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Abstract

The notion of using pluripotent stem cells (PSCs) as a source of differentiated cell types for replacement of disease or dam-

aged tissues in regenerative medicine is now an active area of research, with approaches to treating eye diseases such as 

age-related macular degeneration or Parkinson’s disease now on the horizon. But the foundations for this research lie in a 

quite different area of science, namely the role of genetics of cancer. In this review, we trace the evolution of ideas starting 

with the discovery that strain 129 mice are particularly subject to develop germ cell tumors, through the identification of 

embryonal carcinoma (EC) cells as the stem cells of the teratocarcinoma manifestation of these tumors, to the recognition of 

their relationship to pluripotent cells of the early embryo, and eventually their role in the derivation of embryonic stem cells, 

first from mouse embryos and then from primates including humans. This is a story that illustrates how science commonly 

develops through the interests and insights of individual investigators, often with unexpected and unintended outcomes.
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Introduction

In 1954, Leroy Stevens was working at the Jackson Labora-

tory in Bar Harbor Maine, a research center established to 

use the laboratory mouse to investigate the origins of cancer 

(https:// www. jax. org/ news- and- insig hts/ 2014/ novem ber/ 85- 

years- of- disco very). Research there had shown that different 

cancers seemed to appear more often in some strains of mice 

than in others, suggesting a genetic link to cancer suscepti-

bility. In that year, Stevens published a paper showing that 

the males of a mouse strain called 129 had a propensity to 

develop a testicular cancer known as a teratoma, which was 

unknown in other strains of mice (Stevens and Little 1954).

Teratomas are peculiar tumors that typically arise in the 

gonads and contain a wide array of jumbled tissues as if 

from an embryo that had become disorganized (Mostofi and 

Price 1973; Scully 1979). Although rare in humans, they had 

long attracted the attention of pathologists because of their 

unusual nature (Damjanov and Wewer-Albrechtsen 2013). 

In women, they are typically benign but they can grow to 

large sizes so are life threatening if not surgically removed. 

By contrast, in men, these tumors are almost always highly 

malignant and so were often designated teratocarcinomas. 

They tend to occur in young men after puberty when other 

cancers are rare, so in that age group they are among the 

most common cancers. The testicular tumors that Stevens 

found in 129 mice were also often malignant and could be 

maintained indefinitely by retransplantation to successive 

male 129 mice. They were therefore seen as a new tool for 

investigating this type of cancer.

Teratocarcinomas are distinguished from teratomas by 

the presence of a histologically distinctive, undifferentiated 

cell type called embryonal carcinoma (EC) (Damjanov and 

Andrews 2007) and it was thought that these are the cells 

that are responsible for the malignant properties of these 

tumors, as well as being able to differentiate into all the 

somatic cell types that characterize teratomas. A crucial 

early development of this cancer model was the demon-

stration by Larry Kleinsmith and Barry Pierce, published 

in 1964, that a single cell, likely an EC cell, isolated from 

a teratocarcinoma and transplanted to another mouse was 

able to generate another teratocarcinoma with a typical wide 
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array of differentiated cell types (Kleinsmith and Pierce 

1964). Work over the succeeding years confirmed the stem 

cell nature of EC cells. The sensitivity of these cells to new 

chemotherapeutic agents such as cis-platinum (Oosterhuis 

et al. 1984) also provided the basis for the current success-

ful treatment of a type of cancer that had killed many young 

men in previous years (Einhorn 1981).

Embryonal carcinoma cells and embryos The complex his-

tology of teratomas had always suggested a relationship to 

embryogenesis. Not only do they contain tissues derived 

from all three germ layers of the embryo—ectoderm, meso-

derm, and endoderm—they often also contain structures 

known as embryoid bodies that morphologically resemble 

early embryos (Damjanov and Andrews 2016). In his exten-

sive body of work following his 1954 publication, Stevens 

provided definitive evidence that teratomas in the mouse 

have a germ cell origin: in males they are initiated in utero 

from primordial germ cells around the time that they migrate 

into the genital ridge, and do not form in embryos homozy-

gous for Sl/Sl, in which germ cells do not develop (Stevens 

1967a, b). In humans, more circumstantial evidence indi-

cated that here too testicular teratocarcinomas are initiated 

by a defect in germ cell development in utero, albeit that they 

typically do not manifest until after puberty (Skakkebaek 

et al. 1987). In females, it seems likely that ovarian terato-

mas may arise later following parthenogenetic activation of 

oocytes in the ovary (Stevens and Varnum 1974).

The germ cell origin of teratomas and teratocarcinomas 

helped to support the notion that their development reflects a 

caricature of embryogenesis. Further evidence was provided 

by the development of teratomas and teratocarcinomas from 

mouse embryos that had been transplanted to ectopic sites 

(Solter et al. 1970; Stevens 1970). The establishment and 

detailed characterization of mouse EC cell lines in vitro also 

contributed to understanding the relationship of teratomas to 

embryos. Brenda Finch and Boris Ephrussi were the first to 

successfully establish cell lines from explanted murine terato-

carcinomas, and their cells retained the ability to differentiate 

when transplanted back into a mouse (Finch and Ephrussi 

1967). Subsequently, several groups established such lines 

and showed that the cells could be cloned while retaining the 

capacity for differentiation in vitro and in vivo (Rosenthal et 

al. 1970; Martin and Evans 1974, 1975; Nicolas et al. 1975). 

Further, these pluripotent cells, now characterized as EC cells, 

were found to express markers, notably alkaline phosphatase 

(Bernstine et al. 1973) and a cell surface antigen named ‘F9’ 

(Artzt et al. 1973), in common with the pluripotent cells of the 

inner cell mass at the blastocyst stage of embryonic develop-

ment. However, definitive proof of the embryonic character 

of mouse EC cells came from the direct demonstration, first 

by Ralph Brinster (Brinster 1974) and confirmed by others 

(Mintz and Illmensee 1975; Papaioannou et al. 1975), that 

EC cells injected into a mouse blastocyst, which was allowed 

to implant in a pseudo pregnant female, would take part in 

embryonic development and contribute to normal tissues of 

the mouse that was born.

These observations together with more detailed charac-

terization of cultured mouse EC cells provided the basis 

for the discovery, independently by Martin Evans and Matt 

Kauffman (1981) and by Gail Martin (1981), that inner 

cell mass cells from mouse embryos, explanted to culture, 

could be maintained indefinitely in vitro, while maintaining 

pluripotency. Such embryo-derived cells, termed embryonic 

stem (ES) cells, proved capable of forming teratomas when 

transplanted to ectopic sites in adult mice, or taking part 

in development to form chimeric mice when transferred 

to blastocysts that were allowed to develop to term. Since 

the chimerism included the germline (Bradley et al. 1984), 

genetic manipulation of ES cells in culture provided a new 

route to generating ‘transgenic’ mice to investigate the 

function of key genes of interest in development or disease 

(Robertson et al. 1986).

Human embryonal carcinoma cells Building on the success 

of studies with mouse EC cells, during the 1970s, several 

researchers began to establish cell lines from human terato-

carcinomas, from biopsies of testicular cancers. This work 

was driven in part by a medical interest in these tumors, but 

also by the thought that, as in the mouse, these cells might be 

useful tools for human embryology. Initially, the discovery 

that two such human teratocarcinoma cell lines contained 

cells expressing the F9 antigen, which had been used to char-

acterize mouse EC cells, encouraged the view that human 

EC cells would closely resemble mouse EC cells (Hogan et 

al. 1977; Holden et al. 1977). However, in a detailed com-

parison of eight human teratocarcinoma cell lines, we found 

several that exhibited the typical morphology of mouse EC 

cells, and formed, in immunodeficient mice, xenograft 

tumors that were histologically similar to EC cells in clini-

cal examples of human teratocarcinomas (Andrews et al. 

1980). These cells did not express another, monoclonal anti-

body-defined, antigen, Stage-Specific Embryonic Antigen-1 

(SSEA-1), which otherwise showed similar expression pat-

terns to the F9 antigen, being also expressed by mouse EC 

cells and the ICM of mouse embryos (Solter and Knowles 

1978).

In a subsequent study, we cloned and characterized in 

detail one particular human testicular teratocarcinoma cell 

line, 2102Ep (Andrews et al. 1982). These cells, which 

formed xenograft tumors that were recognizable by clinical 

histopathologists as pure embryonal carcinoma, likewise did 

not express SSEA-1 in culture provided that they were con-

tinually maintained at a high cell density. However, they did 

express another antigen, SSEA-3, that is expressed on cleav-

age stage mouse embryos but not on their inner cell mass 
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cells, or mouse EC cells (Shevinsky et al. 1982). SSEA-3 

had also been shown to mark EC cells in clinical testicular 

tumors (Damjanov et al. 1982). Nevertheless, if 2102Ep 

cells were cultured at low cell densities, they appeared to 

differentiate morphologically, apparently towards a tropho-

blastic lineage (Damjanov and Andrews 1983), when they 

did begin to express SSEA-1 while downregulating SSEA-3. 

Thus, we concluded that human EC cells differ from their 

murine counterparts, at least with regard to expression of 

these cell surface antigens, and that in humans, in contrast 

to mice, EC cells, expression of SSEA-1 is an indicator of 

differentiation.

Unfortunately, 2102Ep cells and several of the other 

human teratocarcinoma cell lines initially available showed 

little sign of further differentiation into clearly identifi-

able somatic cells. Subsequently, we and others were able 

to identify human EC cell lines that did show somatic dif-

ferentiation and did exhibit the antigen phenotype that we 

first characterized in 2102Ep cells (Andrews et al. 1984b; 

Thompson et al. 1984; Pera et al. 1989). In particular, we 

studied in more detail a pluripotent human EC cell line, 

NTERA2, which formed well-differentiated xenograft tera-

tocarcinomas in immunosuppressed mice, and differentiated 

extensively in vitro, generating neurons as well as other cell 

types, in response to retinoic acid (Andrews et al. 1984b; 

Andrews 1984). Using these cells, additional developmen-

tally regulated cell surface antigens of human EC cells were 

characterized, including SSEA-4, TRA-1–60 and TRA-

1–81, and GCTM2 and differences from mouse EC cells 

were confirmed (Kannagi et al. 1983; Andrews et al. 1984a; 

Fenderson et al. 1987; Pera et al. 1988). What was unclear 

at this stage was whether the differences reflected species 

differences or differences in embryonic stage to which the 

cells correspond.

Human embryonic stem cells Unlike mouse EC cells, which 

are typically diploid though occasionally with some limited 

chromosomal rearrangements, human EC cells are generally 

highly aneuploidy, typically with an approximately triploid 

chromosome number with many rearrangements. Further, 

even the best human EC cells seemed limited with respect 

to the differentiated cells they would form. Consequently, 

from the early days following the description of mouse ES 

cells, there was an interest in whether it would be possi-

ble to derive corresponding cells from human embryos. In 

principle, human embryos could be obtained after the suc-

cessful development of in vitro fertilization, but progress 

was hampered not only by the logistical problems of access-

ing embryos, but also by ethical concerns about the use of 

human embryos in research.

A significant step forward came from the derivation of ES 

cells first from rhesus monkey and then marmoset embryos 

by Jamie Thomson, working at the Wisconsin Primate 

Centre (Thomson et al. 1995, 1996). Strikingly, these mon-

key ES cells more closely resembled human rather mouse 

EC cells with respect to their surface antigen phenotype. 

Nevertheless, they were capable of extensive differentiation 

in vitro and formed well-differentiated teratomas in xeno-

geneic hosts. Importantly, they provided the experience for 

Thomson to derive ES cell lines from human embryos some 

3 yr later (Thomson et al. 1998). Again, these human cells 

also closely resembled human EC cells, but with normal 

karyotypes and a capacity for extensive differentiation.

Opportunities and challenges Following the first publica-

tion describing human ES cells, the notion that these cells 

could provide a source of differentiated cells to replace dis-

eased or damaged tissues, a field now often encapsulated 

by the term ‘regenerative medicine,’ gained rapid traction 

(Gearhart 1998; Pedersen 1999; Daley 2002). In fact, the 

idea had already been floated by a group working with neu-

ronal derivatives of NTERA2 EC cells for the treatment of 

stroke (Borlongan et al. 1998; Kondziolka et al. 2000), but 

ES cells with their apparently normal karyotype and exten-

sive capacity for differentiation were immediately seen 

as better candidates for the approach. Also, reversing the 

extensive damage caused by stroke presents enormous chal-

lenges making it a poor candidate for early trials. Interest 

then coalesced around medical conditions that were con-

fined to the well-characterized loss of particular cell types, 

notably diabetes, age-related macular degeneration (AMD), 

and Parkinson’s disease. Despite the many challenges of pre-

paring cells to standards that permit regulatory approval for 

clinical applications, trials of transplanting retinal pigment 

cells derived from ES cells for treating AMD begun within 

20 yr of the first description of human ES cells (Schwartz et 

al. 2012; Vitillo et al. 2019; da Cruz et al. 2018), and trials 

for Parkinson’s disease have also been planned (Barker et 

al. 2017). These two conditions have the further advantages 

for first in man trials because they affect cells in confined 

organs, the eye and the brain, that may represent immune 

privileged sites, they required only small numbers of cells, 

and there were already prior studies that provide a proof of 

concept that the approach could potentially effect a cure.

In parallel with the interest in regenerative medicine, it 

also became apparent that the differentiation of ES cells 

could offer opportunities to obtain large numbers of differ-

entiated cell types that could be used for testing the safety 

and efficacy of potential new drugs, or for exploring the 

mechanisms of many medical conditions. Indeed, in the 

pharmaceutical industry, many candidate drugs fail in late 

stages of development because of liver or cardiac toxicity. 

Consequently, much effort has been put into generating 

hepatocytes and cardiomyocytes from ES cells for this pur-

pose (Lu and Yang 2011; Meseguer-Ripolles et al. 2018). 

Likewise, recent studies have developed ways to produce 
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‘embryoids’ from ES cells to provide tools for investigating 

early embryogenesis and causes of abnormal development 

(Amadei et al. 2022).

However, notwithstanding the great excitement about the 

potential uses of ES cells, exploiting their potential has also 

faced many challenges. Of these, perhaps the biggest has 

been the ethical issues of research involving human embryos 

(https:// www. euros temce ll. org/ embry onic- stem- cell- resea 

rch- ethic al- dilem ma). To some, any experimental work 

with human embryos is an anathema, and this is reflected in 

the laws and regulations preventing work with ES cells in 

some jurisdictions. To others, for example in the UK, a more 

pragmatic approach is acceptable, so that work with early 

embryos, typically up to 14 d post fertilization, is legally 

permissible for particular purposes such as the production 

of ES cells. However, the discovery by Shinya Yamanaka 

and others (Takahashi and Yamanaka 2006; Takahashi et 

al. 2007; Yu et al. 2007) that somatic cells can be repro-

grammed to a state similar, if not identical to that of embryo-

derived ES cells, has provided a solution to this problem. 

These so-called induced pluripotent stem (iPS) cells typi-

cally express all the characteristics of ES cells including 

their capacity for differentiation, though present their own 

challenges such as the need to avoid genetic changes result-

ing from retention of the genes transfected into the cells to 

achieve reprogramming. Nevertheless, iPS cells are now a 

widely used alternative to ES cells in many studies, and tri-

als of iPS cell–derived derivatives for AMD and Parkinson’s 

disease have been initiated (Takahashi 2021; Akiba et al. 

2023).

Of the other practical difficulties in exploiting the oppor-

tunities of ES and iPS cells, perhaps the most tricky is their 

propensity to acquire genetic changes after prolonged pas-

sage (Halliwell et al. 2020a). Although human ES and iPS 

cells are typically euploid when first derived, they have a 

propensity to acquire non-random karyotypic changes, par-

ticularly gains of the long arm of chromosomes 1, 17, and 

20, and the short arm of chromosome 12. Intriguingly, these 

changes are also common among the many other deviations 

from diploidy in human EC cells. This propensity for non-

random karyotypic change has been since widely confirmed 

(The International Stem Cell Initiative et al. 2011; Andrews 

et al. 2017). In addition to karyotypic changes, smaller 

genomic changes including single base changes also occur 

and these may also be non-random such as variants affect 

TP53 (Merkle et al. 2017). These non-random variants can 

appear in cultures very rapidly and almost certainly reflect 

selective growth advantages that they confer on the cells.

In contrast to somatic cells, ES and iPS cells are particu-

larly susceptible to DNA replication stress and the formation 

of double strand breaks (Halliwell et al. 2020b). Surpris-

ingly, however, the overall mutation rate in ES cells is very 

low, comparable to that of somatic cells and much lower 

than many cancer cells (Thompson et al. 2020). These seem-

ingly contradictory observations can be reconciled by a fur-

ther observation that in response to DNA replication stress 

of ES and iPS cells tend to die through apoptosis, in contrast 

to somatic cells (Desmarais et al. 2012, 2016). Tellingly, 

many of the non-random changes seen in ES and iPS cells 

appear to control apoptosis; e.g., gains of the long arm of 

chromosome 20 appear to be driven by increased expression 

of BCL2L1 located on that chromosome (Avery et al. 2013). 

Cells with such mutations appear able to escape apoptosis in 

response to DNA damage (Halliwell et al. 2020a).

Although progress is being made in understanding the 

mechanisms by which genetic variants arise, assessing the 

consequences of particular genetic variants for different 

applications remains a substantial problem. A recent report 

on ‘Standards for Research with Human Stem Cells’ by the 

International Society for Stem Cell Research (https:// www. 

isscr. org/ stand ards) highlighted this point, and strongly rec-

ommended that careful attention is paid to reporting in full 

the nature of any genetic variants present in cells used for 

particular experiments, so that retrospective analysis may 

provide important clues in the future. The biggest concern 

is the possibility of cancer developing in patients arising 

from derivative cells used for regenerative medicine appli-

cations. Although animal models of tumorigenicity can be 

useful, they are expensive to carry out and certainly cannot 

provide a definitive conclusion as the tumorigenic potential 

of particular variant cells in specific human situations. It 

is likely that new approaches, perhaps based on extensive 

bioinformatics data, will be needed.

Conclusion

It is now 70 yr since Leroy Stevens described the suscep-

tibility of strain 129 mice to testicular teratomas. In that 

period, experimental research with these tumors and cell 

lines derived from them has laid the foundations for the 

development of ES cells, and eventually iPS cells in both 

mouse and humans. ES cells from the laboratory mouse 

continue to provide the chief means for genetically manipu-

lating mice to provide tools to address the mechanisms of 

embryonic development and the causes of abnormal fetal 

development, as well as the causes of aging and disease in 

the adult. Despite the continuing challenges of controlling 

their differentiation to specific cell types and addressing the 

problems of culture-induced genetic variation, human ES 

and iPS cells now offer important opportunities for regenera-

tive medicine as well as for optimizing drug discovery and 

understanding disease mechanisms in humans. It is striking, 

though, that these opportunities were not obvious when the 

first mouse teratocarcinoma lines were isolated.

https://www.eurostemcell.org/embryonic-stem-cell-research-ethical-dilemma
https://www.eurostemcell.org/embryonic-stem-cell-research-ethical-dilemma
https://www.isscr.org/standards
https://www.isscr.org/standards
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