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Novel Generic Fault Model Considering 
Fundamental and PWM Current Components of PM 

Machines with Inter-Turn Short-Circuit  
 

Y. Qin, Student Member, IEEE, G. J. Li, Senior Member, IEEE, Z. Q. Zhu, Fellow, IEEE, M. P. Foster, D. A. Stone, 

C. J. Jia, and P. McKeever

Abstract— This paper proposes a novel analytical fault model 

for permanent magnet machines with inter-turn short-circuits 

that considers the influence of various factors on the fault current. 

These factors include (1) mutual inductances between the faulted 

turns and the remaining healthy windings (faulted and healthy 

phases), (2) load current, and (3) PWM harmonics introduced by 

the drives. These three factors have been largely neglected by the 

published methods in literatures but could have significant 

influence on fault current depending on operating conditions. The 

investigation in this article shows that, without using the proposed 

fault model, the conventional fault model that only considers the 

back-EMF in the short-circuited loop and the self-impedance of 

the short-circuited turns, would underestimate the fundamental 

fault current by more than 45%. In addition, the proposed model 

establishes the relationship between the PWM ripple current in 

the short-circuited turns and that in the faulted phase. By doing so, 

the fault current including both the fundamental and PWM ripple 

components can be accurately predicted. The accuracy of the 

proposed method has been fully validated by a series of 

experiments.  

Index Terms— Fault current, fault modelling, inter-turn short-

circuit fault, PM machine, PWM ripple current. 

I. INTRODUCTION 

NTER-turn short-circuit (ITSC) faults in the PM machines 

have attracted increasing attention due to their potential 

catastrophic consequences for the reliability of safety-critical 

applications such as aerospace and offshore wind power [1]. 

This serious fault is caused by the winding insulation failure 

resulting from the high rates of voltage change (dv/dt) [2], 

thermal stress or environmental contamination [3] [4]. It is 

reported that the fault current in the short-circuited path can be 

many times (>30) higher than the rated current [3]. The 

extremely large fault current leads to local overheating of the 

short-circuited turns, which could lead to the meltdown of the 

entire phase and eventually result in a permanent damage to the 

machines. Given the potential risk posed by the ITSC fault, 

fault detection methods and post-fault remedial control 

strategies are often required to prevent a local fault from 

escalating into a more severe system-level fault [5] [6] [7]. 

However, fault modelling has often been deemed critical as it 

helps to develop effective model-based fault detection and 

mitigation methods [8], [9]. Accurate fault model can be used 

to predict the electromagnetic performances especially the fault 

current under ITSC faults. This can provide theoretical support 

needed for designing the machine parameters, e.g., phase 

inductance and resistance, and phase back-EMF, etc., to 

achieve desired fault tolerant capability [10]. For the fault 

current, its amplitude or Root Mean Square (RMS) value is 

regarded as the key parameter. This is because, once these two 

parameters are obtained, they can be used to calculate copper 

loss (main heat source) in faulty turns, and hence to predict the 

temperature rise after ITSC fault [11]. In addition, the 

magnitude of the fault current provides insight into the severity 

of the fault and its potential impact on machine performance 

and reliability [12]. 

To simplify the analysis of fault current, it is often assumed 

that the back-EMF in the short-circuited path plays a dominant 

role in fault current prediction. As a result, the fault current can 

be simplified as equal to the back-EMF in the short-circuited 

path divided by the self-impedance of the faulted turns [13] [14] 

[15]. However, this approach does not consider the effect of the 

mutual inductances between the faulty turns and the remaining 

healthy windings (both faulty and healthy phases) on the fault 

current. In [16], single-layer PMSM is investigated, where the 

mutual inductances between phases have been ignored. Only 

the mutual inductance between the faulted turns and the 

remaining healthy winding of the faulted phase has been 

considered. As a result, the fault current will only be influenced 

by the back-EMF and faulted phase current. In order to obtain 

the amplitude of the fault current, this paper makes some 

assumptions, setting the load currents to be zero. If so, the fault 

current will be only affected by the back EMF of the faulted 

turns. From the perspective of determining the amplitude of 

fault current, this approach is the same as those proposed in [13] 

[14] [15]. In [10] and [17], the fault current expression for a PM 

machine with fractional slot concentrated windings (FSCW) is 

presented taking the mutual inductance between the short-

circuited turns and the remaining healthy winding of the faulted 

phase into consideration. However, the mutual inductances 

between the short-circuited turns and the healthy phases have 

been neglected due to the negligible mutual flux between 

phases. As a result, this approach is limited to the specific case 

studied and cannot be applied to machines with large mutual 

inductances. In [18], a more generic fault current model 

considering all the above-mentioned mutual inductances has 

been developed. However, it neglected the effect of flux-

weakening control strategy, which can reduce the total flux in 

the short-circuited path and thus reduce the fault current. An 

improved fault current expression considering the flux-

weakening control strategy has been presented in [19], in which 

it indicated that the phase current and the back-EMF in the 

short-circuited path jointly contribute to the fault current. 

However, this approach can only analyze the change of fault 

current qualitatively. If the number of short-circuited turns is 
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changed or the flux-weakening control strategy is adopted, the 

amplitude or the RMS value of fault current cannot be predicted 

quantitatively. In [20], despite the full consideration of all 

aforementioned mutual inductances, the amplitudes of the fault 

current achieved depend on the access to the faulted phase 

voltage. Consequently, it requires the addition of voltage 

sensors and access to the neutral point, thereby increasing 

hardware costs and escalating system complexity. As a result, 

these factors impose limitations on its widespread adoption. It 

is worth noting that all the above methods for predicting fault 

currents ignore the PWM harmonics. However, the fault current 

actually contains a large amount of PWM harmonics, especially 

in the case where a few turns are short-circuited [21]. In [21], a 

novel fault model has been proposed to account for the effect of 

the drive, which takes into account the PWM harmonics in the 

fault current. However, it cannot derive an analytical expression 

for the fault current. Therefore, it cannot quantitatively predict 

the amplitudes (or RMS values) of the fundamental and PWM 

components of the fault current.  

To overcome these limitations, this article aims to develop a 

generic fault model, i.e., an analytical expression, for directly 

predicting the amplitude or RMS value of the fault current. This 

model considers various factors such as (1) mutual inductances 

between the faulty turns and the remaining healthy windings 

(both faulty and healthy phases), (2) load current, and (3) PWM 

harmonics introduced by the drives. Despite their potential 

significant impact on the fault current depending on the 

operating conditions, most the existing methods in the literature 

largely ignore these factors. The investigation in this article 

reveals that the conventional fault model, which considers only 

the back-EMF in the short-circuited loop and the self-

impedance of the short-circuited turns, could underestimate the 

fundamental fault current by more than 45%. However, this 

underestimation can be avoided by adopting the proposed fault 

model. In addition, this paper establishes the correlation 

between the PWM ripple current in the short-circuited turns and 

in the faulted phase. This makes it possible to accurately predict 

the fault current including the fundamental and the PWM ripple 

components. This topic has received little attention in the 

literature, making it the primary novelty and contribution of this 

paper.  

II. ANALYTICAL MODEL OF MACHINES WITH ITSC 

A. Development of the Fault Model 

A schematic of a typical 3-phase PWM inverter-fed PM 

machine is shown in Fig. 1. The parameters for this investigated 

machine are listed in TABLE I. Here, the output voltages from 

the inverter, labeled as VdslA, VdslB and VdslC, are the inputs to the 

PM machine, and the currents (𝑖𝑎, 𝑖𝑏, 𝑖𝑐 and 𝑖𝑓) are the machine 

output signals. In this paper, it is assumed that thick cables with 

negligible resistance are used to connect the inverter and the 

PM machine. So, the influence of the cable resistances on the 

fault model can be neglected. Moreover, each machine winding  

consists of two coils in series, and it is assumed that the ITSC 

fault occurs at the coil a1, as shown in Fig. 1.  

It is worth noting that this paper only pays attention to the 

full short-circuit stage, where the contact resistance of the ITSC 

is 0Ω. This is because the fault current generated at this stage is 

much larger than that at the incipient fault stage. According to 

Kirchhoff’s voltage law (KVL), the relationship between the 

input voltages (VdslA, VdslB and VdslC) and the output currents (𝑖𝑎, 𝑖𝑏 , 𝑖𝑐  and 𝑖𝑓 ) can be described by (1), where vn is the zero-

sequence voltage. Since the sum of the three-phase currents is 

equal to zero, vn in (1) can be further deduced as (3). The zero 

sequence voltage under ITSC fault is different from that at 

healthy condition, which could be used as a fault indicator for 

fault detection [22]. Although the machine with two coils in 

series is taken as an example, the developed fault model can 

also be extended to other different numbers of coils in series. 

To do so, only the R and L matrices in (2) need to be updated.  

𝑳 𝑑𝑑𝑡 [𝑖𝑎𝑖𝑏𝑖𝑐𝑖𝑓] = −𝑹[
𝑖𝑎𝑖𝑏𝑖𝑐𝑖𝑓] + [

𝑣𝐴𝑑𝑠𝑙𝑣𝐵𝑑𝑠𝑙𝑣𝐶𝑑𝑠𝑙0 ] − [
𝑒𝑎ℎ𝑒𝑏𝑒𝑐𝑒𝑎𝑓] − [

1110] 𝑣𝑛 (1) 

with  

𝑹 = [𝑅𝑠11 0 0 00 𝑅𝑠22 0 00 0 𝑅𝑠33 00 0 0 𝑅𝑠44]  and 𝑳 = [
𝐿𝑠11 𝑀𝑠12 𝑀𝑠13 𝑀𝑠14𝑀𝑠21 𝐿𝑠22 𝑀𝑠23 𝑀𝑠24𝑀𝑠31 𝑀𝑠32 𝐿𝑠33 𝑀𝑠34𝑀𝑠41 𝑀𝑠42 𝑀𝑠43 𝐿𝑠44 ] 

 (2) 

𝑣𝑛 = −13 [1110]
𝑇 {𝑳 𝑑𝑑𝑡 [𝑖𝑎𝑖𝑏𝑖𝑐𝑖𝑓] + 𝑹 [

𝑖𝑎𝑖𝑏𝑖𝑐𝑖𝑓] − [
𝑣𝐴𝑑𝑠𝑙𝑣𝐵𝑑𝑠𝑙𝑣𝐶𝑑𝑠𝑙0 ] + [

𝑒𝑎ℎ𝑒𝑏𝑒𝑐𝑒𝑎𝑓]} (3) 

where R is the resistance matrix and L is the inductance matrix, 

and both matrices have a dimension of 4× 4. Rs11 is the 

resistance of the remaining healthy winding of phase A and Rs44 

is the resistance of the faulty turns. Rs22 and Rs33 are the 

resistances of phase B and phase C. eah and eaf represent the 

back-EMF of the healthy and faulty turns in phase A, ea, eb and 

ec represent the back-EMFs of phases A, B and C, respectively. 

Ls11 and Ls44 are the inductances of the healthy and faulty turns 

in phase A, Ls22 and Ls33 represent the total self-inductances of 

phases B and C, respectively. Ms12 and Ms21 are the mutual 

inductances between the healthy winding of phase A and phase 

B, Ms13 and Ms31 are the mutual inductances between the healthy 

winding of phase A and phase C, and Ms14 and Ms41 are the 

mutual inductances between the healthy winding and faulty 

winding of phase A. Ms23 and Ms32 are the mutual inductances 

between phase B and phase C. Ms24 and Ms42 are the mutual 

inductances between phase B and faulty windings of phase A, 

while Ms34 and Ms43 are the mutual inductances between phase 

C and faulty winding of phase A. It is of significance to 

TABLE I PARAMETERS OF PM MACHINE WITH ITSC FAULTS 
No of phases 3 Phase resistance (mΩ) 446 

No of poles/slots 8/6 Phase inductance (μH) 270 

No of turns per coil 24 PM flux (mWb) 5.944 

Maximum power 200 W Maximum Torque 1.27 Nm 

Maximum speed 1500 rpm Maximum current 15 A 

 
Fig. 1 PMSM with series connected coils under ITSC fault in phase A. 



 

 

highlight that, utilizing the parameters listed in TABLE I and 

accounting for the fault ratio (x), one can derive the components 

comprising matrices L and R according to the work presented 

in [18]. 

By replacing vn in (1) using (3), (1) can be further derived as 

(4). Since the rank of the matrix P is equal to 3, and less than 

its dimension of 4, the matrix P is known as a singular matrix. 

As a result, it is impossible to solve (4) to achieve a unique 

solution for the currents. To solve this problem, new voltages 

and currents are constructed to reduce the order of system. More 

details can be seen in APPENDIX A.  

𝑷𝑳 𝑑𝑑𝑡 [𝑖𝑎𝑖𝑏𝑖𝑐𝑖𝑓] = −𝑷𝑹[
𝑖𝑎𝑖𝑏𝑖𝑐𝑖𝑓] + 𝑷 [

𝑣Adsl𝑣𝐵𝑑𝑠𝑙𝑣𝐶𝑑𝑠𝑙0 ] − 𝑷 [
𝑒𝑎ℎ𝑒𝑏𝑒𝑐𝑒𝑎𝑓] (4) 

with 

𝑷 = 13 [ 2 −1 −1 0−1 2 −1 0−1 −1 2 00 0 0 3] and [𝑒𝑎ℎ𝑒𝑏𝑒𝑐𝑒𝑎𝑓] = [  
  1 − 12 𝑥 0 00 1 00 0 112 𝑥 0 0]  

  [𝑒𝑎𝑒𝑏𝑒𝑐] (5) 

where x = Nfault/N is faulty turn ratio of coil a1, and Nfault and N 

are the number of faulty turns and the total number of turns 

respectively. 

It can be observed from (A4) and (A5) that the order of the 

system can be successfully reduced by one due to i0 = 0. With 

(A4) and (A5), (1) can be finally established as (6) in α- and β-

axis reference frame. Since the order of the system is reduced 

from 4 to 3, the simplified fault model in α- and β-axis reference 

frame is beneficial to further explore the characteristics of fault 

current, as will be explained in section III. 𝑑𝑑𝑡 [𝒊𝜶𝜷𝒇] = [𝑳𝟑×𝟑−𝟏 × 𝑹𝟑×𝟑][𝒊𝜶𝜷𝒇] + [𝑳𝟑×𝟑−𝟏 ][𝒗𝜶𝜷𝒇] (6) 

where iαβf represents the current matrix with a dimension of 3×1 

and consists of iα, iβ and if. Similarly, vαβf represents the voltage 

matrix with a dimension of 3×1 and consists of vα, vβ and vf. 

B. Validation for the Proposed Fault Model 

To validate the proposed fault model, a test rig has been built, 

as depicted in Fig. 2. The test rig consists of three main 

components: the tested machine and dyno machine with 

associated DSP based voltage source inverters (VSI), couplings, 

and a torque meter. The test machine with ITSC faults, operates 

in torque mode, while the dyno machine operates in speed mode, 

providing a stable speed for the system. The torque meter is 

utilized for measuring the speed and torque. Fig. 2 shows that a 

thick wire was carefully selected and soldered to the faulted 

turn taps (coil a1-faulted coil) to minimize its impedance in the 

short-circuited path. A switch (with negligible resistance) is 

employed to short-circuit the wire, emulating the ITSC fault. 

Furthermore, shows that the fault current (if) flowing through 

the faulty turns can be determined as the difference between ia 

and (ia-if), which can be directly measured using a current clamp. 

Encoders are mounted at the ends of both machines to measure 

 
Fig. 2 Test setup with ITSC fault in the test PM machine. 

 
(a) 

 
(b) 

Fig. 3 (a) Simulated and measured faulted phase current (ia) and fault current 

(if), and (b) simulated and measured speed and torque waveforms. Rotor 

speed is 1500 rpm and demand currents change from id =0 A and iq = 2 A to 

id = 0 A and iq = 5 A at around 20ms. The fault ratio is x=1/24. 



 

 

the speed and position, which are crucial parameters for the 

field-oriented control (FOC) used in this paper. The test 

machine and dyno machine are independently controlled using 

two sets of three-phase inverters. Unless otherwise specified, 

the space vector pulse width modulation (SVPWM) strategy 

has been employed and the DC bus voltage, the dead time, and 

the switching frequency are set to 24V, 0.5μs, and 20kHz, 
respectively. 

Simulated and measured results were compared, as shown 

in Fig. 3. It can be observed from Fig. 3 (a) that the simulated 

fault phase currents (ia) both under steady and transient states 

match well with the measured ones. Similarly, the fault current 

(if) exhibits good agreement between simulation and 

measurement. The difference between simulated and measured 

speed and torque during transient state, i.e., during the load 

change at around 20 ms, as shown in Fig. 3 (b), is mainly due 

to the difference between the combined moment of inertia in the 

experiment and that in the simulation. 

III. FAULT CURRENT INVESTIGATION 

A. Investigation of Fundamental Component in Fault Current 

As most existing literature, this section focuses on the 

fundamental component of the fault current. These currents can 

be considered sinusoidal if all harmonics in the currents are 

ignored. It is the same for the voltages (𝑣𝛼, 𝑣𝛽 and 𝑣𝑓). For a 

sinusoidal signal, its generic expression can be given as (7). 

Since 𝐾  and 𝜃  are constants, 𝐹𝑠  and 𝐹𝑐  determined by 𝐾  and 𝜃 , 
seen in (8), are deemed as constants as well. 𝐹𝑠 and 𝐹𝑐 for each 

sinusoidal signal in a first and multi-order system have been 

discussed in detail in APPENDIX B. 

𝑓(𝑡) = 𝐾𝑠𝑖𝑛(𝜔𝑡 + 𝜃) = 𝐹𝑠 sin(𝜔𝑡) + 𝐹𝑐 cos(𝜔𝑡) = [𝑠𝑖𝑛(𝜔𝑡)𝑐𝑜𝑠(𝜔𝑡)]𝑇 [𝐹𝑠𝐹𝑐] 
(7) 

with  𝐹𝑠 = 𝐾 cos 𝜃 , 𝐹𝑐 = 𝐾 sin 𝜃 , and 𝐾 = √𝐹𝑠2 + 𝐹𝑐2 (8) 

where K and 𝜔  are the amplitude and frequency of the 

sinusoidal signal, respectively. 𝜃 is the initial phase angle. 

Based on (B7) and (B8), (6) can be further expressed as (9). 

[  
   
 𝑖𝛼𝑠𝑖𝛼𝑐𝑖𝛽𝑠𝑖𝛽𝑐𝑖𝑓𝑠𝑖𝑓𝑐 ]  

   
 =

[  
   
𝐴1 𝐵1 0 0 𝐶1 𝐷1−𝐵1 𝐴1 0 0 −𝐷1 𝐶10 0 𝐴2 𝐵2 0 00 0 −𝐵2 𝐴2 0 0𝐴3 𝐵3 0 0 𝐶2 𝐷2−𝐵3 𝐴3 0 0 −𝐷2 𝐶2]  

   
[  
   
𝑣𝛼𝑠𝑣𝛼𝑐𝑣𝛽𝑠𝑣𝛽𝑐𝑣𝑓𝑠𝑣𝑓𝑐]  
    (9) 

where 𝑖𝛼𝑠 , 𝑖𝛽𝑠  and 𝑖𝑓𝑠 , and 𝑖𝛼𝑐 , 𝑖𝛽𝑐  and  𝑖𝑓𝑐  are 𝐹𝑠  and 𝐹𝑐  of 𝑖𝛼 , 𝑖𝛽 and 𝑖𝑓, respectively. Similarly, 𝑣𝛼𝑠, 𝑣𝛽𝑠 and 𝑣𝑓𝑠, and 𝑣𝛼𝑐, 𝑣𝛽𝑐 
and 𝑣𝑓𝑐 are all 𝐹𝑠 and 𝐹𝑐 of the 𝑣𝛼, 𝑣𝛽 and 𝑣𝑓, respectively. The 
elements in matrices [𝑳𝟑×𝟑−𝟏 × 𝑹𝟑×𝟑]  and [𝑳𝟑×𝟑−𝟏 ]  in (6) are 
determined by fault ratio (x), machine parameters such as phase 
inductance and resistance, which have been measured and given 
in TABLE I for this investigated PM machine. As a result, based 
on (6), (B7) and (B8), it can be concluded that 𝐴1, 𝐵1, 𝐴2, 𝐵2, 𝐴3, 𝐵3, 𝐶1, 𝐷1, 𝐶2, and 𝐷2 in (9) are functions of x and electrical 

angular speed (𝜔𝑒) of the machine, as seen from (B9) to (B19) 

in APPENDIX B.  

Regarding the fundamental components, based on (9), the 

amplitudes of 𝑖𝛼, 𝑖𝛽 and 𝑖𝑓 can be presented as (10).  

{   
  
   √(𝑖𝛼𝑠2 + 𝑖𝛼𝑐2) = √𝐾11(𝑣𝛼𝑠2 + 𝑣𝛼𝑐2)⏟          1𝑠𝑡 + 2𝐾12(𝑣𝛼𝑠𝑣𝑓𝑠 + 𝑣𝛼𝑐𝑣𝑓𝑐)⏟              2𝑛𝑑 + 2𝐾13(𝑣𝛼𝑠𝑣𝑓𝑐 − 𝑣𝛼𝑐𝑣𝑓𝑠)⏟              3𝑟𝑑 + 𝐾14(𝑣𝑓𝑠2 + 𝑣𝑓𝑐2)⏟          4𝑡ℎ√𝑖𝛽𝑠2 + 𝑖𝛽𝑐2 = √(𝐴22 + 𝐵22)√(𝑣𝛽𝑠2 + 𝑣𝛽𝑐2)                                                                                                                    √𝑖𝑓𝑠2 + 𝑖𝑓𝑐2 = √𝐾31(𝑣𝛼𝑠2 + 𝑣𝛼𝑐2)⏟          1𝑠𝑡 + 2𝐾32(𝑣𝛼𝑠𝑣𝑓𝑠 + 𝑣𝛼𝑐𝑣𝑓𝑐)⏟              2𝑛𝑑 + 2𝐾33(𝑣𝛼𝑠𝑣𝑓𝑐 − 𝑣𝛼𝑐𝑣𝑓𝑠)⏟              3𝑟𝑑 + 𝐾34(𝑣𝑓𝑠2 + 𝑣𝑓𝑐2)⏟          4𝑡ℎ

  (10) 

 

with 

{  
  𝐾11 = 𝐴12 + 𝐵12, 𝐾12 = 𝐴1𝐶1 + 𝐵1𝐷1𝐾13 = 𝐴1𝐷1 − 𝐵1𝐶1, 𝐾14 = 𝐶12 + 𝐷12𝐾31 = 𝐴32 + 𝐵32, 𝐾32 = 𝐴3𝐶3 + 𝐵3𝐷3𝐾33 = 𝐴3𝐷3 − 𝐵3𝐶3, 𝐾34 = 𝐶32 + 𝐷32  (11) 

It is found that the 2nd and 3rd terms are negligible compared 

to the 1st and 4th terms in (10). As a result, (10) can be simplified 

as (12).  

{   
   √(𝑖𝛼𝑠2 + 𝑖𝛼𝑐2) = √𝐾11(𝑣𝛼𝑠2 + 𝑣𝛼𝑐2) + 𝐾14(𝑣𝑓𝑠2 + 𝑣𝑓𝑐2)√𝑖𝛽𝑠2 + 𝑖𝛽𝑐2 = √(𝐴22 + 𝐵22)√(𝑣𝛽𝑠2 + 𝑣𝛽𝑐2)                √𝑖𝑓𝑠2 + 𝑖𝑓𝑐2 = √𝐾31(𝑣𝛼𝑠2 + 𝑣𝛼𝑐2) + 𝐾34(𝑣𝑓𝑠2 + 𝑣𝑓𝑐2)

 

 (12) 

It should be noticed from (12) that √(𝑣𝑓𝑠2 + 𝑣𝑓𝑐2)  is 

actually the amplitude of the voltage (𝐸𝑎𝑓) in the short-circuited 

turns, which can be further derived as (13). A coefficient 1/2 is 

used because each phase of the investigated machine has two 

series-connected coils. In addition, (13) has considered the 

impact of flux-weakening, which reduces the total flux in the 

short-circuited path, leading to reduced voltage. √(𝑣𝑓𝑠2 + 𝑣𝑓𝑐2) = 𝐸𝑎𝑓 = 12𝑥(𝐿𝑑𝑖𝑑 + 𝜑𝑚)𝜔𝑒 (13) 

with 𝐿𝑑 = (𝑥23 − 23𝑥 + 1)𝐿𝑙 + (𝑥23 − 𝑥 + 32)𝐿𝑚 (14) 

where Ld is the equivalent inductance of d-axis under the ITSC 

fault condition [17], id is the d-axis current, 𝜔𝑒 is the electrical 

angular speed of the machine and 𝜑𝑚 is the PM flux-linkage. 

Lm is the self-magnetizing inductance and Ll is the leakage 

inductance. 

For the PM machine, with x and 𝜔𝑒, and other parameters of 
the machine such as phase resistance, phase inductance, etc., 𝐾11, 𝐾14, 𝐾31 and 𝐾34 can be determined. In addition, if the load 

currents (id and iq) are given, with the current closed loop 

control, the amplitude of 𝑖𝛼  will be equal to √(𝑖𝑑2 + 𝑖𝑞2) . 



 

 

Finally, based on (12), (13) and (B2), the fault current can be 

derived as (15).  √𝑖𝑓𝑠2 + 𝑖𝑓𝑐2 = √𝐾31𝐾11 (𝑖𝑑2 + 𝑖𝑞2)⏟          1𝑠𝑡 + 𝐾11𝐾34 − 𝐾31𝐾14𝐾11 (𝐸𝑎𝑓2)⏟                2𝑛𝑑  

 (15) 

Compared with the traditional fault current prediction 

method [13] [14] [15] [16], as seen in (16), this proposed 

method considers the impact of load current on the fault current. 

In addition, since 𝐾11 , 𝐾14 , 𝐾31  and 𝐾34  in (15) are derived 

from the fault model, all the mutual inductances have been 

considered, as seen in (2). 

To rigorously assess the impact of influencing factors on 

fault current, including (1) mutual inductances between the 

faulted turns and the remaining healthy windings (faulted and 

healthy phases), (2) load current, and (3) PWM harmonics 

introduced by the drives, a comprehensive validation process 

involving both simulation and measurement has been 

conducted in the following sections.  

a. With No Load Current (id =0 and iq =0) 

If the load currents id and iq are both set as 0A, the 1st term 

in (15) will no longer influence the fault current. As a result, the 

back-EMF in the short-circuited turns is regarded as the only 

voltage contributor to the fault current. In this case, the fault 

current has been calculated using (15) – proposed method, and 

it has been compared against (16) - conventional method, as 

seen in Fig. 4. It is found that the predicted fault current 

obtained by both the conventional model and the proposed 

model match well with the measured results. Fig. 4 also 

indicates that when 𝜔𝑒  increases, the amplitude of the fault 

current increases. This is due to the increased back-EMF in the 

short-circuited path. Within the maximum speed range, e.g., 

n=1500rpm (𝜔𝑒=628 rad/s), the amplitude of the fault current 

almost stays constant when x increases. This is because, in this 

speed range, the resistance plays a dominant role in the 

impedance calculation. For other cases where the maximum 

speed is even higher, the amplitude of the fault current will be 

changed when x changes. This can be predicted by both (15) 

and (16). 

b. With Load Current (id = 0 and iq ≠ 0) 

In this section, the load current is set to be id =0 and iq ≠ 0 

to investigate the influence of iq on the prediction of fault 

current obtained by the conventional and proposed methods. 

Under this condition, again using (15) and (16), the fault current 

has been calculated, as shown in Fig. 5. It is found from Fig. 5  

that the fault current predicted by the developed method agrees 

well with the measured ones, proving its accuracy.  

In order to further demonstrate the influence of iq over the 

fault current, experiments and simulations with 4 different iq 

such as 0A, 5A, 10A and 15A have been carried out. For these 

experiments and simulations, x = 1/24 and n = 1500rpm are 

maintained the same. Fig. 6 indicates that using the traditional 

method, the predicted fault current stays constant with different 

iq. This differs from the measured results as it neglects the 

contribution of the load current to the fault current. When iq = 

15A, the difference between the predicted fault current obtained 

by the traditional method and the measured one could be 1.2A, 

resulting in an error of almost 20%. If the developed method is 

adopted, only a slight error between the predicted results and 

the measured ones is observed, as shown in Fig. 6.  

c. With Flux-Weakening Control (id ≠ 0) 

It is well-established that the presence of a negative d-axis 

current (id) can reduce the total flux in the short-circuited path, 

leading to reduced short-circuit current. As a result, when ITSC 

fault is detected, an effective approach to mitigate the fault 

current is to introduce a negative id. This is consistent with the 

observation based on the 2nd term of (15), i.e., 𝐾11𝐾34−𝐾31𝐾14𝐾11 (𝐸𝑎𝑓2). However, in this paper, according to (15), it 

is found that id in the 1st term, i.e., 
𝐾31𝐾11 (𝑖𝑑2 + 𝑖𝑞2), regardless its 

sign, can potentially lead to an increase in the fault current. This 

is because as the absolute values of id and iq increase, the phase 

current also increases. As a result, the fault current rises due to 

√𝑖𝑓𝑠2 + 𝑖𝑓𝑐2 = 𝐸𝑎𝑓√𝑅𝑠442 + (𝜔𝑒𝐿𝑠44)2 (16) 

 
Fig. 4. Amplitudes of predicted and measured fault currents vs x and 𝜔𝑒. 

 
Fig. 5. Amplitudes of predicted and measured fault currents. The load 

current is id = 0A and iq = 15A. 

 
Fig. 6 Amplitudes of predicted and measured fault currents vs iq. x = 1/24 

and n = 1500rpm (𝜔𝑒 = 628rad/s). 



 

 

the mutual inductances between the faulty turns and the 

remaining healthy windings (faulted and healthy phase). 

Obviously, the resultant impact of id on the resultant fault 

current will depend on the weightings of the 1st and 2nd terms of 

(15). To validate the impact of id on the fault current while 

excluding the influence of iq, id was set to -10A and iq was set 

to 0A. By comparing Fig. 4 and Fig. 7 (a), it is found that with 

a negative id injected, the fault current is actually reduced 

overall. However, the fault current predicted by the developed 

model is larger than that predicted by the conventional method 

(also considering the impact of id). This is because the 

developed model considers the contribution of id to the increase 

in the fault current. If this contribution is not considered, and 

only the 2nd term of (15) is taken into account, the difference in 

the fault current between the developed model and the 

traditional model is not significant, as seen in Fig. 7 (a). It is 

also found from Fig. 7 (a) that there is a significant difference 

in the predicted fault current between the two methods when the 

fault ratio is relatively low. This is because, at a lower fault ratio, 

the value of K31/K11 [see Fig. 9 (a)] is larger, making the effect of 

the 1st term in (15) more pronounced. Therefore, only one turn 

being short-circuited is selected to experimentally verify the 

accuracy of this proposed fault model. It can be observed from 

Fig. 7 (b) that the predicted result by using developed model 

agrees well with the measured ones. Fig. 7 (b) also shows that 

the difference between the fault currents predicted by the 

conventional method and the measured ones could reach 1.2A, 

indicating an error of nearly 32%.  

The second case investigated in this section is id = -10A and 

iq = 10A. In this scenario, the fault current has also been 

predicted by the traditional and proposed models, as seen in Fig. 

8 (a). It can be seen that the fault current obtained by the 

proposed fault model is larger than that achieved from the 

traditional fault model. This is due to the fact that the developed 

model considers the influence of id and iq on the increase in fault 

current. To verify the accuracy of the proposed model, tests 

have been conducted, as shown in Fig. 8 (b). It is found that the 

predicted results obtained from the developed method match 

well with the measured ones. Additionally, Fig. 8 (b) also 

demonstrates that the difference between the fault current 

predicted by the conventional method and the measured ones 

can reach 2.2A, indicating an error of approximately 45%. This 

further confirms the necessity of considering id and iq in the 

fault current prediction. 

d. Influence of Mutual-Inductances on Fault Current Prediction  

Based on sections III.A.b and III.A.c, it is evident that when 

considering the load current, the predicted fault current from 

this proposed model is larger than that obtained from the 

traditional method. This discrepancy arises from the 

consideration of mutual inductances. It can be observed from 

(15) that the first contributor to the fault current is introduced 

by the mutual inductances between the faulted turns and the 

remaining healthy windings (faulted and healthy phase). If 

 
(a) 

 
(b) 

Fig. 7. (a) Amplitudes of predicted fault currents vs x and 𝜔𝑒 , and (b) 

measured and predicted fault currents with x=1/24. The load current is id = -

10A and iq = 0A.  

 
(a) 

 
(b) 

Fig. 8. (a) Amplitudes of predicted fault currents vs x and 𝜔𝑒 , and (b) 

measured and predicted results with x=1/24. The load current is id = -10A and 

iq = 10A. 
 

(a) 



 

 

these mutual inductances are ignored, the matrix L in (2) will 

be updated as shown in (17). If so, 𝐾31/𝐾11 in (15) is equal to 

zero. From a broad perspective, one can define the 𝐾31/𝐾11 as 

a resultant mutual inductance between the faulted turns and 

remaining healthy windings (faulted and healthy phase). It can 

be founded from Fig. 9(a) that, if the fault ratio is kept constant 

(e.g., x=1/24) and with the speed (𝜔𝑒 ) increasing, 𝐾31/𝐾11 

become larger. This leads to the differences between the faulted 

current predicted by the traditional method and proposed 

method becomes larger, as shown in Fig. 9 (b). However, when 

the speed is fixed, with an increase in fault ratio, this difference 

will be reduced [see Fig. 9 (b)]. This is because, with the 

increase in fault ratio, 𝐾31/𝐾11 will decrease as well [see Fig. 

9(a)]. In addition, Fig. 6 further demonstrates the mutual 

inductance influence over the fault current. If these mutual 

inductances are neglected, the fault current remains unaffected, 

even in the presence of load current, as seen in Fig. 6.  𝑳 = 𝐝𝐢𝐚𝐠(𝐿𝑠11, 𝐿𝑠22, 𝐿𝑠33, 𝐿𝑠44) (17) 

B. Investigation of PWM Ripple Component in Fault Current 

In the modern drive system, the PM machine is mainly 

controlled by the PWM inverter. Using Fast Fourier Transform 

(FFT) method, the PWM voltages output from the inverter can 

be decomposed as a series of sinusoidal signals of different 

frequencies and different amplitudes. These PWM voltage 

harmonics can be regarded as the input for the PM machine, and 

the PWM ripple current will be its output signal. The findings 

in [21] have shown that the PWM ripple components in the fault 

current can be much larger than that in the faulted phase current, 

especially with a small number of turns being short-circuited. 

Neglecting the PWM ripple component could lead to a serious 

underestimation of the fault current. As a result, this section will 

focus on the investigation of PWM ripple component in the 

fault current. In this section, the amplitudes of the fault current 

and faulted phase current refer to the amplitudes of their PWM 

ripple current. 

To calculate the PWM ripple currents, (9) is still appliable.  

Given the fact that the back-EMF in the short-circuited turns 

has no PWM harmonics, (9) can be replaced by (18). It is worth 

noting that 𝐴1, 𝐵1, 𝐴2, 𝐵2, 𝐴3, 𝐵3, 𝐶1, 𝐷1, 𝐶2, and 𝐷2 in (18) 

are functions of x and switching frequency. 

[  
   
 𝑖𝛼𝑠ℎ𝑖𝛼𝑐ℎ𝑖𝛽𝑠ℎ𝑖𝛽𝑐ℎ𝑖𝑓𝑠ℎ𝑖𝑓𝑐ℎ ]  

   
 =

[  
   
𝐴1 𝐵1 0 0 𝐶1 𝐷1−𝐵1 𝐴1 0 0 −𝐷1 𝐶10 0 𝐴2 𝐵2 0 00 0 −𝐵2 𝐴2 0 0𝐴3 𝐵3 0 0 𝐶2 𝐷2−𝐵3 𝐴3 0 0 −𝐷2 𝐶2]  

   
[  
   
𝑣𝛼𝑠ℎ𝑣𝛼𝑐ℎ𝑣𝛽𝑠ℎ𝑣𝛽𝑐ℎ00 ]  

    (18) 

with 

{   
   √𝑖𝑎𝑠ℎ2 + 𝑖𝑎𝑐ℎ2 = 𝑖𝛼ℎ√𝑖𝛽𝑠ℎ2 + 𝑖𝛽𝑐ℎ2 = 𝑖𝛽ℎ√𝑖𝑓𝑠ℎ2 + 𝑖𝑓𝑐ℎ2 = 𝑖𝑓ℎ  and { 

 √𝑣𝑎𝑠ℎ2 + 𝑣𝑎𝑐ℎ2 = 𝑣𝛼ℎ√𝑣𝛽𝑠ℎ2 + 𝑣𝛽𝑐ℎ2 = 𝑣𝛽ℎ (19) 

where 𝑖𝛼ℎ, 𝑖𝛽ℎ and 𝑖𝑓ℎ are the K [see (8)] value of α- and β-axis 
currents and fault current at switching frequency. 𝑖𝛼𝑠ℎ, 𝑖𝛽𝑠ℎ and 𝑖𝑓𝑠ℎ , and 𝑖𝛼𝑐ℎ,  𝑖𝛽𝑐ℎ  and  𝑖𝑓𝑐ℎ  are 𝐹𝑠  and 𝐹𝑐  of 𝑖𝛼ℎ , 𝑖𝛽ℎ  and 𝑖𝑓ℎ , 

respectively. Similarly, 𝑣𝛼ℎ and 𝑣𝛽ℎ are the K values of α- and 

β-axis voltage at switching frequency. 𝑣𝛼𝑠ℎ , 𝑣𝛽𝑠ℎ  and 𝑣𝛼𝑐ℎ , 𝑣𝛽𝑐ℎ are 𝐹𝑠 and 𝐹𝑐 of the 𝑣𝛼ℎ and 𝑣𝛽ℎ, respectively. 
Based on (18) and (19), the amplitudes of fault current and 

phase A current at switching frequency can be calculated, as 

seen in (20). However, it requires the amplitude of phase A 

voltage ( 𝑣𝛼ℎ ) in each PWM period, which is derived by 

decomposing the PWM voltage of phase A. The PWM voltage 

of phase A is determined by the difference between the PWM 

voltage of phase A (VdslA) and the neutral point voltage (vn), as 

seen in (3). It is known that VdslA depends on the duty ratio of 

phase A, which in turn relies on the operation conditions of the 

PM machine, the adopted modulation strategy, and DC bus 

voltage. On the other hand, vn depends on the duty ratio of each 

phase, fault ratio, DC bus voltage, and machine parameters, e.g., 

phase inductance, phase resistance, etc. Thus, predicting 𝑣𝛼ℎ at 
each PWM period is challenging. However, the faulted phase 

current can be directly measured in practice. This enables the 

analysis of the amplitude of faulted phase current at the 

switching frequency. Using (21), which describes a ratio of the 

fault current amplitude over the faulted phase current at 

switching frequency, it is possible to indirectly predict the 

PWM ripple current in the short-circuited turns. In other words, 

(21) opens the possibility of assessing the unmeasurable PWM 

ripple current in the short-circuited turns. 

{ 
 𝑖𝛼ℎ = √(𝐴12 + 𝐵12)𝑣𝛼ℎ𝑖𝑓ℎ = √(𝐴32 + 𝐵32)𝑣𝛼ℎ  (20) 

𝑖𝑓ℎ𝑖𝛼ℎ = √(𝐴32 + 𝐵32)√(𝐴12 + 𝐵12) (21) 

Based on (21), the ratio of the PWM ripple current in the 

short-circuited turns to that in the faulted phase can be 

calculated for different frequencies and fault ratios, as shown in 

Fig. 10. For the investigated machine, with 1 turn being short-

circuited, the PWM ripple component in the fault current is 

about 23 times greater than that in the faulted phase. This 

further proves the necessity of considering the PWM ripple 

current in the short-circuited turns. With the increase in fault 

ratio, the ratio of iF/ia will decrease. This is because the 

 
(b) 

Fig. 9 (a) K31/K11 in equation (15) vs x and 𝜔𝑒 . (b) amplitude difference 

between the fault currents calculated by the developed method and the 

traditional method. The load current is id = -10A and iq = 10A. 



 

 

impedance of the short-circuited turns increases, whilst it 

reduces in the faulted phase. The findings in [23] demonstrated 

an inverse correlation between the impedance of the phase 

current and the amplitude of the PWM ripple component. It is 

also found from Fig. 10 that the ratio of iF/ia is independent of 

the switching frequency. This can be attributed to the fact that 

as the switching frequency increases, the PWM ripple 

components in the faulted phase current and in the fault current 

decrease simultaneously [24].  

In order to further demonstrate the relationship presented in 

Fig. 10, the PWM ripple component is extracted from the 

measured faulted phase current (ia) and fault current (if) under 

different fault ratios (x). Fig. 11 illustrates the accuracy of the 

proposed relationship between the PWM ripple component in 

the faulted current and the faulted phase current, as described 

in (21). It should be noted that this relationship only depends on 

machine parameters and fault ratio. Consequently, if machine 

parameters and fault ratio are unchanged, the ratio (iF/ia) will 

remain constant under different operational scenarios. 

C. Fault Current Prediction Considering Fundamental and 

PWM Ripple Components 

By utilizing the measured faulted phase current ia, as show 

in Fig. 12 (I) (a), it is easy to determine its PWM ripple 

component, as shown in Fig. 12 (I) (b), which can then be 

utilized to predict the PWM ripple component in the fault 

current using (21), as shown in Fig. 12 (I) (c). In addition, (15) 

can be employed to calculate the magnitude of the fundamental 

 
Fig. 10 Predicted iF/ia vs fault ratio (x). 

 
(a) 

 
(b) 

 
(c) 

Fig. 11 Measured PWM ripple component in iF and ia. (a) x = 1/24, (b) x = 

1/2, and (c) x = 1. n = 1500rpm, f=20kHz, and id = 0A and iq = 2A. 

 
(I) 

 
(II) 

 
(III) 

Fig. 12 (I) x = 1/24, (II) x = 1/2, and (III) x = 1. (a) measured ia, (b) PWM 

ripple current in measured ia, (c) predicted PWM ripple component and 

fundamental component in if, and (d) predicted and measured if. n = 

1500rpm, id = 0A and iq = 2A. 



 

 

component of the fault current, as shown in Fig. 12 (I) (c). 

Consequently, adding the PWM ripple and the fundamental 

components together, the fault current can be predicted, as 

shown in Fig. 12 (I) (d). It can be observed from Fig. 12 that 

with different fault ratios, the predicted fault currents closely 

match with the measured ones. Therefore, it can be concluded 

that by employing (15) and (21), and using the measured faulted 

phase current, the fault current, which is unmeasurable in 

practice, can be accurately predicted. Additionally, with an 

increase in x, the PWM ripple component in the faulted phase 

current also increases due to the decrease in impedance in the 

faulted phase. This behavior is opposite to that of the fault 

current.  

IV. CONCLUSION 

In this article, a novel analytical model in α- and β-axis 

reference frame has been developed. Such model can be used 

to derive a generic mathematical expression of the amplitude of 

the fault current. The investigation in this article shows that 

compared with the commonly used fault current prediction 

method in literature, the proposed approach is much more 

accurate. This improved accuracy can be attributed to the 

inclusion and proper consideration of other factors that 

contribute to the fault current calculation, such as (i) mutual 

inductances between the faulty turns and the remaining healthy 

windings (both faulty and healthy phases) and (ii) load current. 

In addition, this article establishes a relationship between the 

PWM ripple current in the short-circuited turns and the 

corresponding PWM ripple current in the faulted phase. This 

correlation enables the accurate prediction of the fault current 

by considering both the fundamental component and the PWM 

ripple component simultaneously. A series of experiments have 

been carried out to validate the proposed fault current prediction 

method. 

APPENDIX A 

A full rank matrix is defined as M in (A1) and its inverse 

matrix can be obtained. Meanwhile, the relevant linear 

transformation is described by (A2).  

𝑴 = 13 [2 −1 −1 00 √3 −√3 00 0 0 31 1 1 0] (A1) 

[  
 𝑖𝛼𝑖𝛽𝑖𝑓𝑖0]  
 = 𝑴[𝑖𝑎𝑖𝑏𝑖𝑐𝑖𝑓]  and [

𝑣𝛼𝑣𝛽𝑣𝑓𝑣0] = 𝑴[
𝑣𝐴𝑑𝑠𝑙 − 𝑒𝑎ℎ𝑣𝐵𝑑𝑠𝑙 − 𝑒𝑏𝑣𝐶𝑑𝑠𝑙 − 𝑒𝑐−𝑒𝑎𝑓 ] (A2) 

where iα, iβ, if and i0 denote the new currents converted from ia, 

ib, ic, and if using matrix M. vα, vβ, vf and v0 are the voltages 

transformed from the PWM voltage and back-EMF using 

matrix M.  

By substituting (A2) into (4), (A3) is obtained. Furthermore, 

both sides of (A3) are multiplied simultaneously by matrix M, 

leading to (A4). Then, the product of matrices in front of the 

current and voltage vectors can be achieved, as illustrated by 

(A5). 

𝑷𝑳𝑴−1 𝑑𝑑𝑡 [  
 𝑖𝛼𝑖𝛽𝑖𝑓𝑖0]  
 = −𝑷𝑹𝑴−1 [  

 𝑖𝛼𝑖𝛽𝑖𝑓𝑖0]  
 + 𝑷𝑴−1 [𝑣𝛼𝑣𝛽𝑣𝑓𝑣0] (A3) 

𝑴𝑷𝑳𝑴−1 𝑑𝑑𝑡 [  
 𝑖𝛼𝑖𝛽𝑖𝑓𝑖0]  
 = −𝑴𝑷𝑹𝑴−1 [  

 𝑖𝛼𝑖𝛽𝑖𝑓𝑖0]  
 + 𝑴𝑷𝑴−1 [𝑣𝛼𝑣𝛽𝑣𝑓𝑣0] (A4) 

with 𝑴𝑷𝑳𝑴−1 = [𝑳𝟑×𝟑 𝑳𝟑×𝟏𝟎𝟏×𝟑 0 ] , −𝑴𝑷𝑹𝑴−1 = [𝑹𝟑×𝟑 𝑹𝟑×𝟏𝟎𝟏×𝟑 0 ] and 𝑴𝑷𝑴−1 = [𝑬𝟑×𝟑 𝟎𝟑×𝟏𝟎𝟏×𝟑 0 ] 
 (A5) 

where 𝑳𝟑×𝟑 is a 3×3 inductance matrix. It is converted by linear 

transformation from the matrix L, the previously defined matrix 

M and its inverse matrix 𝑴−𝟏, and the matrix 𝑷. 𝑳𝟑×𝟏 is a 3×1 

inductance matrix, which is extracted from the 4th column of the 

product of matrices M, 𝑷, L and 𝑴−𝟏. 𝑹𝟑×𝟑 is a 3×3 resistance 

matrix, which is the first three rows and columns of the product 

of matrices M, 𝑷, R and 𝑴−𝟏. 𝑹𝟑×𝟏 is a 3×1 resistance matrix. 𝑬𝟑×𝟑 is a 3×3 identity matrix. 𝟎𝟏×𝟑 and 𝟎𝟑×𝟏 are matrices with 

a dimension of 1×3 and 3×1, respectively, and the elements in 

these two matrices are all equal to zero. 

APPENDIX B 

For a first-order linear system with sinusoidal input, the 

expression can be given as (B1). 𝑑𝑑𝑡 𝑥(𝑡) = 𝑎1𝑥(𝑡) + 𝑏1𝑢(𝑡) (B1) 

with 𝑢1(𝑡) = [sin(𝜔𝑡)cos(𝜔𝑡)]𝑇 [𝑢𝑠𝑢𝑐] , 𝑥(𝑡) = [sin(𝜔𝑡)cos(𝜔𝑡)]𝑇 [𝑥𝑠𝑥𝑐] (B2) 

where 𝑥(𝑡) is the state variable and 𝑢(𝑡) is the input signal. 𝑥𝑠, 𝑥𝑐  and 𝑢𝑠 , 𝑢𝑐  represent the values of 𝐹𝑠  and 𝐹𝑐 , respectively. 
For 𝑥(𝑡) and 𝑢(𝑡), 𝑎1 and 𝑏1are their coefficients. 

With (B2), (B1) can be derived as (B3). 𝑑𝑑𝑡 [𝑥𝑠𝑥𝑐] = [ 𝑎1 𝜔−𝜔 𝑎1] [𝑥𝑠𝑥𝑐] + [𝑏1 00 𝑏1] [𝑢𝑠𝑢𝑐] (B3) 

Since 𝑥𝑠 and 𝑥𝑐 are constants, (B3) can be further expressed 

as (B4).  [𝒙𝑠𝑐] = −𝑨−1𝑩 (B4) 

with 𝑨 = [ 𝑎1 𝜔−𝜔 𝑎1]  and 𝑩 = [𝑏1 00 𝑏1] (B5) 

where 𝒙𝑠𝑐 is a 2×1 matrix consisting of 𝑥𝑠 and 𝑥𝑐.  
If a multi-order system is considered, expressed as (B6), 

similar derivation process for first-order system can be applied. 

As a result, the values of 𝐹𝑠 and 𝐹𝑐 for each sinusoidal signals 

including the inputs and state variables can be derived as (B7). 𝑑𝑑𝑡 [𝑥1𝑥2…𝑥𝑛] = [
𝑎11 𝑎12 … 𝑎1𝑛𝑎21 𝑎22 … 𝑎2𝑛… … … …𝑎𝑛1 𝑎𝑛2 … 𝑎𝑛𝑛] [

𝑥1𝑥2…𝑥𝑛] + [
𝑏11 𝑏12 … 𝑏1𝑛𝑏21 𝑏22 … 𝑏2𝑛… … … …𝑏𝑛1 𝑏𝑛2 … 𝑏𝑛𝑛] 

 (B6) 

[𝒙𝟏𝒔𝒄𝒙𝟐𝒔𝒄…𝒙𝒏𝒔𝒄] = − [
𝑎11 × 𝑰𝟐 −𝑴𝝎 𝑎12 × 𝑰𝟐 … 𝑎1𝑛 × 𝑰𝟐𝑎21 × 𝑰𝟐 𝑎22 × 𝑰𝟐 −𝑴𝝎 … 𝑎2𝑛 × 𝑰𝟐… … … …𝑎𝑛1 × 𝑰𝟐 𝑎𝑛2 × 𝑰𝟐 … 𝑎𝑛𝑛 × 𝑰𝟐 −𝑴𝝎]

−1 [𝑏11 × 𝑰𝟐 𝑏12 × 𝑰𝟐 … 𝑏1𝑛 × 𝑰𝟐𝑏21 × 𝑰𝟐 𝑏22 × 𝑰𝟐 … 𝑏2𝑛 × 𝑰𝟐… … … …𝑏𝑛1 × 𝑰𝟐 𝑏𝑛2 × 𝑰𝟐 … 𝑏𝑛𝑛 × 𝑰𝟐] [
𝒖𝟏𝒅𝒒𝒖𝟐𝒅𝒒…𝒖𝒏𝒅𝒒] (B7) 



 

 

𝑴𝝎 = [0 −𝜔𝜔 0 ] and 𝑰𝟐 = [1 00 1] (B8) 

where 𝑥1, 𝑥2… and 𝑥𝑛 are the state variables and 𝑢1, 𝑢2… and 𝑢𝑛  are the input signals. 𝒙𝟏𝒔𝒄 , 𝒙𝟐𝒔𝒄 … and 𝒙𝒏𝒔𝒄  represent the 

values of 𝐹𝑠  and 𝐹𝑐  of 𝑥1 , 𝑥2 …and 𝑥𝑛 , and each of them is a 
2×1 matrix consisting of 𝑥𝑖𝑠  and 𝑥𝑖𝑐 . Similarly, 𝒖𝟏𝒔𝒄 , 𝒖𝟐𝒔𝒄 … 
and 𝒖𝒏𝒔𝒄 represent the values of 𝐹𝑠 and 𝐹𝑐 of 𝑢1, 𝑢2…and 𝑢𝑛, 
and each of them is a 2× 1 matrix consisting of 𝑢𝑖𝑠  and 𝑢𝑖𝑐.𝑎11…𝑎𝑛𝑛, and 𝑏11…𝑏𝑛𝑛 are the coefficients, 𝑴𝝎 is a 2×2 

matrix , and 𝑰𝟐 is a 2×2 identity matrix. 𝐴1 = 12𝑅[𝜔2𝑥(9𝐿𝑚2 − 8𝐿𝑚𝐿𝑙𝑥2 + 24𝐿𝑚𝐿𝑙𝑥 − 4𝐿𝑙2𝑥2 + 12𝐿𝑙2𝑥)+ 𝑅2(12 − 4𝑥)]/𝐷𝐸𝑁 

 (B9) 𝐵1 = 12𝜔[𝜔2𝑥2(9𝐿𝑚3 + 8𝐿𝑚2 𝐿𝑙𝑥2 − 20𝐿𝑚2 𝐿𝑙𝑥 + 39𝐿𝑚2 𝐿𝑙+ 12𝐿𝑚𝐿𝑙2𝑥2 − 28𝐿𝑚𝐿𝑙2𝑥 + 42𝐿𝑚𝐿𝑙2 + 4𝐿𝑙3𝑥2− 8𝐿𝑙3𝑥 + 12𝐿𝑙3)+ 𝑅𝑥(4𝐿𝑚𝑅𝑥 − 12𝐿𝑚𝑅 + 4𝐿𝑙𝑅𝑥 − 8𝐿𝑙𝑅)+ 𝑅2(18𝐿𝑚 + 12𝐿𝑙)]/𝐷𝐸𝑁 

 (B10) 𝐴2 = 4𝑅𝜔2(2𝐿𝑙 + 3𝐿𝑚)2 + 4𝑅2 (B11) 

𝐵2 = 2𝜔(2𝐿𝑙 + 3𝐿𝑚)𝜔2(2𝐿𝑙 + 3𝐿𝑚)2 + 4𝑅2 (B12) 𝐴3 = 12𝐿𝑚𝑅𝜔2(2𝑥 − 3)(9𝐿𝑚 + 6𝐿𝑙 + 2𝐿𝑙𝑥)/𝐷𝐸𝑁 

 (B13) 𝐵3 = 6𝐿𝑚𝜔(2𝑥 − 3)[𝜔2𝑥(9𝐿𝑚2 + 30𝐿𝑚𝐿𝑙 + 12𝐿𝑙2)+ 𝜔2𝑥2(8𝐿𝑚𝐿𝑙𝑥 − 20𝐿𝑚𝐿𝑙 + 4𝐿𝑙2𝑥 − 8𝐿𝑙2)+ 𝑅2(4𝑥 − 12)]/𝐷𝐸𝑁 

 (B14) 𝐶1 = 8𝐿𝑚𝑅(2𝑥 − 3)𝜔2(9𝐿𝑚 + 6𝐿𝑙 + 2𝐿𝑙𝑥)/𝐷𝐸𝑁 

 (B15) 𝐷1 = 4𝐿𝑚𝜔(2𝑥 − 3)[𝜔2𝑥(9𝐿𝑚2 + 30𝐿𝑚𝐿𝑙 + 12𝐿𝑙2)+ 𝜔2𝑥2(8𝐿𝑚𝐿𝑙𝑥 − 20𝐿𝑚𝐿𝑙 + 4𝐿𝑙2𝑥 − 8𝐿𝑙2)+ 𝑅2(4𝑥 − 12)]/𝐷𝐸𝑁 

 (B16) 𝐶2 = 8𝑅𝑥 [𝜔2𝑥2(27𝐿𝑚2 + 8𝐿𝑚𝐿𝑙𝑥2 − 40𝐿𝑚𝐿𝑙𝑥 + 108𝐿𝑚𝐿𝑙)+ 𝜔2(81𝐿𝑚2 + 108𝐿𝑚𝐿𝑙 + 36𝐿𝑙2)− 81𝜔2𝑥(81𝐿𝑚2 + 144𝐿𝑚𝐿𝑙 + 48𝐿𝑙2)+ 4𝑅2(𝑥 − 3)2]/𝐷𝐸𝑁 

 (B17) 𝐷2 = 4𝜔[𝜔2𝑥2(18𝐿𝑚3 + 16𝐿𝑚2 𝐿𝑙𝑥2 − 88𝐿𝑚2 𝐿𝑙𝑥 + 270𝐿𝑚2 𝐿𝑙+ 24𝐿𝑚𝐿𝑙2𝑥2 − 112𝐿𝑚𝐿𝑙2𝑥 + 296𝐿𝑚𝐿𝑙2+ 8𝐿𝑙3𝑥2 − 32𝐿𝑙3𝑥 + 80𝐿𝑙3)+ 𝜔2(324𝐿𝑚2 𝐿𝑙 − 54𝐿𝑚3 𝑥 + 81𝐿𝑚3− 396𝐿𝑚2 𝐿𝑙𝑥 − 384𝐿𝑚𝐿𝑙2𝑥 + 288𝐿𝑚𝐿𝑙2− 96𝐿𝑙3𝑥 + 72𝐿𝑙3)+ 𝑅2(8𝐿𝑚𝑥2 − 48𝐿𝑚𝑥 + 72𝐿𝑚 + 8𝐿𝑙𝑥2− 48𝐿𝑙𝑥 + 72𝐿𝑙)]/𝐷𝐸𝑁 

 (B18) 

with 

𝐷𝐸𝑁 = 𝜔4𝑥2[81𝐿𝑚4+ 𝐿𝑙4(16𝑥4 − 64𝑥3 + 160𝑥2 − 192𝑥 + 144)+ 𝐿𝑚3 𝐿𝑙(144𝑥2 − 360𝑥 + 540)+ 𝐿𝑚𝐿𝑙3(64𝑥4 − 288𝑥3 + 752𝑥2 − 960𝑥+ 720)+ 𝐿𝑚2 𝐿𝑙2(64𝑥4 − 320𝑥3 + 952𝑥2 − 1344𝑥+ 1116)]+ 𝑅2𝜔2[𝐿𝑚2 (72𝑥2 − 216𝑥 + 324)+ 𝐿𝑙2(32𝑥4 − 160𝑥3 + 304𝑥2 − 192𝑥+ 144)+ 𝐿𝑚𝐿𝑙(64𝑥4 − 352𝑥3 + 720𝑥2 − 576𝑥+ 432)] + 𝑅4(16𝑥2 − 96𝑥 + 144) 
 (B19) 

where Lm is the self-magnetizing inductance, Ll is the phase 

leakage inductance and R is the phase resistance. 
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