UNIVERSITY OF LEEDS

This is a repository copy of Advancing social practice understandings of digital innovation delivery in construction project management.

White Rose Research Online URL for this paper: <u>https://eprints.whiterose.ac.uk/210807/</u>

Version: Accepted Version

Article:

Collinge, W.H. orcid.org/0000-0003-3387-1649 (2024) Advancing social practice understandings of digital innovation delivery in construction project management. Engineering, Construction and Architectural Management. ISSN 0969-9988

https://doi.org/10.1108/ECAM-12-2023-1290

© 2024, Emerald Publishing Limited. This author accepted manuscript is provided for your own personal use only. It may not be used for resale, reprinting, systematic distribution, emailing, or for any other commercial purpose without the permission of the publisher

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

Advancing social practice understandings of digital innovation delivery in construction project management

Journal:	Engineering, Construction and Architectural Management
Manuscript ID	ECAM-12-2023-1290.R1
Manuscript Type:	Original Article
Keywords:	Innovation, Building Information Modelling, Project Management, Construction Safety, Design Management
Abstract:	

2 3 4	1	Advancing social practice understandings of digital innovation delivery in construction
5 6 7	2	project management
7 8 9	3	Abstract
10 11 12	4	Purpose
13 14	5	The paper applies social practice theory to clarify the process of innovation design and delivery
15 16 17	6	from one successful digital innovation: the BIM risk library. The paper clarifies the practices
17 18 19	7	surrounding construction innovation and provides a schema useful for practitioners and
20 21	8	technology designers through a social practice analysis.
22 23	9	
24 25 26	10	Design/methodology/approach
27 28	11	The paper applies Schatzki's 'organisation of practice' concepts to a construction project
29 30	12	innovation to clarify how the practice of innovation revolves around understandings, rules and
31 32 33	13	teleoaffectivities (emotive behaviours). Sources for the study include notes from meetings,
34 35	14	workshops with experts and the shared artefacts of innovation.
36 37	15	
38 39 40	16	Findings
41 42	17	The practice of innovation design and delivery are clarified through a social practice analysis:
43 44	18	a distinct "field of practice" and a "schema" of generalizable prescriptions and preferences for
45 46 47	19	innovation delivery being presented.
48 49	20	
50 51	21	Originality
52 53 54	22	The social practice analysis of one successful construction innovation is an original
54 55 56	23	contribution to the body of knowledge, adding a level of detail regarding innovation design and
57 58	24	delivery often missing from reported research.
59 60	25	

The paper informs the practice and process of innovation design and delivery; the insights

Practical implications

clarify how collective understandings and rules of use evolve over time, becoming formalized into contracts, agreements and workplans. Practically, processes whereby innovation 'sayings' evolve into innovation 'doings' are clarified: a schema detailing prescriptions and preferences of practitioners and developers being presented. Keywords: innovation studies; BIM; building information modelling; digitalisation; projectsas-practice; social practices; health and safety; data engineering.

51 Introduction

Managing an innovation is as important as the innovation development process itself (Bamel et al. 2023); construction project management innovations being interventions into existing complex working practices (Liu et al. 2018). As such, aligning an innovation to those practices to minimise disruption and continue business-as-usual processes is important. Additionally, the process of innovation adoption whereby an innovation becomes part of everyday project-based working practice remains unclear: innovation adoption being a complex business, with little to guide practitioners through the messy and contingent process of adoption and diffusion (Harty, 2005). Therefore, understanding how innovations are delivered is important for improving innovation practice itself (Havenid et al. 2019). Whilst Winch (1998) notes that more case studies of trajectories of innovation are required in order to identify who generates new ideas and how they are managed into "good currency", the process of innovation design, prototyping, testing and deployment requires a theoretical and conceptual unpacking using empirical evidence. This paper makes a contribution by examining how one successful digital innovation was developed and deployed with several project-based organizations to become part of their everyday working practices. The innovation (the BIM Risk Library) was recipient of several industry awards (buildingSMART, 2020; Construction Computing Award, 2021) and therefore provides valid data regarding a "successful innovation". Amongst the key questions posed by the paper are: what contributes to successful innovation deployment in construction project management? What are the drivers and inhibitors of successful innovation delivery? How can the innovation delivery process be conceptualised and understood?

The paper adopts a projects-as-practice (Blomquist et al. 2010) approach and uses social practice theory (Schatzki, 2001) to review the process of innovation delivery. The case for adopting a projects-as-practice approach for understanding what occurs on projects has been

made for some time (c.f. Koch et al. 2019; Blomquist et al., 2010; Clegg et al. 2018). In outlining a projects-as-practice approach to conducting research in project management, Blomquist et al. (2010) note that project management is an immature field of research, where many of the normative and traditional contributions are insubstantial when it comes to understanding what is really occurring in projects (see Winter et al. 2006). Clegg et al. (2018) argue that practice-based research provides a methodological lens to explore the reality of project management work; the authors noting that practice-based perspectives are under-represented in project portfolio management (PPM) research, whilst presenting an agenda for further practice-based research, including its discursivity, representation, dynamic capabilities, leadership and materiality. This paper follows this tradition by employing a "social practice" theoretical perspective to established frameworks for innovation diffusion; the framework of Steiber and Alänge (2015) being a foundation upon which a social practice analysis of processes and interactions may be overlaid.

The paper adopts a granular analysis of the interactions between innovation stakeholders to identify the concepts characterizing a 'practice of innovation delivery' that pivot around rules, understandings and teleoaffectivities (emotive behaviours). The analysis of the work around one successful digital innovation (the BIM Risk Library) leads to identification of specifiable enacted schemas (i.e. practitioner preferences and generalizable procedures) to be addressed by innovation developers. As a result, the practice of innovation delivery in construction contexts is noted to be distinctive and governed by specifiable preferences and prescriptions (Knorr Cetina, 2001): understanding construction working practices and aligning an innovation to those practices being critical for successful innovation design and deployment. The originality of the work arises from the analysis of each step of the innovation design and delivery process and its' associated artefacts using Schatzki's practice theory concepts. The 100 contributions which result, around sayings, formalisations, doings and a schema for innovation
 101 delivery add to the body of knowledge concerning construction project innovation.

The paper is organised as follows. A literature review scopes out understandings of the practice of innovation delivery in construction, identifying gaps in knowledge and issues requiring clarifications. The projects-as-practice literature and social practice theory of Theodore Schatzki are then presented to provide theoretical orientation and foundation. A methodology section describing the research approach adopted is followed by presentation of the innovation: the BIM risk library: a collaboration between University of Manchester (UK), the UK regulator for workplace health and safety (the Health and Safety Executive – HSE), several construction companies and a building information modelling (BIM) software provider. The high-level review of innovation development work is complimented by deeper analysis of the collaborative agreements between partner organizations and data management workflow employed for innovation data harvesting and development. Collectively, this evidence distils the 'field of practice' (Schatzki, 1996) of innovation delivery in construction with an "enacted schema" for innovation delivery coming into focus from the analysis. A following discussion notes how the social practice findings align and enhance the framework of innovation diffusion of Steiber and Alänge (2015): innovation evolution being understood in social practice terms, with a schema for innovation delivery and relations between "sayings", "formalisations" and "doings" being presented. A closing conclusion draws the insights of the paper together.

- , 119

120 Understanding the Practice of Innovation Delivery

Recent published work regarding innovation in the construction industry has addressed a
 variety of subjects, including the effect of supply chain innovation on competitive advantage
 (Afraz et al. 2021), open innovation and the enhancement of productivity (Greco et al. 2021),
 innovation ecosystems and collaboration in infrastructure projects (Vosman et al. 2023) and

boundary-spanning for managing digital innovation in the AEC sector (Azzouz and Papadonikolaki, 2020). Whilst these contributions have added to the body of knowledge concerning innovations in construction, there remains a need to understand the practice of innovation delivery. In this respect, whilst diffusion of innovations across firms has been recognised as a non-linear process (Shibeika and Harty, 2015), research has also examined how companies organise for digitalization (Morgan, 2019). However, understandings of the practice of innovation delivery are opaque and ambiguous: understanding the trajectory of a digital innovation (Winch, 1998), and how an innovation transforms from research idea to a fully-fledged application being much less understood. It has been noted that the relationship between system developers and potential industry users can be contentious (Liu et al. 2018), with challenges towards industry uptake of innovations being considerable (Oesterreich and Teuteberg, 2016). Whilst technical, practical and social barriers to innovation uptake are commonly evident (Collinge et al. 2020a), Blindenbach and Van Den Ende (2010) note that project-based firms have more difficulty innovating products, services and operations as compared to when they innovate for their clients. As a result, suitable engagement strategies and appropriate working relationships with technology developers need to be established. Blindenbach and Van Den Ende (2010) also note that the effects of specific management practices on project performance are different, particularly the effects of planning, multidisciplinary teams and heavyweight project leaders. The authors note that differences in firm characteristics provide an explanation for the findings; an implication for the innovation management literature being that "best" practices for innovation management are firm dependent. Söderlund (2004) points out that process and real-time case studies and project organization issues are of particular interest, and therefore analysis of exemplar "successful" 120es innovations can provide the empirical data needed for such studies.

Cicmil (2006, p. 36) asserts that project theory would be served by a qualitative approach with a critical interpretive lens that might 'generate alternative understandings of what goes on in project practice and how practitioners participate in and manage complex organizational arrangements. Consequently, examination of what people do in project contexts is a valid analytical approach rather than a confirmation of best practice models for project management (cf. Geertz, 1973). This aligns with Blomquist et al. (2010), who argue for a practice perspective (Schatzki, Knorr Cetina, & von Savigny, 2001) that begins with individual actions and asks what overall models and concepts result from those actions.

Practice theory has been used to study interactions in construction project management contexts previously, for example to understand digital integration of built-environment practices (Cıdık et al. 2017) and collaboration in construction (Connaughton and Collinge, 2021), but epistemological and ontological uncertainty remains, particularly regarding the delivery of innovations in construction project management. For example, whilst Bresnen (2009) argues that a 'practice' perspective allows us to focus on what happens in actuality: understanding practices being potentially more informative than industry-wide models of ideal processes, Marshall (2014, p.110) notes that practice theorists often fail to provide empirically sound demonstrations of theoretical propositions in action, thus limiting the usefulness of ideas. For example, the practice theory objective to clarify the emergent and ongoing constitution of social orders and change through situated practices has not been substantially engaged with. Similarly, whilst Blomquist et al. (2010) propose a 'project-as-practice' approach for understanding the complexities of working practices occurring in projects, noting the specific challenges for the researcher, O'Keeffe et al. (2015) comment that it is the 'doing' and 'performance' that should be the basis of analysis in practice theories when stating,

Practice theory refocuses attention on the social nature of organized activities and how these
 relations are mediated by the materialities within which they become enmeshed.' (p. 416). This

paper directly addresses the comments of Marshall (2014) and O'Keeffe et al. (2015) above by
providing an empirical demonstration of practice theory concepts in action, and by highlighting
the "doing" and "performance" of innovation practice in a construction context.

Whilst the above reflections highlight the importance of empirical evidence for informing theoretical understanding of practices, in terms of models of innovation, important work has already been conducted in the field. Rogers (1995) notes six innovation-characteristics that matter for its diffusion in a social system; these being; its relative advantage for the adopter, its compatibility with the pre-existing system, its complexity or difficulty to learn, its testability, its potential for re-inventions, and its observed effects. Building on the work of Rogers, Steiber and Alänge (2015) present an analytical framework for diffusion of innovations (figure 1). The framework includes five steps that a firm goes through when searching for, adopting, and implementing either a technical or organizational innovation: the five steps being desirability, feasibility, first trial, implementing, and sustaining. These five steps are in turn dependent on a firm's organizational improvement trajectory, which is cumulative and path-dependent due to increased return on investment on existing innovations, as well as on internal inertia among board members, top managers and employees. The five steps are all subject to three sets of influencing factors: characteristics of the innovation, the internal context, and external context (that include diffusion mechanisms).

7 193

194 [Figure 1]

2 195

 196 In figure 1, the five steps are visualized as a circular pattern around an organizational 197 improvement trajectory. The framework of Steiber and Alänge (2015) provides a validated 198 model for the digital innovation delivery process by which activities could be analysed or

planned. More recently, Steiber et al. (2021) explored the digitization process for industrial firms, presenting a validated framework based on innovation diffusion theories and case study evidence, with inhibitors and drivers of digital transformation being identified. As Steiber et al. (2021) note, diverse theoretical perspectives and new research methodologies are needed in order to understand the major challenges that block or hinder firms' deployment of digital technologies. These insights reveal how there remains a need to understand the practice of innovation in clearer terms. Social Practice Theory Theodore Schatzki's social practice theory (1996; 2002) enables a domain to be examined as a 'field of practices' with ever evolving 'nexuses of doings and sayings' (Schatzki, 1996). Although Schatzki (2001) notes that practice can refer to both individual performed activities and a guiding principle for activities, Knorr Cetina (2001) observes that the majority of scholars agree with the definition of practices as: 'recurrent processes governed by specifiable schemata of preferences and prescriptions' (p.175) Schatzki's theory of practice (1996; 2002) is generally considered as one of 5 current approaches to studying practice (other approaches being communities of practice; activity theory; ethnomethodology and discourse analysis: Nicolini, 2012). Nicolini (2012) encourages researchers to draw selectively on concepts from different approaches to illuminate various aspects of practice, proposing a "toolkit approach" for empirical work. Such flexibility makes practice theory a potentially attractive methodological approach, whilst also remaining 199en challenging. As Schatzki (2012) comments,

²²⁴ 'The world according to practice theory offers much to investigate. There are practices, ²²⁵ arrangements, activities, bundles and constellations. There are questions about which of these ²²⁶ exist, when and where, their details, how they work and unfold, how they can be designed or ²²⁷ altered, and how to prepare people to enter them.' (p.23)

Schatzki (1996) maintains that practice is a "temporally unfolding and spatially dispersed nexus of doings and sayings, embracing notions of activity and organization" that make up people's "horizons of intelligibility" (Nicolini, 2012). Caldwell (2012) maintains that Schatzki's ambition is to ensure practices are ontologically more fundamental than language and discourse: practice actions (the "doings") taking priority over practice language (the "sayings"). Consequently, Schatzki gravitates toward a concept of agency as "doing", underplaying the role of language and discourse (Schatzki, 2002); in this scheme verbal and non-verbal signs are part of the "doing" of a practice rather than its principal components. Schatzki therefore distances his theory from those of Bourdieu and Giddens by rejecting Bourdieu's concept of "habitus" and Giddens concept of "practical consciousness" (Caldwell, 2012).

Whilst practice theorists generally maintain the social as a field of embodied, interwoven practices organised around shared practical understandings, the concept of "field of practice" or "site of the social" (Schatzki 2001) distinguishes Schatzki's theory from those of others (c.f. O'Keeffe et al., 2015; Nicolini, 2012). This notion can best be described as the *context* within which practices occur: a "fields of practice" analysis being one that: a) develops an account of practices and/or b) treats the field of practice as the place to study the nature and transformation of their subject matter. This ontology comprises an array of orders and arrangements of people, artefacts and entities that constitute the organized activities of that place (Schatzki, 2001): the

practices within a context being made explicit to identify the "practice-arrangement bundles"
of which those practices are part (O'Keeffe et al. 2015). As Schatzki (2013) states:

251 'The coalescence of a practice involves some combination of (1) the emergence of common
252 rules (explicit formulations) in the light of which actors proceed, (2) the crystallization of sets
253 of prescribed or acceptable ends, tasks and actions, (3) the development of common practical
254 understandings, and (4) the distillation of common general understandings.' (p.37)

With a social practice approach, examination of the digital innovation experience cannot be understood separately from its' context: that context being a "field of practices" within which the innovation resides. As stated earlier, there is value in clarifying what constitutes a supportive context for delivery of an innovation. Schatzki's classifies the 'organization of practice' into 4 concepts (Table 1).

262 [Table 1]

Referring to Table 1, an action belongs to a practice if it expresses one of the understandings, rules or teleoaffective conceptsthat organize that practice, with activities forming a nexus in that they are organised and connect together through such relations as causality and intentional directedness (Schatzki, 2012, p.15). Of the above concepts, teleoaffectivities may be the most difficult to conceptualise. It is best understood by conceding that separate practices possess their own sets of acceptable and enjoined intentions, actions, emotions and moods (Schatzki, 1996, 101). In construction, intentions or goals are often influenced or directed by normative and emotional behaviour (Caldwell, 2012, 290), with certain teleoaffectivities being associated with specific practices. For example, a project team may express surprise and shock at a

273 supplier quote five times above the going rate. Teleoaffectivities are those emotions, moods274 and actions that become associated with certain practices.

For an innovation, teleoaffectivities (i.e. positive or negative reactions) are potentially significant to the success or failure of the innovation. For example, surprise and joy at being able to perform a task not previously possible would be a positive teleoaffectivity, whereas frustration or confusion about innovation use would be a negative teleoaffectivity. Therefore, developers must be aware of teleoaffectivities and build-in processes to ensure possible negative reactions are mitigated. This can be done via engagement activities, workshops and pre-piloting work.

²⁶ 283

 Schatzki (2002) also states that "human agency must be understood as something contained in practices" (i.e. as the performance of doings and sayings that constitute the actions that compose practices" p.240). Similarly to Schatzi, Sewell (1992), a practice theory scholar, understands practices as enacted schemas (i.e. generalizable procedures) that can be transposed from one domain to another, but that also organise and constrain other schemas. This paper takes forward these ideas and Schatzki's 'organization of practice' concepts to investigate the practice of digital innovation delivery on the BIM Risk Library.

292 Methodological Approach

293 Theoretical Positioning

Theoretically, the research may be categorised as "social-science based" and "process-oriented" rather than "engineering-focused" research (see Blomquist et al, 2020, p.6). As a 'theories-in-use' contribution (Söderlund, 2004), the focus on project processes enables a theory and its' associated concepts to be applied and examined objectively. In this case, the

paper applies social practice theory and the concepts of Schatzki (Table 1) to understand the process of innovation delivery, such an analysis taking into account the complexities of human life (c.f. Cicmil and Hodgson, 2006, p.10). Such an examination of social processes at work (i.e. how understandings, emotions and rules emerge, evolve and become formalized) addresses the need for more fine-grained studies of the microactivities occurring, as noted by Blomquist et al. (2010, p.7). Methodologically, this paper follows the lead of O'Keeffe et al. (2015) in focusing upon the "doing" or "performance" of innovation, and the processes leading up to such "doings" in a construction project management context.

Practical Details

Practically, in terms of methodological steps, figure 2 presents the overall flowchart of work from the BIM Risk Library project. A series of 'legal artefacts' associated with phases of work activity are also highlighted: these legal artefacts being critical to the mobilisation of the innovation. Methodologically, to conduct a social practice analysis of the work occurring, each separate work activity was examined by the researcher using the 'organization of practices' concepts of Schatzki (1996) (Table 1). This meant identification of how rules, understandings (both practical and general) and teleoaffectivities (emotive behaviours) manifested through spoken dialogue, shared artefacts and plans of action to be taken forward. Sources of data included notes from meetings, the workshops with industry practitioners that captured thoughts and reactions to the innovation by industry experts, and the shared artefacts that played prominent roles in the innovation design and delivery journey (i.e. collaborative agreements; data management workflow; user guide; software tool). The multiple meetings between research team and industry partners were recorded on a Trello board, providing a further source of data. As will be noted, the shared artefacts, such as the collaborative agreements and data workflow formalised how the innovation would operate and function. A post-pilot survey of practitioners and interviews with individuals provided a further source of data for analysis. The

researcher examined the data chronologically, in logical order, as noted on the figure 2 flowchart of work activities. Regarding the meetings and workshops with industry, it should be noted that discussions (i.e. spoken words) between stakeholders revolved around the functioning of the innovation, how it should/could be used and how it would potentially impact (positively or negatively) project work practices. Whilst acknowledging that such conversations and 'messy talk' are intrinsically a part of collaboration using BIM (Dossick and Neff, 2011), the focus of analysis was the 'organization of practice' concepts of Schatzki (Table 1) and how and when they manifested. As noted, this manifestation would be through spoken dialogue, shared artefacts and plans of action to be taken forward. Such a microanalysis of processes takes into account the complexities of human life for a practice-oriented study (c.f. Cicmil and Hodgson, 2006, p.10): the deeper examination of interactions also addressing the need for fine-grained studies of the work occurring (Blomquist et al. 2010, p.7). As noted in the following sections, the social practice analysis facilitated clarifications of how 'sayings' transform into 'doings' of innovation delivery and use; the preferences of practitioners leading to a provisional 'schema for innovation' for a construction context. Nicc

[Figure 2]

Innovation Analysis

The BIM Risk Library project commenced in 2019 under the Discovering Safety research programme: a collaboration between the Thomas Ashton Institute (TAI, 2020), the University of Manchester and the Health and Safety Executive (HSE), UK regulator of workplace health and safety. Aiming to assist design and construction professionals to better manage health and safety via proactive use of digital technologies and mobilisation of information resources via a Prevention Through Design (PtD) approach (Yuan et al. 2019), research work resulted in a

novel BIM-based tool developed within a commercial cloud-based platform (the BIM Risk

Library). Four different companies, with a total of six separate construction projects partnered with the research project. Each project agreed to use the innovation, formalizing their commitment via signed collaborative agreements. The projects had an average duration of four months, and ranged in type (i.e. residential; industrial; commercial; infrastructure projects). By way of illustration, a screenshot of the BIM risk library tool is given in figure 3. SC. [Figure 3] Separate work activities of the BIM risk library are now examined in sequence, as shown on figure 2. Steering Committee Formulation A Steering Committee was setup for the BIM Risk library composed of research project stakeholders. A primary source of membership was the BIM 4 Health and Safety Group (BIM4H&S): a UK industry group focused on digital technologies to improve construction health and safety. This group was instrumental in work leading to the industry standard PAS 1192-6: 2018 'Specification for collaborative sharing and use of structured health and safety information using BIM' (BSI, 2018): a working link with this group therefore being important as the innovation addressed digital technologies to improve construction health and safety. Frequent communication with the Steering Committee membership ensured that both general understandings and practical understandings of the innovation were discussed openly from an early stage. As research team ideas regarding the innovation evolved, these could be bounced off Steering Committee members; such interactions being an essential social aspect of

innovation development. Rules around innovation use were also discussed and clarified with industry figures in a collaborative way at meetings. Amongst the questions asked were: how would the innovation impact existing project ways of working? What training and instruction would be provided? And how long would the innovation be mobilised? How could data be drawn from live projects and anonymised? These practical questions were critical for the further development of the innovation. The Steering Committee were consulted are regular intervals through the research project; the link being vital for *understandings* and *rules* of use to emerge.

380 Ontology and ERIC matrix

 A foundational idea of the BIM Risk Library was formulation of an ontology to map out the elements that make up a risk scenario requiring specific treatments: the ontology concepts being rooted in industry guidance and previous academic work in the field. Details of the ontology and matrix are provided in Collinge et al. (2020b). The ontology embodied rules regarding types of data to be collected and the relations between them. Validation of the ontology and matrix came from the Steering Committee and BIM4 H&S group, which again enabled general understandings and practical understandings regarding the foundational ontology and its' conceptual underpinning to be reviewed, and confirmed as valid. The research team made notes of such discussions at the time for future reference.

Industry Workshops

The ontology was mobilised in industry workshops to populate nine risk scenarios with relevant treatments. The workshops affirmed the validity of the ontology and the overall approach of the research; both *general* and *practical understandings* of the conceptual ideas being reviewed and discussed by practitioners at the workshops. It should be noted that no contracts or specialised procedures were required to set up the workshops: individuals joined through

professional interest and commitment to improving construction health and safety. Resulting from the workshops, a dataset of 9 risk scenarios and 162 treatments were identified to eliminate, reduce, inform, or control (ERIC) the risks covering four different stages of the project lifecycle: preliminary design, detail design, pre-construction, and during construction. The industry workshops maintained and consolidated the relationship with project practitioners.

Prototype Innovation

The dataset of 9 risk scenarios and 162 mitigations provided the basis for the prototype innovation: the dataset being saved as a comma-separated values (CSV) file. At this stage of innovation development, it should be noted that general understandings, practical *understandings* and *rules* regarding the innovation had been discussed several times over with industry experts. *Rules* regarding innovation use had been captured in notes to be taken forward into discussions with software developers. Both positive and negative potential reactions to the innovation by designers and companies (i.e. *teleoaffectivites*) had also been remarked upon several times over in meetings. The research team recognised the importance of addressing these in the work going forward.

Software development

Following a review of BIM software providers on the market, one specific software vendor was selected and a legal contract set-up between research partners and the vendor so the ontology and dataset could be hosted on a BIM software platform via a specifically designed interface (figure 3). This important step would allow a sharing of the innovation with industry, facilitating further population of the library with data by designers working on multiple projects. The contract with the software vendor was vital to this task: an insight here being the agen need to reserve project funds for software development (if expertise/capability is not within the research team). The software vendor contract formalized the general/practical understandings and rules of use

of the innovation, previously discussed in workshops, meetings, etc. Therefore, the "sayings" around innovation use were formalized in written form: specific "rules" that were to be codified into interface functionality of the software. For example, the preference to present project designers with a series of optional treatments for different risk scenarios rather than definitive solutions was codified into interface use (see figure 3). Both general and practical *understandings* and *rules* of use of the innovation were later to be made explicit in a printable User-Guide for designers. *Teleoaffectivities* (emotive reactions to the innovation) could only partially be addressed during this stage of work as the research team and software developers attempted to predict possible positive and negative reactions when the innovation would be in use. Further activities needed to be done to address such issues.

432 Innovation Piloting

Having developed the prototype, it was necessary to pilot it to validate work completed and begin the process of collecting more risks/treatments. Piloting began in Summer 2020 with 4 industry partners and 6 projects. A dedicated support service was setup to assist pilot projects with any questions they had about using the innovation – this service assisting with *understandings* and *rules of use* questions. Whilst each pilot was uniquely different, they all shared a common commitment to identify risks and improve health and safety. It was through piloting that opinion of the innovation was collected, with positive and negative reactions being captured via informal feedback and a more formal survey and interviews. Piloting was therefore very important: changes and amendments to the innovation could be usefully actioned prior to a much larger rollout to industry. By the end of the piloting phase (June 2021), a CSV file containing 401 treatment prompts for 31 risk scenarios related to 11 different risk categories

444 had been added to the BIM risk library. A number of legal artefacts were associated with the 445 piloting work (figure 2). These are discussed in the following section.

446 Innovation Evaluation

Following piloting and collection of data over a 5 month period, an evaluation process was initiated. A questionnaire survey and interviews with users provided opinions about the digital innovation. The interviews allowed more detailed opinions of the innovation from industry users of the innovation to be captured. Table 2 gives demographic information regarding the survey participants and interviewees.

452 [Table 2]

The survey revealed that 85% of experts agreed or strongly agreed that the innovation could positively impact design decisions and support selection of appropriate treatments to mitigate health and safety risks. Although 13 is not a large number of survey respondents, the positive comments of construction experts validated the innovation. Furthermore, such a sample number aligns with the guidance of Hallowell and Gambatese (2010), who note the value of small sampling numbers, where a minimum of eight experts is recommended to validate a research proposition. Furthermore, interviewees perceived that adding safety information to a BIM model, and pinpointing risks added value to their safety management processes. Another benefit noted was the structured approach to inputting risk data and the opportunity for collaborative work which the innovation enabled. As part of the evaluation, understandings, practicalities of the innovation, *rules* of use and *teleoaffectivities* were all queried through questionnaire survey and interview questions. For further information regarding the innovation survey, see Osorio-Sandoval et al. 2021).

467 Publicity

The innovation was presented at several national and international events (e.g. Digital Construction Week 2019; BIM for Water event 2019) and subsequently, won two prizes (buildingSMART 2020; Construction Computing Award 2021): these prizes confirming the value of the innovation to industry. Publicity is a vital aspect for any successful innovation, providing opportunity to communicate positive opinions and teleoaffectivity emotions about an innovation to a wider audience.

As noted on figure 2, several legal artefacts emerged as innovation work progressed. Examination of the Collaborative agreements and Data Management Workflow provide evidence regarding how an enactment of a distinct "schema" for innovation delivery became tangible in written form and procedural guidelines.

Collaborative Agreements

Collaborative agreements between industry partners, the HSE and the University detailed specific information and instructions concerning use of the innovation and creation of the BIM Risk Library. These were approved by each party's legal teams and signed by organisational senior executives. The agreements covered issues such as data protection and anonymisation of data shared with the library. Provision of free software pilot licences to cover the pilot period and specific terms/conditions regarding long term use of data were also detailed. Support to be provided to industry partners, including training and instruction to assist users, and plug-in development to facilitate innovation use with different software packages were also specified in the agreements. A Data Workflow (figure 4) visualizing the data collection process for the BIM risk library was included in the agreements. With the agreements we see a shift рпс from innovation "sayings" to written formalisations of understandings and rules of use, prior to actual "doings" taking place.

As noted, the agreements formalise and make explicit the shared thinking around the innovation (i.e. general/practical understandings of it; rules concerning its` use) already established amongst stakeholders; an absence of shared thinking being identified as potentially detrimental to collaboration if not established (Aarseth et al. 2012). For innovation developers, obtaining formal agreement to use an innovation is crucially important, so the language used to compose the collaborative agreement needs to be worded correctly. The collaborative agreements meet the points noted by Lokuge et al. (2019) as being important regarding organizational readiness for digital innovation: namely, resource readiness, IT readiness, cognitive readiness, partnership readiness, innovation valance, cultural readiness and strategic readiness.

Additionally, the collaborative agreements brought order to the innovation process so that all parties know their roles and responsibilities going forward, facilitating the transformation of the digital innovation from a prototype to technology in use. The underlying parameters form part of an "enacted schema" for innovation delivery (see Discussion), facilitating a collective goal and creating a team ethos and general understanding of objectives (c.f. Uhl-Bien et al. 2007). ?!?

Data Management Workflow

Intrinsic to innovation development was the Data Workflow for retrieval, review, anonymization and uploading of data to the BIM risk library. This workflow (figure 4) was integrated into the Collaborative agreements and embodied in processual terms the *rules* and preferences of practitioners regarding innovation use on their projects. For example, the workflow details how risk scenarios and treatments inputted by pilot projects were to be retrieved periodically from the cloud by the research team to be anonymized by removal of sensitive or project-specific information. The overall workflow shows how data was to be

516 collected in a non-intrusive way: this being an effective and important provision of practitioners 517 using the innovation. The workflow was a necessary and informative device to re-assure 518 practitioners how the innovation would practically function, and how data drawn from projects 519 would input into the growing BIM risk library. It complimented and clarified information 520 given in the Collaborative agreements: clear communication on how an innovation will 521 function in the project management context being vital.

- 523 [Figure 4]

525 The workflow also enacting the preferences of industry by defining the operation of the 526 innovation in a project management context: data security; non-intrusive interactions with 527 practitioners; a finite timespan of work activity; an easy to understand plan of action all being 528 clarified. These preferred preferences of innovation users can be understood as being part of 529 the enacted schema for innovation delivery (Figure 6).

- ³⁵ 36 530
 - 531 Discussion

The review of the BIM Risk library work activities, together with the collaborative agreements and data workflow evidences the presence of Schatzki's 'organisation of practice' concepts (general/practical understandings; rules; teleoaffectivities – emotive behaviours) that together characterise a distinct practice. The evidence indicates how "sayings" regarding innovation evolve into "doings" via formalised agreements and contracts between parties. Such a transformation is necessary for companies operating in competitive and data sensitive environments. Therefore, whilst the digital innovation journey has been recognised as an "ongoing social accomplishment" pivoting around "negotiated interactions between the main parties" (Bresnen, 2009, p.931), a social practice analysis brings greater clarity to the processes

occurring in terms of human behavioural aspects underpinning an innovation. The findings enable further reflections on the existing literature in terms of theoretical and practical contributions.

Theoretical Contribution

The social practice analysis of interactions and artefacts associated with the BIM risk library innovation align with the framework of innovation diffusion of Steiber and Alänge (2015): the five step process (desirability; feasibility; first trial; implementing; sustaining) being evidenced on the BIM risk library in terms of the work activities followed. The social practice analysis adds a layer of detail to this framework in terms of how understandings emerge, rules are established, formal agreements are made and emotive behaviours manifest. With regards to Rogers (1995) six innovation-characteristics that matter for its` diffusion in a social system (i.e. relative advantage for the adopter; compatibility with existing system; complexity/difficulty to learn; testability; potential re-inventions; observed effects), the social practice analysis provided evidence of how each of these are linked to shared understandings, rules and emotive behaviours. A key insight is the importance of relational conditions underpinning innovation use and good working relationships between partners. That mutual dependencies can result in friction, satisfaction or other emotive behaviours (teleoaffectivities) is a reality when using an innovation. The various work activities occurring prior to innovation launch established positive relational conditions (formalised via the collaborative agreements). The empirical evidence suggests that digital transformation is not the simple application of a new technology into a project context, but an all-round transformation of project processes that connect with management, business and organization methods. The paper illustrated how activities leading to innovation development together with the collaborative agreements and data workflow provided a solid foundation for effective innovation delivery.

The interplay between the dynamic process of innovation use and more routinized processes of project management work (Bygballe et al., 2016) has been noted as an important one. The paper illustrates how this dynamic can be played out: the BIM risk library Data Workflow (figure 4) linking to issues of importance for practitioners under pressure to deliver work to time and budget whilst minimising disruption to project processes. Innovation developers and practitioners need to enter into trustful relationships for innovations to be given a chance for success; legal artefacts like collaborative agreements enable innovations to be tested, developed and deployed in transparent ways. The insights from the BIM risk library enable the practice of innovation delivery to be clarified (figure 5) in terms of how "sayings" transform into "doings". As a result, the construction context for innovation may be understood as a distinct "field of practices" (Schatzki, 1996, 2001) with its' own distinctive schema of "preferences and prescriptions" (Knorr Cetina, 2001) of developers and practitioners, as highlighted in figure 6. Reference to such a schema is useful for both technology developers and innovation developers addressing practicality issues.

³⁵ 36 580

 581 [Figure 5]

40 582

583 Practical Contribution

Digital innovations demand changes to working practices (c.f. Cicmil and Marshall, 2005), with new practices emerging as people coordinate in new ways (Cicmil et al. 2006; Sage et al. 2012). A social practice analysis clarifies how this happens in actuality (in terms of understandings, rules and emotive behaviours). Such a study extends understanding of the decision-making processes managers use in the adoption of new technologies and strategies used to deal with uncertainty (Mitropoulos and Tatum, 1999). On the BIM Risk library, industry partners signed collaborative agreements following extended periods of discussion

with research partners, establishing their understandings and agreed parameters of innovation use. Deriving from the BIM risk library, figure 5 illustrates how such discussions formalise into agreements prior to innovation use. As indicated in figure 5, the practice of innovation delivery and its' associated sayings, doings and formalisations may be visualised to have a relationship within which the preferences of stakeholders are emergent, formalised and enacted upon.

If we follow Knorr Certina's (2001) definition of practices as "recurrent processes governed by specifiable schemata of preferences and prescriptions", we can begin to identify an underlying schema for innovation delivery in construction. Analysis of the BIM Risk Library assists in such a process and adds a level of social understanding lacking in models such as the technology-acceptance model (TAM) that fail to recognise user acceptance over time (Liu et al. 2018). Figure 6 draws together insights from the empirical evidence to present an enacted schema for innovation delivery in construction. It is contended the schema should be reflected and enacted upon in order to make an innovation successful in a construction context. Additionally, the schema addresses the three tenets of Havenid et al. (2019) in a recent collection of works on innovation in construction; these tenets being to shed light on the organisational processes within contexts of innovation in construction; to apply novel theoretical perspectives to empirical phenomena, and to recognise the temporal and spatial distribution of innovation as processual activities.

[Figure 6]

The figure 6 schema notes the prescriptions and preferences of developers and practitioners for effective innovation delivery. Developer prescriptions include clear definitions of the purpose and benefits of an innovation; clarity over roles/responsibilities of parties; clarity on how the

innovation will work/function. Preferences note aspects which would support successful innovation deployment, including the social practice concepts of Schatzki and the need to minimize disruptions to project work processes. A developer preference would be the importance of reducing negative emotive reactions whilst promoting positive reactions if The collaborative agreements, data workflow (embodying general/practical possible. understandings, rules and purpose of the innovation), and user guide emerged as the project evolved at a moment in time that was required for progression of the innovation. These artefacts of innovation embody the prescriptions and preferences of developers and practitioners. These are shown in figure 6 as emerging from the processes. The various meetings, communications and work interactions preceding their creation were important in preparing industry partners for the innovation itself and laying the groundwork for its' uptake.

628 Conclusions

 The paper advances understanding of successful digital innovation delivery in construction project management through a social practice analysis of various activities and outputs associated with one innovative technology (the BIM risk library): i.e. discussions; legal agreements; innovation workflow; software artefact; user guide). A limitation of the paper is that the insights are drawn from one single study of innovation delivery. Whilst single case studies can be criticized from a data limitation point-of-view, it should be noted that 4 different companies used the innovation on 6 separate projects over several months. Therefore, the data upon which the study is based is not insubstantial. Additionally, as the innovation has garnered attention and won awards, it is contended that the insights of the paper are useful and informative for industry innovators and the academic community. Additionally, the paper provided tangible insights into how an innovation can emerge from context-specific interactions (e.g. industry workshops; software vendor negotiations; piloting work) where

general and practical understandings of an innovation, rules regarding its' use and teleoaffectivities (emotive behaviours) are part of the discourse. Employment of Schatzki's 'organisation of practice' concepts to examine the interactions occurring and the resultant artefacts shared between collaborators highlight the importance of understandings, rules and emotive behaviours in the innovation journey. Whilst the evolutionary nature of innovation development was described, a distinct 'field of practice' for innovation delivery came into focus, with a 'schema of generalisable preferences' emerging from the social practice analysis (figure 6). Artefacts such as legal agreements, software product and innovation workflow evidenced how the innovation discourse shifts from verbal "sayings" to formulised agreements and contracts that embody the preferences and prescriptions of practitioners: the practical realities of innovation use being translated into a tangible schema prior to their "doing" in construction project contexts. The findings complement existing frameworks for understanding innovation delivery in project management contexts and provide an extension to the body of knowledge on factors contributing to innovation delivery in construction.

656 Data Availability Statement

657 Some or all data, models, or code generated or used during the study are available in a

658 repository or online in accordance with funder data retention policies

659 (https://www.discoveringsafety.com/).

661 Acknowledgements

This research was funded by the Lloyd's Register Foundation (Grant number: G\100293) and supported by the Health and Safety Executive as part of the Discovering Safety research programme. The author wishes to acknowledge the helpful comments of the reviewers in the improvement of the paper.

1		
2		
3 4	666	
5 6	667	Disclaimer
/ 8 9	668	The author reports there are no competing interests to declare.
10 11	669	
12 13 14	670	Ethics Statement
15 16	671	The research obtained ethics approval from the University of Manchester Ethics Committee.
17 18	672	Subsequently, informed consent was received from the research subjects.
19 20 21	673	
21 22 23	674	References
24 25	675	Aarseth, W., Andersen, B., Ahola, T., Jergeas, G. 2012. "Practical difficulties encountered in
26 27	676	attempting to implement a partnering approach." Int. J. Manage. Projects Business, 5 (2):
28 29 30	677	266-284.
31 32	678	Afraz, M.F., Bhatti, S.H., Ferraris, A. and Couturier, J. 2021. "The impact of supply chain
33 34	679	innovation on competitive advantage in the construction industry: Evidence from a
35 36 27	680	moderated multi-mediation model." Technological Forecasting and Social Change, 162.
37 38 39	681	APM (Association for Project Management). 2019. Body of Knowledge 7th ed. Princes
40 41	682	Risborough, UK: APM.
42 43	683	Azzouz, A. and Papadonikolaki, E. 2020. "Boundary-spanning for managing digital innovation
44 45 46	684	in the AEC sector." Architectural Engineering and Design Management, 16 (5).
47 48	685	Bamel, N., S. Kumar, U. Bamel, W.M. Lim, and R. Sureka. 2023."The state of the art of
49 50	686	innovation management: insights from a retrospective review of the European Journal of
51 52	687	Innovation Management." European Journal of Innovation Management. DOI:
53 54 55 56 57 58	688	10.1108/EJIM-07-2022-0361
59 60		
		28

2	
4	
5	
6	
7	
~	
8	
9	
10	
11	
11	
12	
13	
14	
15	
10	
16	
17	
18	
19	
20	
20	
21	
22	
23	
20	
24 a-	
25	
26	
27	
20	
20	
29	
30	
31	
27	
52	
33	
34	
35	
36	
20	
37	
38	
39	
40	
_TU / 1	
41	
42	
43	
44	
15	
43	
46	
47	
48	
40	
77	
50	
51	
52	
53	
54	
55	
56	
57	
50	
20	
59	

689	Blindenbach, D.F. and J. Van Den Ende. 2010. "Innovation Management Practices Compared:
690	The Example of Project-Based Firms." Journal of Product Innovation Management 27
691	(5): 705–724.
692	Blomquist, T., M. Hällgren, A. Nilsson and A. Söderholm. 2010. "Project-as-practice: in search

693 of project management research that matters." *Project Manage. Journal* 41 (1): 5-16.
694 Bresnen, M. 2009. "Living the dream? Understanding partnering as emerging practice."

695 *Constr. Manage. Econ.* 27 (10): 923-933.

- 696 BSI (British Standards Institution). 2018. PAS 1192-6:2018 Specification for collaborative
 697 sharing and use of structured Health and Safety information using BIM. BSI Standards
 698 Limited.
- 699 BuildingSMART. 2020: https://www.buildingsmart.org/bsi-awards-2020/winners .
- 700 Bygballe, L.E., A.R. Sward, and A.L. Vaagaasar. 2016. "Coordinating in construction projects
 701 and the emergene of synchronized readiness." *Int. J. Project Manage*. 34: 1479-1492.
- 702 Çıdık, M. S., D. Boyd, D. and N. Thurairajah. 2017. "Ordering in disguise: digital integration
 703 in built-environment practices." *Building Research & Information*, 45 (6): 665-680.
- Caldwell, R. 2012. "Reclaiming agency, recovering change? An exploration of the practice
 theory of Theodore Schatzki." *J. for the Theory of Social Behaviour*, 42 (3).
- 706 Cicmil, S. 2006. "Understanding project management practice through interpretative and
 - 707 critical research perspectives." *Project Management Journal*, 37 (2): 27–37.

708 Cicmil, S., and D. Hodgson. 2006. Making projects critical: An introduction. In S. Cicmil &

D. Hodgson (Eds.), Making projects critical (pp. 1–25). New York: Palgrave
Macmillan.

Cicmil, S., T. Williams, J. Thomas, and D. Hodgson. 2006. "Rethinking project management:
researching the actuality of projects." *Int. J. Project Manage*. 24 (8): 675-686.

713	Cicmil, S. and D. Marhsall, 2005. "Insights into collaboration at the project level: complexity,
714	social interaction and procurement mechanisms." <i>Building Research Information</i> 33 (6):
715	523-535.
716	Clegg, S., C.P. Killen, C. Biesenthal, and S. Sankaran. 2018. "Practices, projects and
717	portfolios: Current research trends and new directions," Int. J. Project Manage. 36 (5):
718	762-772. https://doi.org/10.1016/j.ijproman.2018.03.008.
719	Connaughton, J.N. and W.H. Collinge. 2021. "Trialling a new approach to interdisciplinary
720	collaboration in UK construction: A projects-as-practice analysis." Constr. Manage.
721	Econ. 39 (7): 595-616. DOI: 10.1080/01446193.2021.1933558
722	Collinge, W.H., K. Farghaly, M., Hadi-Mosleh, P. Manu, and C. Cheung, C. 2020a.
723	"Methodologies, strategies and interactions: how best to engage industry when
724	researching a new health and safety tool", In Proc., Joint CIB W099 & TG59
725	International Web-Conference 2020: Good health, Wellbeing & Decent Work, 10th
726	September, Glasgow, UK.
727	Collinge, W.H., K. Farghaly, P. Manu, C. Cheung and M. Hadi Mosleh. 2020b. BIM Risk
728	Library Final Report Phase 1, Health and Safety Executive.
729	Construction Computing Award. 2021: <u>https://constructioncomputingawards.co.uk</u> .
730	Dossick, C. S., and G. Neff. 2011. "Messy talk and clean technology: communication,
731	problem-solving and collaboration using Building Information Modelling" Eng. Project
732	Organization Journal, 1 (2): 83-93.
733	Geertz, C. 1973. <i>The interpretation of cultures</i> . New York: Basic Books.
734	Greco, M., Grimaldi, M., Locatelli, G. and Serafini, M. 202). "How does open innovation
735	enhance productivity? An exploration in the construction ecosystem." Technological
736	Forecasting and Social Change, 168.
	 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736

1		
2 3 4	737	Hallowell, M. R.and J.A. Gambatese. 2010. "Qualitative research: Application of the Delphi
5 6	738	method to CEM research" Journal of Construction Engineering and Management, 136
7 8	739	(1): 99–107.
9 10 11	740	Harty, C.F. 2005. "Innovation in construction: a sociology of technology approach." Building
12 13	741	Research and Information. 33 (6): 512-522.
14 15	742	Havenvid, M. I., Å. Linné, L.E. Bygballe and C. Harty, C. (Eds.) 2019. The Connectivity of
16 17 18	743	Innovation in the Construction Industry. Routledge.
19 20	744	Knorr Cetina, K. 2001. Objectual practice. In Schatzki, T.R., K. Knorr-Cetina, and E. von
21 22	745	Savigny, (2001) The Practice Turn in Contemporary Theory, Routledge, London.
23 24 25	746	Koch, C., S. Paavola, and H. Buhl 2019. "Social science and construction-an uneasy and
26 27	747	underused relation." Constr. Manage. Econ. 37 (6): 309-316.
28 29	748	Linderoth, H. C. 2010. "Understanding adoption and use of BIM as the creation of actor
30 31 32	749	networks." Autom. Constr. 19 (1): 66–72.
33 34	750	Liu, D., W. Lu, and Y. Niu, Y. 2018. "Extended Technology-Acceptance Model to Make
35 36	751	Smart Construction Systems Successful". J. Constr. Engineering and Manage. 144 (6).
37 38 39	752	Lokuge, S., D. Sedead, V. Grover, and D. Xu. 2019. "Organizational readiness for digital
40 41	753	innovation: Development and empirical calibration of a construct." Information and
42 43	754	Management, 56 (3): 445-461.
44 45 46	755	Marshall, N. 2014. "" Engineering Project Organization Journal, 4 (2-3): 107-122.
40 47 48	756	Mitropoulos, P., and C.B. Tatum. 1999. "Technology Adoption Decisions in Construction
49 50	757	Organizations." Journal of Construction Engineering and Management, 125 (5): 330-
51 52	758	338.
53 54 55	759	Morgan, B. 2019. "Organizing for digitalization through mutual constitution: the case of a
56 57	760	design firm." Constr. Manage. Econ. 37 (7): 400-417. DOI:
58 59 60	761	10.1080/01446193.2018.1538560

2	
з	-
4	1
- -	
5	7
0	,
7	_
8	1
9	
10	7
11	'
12	_
13	7
14	
14	7
15	/
16	
17	7
18	
19	7
20	/
21	
21	7
22	,
23	_
24	1
25	
26	7
27	'
28	_
29	- 7
30	
31	7
21	'
32	
33	7
34	
35	7
36	/
37	
38	7
39	
40	7
⊿1	/
רוּ ⊿ר	
4Z	7
43	
44	7
45	/
46	
47	7
48	
49	7
50	/
51	
51	7
52	,
53	_
54	7
55	
56	7
57	,
58	_
59	7
60	
00	

Nicolini, D. 2012. *Practice theory, Work and Organization: An Introduction*. Oxford University Press, Oxford.

- 764 O'Keeffe, D., D. Thomson and A. Dainty. 2015. "Evaluating the design of hospitals within a
 765 practice order network." *Constr. Manage. Econ.*, 33 (5-6): 415-427.
- Oesterreich, T.D. and F. Teuteberg. 2016. "Understanding the implications of digitisation and
 automation in the context of Industry 4.0: A triangulation approach and elements of a
 research agenda for the construction industry." *Computers in Industry*, 83: 121-139.
- 769 Osorio-Sandoval, C.A., W.H. Collinge, C. Cheung, M. Hadi-Mosleh, P. Manu, A. Freitas, and
 - Z. Zhou. 2021. *Digital Health and Safety Library Use Case*. Health and Safety Executive
 (HSE).
- Orlikowski, W.J. 2009. "The sociomateriality of organizational life: considering technology in
 management research." *Cambridge Journal of Economics*, 34 (1): 125-141.
- Project Safety Journal. 2022. "New tech for a safer new year." Winter. <u>PSJ-Winter-2022-</u>
 <u>combined.pdf (projectsafetyjournal.com)</u>.
- 776 Rogers, E.M. 1995. "Diffusion of innovations: modifications of a model for
 777 telecommunications", in Stoetzer, M.W. and A. Mahler, (Eds), Die Diffusion von
 778 Innovationen in der Telekommunikation. Schriftenreihe des Wissenschaftlichen Instituts
 779 für Kommunikationsdienste, 17, Springer, Berlin, Heidelberg.
- 780 Sage, D., A. Dainty and N. Brookes. 2012. "A "strategy-as-practice" exploration of lean
 781 construction strategizing." *Building Research Information*. 40 (2): 221-230.
- 782 Schatzki, T. 2013. "The edge of change. On the emergence, persistence and dissolution of
 783 practices." In, Shove, E. & N. Spurling, N. (Eds.) Sustainable Practices. Social theory
 - 784and climate change. Routledge: London.
- ⁶785 Schatzki, T.R. 2012. "A primer on practices." In: Practice-based education: perspectives and
- 56 786 strategies (Ed: J.Higgs)

2 3 4	787	Schatzki, T.R. 2002. The site of the social: a philosophical exploration of the constitution of
5 6	788	<i>social life and change</i> . University Park, PA: Penn State Press.
7 8 0	789	Schatzki, T.R. 1996. Social practices. A Wittgensteinian approach to human activity and the
9 10 11	790	social. Cambridge University Press: Cambridge.
12 13	791	Schatzki, T.R. 2001. Practice Theory, In Schatzki, T.R., K. Knorr-Cetina, and E. von Savigny
14 15 16	792	(2001) The Practice Turn in Contemporary Theory, Routledge, London.
17 18	793	Sewell, W.H. Jnr 1992. A theory of structure: duality, agency and transformation. American
19 20	794	Journal of Sociology. 98: 1-29.
21 22 23	795	Shibeika, A. and C. Harty. 2015. "Diffusion of digital innovation in construction: a case study
23 24 25	796	of a UK engineering firm." Constr. Manage. Econ. 33 (5-6): 453-466, DOI:
26 27	797	10.1080/01446193.2015.1077982
28 29 20	798	Söderlund, J. 2004. "Building theories of project management: Past research, questions for
30 31 32	799	the future." Int. J. Project Manage. 22 (3): 183–191.
33 34	800	Steiber, A., S. Alänge, S. Ghosh, and D. Goncalves, D. 2021. "Digital transformation of
35 36 27	801	industrial firms: an innovation diffusion perspective", European Journal of Innovation
37 38 39	802	Management, 24 (3): 799-819. https://doi.org/10.1108/EJIM-01-2020-0018
40 41	803	Steiber, A. and S Alänge. 2015. "Organizational innovation: a comprehensive model for
42 43	804	catalyzing organizational development and change in a rapidly changing world", The
44 45 46	805	Triple Helix Journal. 2 (1): 1-25.
47 48	806	TAI(ThomasAshtonInstitute).2020::
49 50	807	https://www.ashtoninstitute.ac.uk/programmes/discovering-safety/
51 52 53	808	Uhl-Bien, M., R. Marion, and B. McKelvey 2007. "Complexity leadership theory: shifting
54 55	809	leadership from the industrial age to the knowledge era." The Leadership Quarterly. 18
56 57 58 59 60	810	(4): 298-318.

2 3 4	811	Vosman, L., Coenen, T.B.J., Volker, L. and Visscher, K. 2023. "Collaboration and innovation
5	812	beyond project boundaries: exploring the potential of an ecosystem perspective in the
7 8 0	813	infrastructure sector." Construction Management and Economics, 41 (6).
9 10 11	814	Williams, R. and D. Edge. 1996. "The social shaping of technology.", Research Policy, 25 (6):
12 13	815	865-899.
14 15 16	816	Winch, G. 1998. "Zephyrs of creative destruction: understanding the management of
17 18	817	innovation in construction." Building Research & Information, 26 (4): 268–279.
19 20	818	Winter, M., C. Smith, P. Morris, and S. Cicmil, S. 2006. "Directions for future research in
21 22 23	819	project management: The main finding of a UK government-funded research network."
23 24 25	820	Int. J. Project Manage. 24: 638–649.
26 27	821	Yuan, J., X. Li, X. Xiahou, N., Tymvios, Z. Zhou and Q. Li. 2019. "Accident prevention
28 29 20	822	through design (PtD): Integration of building information modeling and PtD knowledge
30 31 32	823	base." Autom. Constr. 102: 86–104.
33 34	824	
35 36 27	825	
37 38 39	826	
40 41	827	
42 43	828	
44 45 46	829	
47 48	830	
49 50	831	
51 52	832	
53 54 55	833	
56 57	834	
58 59 60	835	
1		
----------	-------	--
2		
3 4	836	Figure captions
5		
6	837	Fig 1. Framework for diffusion of innovations
/ 8		
9	838	Fig 2 BIM risk library screenshot
10	050	rig.2. Divi lisk holdry screenshot
11		
12 13	839	Fig.3. Flowchart of work activities
14		
15	840	Fig.4. Data management workflow
16		
17	8/11	Fig 5 Practice of innovation delivery
19	041	rig.s. Tractice of milovation derivery
20		
21	842	Fig.6. Schema for innovation delivery
22		
24	843	
25		
26 27	844	
28	0.4.5	
29	845	
30 31	846	
32	0-0	
33	847	
34 25		
36	848	
37		
38	849	
39 40	850	
41	830	
42	851	
43 44		
45	852	
46		
47 10	853	
40 49	051	
50	854	
51	855	
52 53	000	
54	856	
55		
56 57	857	
58	0.50	
59	858	
60		

Rules Formulated directives, admonishments an edicts; rules can be defined as "methodicall applied generalizable procedures of action" Telcoaffectivities Acceptable and enjoined emotions, mood and actions associated with certain practices General Understandings Understandings or senses of general matter pertinent to goings-on in practices. Table 1: 'Organization of practice' concepts (Schatzki, 1996)	Practical Understandings	Knowing how to execute desired actions
Rules Formulated directives, admonishments an cdicts; rules can be defined as "methodicall applied generalizable procedures of action" Teleoaffectivities Acceptable and enjoined emotions, mood and actions associated with certain practices General Understandings Understandings or senses of general matter pertinent to goings-on in practices. Table 1: 'Organization of practice' concepts (Schatzki, 1996)		through basic doings and sayings.
edicts; rules can be defined as "methodicall applied generalizable procedures of action" Teleoaffectivities Acceptable and enjoined emotions, mood and actions associated with certain practices General Understandings Understandings or senses of general matter pertinent to goings-on in practices. Table 1: 'Organization of practice' concepts (Schatzki, 1996)	Rules	Formulated directives, admonishments and
applied generalizable procedures of action" Teleoaffectivities Acceptable and enjoined emotions, mood and actions associated with certain practices General Understandings Understandings or senses of general matter pertinent to goings-on in practices. Table 1: 'Organization of practice' concepts (Schatzki, 1996)		edicts; rules can be defined as "methodically
Teleoaffectivities Acceptable and enjoined emotions, mood and actions associated with certain practices General Understandings Understandings or senses of general matter pertinent to goings-on in practices. Table 1: 'Organization of practice' concepts (Schatzki, 1996)		applied generalizable procedures of action".
and actions associated with certain practices General Understandings Understandings or senses of general matter pertinent to goings-on in practices. Table 1: 'Organization of practice' concepts (Schatzki, 1996)	Teleoaffectivities	Acceptable and enjoined emotions, moods
General Understandings Understandings or senses of general matter pertinent to goings-on in practices. Table 1: 'Organization of practice' concepts (Schatzki, 1996)		and actions associated with certain practices
pertinent to goings-on in practices.	General Understandings	Understandings or senses of general matters
Table 1: 'Organization of practice' concepts (Schatzki, 1996)		pertinent to goings-on in practices.

	Expert ID	Area of work	Experience in the construction industry (Years)	
	EXP-01	Design	45	
	EXP-02	Other (specify) All stages	41	
	EXP-03	Other (specify) All stages	40	
	EXP-04	Design	5	
	EXP-05	Other (specify) All stages	44	
	EXP-06	Strategic planning	15	
	EXP-07	Construction	33	
	EXP-08	Design	40	
	EXP-09	Construction	33	
	EXP-10	Construction	49	
	EXP-11	Design	33	
	EXP-12	Other (specify) CDM Principal Designer	35	
	EXP-13	Design	28	
878				
879	Table 2: demographic information of survey/interviewee experts			
880				
881				
882				
883				
884				
885				
886				
887				
00/				

safety Journaı, Figure 3: BIM risk library screenshot (from Project Safety Journal, Winter 2022, p.14)

Figure 5: Practice of innovation delivery - sayings, formalisation, doings

Developers

Project Practitioners

Reviewer Comments & Responses

The author/s thank the Reviewers for all their comments and detail below the responses. Reference to manuscript lines of text refers to the Tracked Changes version of the paper.

Reviewer 1 Comment	Response
1) Given the tile is "digital innovation delivery",	The paper analysis and contribution stems from
it would be interesting to see the analysis of	one digital technology: the BIM Risk Library.
innovative technologies used in the project	
production and construction such as robotics	Whilst further studies on other digital
and other digital tools.	technologies is merited and valuable (e.g.
C	robotics), it is beyond the scope of the paper.
2) Majority of the references seem outdated.	A further literature review identified several
This impedes some statements from generating	more recent papers regarding innovation in
a firm conclusion and might leave out some	construction. These have been integrated into
state-of-the-art studies to this study.	the literature review section (lines 135 - 142).
	No specific more recent papers were identified
	that that adopted a social practice theoretical
	and conceptual analysis of innovation as this
	paper does.

Reviewer 2 Comment	Response
Flgures 4 and 5 should be adopted on the	The accompanying text in the paper for Figures
context of this research. The main innovation	4 and 5 and the Figure labels have been
made (BIM Risk Library) and its elements	amended to clarify the link between the BIM
should be linked into these Figures.	Risk Library and the figures themselves.
-	
Limitations should go to the Conclusion section.	This comment has been addressed. The
	Limitations text being moved to lines 665 - 671.
It is recommended to not incorporate citations	This comment has been addressed.
and references in the Conclusion section.	
The methodology should be enhanced. Its	The methodology section has been revised and
methodological standpoint and foundation	enhanced. The theorization and practical
should be theorized first and the, the research	aspects of the methodology are now clearly
process and steps can be built upon.	demarcated.
The presentation and visualization of the	Thankyou for the comment. The original
results should be significantly improved.	schema of innovation delivery (Table 3) has
	now been replaced by a new figure 6 and
	further text in the paper to enhance the
	presentation and visualization of the results.
	-
Reviewer 3 Comment	Response
http://mc.manuscrip	otcentral.com/ecaam

Reviewer 3 Comment	Response
--------------------	----------

1	
2	
3	
4	
5	
6	
7	
8	
9 10	
10	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
23	
24	
25	
26	
27	
28	
29	
30 21	
32	
33	
34	
35	
36	
37	
38	
39	
40 41	
41	
43	
44	
45	
46	
47	
48	
49 50	
50	
52	
53	
54	
55	
56	
57	
58	
59	
60	

In its present form, the abstract appears to lack specificity and clarity regarding the study's purpose, adopted methodology, results and key findings, and the expression of the originality of the work. The abstract should provide a concise yet comprehensive overview, clearly outlining the aim of the study, describing the methodological approach used, highlighting key findings, and emphasising the original contributions of this research.	The Abstract has been reviewed and revised in light of the comments.	
The originality of this study should be more specifically presented in the abstract and introduction sections. The literature lacks critical reviews of digital	The text has been edited and new text added to these sections (Abstract & lines 109 – 113). The work processes of the BIM Risk Library and	
The current section only discusses the practice of innovation delivery and social practice theory. But the link between digital innovation delivery, i.e., the BIM risk library, is not sufficiently presented.	the analysis of those processes using social practice theory is the main focus of the paper and is not presented in the Literature Review section. The Literature Review sections have been reviewed and improved in places (see comment above).	
	A further literature review was done in light of this comment, but no further relevant papers regarding application of social practice theory were identified to integrate into the text. If the reviewer believes there is a specific omission regarding specific reference/s, the author/s would be pleased to integrate them into the text as necessary.	
Lines 137: "analysis of exemplar "successful" innovations can provide the empirical data" discussing some examples here would be beneficial to prove your argument.	The argument is from Söderlund, and is not the author/s own.	
In the literature review section, the paper initiates a discussion on practice theory starting from line 147 onwards, wherein the authors delve into examples illustrating epistemological and ontological uncertainties. However, the current exposition, particularly in lines 150 and 155, lacks precision, leaving questions about the link between the examples and their contribution in the broader argument. To enhance clarity and conciseness, it is recommended to refine this part, ensuring they are both comprehensive and directly relevant to the overarching points regarding epistemological and ontological uncertainties.	The criticism is that the section of text lacks precision in noting the deficiencies in practice theory studies. These deficiencies are as reported by published work in the field. For example, O`Keeffe et al. note it is the "doing" and "performance" of practice that should be the basis of practice theory analysis, whilst Marshall notes that practice theorists often fail to provide empirically sound demonstrations of theoretical propositions in action. However, further text has been added to the section to clarify the argument being made (lines 188 – 190).	
http://mc.manuscrip	otcentral.com/ecaam	

The overall presentation of the methodology is	The methodology section has been reviewed
okay. However, it needs to be more organised	and revised in light of the comment.
and concise yet comprehensive.	
0	
It is suggested to include aspects that were	Views of the innovation from the questionnaire
raised via questionnaire survey and interviews	survey and interviews have been integrated
in detail. Does the survey include only 13	into the paper (lines 474; 480- 484). An
participants? If yes, what is the justification for	additional reference to the survey has been
generalising the finding in Line 439 (the survey	added (line 485 486) for readers wishing to
revealed that 85% of experts agreed or strongly	follow up this issue.
agreed).	
	Regarding the survey, and the 13 valid
	responses, further text has been added to the
	paper to support the validity of presenting
	views from the 13 responses (lines 476 - 480).
	A supporting reference for the use of such a
	sampling number is also provided (line 478).
Why were two different data collection	The data collection procedure was
methods employed (with the same set of	comprehensive in that all pilot projects using
participants)?	the innovation together with many expert
	practitioners were questioned and surveyed for
The data collection procedure should be more	their opinion.
comprehensive.	
	Further text has been added (lines 469; 476 –
	480; 485 -486) to explain why a survey
	instrument and interviews were used.
The discussion should not dominate the new	The discussion has been revised in order to
literature: however, the key finding should be	improve communication of the key findings of
supported with relevant evidence.	the paper. In addition to changes in the text, a
In some cases, the discussion could be further	new figure 6 has been added to the Discussion
enhanced by providing some practical examples	to achieve this.
that explain the results of this study.	
Please check for typos and minor syntax errors.	The paper has been checked and corrected
	where necessary.
http://mc mapuscrin	tcentral com/ecaam
http://mc.manuscrip	

	Advancing social practice understandings of digital innovation delivery in construction
2	project management
3	Abstract
4	Purpose
5	The paper purpose is to applies social practice theory to clarify the process of innovation design
6	and delivery from design and delivery in construction project management contexts through
7	examination of one successful digital innovation: the BIM risk library. The paper clarifies the
8	practices surrounding construction innovation and provides a schema useful for practitioners
9	and technology designers builds upon scholarship in the field, contributing to the body of
10	knowledge by extending existing frameworks of innovation diffusion through a social practice
11	analysis.
12	
13	Design/methodology/approach
14	The paper applies Information is drawn from a research project that delivered a new digital
15	innovation for industry to improve construction health and safety. Application of Schatzki's
16	'organisation of practice' concepts to <u>athe construction project</u> innovation <u>to clarify how the</u>
17	process provides insights into the practice of innovation delivery for construction project
18	managementrevolves around understandings, rules and teleoaffectivities (emotive behaviours).
19	Sources for the study include notes from meetings, workshops with experts and the shared
20	artefacts of innovation.
21	
22	Findings
23	Findings include The practice of innovation design and delivery are clarified through a social
24	practice analysis: a distinct "field of practice" and for innovation delivery together with a
I	

"schema" of generalizable prescriptions and preferences for innovation delivery to be followed by innovatorsbeing presented.

Originality

The social practice analysis of onea successful construction project innovation is an original contribution to the body of knowledge, ... The paper addings a level of detail regarding innovation design and delivery often missing from previous reported research.

Practical implications

The paper informs the practice and process of innovation design and delivery; for technology developers and researchers in the field. The insights clarify how collective understandings of an innovation and rules of use evolve over time, becoming formalized into contracts, agreements and workplans. Practically, <u>The</u>processes whereby innovation 'sayings' evolve into innovation 'doings' are clarified:; a schema for innovation delivery detailing ing prescriptions and preferences of practitioners and innovation developers being presented being presented.

Keywords: innovation studies; BIM; building information modelling; digitalisation; projects-as-practice; social practices; health and safety; data engineering.

Introduction

Managing an innovation is as important as the innovation development process itself (Bamel et al. 2023); construction project management innovations being interventions into existing complex working practices (Liu et al. 2018). As such, aligning an innovation to those practices to minimise disruption and continue business-as-usual processes is important. Additionally, the process of innovation adoption whereby an innovation becomes part of everyday project-based working practice remains unclear: innovation adoption being a complex business, with little to guide practitioners through the messy and contingent process of adoption and diffusion (Harty, 2005). Therefore, understanding how innovations are delivered is as-important for improving innovation practice itself (Havenid et al. 2019). Whilst Winch (1998) notes that more case studies of trajectories of innovation are required in order to identify who generates new ideas and how they are managed into "good currency", the process of innovation design, prototyping, testing and deployment requires a theoretical and conceptual unpacking using empirical evidence. This paper makes a contribution by examining how one successful digital

innovation was developed and deployed with several project-based organizations to become part of their everyday working practices. The innovation (the BIM Risk Library) was recipient of several industry awards (buildingSMART, 2020; Construction Computing Award, 2021) and therefore provides valid data regarding a "successful innovation". Amongst the key questions posed by the paper are: what contributes to successful innovation deployment in aconstruction project management context? What are the drivers and inhibitors of successful innovation delivery? How can the innovation delivery process be conceptualised and better understood?

The paper adopts a projects-as-practice (Blomquist et al. 2010) approach and uses social practice theory (Schatzki, 2001) to review the process of innovation delivery. The case for adopting a projects-as-practice approach for understanding what occurs on projects has been made for some time (c.f. Koch et al. 2019; Blomquist et al., 2010; Clegg et al. 2018). In outlining a projects-as-practice approach to conducting research in project management, Blomquist et al. (2010) note that project management is an immature field of research, where many of the normative and traditional contributions are insubstantial when it comes to understanding what is really occurring in projects (see Winter et al. 2006). Clegg et al. (2018) argue that practice-based research provides a methodological lens to explore the reality of project management work; the authors noting that practice-based perspectives are under-represented in project portfolio management (PPM) research, whilst presenting an agenda for further practice-based research, including its discursivity, representation, dynamic capabilities, leadership and materiality. This paper follows this tradition by employing a "social practice" theoretical perspective to previous established frameworks for innovation diffusion; the framework of Steiber and Alänge (2015) being providing a foundation upon which a social practice analysis of processes and interactions may be overlaid.

The paper adopts a granular analysis of the discussions and interactions between the innovation stakeholders to identify the concepts characterizing a 'practice of innovation delivery' that pivot around rules, understandings and teleoaffectivities (emotive behaviours). The analysis of the work around one successful digital innovation (the BIM Risk Library) -leads to identification of specifiable enacted schemas (i.e. practitioner preferences and generalizable procedures) to be addressed by innovation developers. As a result, it is argued that the practice of innovation delivery in construction contexts is noted to be is distinctive and governed by specifiable preferences and prescriptions (Knorr Cetina, 2001): understanding construction working practices and aligning an innovation to those practices being critical for successful innovation development design and deployment. The originality of the work arises from the analysis of each step of the innovation design and delivery process and its' associated artefacts using Schatzki's practice theory concepts. The contributions which result, around sayings, formalisations, doings and a schema for innovation delivery add to the body of knowledge concerning construction project innovation.

The paper is organised as follows. A literature review scopes out understandings of the practice of innovation delivery in construction, identifying gaps in knowledge and issues requiring The projects-as-practice literature and social practice theory of Theodore clarifications. Schatzki are then presented to provide theoretical orientation and foundation for the study. A methodology section describing the research approach adopted is followed by presentation of the innovation: the BIM risk library: a collaboration between the University of Manchester (UK), the UK regulator for workplace health and safety in the UK (the Health and Safety Executive – HSE), several construction companies and a building information modelling The A-high-level review of work concerning innovation (BIM) software provider. development work is complimented by deeper analysis of the collaborative agreements between partner organizations and the data management workflow employed for innovation

data harvesting and development. that emerged following discussions between research partner organisations. Collectively, this evidence distils the 'field of practice' (Schatzki, 1996) of innovation delivery in construction with an "enacted schema" for innovation delivery coming into focus from the analysis. A following discussion notes how the social practice findings align and enhance build upon the framework of innovation diffusion of Steiber and Alänge (2015): innovation evolution being understood in social practice terms, with a schema²² for innovation delivery and relations between "sayings", "formalisations" and "doings" being presented. A closing conclusion draws the insights of the paper together.

134 Und

Understanding the Practice of Innovation Delivery

Recent published work regarding innovation in the construction industry has addressed a variety of subjects, including the effect of supply chain innovation on competitive advantage (Afraz et al. 2021), open innovation and the enhancement of productivity (Greco et al. 2021), innovation ecosystems and collaboration in infrastructure projects (Vosman et al. 2023) and boundary-spanning for managing digital innovation in the AEC sector (Azzouz and Papadonikolaki, 2020). Whilst these contributions have added to the body of knowledge concerning innovations in construction, there remains a need to understand the practice of innovation delivery. In this respect, whilst Whilst diffusion of innovations across firms has been recognised as a non-linear process (Shibeika and Harty, 2015), academic-research has also examined how companies organise for digitalization (Morgan, 2019). However, understandings of the practice of innovation delivery are opaque and ambiguous: understanding the trajectory of a digital innovation (Winch, 1998), and how an innovation transforms from research idea to a fully-fledged application being much less understood. It has been noted that the relationship between system developers and potential industry users can be contentious (Liu et al. 2018), with challenges towards industry uptake of innovations being considerable

(Oesterreich and Teuteberg, 2016). Whilst technical, practical and social barriers to innovation uptake are commonly evident (Collinge et al. 2020a), Blindenbach and Van Den Ende (2010) note that project-based firms have more difficulty innovating their own products, services and operations as compared to when they innovate for their clients. As a result, suitable engagement strategies and appropriate working relationships with technology developers need to be established. Blindenbach and Van Den Ende (2010) also note that the effects of specific management practices on project performance are different, particularly the effects of planning, multidisciplinary teams and heavyweight project leaders. The authors note that differences in firm characteristics provide an explanation for the findings; an implication for the innovation management literature being that "best" practices for innovation management are firm dependent. Söderlund (2004) points out that process and real-time case studies and project organization issues are of particular interest, and therefore analysis of exemplar "successful" innovations can provide the empirical data needed for such studies. -

Cicmil (2006, p. 36) asserts that project theory would be served by a qualitative approach with a critical interpretive lens that might 'generate alternative understandings of what goes on in project practice and how practitioners participate in and manage complex organizational arrangements. Consequently, examination of what people do in within the context of project contexts is a valid analytical approach rather than a confirmation of best practice models for project management (cf. Geertz, 1973). This aligns with Blomquist et al. (2010), who argue for a practice perspective (Schatzki, Knorr Cetina, & von Savigny, 2001) that begins with individual actions and asks what overall models and concepts result from those actions.

Practice theory has been used to study interactions in construction project management
 contexts previously, for example to understand digital integration of built-environment
 practices (Çıdık et al. 2017) and collaboration in construction (Connaughton and Collinge,
 2021), but epistemological and ontological uncertainty remains, particularly regarding the

delivery of innovations in construction project management. For example, whilst Bresnen (2009) argues that a 'practice' perspective allows us to focus on what happens in actuality: understanding practices being potentially more informative than industry-wide models of ideal processes, Marshall (2014, p.110) notes that practice theorists often fail to provide empirically sound demonstrations of theoretical propositions in action, thus limiting the usefulness of ideas. For example, the practice theory objective to clarify the emergent and ongoing constitution of social orders and change through situated practices has not been substantially engaged with. Similarly, whilst Blomquist et al. (2010) propose a 'project-as-practice' approach for understanding the complexities of working practices occurring in projects, noting the specific challenges for the researcher, O'Keeffe et al. (2015) comment that it is the 'doing' and 'performance' that should be the basis of analysis in practice theories when stating, 'Practice theory refocuses attention on the social nature of organized activities and how these relations are mediated by the materialities within which they become enmeshed.' (p. 416). This paper directly addresses the comments of Marshall (2014) and O'Keeffe et al. (2015) above by providing an empirical demonstration of practice theory concepts in action, and by highlighting

190 <u>the "doing" and "performance" of innovation practice in a construction context.</u>

Whilst the abovese reflections highlight the importance of empirical evidence for informing theoretical understanding of practices, in terms of models of innovation, important work has already been conducted in the field. Rogers (1995) notes six innovation-characteristics that matter for its diffusion in a social system; these being: its relative advantage for the adopter, its compatibility with the pre-existing system, its complexity or difficulty to learn, its testability, its potential for re-inventions, and its observed effects. Building on the work of Rogers, Steiber and Alänge (2015) present an analytical framework for diffusion of innovations (figure 1). The framework includes five steps that a firm goes through when searching for, adopting, and implementing, either a technical or organizational innovation: the five steps being desirability,
feasibility, first trial, implementing, and sustaining. These five steps are in turn dependent on
a firm's organizational improvement trajectory, which is cumulative and path-dependent due
to increased return on investment on existing innovations, as well as on internal inertia among
board members, top managers and employees. The five steps are all subject to three sets of
influencing factors: characteristics of the innovation, the internal context, and external context
(that include diffusion mechanisms).

208 [Figure 1]

In figure 1, the five steps are visualized as a circular pattern around an organizational improvement trajectory. The framework of Steiber and Alänge (2015) provides a validated model for the digital innovation delivery process by which activities could be analysed or planned. More recently, Steiber et al. (2021) explored the digitization process for industrial firms, presenting a validated framework based on innovation diffusion theories and case study evidence, with inhibitors and drivers of digital transformation being identified. As Steiber et al. (2021) note, diverse theoretical perspectives and new research methodologies are needed in order to understand the major challenges that block or hinder firms' deployment of digital technologies. These insights reveal how there remains a need to understand the practice of innovation design, development and deployment in clearer terms.

221 Social Practice Theory

Theodore Schatzki's social practice theory (1996; 2002) enables a domain to be examined as a
'field of practices' with ever evolving 'nexuses of doings and sayings' (Schatzki, 1996).
Although Schatzki (2001) notes that practice can refer to both individual performed activities

and a guiding principle for activities, Knorr Cetina (2001) observes that the majority of scholarsagree with the definition of practices as:

227 'recurrent processes governed by specifiable schemata of preferences and prescriptions'
228 (p.175)

Schatzki's theory of practice (1996; 2002) is generally considered as one of 5 current approaches to studying practice (other approaches being communities of practice; activity theory; ethnomethodology and discourse analysis: Nicolini, 2012). Nicolini (2012) encourages researchers to draw selectively on concepts from different approaches to illuminate various aspects of practice, proposing a "toolkit approach" for empirical work. Such flexibility makes practice theory a potentially attractive methodological approach, whilst also remaining challenging. As Schatzki (2012) comments,

238 'The world according to practice theory offers much to investigate. There are practices, 239 arrangements, activities, bundles and constellations. There are questions about which of these 240 exist, when and where, their details, how they work and unfold, how they can be designed or 241 altered, and how to prepare people to enter them.' (p.23)

3 242

Schatzki (1996) maintains that practice is a "temporally unfolding and spatially dispersed nexus of doings and sayings, embracing notions of activity and organization" that make up people's "horizons of intelligibility" (Nicolini, 2012). Caldwell (2012) maintains that Schatzki's ambition is to ensure practices are ontologically more fundamental than language and discourse: practice actions (the "*doings*") taking priority over practice language (the "*sayings*"). Consequently, Schatzki gravitates toward a concept of agency as "doing", underplaying the role of language and discourse (Schatzki, 2002); in this scheme verbal and Page 57 of 86

non-verbal signs are part of the "doing" of a practice rather than its principal components. Schatzki therefore distances his theory from those of Bourdieu and Giddens by rejecting Bourdieu's concept of "habitus" and Giddens concept of "practical consciousness" (Caldwell, 2012).

Whilst practice theorists generally maintain the social as a field of embodied, interwoven practices organised around shared practical understandings, the concept of "field of practice" or "site of the social" (Schatzki 2001) distinguishes Schatzki's theory from those of others (c.f. O'Keeffe et al., 2015; Nicolini, 2012). This notion can best be described as the *context* within which practices occur: a "fields of practice" analysis being one that: a) develops an account of practices and/or b) treats the field of practice as the place to study the nature and transformation of their subject matter. This ontology comprises an array of orders and arrangements of people, artefacts and entities that constitute the organized activities of that place (Schatzki, 2001): the practices within a context being made explicit to identify the "practice-arrangement bundles" of which those practices are part (O'Keeffe et al. 2015). As Schatzki (2013) states:

'The coalescence of a practice involves some combination of (1) the emergence of common rules (explicit formulations) in the light of which actors proceed, (2) the crystallization of sets of prescribed or acceptable ends, tasks and actions, (3) the development of common practical understandings, and (4) the distillation of common general understandings.' (p.37)

With a social practice approach, examination of the digital innovation experience cannot be understood separately from its' context: that context being a "field of practices" within which the innovation resides. As stated earlier, there is value in clarifying what constitutes a supportive context for delivery of an innovation. Schatzki's classifies the 'organization of practice' into 4 concepts (Table 1).

[Table 1]

Referring to Table 1, an action belongs to a practice if it expresses one of the understandings, rules or teleoaffective conceptsthat organize that practice, with activities forming a nexus in that they are organised and connect together through such relations as causality and intentional directedness (Schatzki, 2012, p.15). Of the above concepts, teleoaffectivities may be the most difficult to conceptualise. It is best understood by conceding that separate practices possess their own sets of acceptable and enjoined intentions, actions, emotions and moods (Schatzki, 1996, 101). In construction, intentions or goals are often influenced or directed by normative and emotional behaviour (Caldwell, 2012, 290), with certain teleoaffectivities being associated with specific practices. For example, a project team may express surprise and shock at a supplier quote five times above the going rate. Teleoaffectivities are those emotions, moods and actions that become associated with certain practices.

For an innovation, teleoaffectivities (i.e. positive or negative reactions) are potentially significant to the success or failure of the innovation. For example, surprise and joy at being able to perform a task not previously possible would be a positive teleoaffectivity, whereas frustration or confusion about innovation use would be a negative teleoafectivity. Therefore, developers must be aware of teleoaffectivities and build-in processes to ensure possible negative reactions are mitigated. This can be done via engagement activities, workshops and pre-piloting work.

Schatzki (2002) also states that "human agency must be understood as something contained in practices" (i.e. as the performance of doings and sayings that constitute the actions that

300 compose practices" p.240). Similarly to Schatzi, Sewell (1992), a practice theory scholar, 301 understands practices as enacted schemas (i.e. generalizable procedures) that can be transposed 302 from one domain to another, but that also organise and constrain other schemas. This paper 303 takes forward these ideas and Schatzki's 'organization of practice' concepts to investigate the 304 practice of digital innovation delivery on the BIM Risk Library.

- 306 Methodological Approach
- 307 <u>Theoretical Positioning</u>

Theoretically, the research may be categorised as "social-science based" and "process-oriented" rather than "engineering-focused" based research (see Blomquist et al, 2020, p.6). As a 'theories-in-use' contribution (Söderlund, 2004), the focus on project processes enables a theory and its' associated concepts to be applied and examined objectively. In this case, the paper applies social practice theory and the concepts of Schatzki (Table 1) to understand the process of innovation delivery, such an analysis taking into account the complexities of human life (c.f. Cicmil and Hodgson, 2006, p.10). Such an examination of social processes at work (i.e. how understandings, emotions and rules emerge, evolve and become formalized) addresses the need for more fine-grained studies of the microactivities occurring, as noted by Blomquist et al. (2010, p.7). Methodologically, this paper follows the lead of O'Keeffe et al. (2015) in focusing upon the "doing" or "performance" of innovation, and the processes leading up to such "doings" in a construction project management context.

320 <u>Practical Details</u>

321 Practically, in terms of methodological steps, Ffigure 2 presents the overall flowchart of work
322 from the BIM Risk Library project. A series of 'legal artefacts' associated with phases of work
323 activity are also highlighted: these legal artefacts being critical to the mobilisation of the

innovation. Methodologically, to conduct a social practice analysis of the work occurring, each separate work activity was examined by the researcher using the 'organization of practices' concepts of Schatzki (1996) (Table 1). This meant identification of how rules, understandings (both practical and general) and teleoaffectivities (emotive behaviours) manifested through spoken dialogue, shared artefacts and plans of action to be taken forward. Sources of data included notes from meetings, and the workshops with industry practitioners taken by the researcher that captured thoughts and reactions to the innovation by industry experts, and the shared artefacts that played prominent roles in the innovation design and delivery journey (i.e. collaborative agreements; data management workflow; user guide; software tool). ---The multiple meetings between research team and industry partners were recorded on a Trello board, providing a further source of data. , as did the artefacts that emerged as part of the innovation journey (collaborative agreements; data management workflow; user guide; software tool). As will be noted, the shared artefacts, such as the collaborative agreements and data management workflow formalised how the innovation would operate and function. A post-pilot survey of practitioners and interviews with individuals provided a further source of data for analysis. The researcher examined the data chronologically, in logical order, as noted on the figure 2 flowchart of work activities. <u>The paper also presents the research findings in</u> the same way.

 Regarding the meetings and workshops <u>with industry</u>, <u>attended by the researcher and captured</u> via notes, it should be noted that discussions (i.e. spoken words) between stakeholders revolved around the functioning of the innovation, how it should/could be used and how it would potentially impact (positively or negatively) <u>construction</u> project work practices. Whilst acknowledging that such conversations and 'messy talk' of professionals are intrinsically a part of collaboration using BIM (Dossick and Neff, 2011), the focus of analysis was the

'organization of practice' concepts of Schatzki (Table 1) and how and when they manifested themselves. As noted, this manifestation would be through spoken dialogue, shared artefacts and plans of action to be taken forward. Such a microanalysis of processes takes into account the complexities of human life for a practice-oriented study (c.f. Cicmil and Hodgson, 2006, p.10): the deeper examination of interactions occurring also addressing the need for fine-grained studies of the work occurring (Blomquist et al. 2010, p.7). As noted in the following sections, the social practice analysis facilitateds clarifications of how 'sayings' transform into 'doings' of innovation delivery and use; the preferences of practitioners leading to a provisional 'schema for innovation' for a construction context.

359 [Figure 2]

361 Innovation Analysis

The BIM Risk Library project commenced in 2019 under the Discovering Safety research programme: a collaboration between the Thomas Ashton Institute (TAI, 2020), the University of Manchester and the Health and Safety Executive (HSE), UK regulator of workplace health and safety. Aiming to assist design and construction professionals to better manage health and safety via proactive use of digital technologies and mobilisation of information resources via a Prevention Through Design (PtD) approach (Yuan et al. 2019), research work resulted in a novel BIM-based tool developed within a commercial cloud-based platform (the BIM Risk Library). Four different companies, with a total of six separate construction projects partnered with the research project. Each project agreed to use the innovation, formalizing their commitment via signed collaborative agreements. The projects had an average duration of four months, and ranged in type (i.e. residential; industrial; commercial; infrastructure projects). By way of illustration, a screenshot of the BIM risk library tool is given in figure 3.

[Figure 3]

figure 2.

Separate work activities of the BIM risk library are now examined in sequence, as shown on

Steering Committee Formulation

A Steering Committee was setup for the BIM Risk library composed of research project stakeholders. A primary source of membership was the BIM 4 Health and Safety Group (BIM4H&S): a UK industry group focused on digital technologies to improve construction health and safety. This group was instrumental in work leading to the industry standard PAS 1192-6: 2018 'Specification for collaborative sharing and use of structured health and safety information using BIM' (BSI, 2018): a working link with this group therefore being important as the innovation addressed digital technologies to improve construction health and safety. Frequent communication with the Steering Committee membership ensured that both general understandings and practical understandings of the innovation were discussed openly from an early stage. As research team ideas regarding the innovation evolved, these could be bounced off Steering Committee members; such interactions being an essential social aspect of innovation development. Rules around innovation use were also discussed and clarified with industry figures in a collaborative way at meetings. Amongst the questions asked were: how would the innovation impact existing project ways of working? What training and instruction would be provided? And how long would the innovation be mobilised? How could data be drawn from live projects and anonymised? These practical questions were critical for the further development of the innovation. The Steering Committee were consulted are regular

intervals through the research project; the link being vital for *understandings* and *rules* of use to emerge.

Ontology and ERIC matrix

A foundational idea of the BIM Risk Library was formulation of an ontology to map out the elements that make up a risk scenario requiring specific treatments: the ontology concepts being rooted in industry guidance and previous academic work in the field. Details of the ontology and matrix are provided in Collinge et al. (2020b). The ontology embodied rules regarding types of data to be collected and the relations between them. Validation of the ontology and matrix came from the Steering Committee and BIM4 H&S group, which again enabled general understandings and practical understandings regarding the foundational ontology and its' conceptual underpinning to be reviewed, and confirmed as valid. The research team made notes of such discussions at the time for future reference.

Industry Workshops

The ontology was mobilised in industry workshops to populate nine risk scenarios with relevant treatments. The workshops affirmed the validity of the ontology and the overall approach of the research; both general and practical understandings of the conceptual ideas being reviewed and discussed by practitioners at the workshops. It should be noted that no contracts or specialised procedures were required to set up the workshops: individuals joined through professional interest and commitment to improving construction health and safety. Resulting from the workshops, a dataset of 9 risk scenarios and 162 treatments were identified to eliminate, reduce, inform, or control (ERIC) the risks covering four different stages of the project lifecycle: preliminary design, detail design, pre-construction, and during construction. The industry workshops maintained and consolidated the relationship with project practitioners.

422 Prototype Innovation

 The dataset of 9 risk scenarios and 162 mitigations provided the basis for the prototype innovation: the dataset being saved as a comma-separated values (CSV) file. At this stage of innovation development, it should be noted that general understandings, practical *understandings* and *rules* regarding the innovation had been discussed several times over with industry experts. *Rules* regarding innovation use had been captured in notes to be taken forward into discussions with software developers. Both positive and negative potential reactions to the innovation by designers and companies (i.e. *teleoaffectivites*) had also been remarked upon several times over in meetings. The research team recognised the importance of addressing these in the work going forward.

432 Software development

Following a review of BIM software providers on the market, one specific software vendor was selected and a legal contract set-up between research partners and the vendor so the ontology and dataset could be hosted on a BIM software platform via a specifically designed interface (figure 3). This important step would allow a sharing of the innovation with industry, facilitating further population of the library with data by designers working on multiple projects. The contract with the software vendor was vital to this task: an insight here being the need to reserve project funds for software development (if expertise/capability is not within the research team).

The software vendor contract formalized the general/practical understandings and rules of use of the innovation, previously discussed in workshops, meetings, etc. Therefore, the "sayings" around innovation use were formalized in written form: specific "rules" that were to be codified into interface functionality of the software. For example, the preference to present project designers with a series of optional treatments for different risk scenarios rather than definitive

446 solutions was codified into interface use (see figure 3). Both *general* and *practical* 447 *understandings* and *rules* of use of the innovation were later to be made explicit in a printable 448 User-Guide for designers. *Teleoaffectivities* (emotive reactions to the innovation) could only 449 partially be addressed during this stage of work as the research team and software developers 450 attempted to predict possible positive and negative reactions when the innovation would be in 451 use. Further activities needed to be done to address such issues.

452 Innovation Piloting

Having developed the prototype, it was necessary to pilot it to validate work completed and begin the process of collecting more risks/treatments. Piloting began in Summer 2020 with 4 industry partners and 6 projects. A dedicated support service was setup to assist pilot projects with any questions they had about using the innovation – this service assisting with *understandings* and *rules of use* questions. Whilst each pilot was uniquely different, they all shared a common commitment to identify risks and improve health and safety. It was through piloting that opinion of the innovation was collected, with positive and negative reactions being captured via informal feedback and a more formal survey and interviews. Piloting was therefore very important: changes and amendments to the innovation could be usefully actioned prior to a much larger rollout to industry. By the end of the piloting phase (June 2021), a CSV file containing 401 treatment prompts for 31 risk scenarios related to 11 different risk categories had been added to the BIM risk library. A number of legal artefacts were associated with the piloting work (figure 2). These are discussed in the following section.

466 Innovation Evaluation

Following piloting and collection of data over a 5 month period, an evaluation process was
initiated. A questionnaire survey and interviews with users provided opinions about the digital
innovation. <u>The interviews allowed more detailed opinions of the innovation from industry</u>

470 <u>users of the innovation to be captured</u>. Table 2 gives demographic information regarding the 471 survey participants and interviewees.

472 [Table 2]

The survey revealed that 85% of experts agreed or strongly agreed that the innovation could positively impact design decisions and support selection of appropriate treatments to mitigate health and safety risks. Although 13 is not a large number of survey respondents, the positive comments of construction experts validated the innovation. Furthermore, such a sample number aligns with the guidance of Hallowell and Gambatese (2010), who note the value of small sampling numbers, where a minimum of eight experts is recommended to validate a research proposition. Furthermore, interviewees perceived that adding safety information to a BIM model, and pinpointing risks added value to their -safety management processes. Another benefit noted was the structured approach to inputting risk data and the opportunity for collaborative work which the innovation enabled. As part of the evaluation, *understandings*, practicalities of the innovation, *rules* of use and *teleoaffectivities* were all queried through questionnaire survey and interview questions. For further information regarding the innovation survey, see Osorio-Sandoval et al. 2021). -

Publicity

The innovation was presented at several national and international events (e.g. Digital Construction Week 2019; BIM for Water event 2019) and subsequently, won two prizes (buildingSMART 2020; Construction Computing Award 2021): these prizes confirming the value of the innovation to industry. Publicity is a vital aspect for any successful innovation, providing opportunity to communicate positive opinions and teleoaffectivity emotions about an innovation to a wider audience.

Page 67 of 86

As noted on figure 2, several legal artefacts emerged as innovation work progressed. Examination of the Collaborative agreements and Data Management Workflow provide evidence regarding how an enactment of a distinct "schema" for innovation delivery became tangible in written form and procedural guidelines.

Collaborative Agreements

Collaborative agreements between industry partners, the HSE and the University detailed specific information and instructions concerning use of the innovation and creation of the BIM Risk Library. These were approved by each party's legal teams and signed by organisational senior executives. The agreements covered issues such as data protection and anonymisation of data shared with the library. Provision of free software pilot licences to cover the pilot period and specific terms/conditions regarding long term use of data were also detailed. Support to be provided to industry partners, including training and instruction to assist users, and plug-in development to facilitate innovation use with different software packages were also specified in the agreements. A Data Management-Workflow (figure 4) visualizing the data collection process for the BIM risk library was included in the agreements. With the agreements we see a shift from innovation "sayings" to written formalisations of understandings and rules of use, prior to actual "doings" taking place.

As noted, the agreements formalise and make explicit the shared thinking around the innovation (i.e. general/practical understandings of it; rules concerning its' use) already established amongst stakeholders; an absence of shared thinking being identified as potentially detrimental to collaboration if not established (Aarseth et al. 2012). For innovation developers, obtaining formal agreement to use an innovation is crucially important, so the language used to compose the collaborative agreement needs to be worded correctly. The collaborative agreements meet the points noted by Lokuge et al. (2019) as being important regarding organizational readiness

for digital innovation: namely, resource readiness, IT readiness, cognitive readiness, partnership readiness, innovation valance, cultural readiness and strategic readiness.

Additionally, the collaborative agreements brought order to the innovation process so that all parties know their roles and responsibilities going forward, facilitating the transformation of the digital innovation from a prototype to technology in use. The underlying parameters form part of an "enacted schema" for innovation delivery (see Discussion), facilitating a collective goal and creating a team ethos and general understanding of objectives (c.f. Uhl-Bien et al. 2007).

Data Management Workflow

Intrinsic to innovation development was the Data Management Workflow for retrieval, review, anonymization and uploading of data to the BIM risk library. This workflow (figure 4) was integrated into the Collaborative agreements and embodied in processual terms the *rules* and preferences of practitioners regarding innovation use on their projects. For example, the workflow details how risk scenarios and treatments inputted by pilot projects were to be retrieved periodically from the cloud by the research team to be anonymized by removal of sensitive or project-specific information. The overall workflow shows how data was to be collected in a non-intrusive way: this being an effective and important provision of practitioners using the innovation. The workflow was a necessary and informative device to re-assure practitioners how the innovation would practically function, and how data drawn from projects would input into the growing BIM risk library. It complimented and clarified information given in the Collaborative agreements: clear communication on how an innovation will function in the project management context being vital.

543 [Figure 4]

The workflow also enacting the preferences of industry by defining the operation of the innovation in a project management context: data security; non-intrusive interactions with practitioners; a finite timespan of work activity; an easy to understand plan of action all being clarified. These preferred preferences of innovation users can be understood as being part of the enacted schema for innovation delivery (<u>Figure 6Table 3</u>).

551 Discussion

The review of the BIM Risk library work activities, together with the collaborative agreements and data management workflow evidences the presence of Schatzki's 'organisation of practice' concepts (general/practical understandings; rules; teleoaffectivities – emotive behaviours) that together -characterise a distinct practice. The evidence indicates how "sayings" regarding an innovation evolve into "doings" via formalised agreements and contracts between parties. Such a transformation is necessary for companies operating in competitive and data sensitive environments. Therefore, whilst the digital innovation journey has been recognised as an "ongoing social accomplishment" pivoting around "negotiated interactions between the main parties" (Bresnen, 2009, p.931), a social practice analysis brings greater clarity to the processes occurring in terms of the human behavioural aspects underpinning an innovation. The findings enable further reflections on the existing literature in terms of theoretical and practical contributions.

564 Theoretical Contribution

The social practice analysis of interactions and artefacts associated with the BIM <u>r</u>Risk <u>l</u>library innovation align with the framework of innovation diffusion of Steiber and Alänge (2015): the five step process <u>of that model</u> (desirability; feasibility; first trial; implementing; sustaining)

being evidenced on the BIM rRisk lLibrary project in terms of the work activities followed. The social practice analysis adds a layer of detail to this framework in terms of how understandings emerge, rules are established, formal agreements are made and emotive behaviours manifest. With regards to Rogers (1995) six innovation-characteristics that matter for its' diffusion in a social system (i.e. relative advantage for the adopter; compatibility with existing system; complexity/difficulty to learn; testability; potential re-inventions; observed effects), the social practice analysis provided tangible evidence of how each of these are linked to shared understandings, rules and emotive behaviours. A key insight is the importance of relational conditions underpinning innovation use and the need for good working relationships between partners. That mutual dependencies can result in instance of friction, satisfaction or other emotive behaviours (teleoaffectivities) is a reality when using an innovation. The various work activities occurring prior to innovation launch established positive relational conditions (formalised via the collaborative agreements). The empirical evidence suggests that digital transformation is not the simple application of a new technology into a project context, but an all-round transformation of project processes that connect with management, business and organization methods. The paper illustrated how activities leading to innovation development together with the collaborative agreements and data workflow provided a solid foundation for effective successful innovation delivery.

It has been noted that t<u>T</u>he interplay between <u>the</u> dynamic process of innovation use and more routinized processes of project management work (Bygballe et al., 2016) <u>has been noted is as</u> an important one. The paper <u>insights</u>-illustrates how this dynamic can be played out: the <u>BIM</u> <u>risk library</u> Data <u>WorkflowManagement Plan</u> (figure 4) linking to issues of importance for practitioners under pressure to deliver work to time and budget whilst minimising disruption to <u>existing</u>-project processes. Innovation developers and practitioners need to enter into trustful
relationships in order for innovations to be given a chance for success; legal artefacts like collaborative agreements enable innovations to be tested, developed and deployed in transparent ways. The insights from the BIM risk library of the paper enable the practice of innovation delivery to be clarified (figure 5) in terms of how "sayings" transform into "doings". As a result, the construction context for innovation may be understood as a distinct "field of practices" (Schatzki, 1996, 2001) with its' own distinctive schema of "preferences and prescriptions" (Knorr Cetina, 2001) of developers and practitioners, as highlighted in figure 6. Reference to such a schema is useful for both technology developers and innovation developers addressing practicality issues. [Figure 5] **Practical Contribution** Whilst it has been noted that dDigital innovations demand changes to working practices (c.f. Cicmil and Marshall, 2005), with new practices emerging as people coordinate in new ways (Cicmil et al. 2006; Sage et al. 2012). - A social practice analysis clarifies how this happens in actuality practice (in terms of understandings, rules and emotive behaviours). Such a study extends understanding of the decision-making processes managers use in the adoption of new technologies and the strategies used to deal with uncertainty (Mitropoulos and Tatum, 1999). On the BIM Risk library, industry partners signed collaborative agreements following extended periods of discussion with research partners, establishing their understandings and agreed parameters of innovation use. Deriving from the BIM risk library, Ffigure 5 illustrates how such discussions formalise into agreements prior to innovation use. As indicated in figure 5, the practice of innovation delivery and its' associated sayings, doings and formalisations may

 617 be visualised to have a relationship within which the preferences of stakeholders are emergent,618 formalised and enacted upon.

If we follow Knorr Certina's (2001) definition of practices as "recurrent processes governed by specifiable schemata of preferences and prescriptions", we can begin to identify an underlying schema of preferences and prescriptions for digital innovation delivery in construction. Analysis of the BIM Risk Library assists in such a process and adds a level of social understanding lacking in models such as the technology-acceptance model (TAM) that fail to recognise user acceptance over time (Liu et al. 2018). Figure 6 Table 3 draws together insights from the empirical evidence to present an enacted schema for innovation delivery in construction. It is contended that the schema should be reflected and enacted upon in order to make an innovation successful in a construction context. Additionally, the schema addresses the three tenets of Havenid et al. (2019) in a recent collection of works on innovation in construction; these tenets being to shed light on the organisational processes within contexts of innovation in construction; to apply novel theoretical perspectives to empirical phenomena, and to recognise the temporal and spatial distribution of innovation as processual activities.

634 [Figure 6Table 3]

The figure 6 schema able 3 notes the prescriptions and preferences of developers and practitioners for effective innovation delivery for both developers and practitioners. Developer Pprescriptions for effective innovation delivery include clear definitions of the purpose and /benefits of an innovation; clarity over roles/responsibilities of parties; clarity on and how the innovation will work/function. The pPreferences note aspects which would support successful innovation deployment, including the social practice concepts of Schatzki and the need to minimize disruptions to project work processes. A developer preference would

be the Innovation developers should note the importance of reducing negative emotive reactions whilst promoting positive reactions if possible. The Both collaborative agreements, and data management workflow (embodying general/practical understandings, rules and purpose of the innovation), and user guide -emerged as the project evolved -at a moment in time that was appropriate and required for progression of the innovation. These artefacts of innovation embody the prescriptions and preferences of developers and practitioners. These are shown in figure X as emerging from the processes. ; tThe various meetings, communications and work interactions preceding their creation were important in preparing the industry partners for the innovation itself and laying the groundwork for its' uptake. **Limitations** A limitation of the paper is that the insights are drawn from one single study of innovation delivery. Whilst single case studies can be criticized from a data limitation point-of-view, it should be noted that 4 different companies used the innovation on 6 separate projects over several months. Therefore, the data upon which the study is based is not insubstantial. Additionally, as the innovation has garnered attention and won awards, it is contended that the insights of the paper are useful and informative for industry innovators and the academic community.

Conclusions

The paper advances understanding of successful digital innovation delivery in construction project management through a social practice analysis of various activities and outputs associated with one innovative technology (the BIM risk library): i.e. discussions; legal agreements; innovation workflow; software artefact; user guide). <u>A limitation of the paper is</u> that the insights are drawn from one single study of innovation delivery. Whilst single case

studies can be criticized from a data limitation point-of-view, it should be noted that 4 different companies used the innovation on 6 separate projects over several months. Therefore, the data upon which the study is based is not insubstantial. Additionally, as the innovation has garnered attention and won awards, it is contended that the insights of the paper are useful and informative for industry innovators and the academic community.

Additionally, T the paper provideds tangible insights into how an innovation can emerge from context-specific interactions (e.g. industry workshops; software vendor negotiations; piloting work) (Williams and Edge, 1996; Orlikowski, 2009) where general and practical understandings of an innovation, rules regarding its' use and teleoaffectivities (emotive behaviours) are part of the discourse. Employment of Schatzki's 'organisation of practice' concepts to examine the interactions occurring and the resultant artefacts shared between collaborators highlight the importance of understandings, rules and emotive behaviours in the innovation journey. Whilst the evolutionary nature of innovation development (Linderoth, 2010) was described, a distinct 'field of practice' for innovation delivery came into focus, with a 'schema of generalisable preferences' emerging from the social practice analysis (figure 6). Artefacts such as legal agreements, software product and innovation workflow evidenced how the innovation discourse shifts from verbal "sayings" to formulised agreements and contracts that embody the preferences and prescriptions of practitioners: the practical realities of innovation use being translated into a tangible schema prior to their "doing" in construction project contexts. The research findings complement existing frameworks for understanding innovation delivery in project management contexts, building on the work of Steiber and Alänge (2015), and provide an extension to the body of knowledge on factors contributing to h. innovation delivery in construction.

Data Availability Statement

1		
2 3 4	692	Some or all data, models, or code generated or used during the study are available in a
5 6	693	repository or online in accordance with funder data retention policies
7 8	694	(https://www.discoveringsafety.com/).
9 10 11	695	
12 13	696	Acknowledgements
14 15	697	This research was funded by the Lloyd's Register Foundation (Grant number: G\100293) and
16 17 18	698	supported by the Health and Safety Executive as part of the Discovering Safety research
19 20	699	programme. The author wishes to acknowledge the helpful comments of the reviewers in the
21 22	700	improvement of the paper.
23 24	701	
25 26 27	702	Disclaimer
28 29	703	The author reports there are no competing interests to declare.
30 31	704	
32 33 34	705	Ethics Statement
35 36	706	The research obtained ethics approval from the University of Manchester Ethics Committee.
37 38	707	Subsequently, informed consent was received from the research subjects.
39 40	708	
41 42 43	709	References
44 45	710	Aarseth, W., Andersen, B., Ahola, T., Jergeas, G. 2012. "Practical difficulties encountered in
46 47	711	attempting to implement a partnering approach." Int. J. Manage. Projects Business, 5 (2):
48 49 50	712	266-284.
51 52	713	Afraz, M.F., Bhatti, S.H., Ferraris, A. and Couturier, J. 2021. "The impact of supply chain
53 54	714	innovation on competitive advantage in the construction industry: Evidence from a
55 56 57	715	moderated multi-mediation model." Technological Forecasting and Social Change, 162.
58 59 60		

2	
2	
5	
4	
F	
С	
6	
Ĩ	
/	
8	
0	
9	
10	
10	
11	
12	
12	
13	
1 /	
14	
15	
10	
16	
17	
18	
19	
19	
20	
21	
21	
22	
22	
23	
24	
25	
25	
26	
20	
27	
20	
20	
29	
20	
30	
31	
2.	
32	
33	
55	
34	
35	
55	
36	
27	
57	
38	
20	
39	
40	
44	
41	
42	
43	
44	
45	
16	
40	
47	
10	
4ð	
49	
50	
50	
51	
52	
52	
55	
54	
Fr	
22	
56	
5/	
58	
50	
59	
60	

716	APM	(Association	for Project	Management).	2019.	Body of	f Knowledge	7 th ed.	Princes
717		Risborough, U	JK: APM.						

- Azzouz, A. and Papadonikolaki, E. 2020. "Boundary-spanning for managing digital innovation
 in the AEC sector." *Architectural Engineering and Design Management*, 16 (5).
- Bamel, N., S. Kumar, U. Bamel, W.M. Lim, and R. Sureka. 2023."The state of the art of
 innovation management: insights from a retrospective review of the European Journal of
 Innovation Management." *European Journal of Innovation Management*. DOI:
 10.1108/EJIM-07-2022-0361
- Blindenbach, D.F. andJ. Van Den Ende. 2010. "Innovation Management Practices Compared:
 The Example of Project-Based Firms." *Journal of Product Innovation Management* 27
 (5): 705–724.
- 727 Blomquist, T., M. Hällgren, A. Nilsson and A. Söderholm. 2010. "Project-as-practice: in search
 728 of project management research that matters." *Project Manage. Journal* 41 (1): 5-16.
- 729 Bresnen, M. 2009. "Living the dream? Understanding partnering as emerging practice."
 730 *Constr. Manage. Econ.* 27 (10): 923-933.
- 731 BSI (British Standards Institution). 2018. PAS 1192-6:2018 Specification for collaborative
 732 sharing and use of structured Health and Safety information using BIM. BSI Standards
 733 Limited.
- 734 BuildingSMART. 2020: <u>https://www.buildingsmart.org/bsi-awards-2020/winners</u>.
- 735 Bygballe, L.E., A.R. Sward, and A.L. Vaagaasar. 2016. "Coordinating in construction projects
 736 and the emergene of synchronized readiness." *Int. J. Project Manage*. 34: 1479-1492.
- 737 Çıdık, M. S., D. Boyd, D. and N. Thurairajah. 2017. "Ordering in disguise: digital integration
 in built-environment practices." *Building Research & Information*, 45 (6): 665-680.
 - 739 Caldwell, R. 2012. "Reclaiming agency, recovering change? An exploration of the practice
- theory of Theodore Schatzki." *J. for the Theory of Social Behaviour*, 42 (3).

1		
2 3 4	741	Cicmil, S. 2006. "Understanding project management practice through interpretative and
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 3 24 25 26 27 28 20	742	critical research perspectives." <i>Project Management Journal</i> , 37 (2): 27–37.
	743	Cicmil, S., and D. Hodgson. 2006. Making projects critical: An introduction. In S. Cicmil &
9 10 11	744	D. Hodgson (Eds.), Making projects critical (pp. 1–25). New York: Palgrave
9 10 11 12 13 14 15 16 17 18 19 20 21 20 21 22 23 24	745	Macmillan.
	746	Cicmil, S., T. Williams, J. Thomas, and D. Hodgson. 2006. "Rethinking project management:
	747	researching the actuality of projects." Int. J. Project Manage. 24 (8): 675-686.
19 20	748	Cicmil, S. and D. Marhsall, 2005. "Insights into collaboration at the project level: complexity,
21 22	749	social interaction and procurement mechanisms." Building Research Information 33 (6):
23 24 25	750	523-535.
25 26 27 28 29	751	Clegg, S., C.P. Killen, C. Biesenthal, and S. Sankaran. 2018. "Practices, projects and
	752	portfolios: Current research trends and new directions," Int. J. Project Manage. 36 (5):
30 31 32	753	762-772. https://doi.org/10.1016/j.ijproman.2018.03.008.
33 34	754	Connaughton, J.N. and W.H. Collinge. 2021. "Trialling a new approach to interdisciplinary
35 36	755	collaboration in UK construction: A projects-as-practice analysis." Constr. Manage.
37 38 39	756	Econ. 39 (7): 595-616. DOI: 10.1080/01446193.2021.1933558
40 41	757	Collinge, W.H., K. Farghaly, M., Hadi-Mosleh, P. Manu, and C. Cheung, C. 2020a.
42 43	758	"Methodologies, strategies and interactions: how best to engage industry when
44 45	759	researching a new health and safety tool", In Proc., Joint CIB W099 & TG59
40 47 48	760	International Web-Conference 2020: Good health, Wellbeing & Decent Work, 10th
49 50	761	September, Glasgow, UK.
51 52	762	Collinge, W.H., K. Farghaly, P. Manu, C. Cheung and M. Hadi Mosleh. 2020b. BIM Risk
53 54 55	763	Library Final Report Phase 1, Health and Safety Executive.
56 57 58 59 60	764	Construction Computing Award. 2021: <u>https://constructioncomputingawards.co.uk</u> .

2 3 4	765	Dossick, C. S., and G. Neff. 2011. "Messy talk and clean technology: communication,
5 6	766	problem-solving and collaboration using Building Information Modelling" <i>Eng. Project</i>
7 8	767	Organization Journal, 1 (2): 83-93.
9 10 11	768	Geertz, C. 1973. The interpretation of cultures. New York: Basic Books.
12 13	769	Greco, M., Grimaldi, M., Locatelli, G. and Serafini, M. 202). "How does open innovation
14 15	770	enhance productivity? An exploration in the construction ecosystem." Technological
16 17 18	771	Forecasting and Social Change, 168.
19 20	772	Hallowell, M. R.and J.A. Gambatese. 2010. "Qualitative research: Application of the Delphi
21 22	773	method to CEM research" Journal of Construction Engineering and Management, 136
23 24 25	774	<u>(1): 99–107.</u>
25 26 27	775	Harty, C.F. 2005. "Innovation in construction: a sociology of technology approach." Building
28 29	776	Research and Information. 33 (6): 512-522.
30 31 22	777	Havenvid, M. I., Å. Linné, L.E. Bygballe and C. Harty, C. (Eds.) 2019. The Connectivity of
32 33 34	778	Innovation in the Construction Industry. Routledge.
35 36	779	Knorr Cetina, K. 2001. Objectual practice. In Schatzki, T.R., K. Knorr-Cetina, and E. von
37 38	780	Savigny, (2001) The Practice Turn in Contemporary Theory, Routledge, London.
39 40 41	781	Koch, C., S. Paavola, and H. Buhl 2019. "Social science and construction-an uneasy and
42 43	782	underused relation." Constr. Manage. Econ. 37 (6): 309-316.
44 45	783	Linderoth, H. C. 2010. "Understanding adoption and use of BIM as the creation of actor
46 47	784	networks." Autom. Constr. 19 (1): 66–72.
48 49 50	785	Liu, D., W. Lu, and Y. Niu, Y. 2018. "Extended Technology-Acceptance Model to Make
51 52	786	Smart Construction Systems Successful". J. Constr. Engineering and Manage. 144 (6).
53 54	787	Lokuge, S., D. Sedead, V. Grover, and D. Xu. 2019. "Organizational readiness for digital
55 56 57	788	innovation: Development and empirical calibration of a construct." Information and
58 59 60	789	Management, 56 (3): 445-461.

1		
2 3 4	790	Marshall, N. 2014. "" Engineering Project Organization Journal, 4 (2-3): 107-122.
5 6	791	Mitropoulos, P., and C.B. Tatum. 1999. "Technology Adoption Decisions in Construction
7 8	792	Organizations." Journal of Construction Engineering and Management, 125 (5): 330-
9 10 11	793	338.
12 13	794	Morgan, B. 2019. "Organizing for digitalization through mutual constitution: the case of a
14 15	795	design firm." Constr. Manage. Econ. 37 (7): 400-417. DOI:
16 17 18	796	10.1080/01446193.2018.1538560
19 20	797	Nicolini, D. 2012. Practice theory, Work and Organization: An Introduction. Oxford
21 22	798	University Press, Oxford.
23 24 25	799	O'Keeffe, D., D. Thomson and A. Dainty. 2015. "Evaluating the design of hospitals within a
26 27	800	practice order network." Constr. Manage. Econ., 33 (5-6): 415-427.
28 29	801	Oesterreich, T.D. and F. Teuteberg. 2016. "Understanding the implications of digitisation and
30 31 32	802	automation in the context of Industry 4.0: A triangulation approach and elements of a
33 34	803	research agenda for the construction industry." Computers in Industry, 83: 121-139.
35 36	804	Osorio-Sandoval, C.A., W.H. Collinge, C. Cheung, M. Hadi-Mosleh, P. Manu, A. Freitas, and
37 38	805	Z. Zhou. 2021. Digital Health and Safety Library Use Case. Health and Safety Executive
39 40 41	806	(HSE).
42 43	807	Orlikowski, W.J. 2009. "The sociomateriality of organizational life: considering technology in
44 45	808	management research." Cambridge Journal of Economics, 34 (1): 125-141.
40 47 48	809	Project Safety Journal. 2022. "New tech for a safer new year." Winter. <u>PSJ-Winter-2022-</u>
49 50	810	combined.pdf (projectsafetyjournal.com).
51 52	811	Rogers, E.M. 1995. "Diffusion of innovations: modifications of a model for
53 54 55	812	telecommunications", in Stoetzer, M.W. and A. Mahler, (Eds), Die Diffusion von
56 57	813	Innovationen in der Telekommunikation. Schriftenreihe des Wissenschaftlichen Instituts
58 59 60	814	für Kommunikationsdienste, 17, Springer, Berlin, Heidelberg.

2 3 4 5 6 7 8 9 10	815	Sage, D., A. Dainty and N. Brookes. 2012. "A "strategy-as-practice" exploration of lean
5 6	816	construction strategizing." Building Research Information. 40 (2): 221-230.
7 8 0	817	Schatzki, T. 2013. "The edge of change. On the emergence, persistence and dissolution of
9 10 11	818	practices." In, Shove, E. & N. Spurling, N. (Eds.) Sustainable Practices. Social theory
12 13	819	and climate change. Routledge: London.
14 15 16	820	Schatzki, T.R. 2012. "A primer on practices." In: Practice-based education: perspectives and
10 17 18	821	strategies (Ed: J.Higgs)
19 20	822	Schatzki, T.R. 2002. The site of the social: a philosophical exploration of the constitution of
21 22 22	823	social life and change. University Park, PA: Penn State Press.
23 24 25	824	Schatzki, T.R. 1996. Social practices. A Wittgensteinian approach to human activity and the
26 27	825	social. Cambridge University Press: Cambridge.
28 29 20	826	Schatzki, T.R. 2001. Practice Theory, In Schatzki, T.R., K. Knorr-Cetina, and E. von Savigny
30 31 32	827	(2001) The Practice Turn in Contemporary Theory, Routledge, London.
33 34	828	Sewell, W.H. Jnr 1992. A theory of structure: duality, agency and transformation. American
35 36 27	829	Journal of Sociology. 98: 1-29.
37 38 39	830	Shibeika, A. and C. Harty. 2015. "Diffusion of digital innovation in construction: a case study
40 41	831	of a UK engineering firm." Constr. Manage. Econ. 33 (5-6): 453-466, DOI:
42 43	832	10.1080/01446193.2015.1077982
44 45 46	833	Söderlund, J. 2004. "Building theories of project management: Past research, questions for
47 48	834	the future." Int. J. Project Manage. 22 (3): 183–191.
49 50	835	Steiber, A., S. Alänge, S. Ghosh, and D. Goncalves, D. 2021. "Digital transformation of
51 52 53	836	industrial firms: an innovation diffusion perspective", European Journal of Innovation
53 54 55 56 57 58	837	Management, 24 (3): 799-819. https://doi.org/10.1108/EJIM-01-2020-0018
59 60		

1		
2 3	838	Steiber, A. and S Alänge. 2015. "Organizational innovation: a comprehensive model for
4 5 6	839	catalyzing organizational development and change in a rapidly changing world", <i>The</i>
7 8	840	Triple Helix Journal. 2 (1): 1-25.
9 10 11	841	TAI(ThomasAshtonInstitute).2020::
12 13	842	https://www.ashtoninstitute.ac.uk/programmes/discovering-safety/
14 15	843	Uhl-Bien, M., R. Marion, and B. McKelvey 2007. "Complexity leadership theory: shifting
16 17 18	844	leadership from the industrial age to the knowledge era." The Leadership Quarterly. 18
19 20	845	(4): 298-318.
21 22	846	Vosman, L., Coenen, T.B.J., Volker, L. and Visscher, K. 2023. "Collaboration and innovation
23 24 25	847	beyond project boundaries: exploring the potential of an ecosystem perspective in the
26 27	848	infrastructure sector." Construction Management and Economics, 41 (6).
28 29	849	Williams, R. and D. Edge. 1996. "The social shaping of technology.", Research Policy, 25 (6):
30 31 32	850	865-899.
33 34	851	Winch, G. 1998. "Zephyrs of creative destruction: understanding the management of
35 36	852	innovation in construction." Building Research & Information, 26 (4): 268–279.
37 38 30	853	Winter, M., C. Smith, P. Morris, and S. Cicmil, S. 2006. "Directions for future research in
40 41	854	project management: The main finding of a UK government-funded research network."
42 43	855	Int. J. Project Manage. 24: 638–649.
44 45	856	Yuan, J., X. Li, X. Xiahou, N., Tymvios, Z. Zhou and Q. Li. 2019. "Accident prevention
40 47 48	857	through design (PtD): Integration of building information modeling and PtD knowledge
49 50	858	base." Autom. Constr. 102: 86–104.
51 52	859	
53 54 55	860	
56 57	861	
58 59 60	862	

2	
3	886
4	000
5 6	887
7	000
8 9	000
10	889
11 12	000
13	890
14 15	891
16 17	0.00
17 18	892
19 20	893
20 21	
22	894
23 24	895
25	
26 27	896
28	897
29 30	077
31	898
32 33	800
34	699
35 36	900
37	
38 30	
40	
41	
42	
43	
44 45	
46	
47	
48	
49 50	
50 51	
52	
53	
54	
55	
56	
57 F0	
58 59	901

60

ge 83 of 86	Engineering, C	construction and Architectural Management
886		
887		
888		
889		
890		
891		
892		
893		
894		
895		
896		
897		
898		
899		
900		
	Practical Understandings	Knowing how to execute desired actions
		through basic doings and sayings.
	Rules	Formulated directives, admonishments and
		edicts; rules can be defined as "methodically
		applied generalizable procedures of action".
	Teleoaffectivities	Acceptable and enjoined emotions, moods
		and actions associated with certain practices.
	General Understandings	Understandings or senses of general matters
		pertinent to goings-on in practices.
901	L	

200 CM

			Engineering, Const	ruction and Architectural Management Pag	e 84 c
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 20 31 32 33 34 35 36 37 38 39 40	902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 910	Table 1: 'Organization of practice' concepts (Schatzki, 1996)			
37 38 39		Expert ID	Area of work	Experience in the construction industry (Years)	
40 41		EXP-01	Design	45	
42 43		EXP-02	Other (specify) All stages	41	
44 45		EXP-03	Other (specify) All stages	40	
40 47 48		EXP-04	Design	5	
40 49 50		EXP-05	Other (specify) All stages	44	
50 51 52		EXP-06	Strategic planning	15	
53 54		EXP-07	Construction	33	
55 56		EXP-08	Design	40	
57 58 59 60		EXP-09	Construction	33	

	EXP-10	Construction	49
	EXP-11	Design	33
	EXP-12	Other (specify) CDM Principal Designer	35
	EXP-13	Design	28
920	(°O	
021			
921		Table 2: demographic information of	of survey/interviewee experts
922			
923			
924			
925			
926			
927			
028			
920 b20			
929			
930			Č.
		Schema for innovati	on delivery
	Pre	escriptions	
	>	Clear articulation of the purpose of the innova	tion and its` benefits.
	>	Clear definition of the roles/responsibilities of	f participating parties.
	>	Clear definition of how the innovation will we	ork/function.
	-Pre	ferences	1
	▶	Provision of legally binding agreements betwee	een parties to ensure innovation is
		used/tested.	
Provision of education/training for innovation use.			

