SV. Analyses also show a decline in BG in 57% of the

sub-basins while the rest of the sub-basins witnessed an increase in

BG over the same period. It can also be observed that sub-basins

that witnessed a decline in TC also witnessed a corresponding

increase in SV.

3.3 | Shifts in hydroclimatic regimes

Figure 5 shows substantial changes in the hydroclimatic conditions

across all the sub-basins in the GGB from the baseline period (1982–

F IGURE 3 Mean annual (a) precipitation, (b) runoff, (c) runoff coefficient (d) potential evapotranspiration, (e) evapotranspiration and (f)

vegetation cover. Mean climatology from 1981 to 2021 and vegetation cover from 2000 to 2020. EVI, enhanced vegetation index.
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1986) to the final period (2017–2021). 47% of the sub-basins moved

in the rightward direction ranging from 85� to 95� with magnitude

ranging from 0.02 to 0.13 indicating a shift to arid climatic conditions

(Figure 6a,b). On the other hand, 53% of the sub-basins moved in the

leftward direction ranging from 265� to 275� with magnitude ranging

from 0.01 to 0.36 indicating a shift to a wetter climatic conditions

(Figure 6b). We also observed that most of the sub-basins that shifted

to arid climatic conditions are located in Cameroon while those that

shifted to a wetter conditions are found in Gabon and Congo-

Brazaville (Figure 6a). The shifts corresponds with the trends in annual

precipitation reported in Section 3.2.

3.4 | Landscape parameter and Budyko curve

Sub-basins landscape parameter is represented by ω which also plays

an important role in the partitioning of precipitation into runoff and

ET. Figure 7 shows the spatial distribution of the calibrated ω values

for the 44 sub-basins. It can be observed that there is high spatial vari-

ability in ω values across the GGB ranging from 4.5 to 6.75 and a

mean of 5.5 with higher ω values occuring mostly in the southern part

of the GGB (Figure 7a). The relationship between aridity and evapora-

tive ratios in all the sub-basins is shown using the Budyko curve

(Figure 7b). It can be observed that the GGB is located in an energy-

F IGURE 4 Trends in annual (a) precipitation, (b) runoff, (c) runoff coefficient (d) potential evapotranspiration, (e) actual evapotranspiration and

(f) vegetation cover. Trends cover the period from 1981 to 2021 for climate variables and from 2000 to 2020 for vegetation cover. EVI,

enhanced vegetation index.
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limited environment as aridity ratios do not exceed 1.2 in any sub-

basin (Figure 7b). This suggest that ET in the GGB may be limited by

energy supply than by water availability. It can also be observed that

the relationship between the aridity and evaporative ratios cannot be

captured by a single Budyko curve. Although the default ω value (2.6)

captures only a few sub-basins, the mean value (5.5) captures most of

the sub-basins in the GGB (Figure 7b).

3.5 | Comparing calibrated landscape parameter

(ω) with other models

The calibrated ω values were compared with Equation (6) derived

from Li et al. (2013) for global basins. The calibrated ω values are also

used to calculate new ET estimates using Equation (3) and runoff

values using Equation (5). The results are then compared with GLEAM

ET estimates and runoff values obtained using the basin water balance

method in Equation (1). Results show a statistically significant rela-

tionship between the calibrated ω values and those derived using

Equation (6) (Figure 8a). Results also show a strong and statistically

significant relationship between GLEAM ET estimates and those

obtained using the calibrated ω values and between water balance

runoff values and runoff estimates calculated using the re-adjusted Fu

model in Equation (5) (Figure 8b,c).

3.6 | Relationship between vegetation cover, VCFs

and landscape characteristics

Figure 9 shows the relationship between landscape characteristics (cali-

brated ω values) and EVI and VCFs. It can be observed that there is a sta-

tistically significant relationship between EVI and calibrated ω values

F IGURE 5 Mean annual vegetation continuous fields (VCFs) from 2000 to 2020 (a) tree cover, (b) short vegetation and (c) bare ground and

change in VCFs (d) tree cover, (e) short vegetation and (f) bare ground.
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(R2 = 0.44, p < 0.05) and a similar relationship exist between BG and cal-

ibrated ω values (R2 = 0.49, p < 0.05) (Figure 9a,d). However, the rela-

tionship between BG and the calibrated ω values is slightly stronger than

that between EVI and calibrated ω values. Analyses further reveal nega-

tive and statistically non-significant relationships between TC and SV

and calibrated ω values (Figure 9b,c).

3.7 | Attribution of runoff change

Figure 10 shows the boxplots of elasticity coefficients of climate vari-

ability (precipitation and PET) and vegetation (EVI and VCFs) on run-

off. It can be observed that while precipitation produce positive

elasticity coefficients PET produce mostly negative elasticity

F IGURE 6 (a) Spatial distribution of sub-basin direction of shifts in the Budyko space and (b) windrose diagram showing movement within the

Budyko space for all the 44 sub-basins in the Gulf of Guinea Basin resulting to changes in the aridity index (potential evapotranspiration/P) and

evaporative index (evapotranspiration/P) over the baseline period 1982–1986 and 2017–2021. In (a) the red colour represent shift to more arid

conditions while blue colour represent shift to wetter conditions. In (b) the range of direction is divided into 45 interval paddles that group all sub-

basins moving in each direction interval. The directions start from the upper vertical and clockwise. Colour intensity describes the magnitude of

the movement. Interval intensity represents the percentage of basins with a given direction and magnitude range.

F IGURE 7 Spatial distribution of (a) calibrated ω values and (b) Budyko curve with mean calibrated ω values and default Fu parameter ω

value. PET, potential evapotranspiration. AET, actual evapotranspiration.
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coefficients on runoff (Figure 10a). Elasticity coefficients range from

0.42 to 9.898, �20.98 to 17.61 with corresponding means of 3.26,

�2.37 for precipitation and PET, respectively. For vegetation parame-

ters, EVI and TC show negative elasticity coefficients while SV and

BG show positive elasticity coefficients (Figure 10b). Elasticity coeffi-

cients for vegetation parameters range from �3.43 to 2.21, �1.74 to

0.58, �1.84 to 4.04 and � 0.71 to 2.67 with corresponding means of

�0.42, �0.37, 0.34 and 0.21 for EVI, TC, SV and BG, respectively.

PET has the widest spread among the climate variables while SV has

the widest spread among vegetation elements (Figure 10a,b). The

elasticity coefficients indicate that a 10% increase in precipitation, SV

and BG will lead to 33%, 3.4% and 2% increase in runoff, respectively,

whereas 10% increase in PET, EVI and TC will lead to 24%, 4.2% and

3.7% decline in runoff, respectively. Results suggest that the influence

of climate variability on runoff is stronger than that of vegetation

parameters.

F IGURE 8 Comparison between: (a) basin-specific ω values and values derived from global basins with parameter (M) obtained from

enhanced vegetation index (EVI), (b) evapotranspiration (ET) obtained using Fu equation (Equation 3) and ET data from obtained from Global Land

Evaporation Amsterdam Model (GLEAM) and runoff calculated using the water balance method and runoff derived using the Fu Budyko equation.

F IGURE 9 Relationship between landscape characteristics and (a) vegetation cover, (b) tree canopy cover, (c) short vegetation cover and

(d) bare ground cover.
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4 | DISCUSSION

4.1 | Hydroclimatology

Spatial distribution of rainfall in the GGB is controlled by different fac-

tors including the WAMS (Dezfuli & Nicholson, 2013) and topographic

effects (Vondou et al., 2018). Using a the arithmetic mean of three dif-

ferent precipitation products, our analyses show, respectively, increas-

ing and decreasing trends in annual precipitation in the southern and

northern parts of the GGB. Annual precipitation decline in the north-

ern part of the GGB is consistent with results from other studies in

the region using precipitation estimates from CHIRPS (Bichet &

Diedhiou, 2018; Nkiaka, 2022) and Climate Research Unit

(Ebodé, 2022). Rainfall decline in Central Equatorial Africa has been

attributed partly to sea surface temperature variations over the Indo-

Pacific linked with the enhanced and westward extended tropical

Walker circulation (Hua et al., 2016). Increasing annual precipitation in

the southern parts of the GGB (Gabon, Equatorial Guinea, Congo-

Brazaville and Cabinda-Angola) is also consistent with results from

another study using precipitation estimates from TAMSAT (Alahacoon

et al., 2021). Increasing annual precipitation in this part of the GGB

may partly be attributed to a bimodal rainfall regime in the region

(Alahacoon et al., 2021). Changes in runoff and runoff coefficient may

be linked to changes in precipitation patterns given that precipitation

is the main factor that influences runoff in the region (Sidibe

et al., 2019). Increasing trends in PET in the region have also been

reported in other studies using data from CRU and were attributed to

rising global surface temperatures (Abiye et al., 2019). Increasing

trends in ET over the GGB are also consistent with results from a

study using MODIS-derived ET estimates (Ndehedehe et al., 2018).

Shifts in hydroclimatic regimes in the GGB follow a similar pattern

in annual precipitation and PET over the region. Analyses show a shift

to more arid conditions in the northern part of the study area which

corresponds to a decline in annual precipitation and significant

increase in annual PET and a shift to wetter conditions in the southern

part of the study area which also corresponds to an increase in annual

rainfall and marginal (non-significant) increase in annual PET in this

part of the GGB. Changes in hydroclimatic regimes in the northern

and southern parts of the study area may have important implication

for water management and agriculture in the GGB.

4.2 | Change in vegetation cover and composition

Increasing trends in EVI over GGB are also consistent with results

from other studies investigating trends in forest growth in the region

(Adams & Garcia-Carreras, 2023) and hydrological controls on vegeta-

tion dynamics over Africa (Ndehedehe et al., 2019). Both studies used

EVI from MODIS and NDVI from Global Inventory Modelling and

Mapping Studies. Results show significant increase in EVI across the

GGB including in areas where precipitation is declining. This suggests

that precipitation may not be the main factor influencing vegetation

cover change in the GGB. Therefore, additional research may be

needed to uncover other factors driving increasing vegetation green-

ess in the GGB.

Analyses show substantial changes in vegetation composition

across the GGB over the period 2000–2020 with TC increasing in

75% of the sub-basins while SV declines by a corresponding percent-

age. The results are in-line with those obtained in other parts of the

GGB using Sentinel-2 imagery and LiDAR which showed a decline in

savanna vegetation by about 50% and an increase in forest cover by

the same percentage from 1975 to 2020 in the Mpem & Djim

National Park in Cameroon (Sagang et al., 2022). The results are also

consistent with those of Wei et al. (2023) who used a combination of

Advanced Very High Resolution Radiometer VCFs, MODIS VCFs,

Global Forest Change product and GLOB-MAP Leaf Area Index to

show increasing forest cover across Africa with Angola, Cameroon

and Gabon featuring among the top hotspots of forest gain over the

period 2000–2020. Increasing forest cover in the GGB may be attrib-

uted to the creation of several protected areas in the region given its

rich biodiversity (Cronin et al., 2014) and considering that protected

areas have been shown to increase forest cover (Ota et al., 2020). The

F IGURE 10 Elasticity coefficients of (a) climate variables (precipitation and potential evapotranspiration [PET]) and vegetation elements

(enhanced vegetation index [EVI] and vegetation compositions [VCFs]). The elasticity coefficient relates to how much a change in precipitation,

PET, EVI, tree canopy cover, short vegetation cover and bare ground cover would affect runoff generation.
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highest increase in tree cover is recorded in Ndogo sub-basin (Gabon)

which led to a corresponding decrease in SV in the same sub-basin

(Appendix S1). Sub-basins with substantial decline in TC and increas-

ing SV include Bibamba, Nkam, Mungo and Mvile (all in Cameroon).

This may be attributed to increasing plantation agriculture, which have

both been identified to be a major driver of deforestation around the

coastal areas of Cameroon (Ewane, 2021; Mahmoud et al., 2020).

The continuous expansion of commercial agriculture around the GGB

has been attributed to high returns in agricultural conversion

(Carrasco et al., 2017).

4.3 | Budyko framework

Our analyses show a strong spatial variability in calibrated ω values,

which reflects the varied characteristics of the landscape and climate

variability in the GGB. However, the mean ω parameter (5.5) does not

capture all the sub-basins while the default Fu parameter (2.6) cap-

tures only a few sub-basins. This suggest that a single ω parameter

may not be used to capture the characteristics of all sub-basin which

is consistent with results from other studies (Cheng et al., 2022). High

ω values greater than 3 obtained in this study are consistent with

results obtained in the Amazon basin (Li et al., 2013) and other tropi-

cal watersheds (Cheng et al., 2022). Analyses further reveal that the

mean ω parameter obtained in the GGB is two-fold higher than

the original Fu parameter. Differences between ω values obtained in

this study and the default value (2.6) may be attributed to differences

in basin sizes given that basin characteristics play a dominant role in

the partitioning of precipitation in smaller basins while climate play a

greater role in larger basins (Kingston et al., 2020). The high ω values

suggest that even though the GGB is located in an energy limited

environment, ET rates here are substantially high which may be attrib-

uted to high water availability, abundant forest cover and vast agricul-

tural plantations. Extensive forest cover and agricultural plantations

have been shown to strongly influence ET rates in parts of Africa

(Odongo et al., 2019). The mean aridity and evaporative indexes

obtained in the GGB are also within the range obtained in the neigh-

bouring Congo basin (Li et al., 2013).

4.4 | Validation of calibrated ω values and

relationship between EVI and VCFs

The calibrated ω values were compared with those obtained using

Equation (6) for global basins while new ET estimates calculated

using the ω values were compared with GLEAM ET data. Results show

statistically significant relationship between the calibrated ω values

and values obtained using Equation (6) with M representing the EVI

score for each sub-basin. The significant relationship between the cali-

brated ω values and EVI suggest that vegetation cover may exert a

strong effect on landscape characteristics in the GGB. Furthermore,

the statistically significant relationship between GLEAM ET and ET

values obtained using calibrated ω values suggest that the calibrated

ω values are able to capture ET processes in the different sub-basins

to an extent. This may be attributed to the fact that ET estimates cal-

culated using the calibrated ω values are based on the Budyko frame-

work that uses the energy and water limit approach and GLEAM ET

estimates are also calculated using an energy-balance approach. This

finding is in-line with results from an another study showing a strong

relationship between Budyko-simulated ET estimates and those

obtained using the energy-balance approach (Zhang et al., 2023).

Results also show strong and statistically significant relationship

between water balance runoff estimates and those obtained using

Equation (5) which is consistent with results from other studies

(e.g., Chen et al., 2021). Taking together, our analyses suggest that the

calibrated ω values in this study are able to represent the major hydro-

logical processes (ET and runoff) in the GGB to some extent.

There is also a moderate relationship between the calibrated ω

values and EVI, which is consistent with results from other studies

using NDVI for example, (Gbohoui et al., 2021). Similarly, there is a

moderate relationship between the calibrated ω values and

BG. However, the relationship between the calibrated ω values and

BG is slightly stronger than that with vegetation cover. This suggest

that BG represents the landscape characteristics slightly better than

EVI. On the other hand, there is no relationship between ω values and

TC and SV. Analyses suggest that vegetation parameters alone may

not be used to represent the landscape characteristics in the GGB.

This is consistent with results from other studies suggesting that fac-

tors controlling landscape parameters (ω) are complex and diverse in

small basins (Bai et al., 2020).

4.5 | Attribution of runoff changes

The elasticity concept is used to quantify the impact of precipitation,

PET, vegetation cover (EVI) and vegetation composition (VCFs) on

runoff in the GGB. Results suggest that runoff is more sensitive to cli-

mate variability (precipitation and PET) than vegetation parameters

(EVI and VCFs). This is consistent with results from other studies

showing that precipitation and PET have, respectively, positive and

negative elasticity coefficients on runoff (Gbohoui et al., 2021;

Wang & Stephenson, 2018). Elasticity coefficients of VCFs obtained

in this study are the same order of magnitude with those obtained in

a global study (Chen et al., 2021). Even though the percentage change

in runoff caused by changes in VCFs may be small, we found that

decomposing vegetation into different parameters using EVI and

VCFs produce different effects on runoff. For example, EVI and TC

produce negative elasticity coefficients with almost the same magni-

tude. Among the VCFs, BG has highest positive elasticity coefficient

on runoff while TC produce the lowest elasticity coefficient. Analyses

are consistent with those from a global study indicating that TC and

BG, respectively, produce negative and positive elasticity coefficients

on runoff (Chen et al., 2021). The negative elasticity coefficients pro-

duced by EVI and TC are consistent with results from several studies

and may be attributed to increased evapotranspiration from increasing

vegetation leading to a decline in runoff (Luo et al., 2020). Meanwhile,
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positive elasticity coefficients for SV and BG may be attributed land

use change such as increasing plantation agriculture and urbanization,

which both reduce soil infiltration capacity leading to higher runoff

volumes (Bruijnzeel, 2004). The present study has demonstrated that

vegetation cover and vegetation cover types influence runoff in dif-

ferent ways, which is one of novelties of this study and extends exist-

ing knowledge on the relationship between ecological and

hydrological processes. Such information may be useful for imple-

menting nature-based solutions such as reforestation and ecological

protection. Future research may seek to understand how the different

vegetation parameters influence other hydrological processes such as

soil moisture and groundwater recharge.

4.6 | Uncertainties and limitations

This study uses the Budyko framework to understand the effect of cli-

mate variability and vegetation parameters on runoff in the GGB.

Although the study provides a general picture of the hydroclimatic

conditions and dominant hydrological processes in the GGB, we

acknowledge that our results are not void of uncertainties. For exam-

ple, the Budyko model has been extensively criticized as reported in

the last paragraph of sub-Section 2.3.7 of this article. Furthermore,

the are several sources of uncertainties inherent in the remote sensing

and reanalysis datasets used in the study. Due to a lack of in situ data

and considering the complex relief in the GGB, three different precipi-

tation datasets are used to mitigate the uncertainties in precipitation

products used in the study. To mitigate the biases related to the year

to year variation in tree cover (Hirvonen et al., 2022), the mean VCFs

of the first 5 years and the last 5 years was calculated and the differ-

ence between the two time periods was considered as the change in

tree cover over the period of our assessment. EVI was adopted over

the widely used NDVI to estimate vegetation cover because EVI

scores are suitable in areas with dense vegetation such as the GGB.

Other sources of uncertainties in the study are from GLEAM ET

data that have been reported to slightly underestimate ET in parts of

Africa (Nkiaka et al., 2022). In addition, the AgERA5 data used in this

study equally have its inherent biases, however it is recommended for

use in water resources assessments in Africa due to its high spatial

resolution (Roffe & van der Walt, 2023). Lastly, the effect of dams and

reservoirs was not considered in this study and such man-made struc-

tures have been shown to alter regional climate and hydrological cycle

(Cao et al., 2020). Dams and reservoirs may influence runoff elasticity

and alter landscape characteristics in sub-basins where they are situ-

ated and these factors were not considered in this study. Considering

the issues highlighted, results from this study should be interpreted

with caution. It is our opinion that the continuous advancement in sat-

ellite technology will reduce the level of uncertainty in satellite-

derived data to an extent. Nevertheless, the availability of in situ data

and access to this data without administrative bottleneck and high

cost will be critical in mitigating data uncertainties to adequately

address recurrent hydrometeorological risks in the GGB and in other

regions facing the same challenges in data availability and access.

5 | CONCLUSIONS

The objective of this study was to quantify the impact of climate

variability, vegetation cover change and changes in vegetation

composition on runoff in the GGB. Our analyses reveal significant

changes in annual precipitation, ET and PET in the GGB. Changes

in precipitation and PET trends corroborate with the Budyko

model, which shows shifts towards more arid and wetter condi-

tions, respectively, in the northern and southern parts of the GGB.

Analyses also show significant increasing trends in EVI in all sub-

basins, an increase in TC and a decline in SV in several sub-basins.

There is a strong spatial variability in calibrated landscape parame-

ters (ω) with analyses showing that a single Budyko type curve can-

not capture all the sub-basins within the Budyko space. ET

estimates calculated using the calibrated ω values show statistically

significant relationship with GLEAM ET estimates. Runoff values

calculated using the calibrated ω values also show strong and sta-

tistically significant relationship with water balance runoff esti-

mates. EVI and BG both show only moderate relationship with the

calibrated ω values suggesting that vegetation alone cannot

account for all the landscape characteristics in the GGB. Quantify-

ing changes in runoff using the elasticity concept show that climate

variables exert a greater impact on runoff than vegetation. Precipi-

tation exerts greater positive impact than SV and BG while PET

exerts a greater negative impact than EVI and TC. The elasticity

coefficients suggest that a 10% increase in precipitation, SV and

BG will lead to 33%, 3.4% and 2% increase in runoff, respectively,

whereas 10% increase in PET, EVI and TC will lead to 24%, 4.2%

and 3.7% decline in runoff, respectively. Decomposing vegetation

into different parameters using EVI and VCFs show distinct hydro-

logical effects on runoff with EVI and TC having negative elasticity

coefficients while SV and BG both have positive elasticity coeffi-

cients. Analyses show that decomposing vegetation into different

parameters using EVI and VCFs may lead to different hydrological

effects on runoff, which is one of the novelties of this study that

may used for implementing nature-based solutions. The study also

demonstrates that freely available geospatial data along with ana-

lytical methods are a promising approach for understanding the

impact of climate variability and vegetation change on hydrology in

data-scarce regions.
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