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1 Introduction

Little string theories (LSTs) are six-dimensional (6D) nonlocal quantum field theories (QFTs)

enjoying a form of T-duality.1 Examples of such systems have originally been obtained by

taking the gs → 0 limit (while Ms = 1/
√

α′ is held fixed) in the worldvolume theory of NS5-

branes inside 10D string theories [2].2 Further investigations, in the context of classifications

of six-dimensional theories, unveiled several other LSTs that can be geometrically engineered

exploiting F-theory [5] — see e.g. [6–9]. Describing the LST moduli spaces unearthed several

intriguing features [10] and an interplay with 3D N = 4 mirror symmetries [11–13] and

related string duality chains [14]. This interplay, together with recent improvements in

our understanding of T-duality of LSTs via their two-group structure [15], are among the

core motivations for our study.

Of interest to us will be the LSTs governing heterotic ALE instantons. These are obtained

from the so-called (e) theory, the 6D (1, 0) LST (with eight Poincaré supercharges) coming

from M parallel NS5-branes of the E8 × E8 heterotic string, acting as “small” instantons for

1More precisely, they are examples of “quasilocal” QFTs [1]. For instance, several different operators may

be interpreted as a valid energy-momentum tensor.
2Bulk modes of the 10D string decouple, whereas those on the worldvolume remain interacting. For a

review circa 2000 on LSTs with sixteen supercharges see the classic reference [3]. The name was coined in [4].
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the heterotic gauge group. (Namely, these instantons are pointlike: the curvature of the gauge

bundle is concentrated at a point, parameterizing the location of the NS5s in the transverse

R
4 in 10D.) The (e) theory contains only tensor multiplets, and is believed to flow to a

nontrivial interacting fixed point (the so called rank-M E-string) in the infrared (IR), upon

decoupling the little string modes. The theories governing heterotic ALE instantons are close

cousins of the (e) theory, and are obtained by placing the parent heterotic string on a C
2/ΓG

orbifold transverse to say M NS5s (with ΓG denoting one of the finite subgroups of SU(2),

associated to G via the usual McKay correspondence) [16, 17].3 This latter LST is sometimes

known as (e′) [22], and we will adopt this notation in the following. To fully specify the (e′)

theory one should also provide the data of a flat connection at infinity, which in the E8 × E8

case is encoded in two group homomorphisms µL,R : ΓG → E8. In this paper we are interested

in the moduli space of the (e′) LSTs in presence of nontrivial flat connections at infinity.

The above setup gives rise to intricate 6D models with (dynamical) tensor multiplets

(say nT of them), vector multiplets, and matter hypermultiplets in various representations

of the (product) gauge group, of rank rV. For ALE singularities of type C
2/Zk and C

2/Dk

these models can be understood via a dual description in Type I’ (adding O6-planes for

the orbifolds of D type) — see [23–25] for a detailed description. In this paper we focus

on type A, i.e. C
2/Zk. In this case the tensor (or Coulomb) branch of the 6D vacuum

moduli space — the branch where tensor multiplet scalars take vacuum expectation values

(VEVs) — is the Coxeter box of USp(2M), i.e. topologically (S1)⊗M /Weyl(USp(2M)) if

there are nT = M dynamical tensors. This space is compact and has size M2
s [10]. Upon

compactification on a T 3, for a trivial choice of flat connection at infinity leaving the heterotic

gauge symmetry unbroken, there is an exact (quantum corrected) Coulomb branch (CB)4

of quaternionic dimension

dimH CBT 3 = 1
4 dimR CBT 3 = rV + nT = rV + M = h∨

GM − dimR G = kM − (k2 − 1) ,

(1.1)

where h∨
G is the dual Coxeter number of G = SU(k).

It was proposed in [10] that this space is the moduli space of M instantons for the

gauge group G on a compact K3 surface of volume M2
s . The appearance of the K3 can be

understood via duality with M-theory: the E8 × E8 heteortic string on T 3 is believed to be

dual to M-theory on a (T 3-fibered) K3, therefore we obtain a dual M-theory background

C
2/ΓG ×K3. The singularity is being probed by M transverse M2s, corresponding to the M

heterotic NS5s wrapped on the T 3 fiber of the K3 surface.5 Since M2-branes are pointlike

instantons for the 7D gauge theory of type G corresponding to M-theory on C
2/ΓG, this

explains the fact that the CB of this 3D theory is simply the moduli space of M instantons for

the gauge group G on a compact K3. The resulting moduli space is a compact hyperkähler

space with c1 = 0 (its metric being the unique Ricci-flat one). These spaces have several

3This work hinges upon earlier results [18–21], which are mostly concerned with M NS5s of the Spin(32)/Z2

heterotic string on C
2/ΓG, i.e. with the (o) LST on the orbifold, called (o′).

4For a modern perspective on CBs in 3D see e.g. [26] and references therein.
5For the details of the relevant geometry we refer our readers to the slides of the talk Half K3 surfaces, or

K3, G2, E8, M, and all that by David Morrison, given at Strings 2002. Currently the slides are available at

the unofficial Strings mirror website maintained by Yuji Tachikawa.
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interesting singularities that can be characterized exploiting corresponding 3D IR fixed points.

In particular, taking the limit Ms → ∞ produces a 3D field theory with CB given by the

moduli space of M instantons for the gauge group G on a noncompact singular patch of

the K3. For reasons that will become clear later, we will call the 3D QFT which flows to

such a fixed point an electric quiver for the 6D theory. As will be argued in the main body

of the paper, for G = SU(k) this quiver QFT reads:

1− 2− 3− · · · − (k − 1)−
1
|

k − k − · · · − k −
1
|

k︸ ︷︷ ︸
M−2k+1

−(k − 1)− · · · − 3− 2− 1 , (1.2)

with M − 2k + 1 ≥ 1, i.e. M ≥ 2k. (Henceforth, and unless stated otherwise, k denotes an

N = 4 U(k) vector multiplet, an edge a bifundamental hypermultiplet, and p − k denotes p

fundamentals of the gauge group U(k).) The dimension of this CB is easily computed by

summing all gauge ranks and subtracting one. (All gauge groups are unitary, so the product

gauge group can be broken to a maximal torus. Moreover an overall U(1) decouples from

the dynamics — see [27, section 6.3].) That is,

dimH CB3D(1.2) = k(M − k) + 1 = h∨
SU(k)M − dimR SU(k) , (1.3)

as expected from (1.1). At the singularity of this space a Higgs branch (HB) emanates, with

dimH HB3D(1.2) = k − 1, and at the intersection of the two branches lives the 3D interacting

superconformal field theory (SCFT) with N = 4 supersymmetry capturing the corresponding

singularity of the moduli space.6

This HB is the space of interest for us. In fact, the 3D electric quiver (1.2) comes from

the torus compactification of a 6D generalized quiver (containing massless vector multiplets

and tensor multiplets)7 which we will encounter in (2.7), and reads:

1 −SU(2)−SU(3)−···−SU(k−1)−

1

|
SU(k)−SU(k)−···−SU(k)−

1

|
SU(k)︸ ︷︷ ︸

M−2k+1

−SU(k−1)−···−SU(3)−SU(2)− 1 ,

(1.4)

with dimH HB6D(1.4) = M + k − 1. The M extra moduli (w.r.t. the HB dimension in 3D,

i.e. k − 1) come from the 6D special unitary groups (as opposed to unitary in 3D).8 They

correspond to the locations of M identical small instantons on the ALE space, whereas the

other k−1 to the resolution parameters of the C
2/Zk orbifold [16]. These two numbers sum up

to give the dimension of the hypermultiplet (i.e. Higgs) branch of the associated 10D heterotic

moduli space [29, 30], which coincides with the HB of the (e′) LST for an ALE singularity of

type C
2/Zk (and a trivial flat connection at infinity leaving the gauge group unbroken).

6The existence of such a nontrivial fixed point is guaranteed by the fact that each node in the quiver is

balanced (i.e. 2Nc = Nf) or overbalanced (i.e. 2Nc < Nf) — this is obtained with the understanding that

neighboring gauge groups act as flavors for the gauge group with rank Nc — and the quiver is therefore “good”

in the sense of [28].
7Both 6D (1, 0) vectors and tensors reduce to vectors in 3D.
8The U(1) center of SU(n) is massive in 6D, and decouples from the low-energy dynamics. See [23, eq. (2.6)].
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The main focus of this paper we will be to generalize the above construction to the cases

where the (e′) LST is enriched with choices of nontrivial flat connections at infinity breaking

the E8 × E8 gauge group to the commutant of the embedding (µL, µR) : ΓG → E8 × E8.

Rather than focusing on the corresponding tensor (or Coulomb) branch, we will be interested

in the HB. The latter is the branch where scalars in the matter hypermultiplets take VEVs,

and thus corresponds to the hypermultiplet moduli space of the parent E8 × E8 heterotic

string on the orbifold, as discussed in our companion paper [31]. Applying the same logic as

above, and because the HB is invariant under torus compactification (assuming no Wilson

lines are turned on breaking further the flavor symmetry in the toroidal reduction), we want

to study the HB of the electric quiver. Thanks to mirror symmetry [11], this is equivalent

to the CB of the 3D mirror, that is a different QFT.

For instance, applying the mirror map to (1.2) we obtain [27]

M
|

SU(k) , (1.5)

with

dimH CB3D(1.5) = dimH HB3D(1.2) = k − 1 , (1.6)

dimH HB3D(1.5) = dimH CB3D(1.2) = kM − (k2 − 1) . (1.7)

This (single-node) quiver is a generalization to the case with M flavors of the pure 3D

N = 4 G gauge theory conjectured in [30] to capture the hypermultiplet moduli space of

the heterotic string on ALE via its CB (here G = SU(k) and the ALE space is of type A,

i.e. C2/Zk). Moreover (1.5) is closely related to the 3D magnetic quiver introduced in [32]

(and reviewed in detail below), which in this case reads:

M︷ ︸︸ ︷
1 · · · 1\ /

k . (1.8)

The SU(k) node in (1.5) is replaced by U(k), while M flavors are replaced by a “bouquet”

of M gauge U(1)’s, the opposite of an operation termed “hyperkähler implosion” in [33, 34]

which preserves the hyperkähler structure of the moduli space and the action of (a maximal

torus of) the flavor symmetry group. In physics terms, implosion corresponds to ungauging

a (or more, as in this case) U(1) by gauging the topological U(1)J symmetry associated to

it [27, 35, 36]. The origin of the “explosion” needed to go from (1.5) to (1.8) can be traced

to fact that in 6D an SM symmetry (exchanging the M identical NS5s) is gauged [37].9

The CB dimension of (1.8) is

dimH CB3D(1.8) = dimH HB6D(1.4) = M + k − 1 , (1.9)

as an overall U(1) decouples from the IR dynamics (similarly to the examples of [32]). As we

have already said, the dimension of the associated heterotic hypermultiplet moduli space (or

9This was also confirmed holographically for 6D (1, 0) T-brane theories in [38].

– 4 –
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6D HB) is given by the number of resolution parameters of the C
2/Zk orbifold (i.e. k−1) plus

the locations of M identical small instantons on the ALE space [16]. Conveniently, and because

of mirror symmetry, this moduli space is captured by the CB of the 3D magnetic quiver.

In this work we explicitly construct the magnetic quivers for more general (e′) LSTs,

with choices of nontrivial flat connections at infinity for ALE spaces with C
2/Zk singularities.

The various possibilities are classified by breaking patterns of the E8×E8 gauge group of the

10D heterotic parent on the ALE orbifold C
2/Zk. To understand the origin of both electric

and magnetic quiver, it will be most instructive to realize the E8 × E8 heterotic string as a

Type I’ setup via duality to the Hořava-Witten M-theory background.

This paper is intended as a continuation of a double series of papers by the three authors,

whose first installments are [39–45]. It is organized as follows. In section 2 we give a lightning

review of the construction of the 6D tensor branches (or electric quivers) for the relevant

LSTs of interest. In section 3 we give an algorithmic construction for the dual magnetic

quivers. In section 4 we discuss several consistency checks of our proposal. The main one

comes from realizing that the (e′) theories with nontrivial flat connections at infinity (dubbed

KN (µL, µR; ak−1) in [42–44]) are realized by fusing together two orbi-instanton theories [46, 47].

The latter is an operation in 6D that generalizes a diagonal gauging of two identical global

symmetry groups for two theories in four dimesions [48, 49]. As a result we expect our

magnetic quiver CB should have the features of a hyperkähler quotient of the two HBs of

the orbi-instanton theories involved in the glueing [50, 51]. Since the HBs of orbi-instanton

theories can be computed in many different ways, this provides several interesting consistency

check of our proposal. We conclude our discussion in section 5 with some preliminary remarks

about the behavior of the HBs upon T-duality.10 In section 6 we present our conclusions.

2 The E8 × E8 heterotic and (e′) little string theories

In 9D the heterotic strings are dual to orientifolds of Type II. The Spin(32)/Z2 heterotic

string is S-dual to Type I on a circle, i.e. the O9− orientifold of Type IIB with 16 physical

D9-branes.11 Type I on S1 is in turn T-dual to Type I’, the orientifold of Type IIA with

two O8−-planes at the endpoints of S1/Z2 with 16 D8’s along this interval. The latter setup

can be lifted to a Hořava-Witten M-theory background on S1 × S1/Z2 with two M9-walls

at the endpoints of the interval; compactification along the former circle brings us back to

Type I’, whereas on the latter to the 9D E8 × E8 heterotic string, the two being related (i.e.

dual) by a so-called 9-11 flip in M-theory [14]. All in all, when the gauge group is broken

to SO(16)× SO(16) the two 9D heterotic strings are related by a form of T-duality sending

the radius of one circle to the inverse of the other (see e.g. [53, 54]).

Consider now the E8×E8 heterotic string compactified on a K3; its low-energy dynamics

(once gravity is decoupled) is captured by a (1, 0) LST [2], conventionally called (e). Rather

conveniently to us, the heterotic string on a K3 can also be dualized to F-theory on an

10We stress that it is not the HBs of the 6D LSTs that have to match across T-dualities, rather the HBs of

the 5D theories obtained upon circle reduction. Since often these involve turning on nontrivial flavor symmetry

Wilson lines, the 6D HBs will get corrected.
11The gauge group is a quotient of Spin(32) by Z2 which is not SO(32), as there are no particles in the

vector representation of the D16 algebra [52].

– 5 –



J
H
E
P
0
1
(
2
0
2
4
)
1
6
7

elliptically fibered Calabi-Yau complex threefold (CY), and this setup, in presence of small

instantons (i.e. heterotic NS5-branes), was analyzed in detail long ago [17]. The K3 is

viewed as an elliptically fibered twofold, with a compact P
1 base. Moreover, to decouple

gravity, we let the volumes of the K3 (and CY) go to infinity. (See e.g. [55] for the precise

limit.) Namely, once the orbifold is added we are only interested in the physics near the

singularity C
2/ΓG of the K3.

2.1 6D electric quivers for the (e′) LSTs

The aforementioned T-duality is also present in the 6D version of the heterotic string, when

one compactifies not on a circle but on a K3 as we just did. In fact, before taking the orbifold,

one can study the dynamics of N NS5-branes of the heterotic string. These play the role

of small instantons [56], and their 6D dynamics is captured by an LST whose generalized

Lagrangian may be compactly written as

(o): [SO(32)]
usp(2N)

0 [SU(2)] (2.1)

in the Spin(32)/Z2 case,12 whereas as

(e): [E8] 1 2 2 · · · 2 2 1︸ ︷︷ ︸
N+1

[E8] (2.2)

in the E8 × E8 case.13 In the above “electric quivers” we have used standard F-theory

notation [17, 46] (see also the review [47]),14 and this is because both heterotic string setups

can be mapped via S and T-dualities (as explained above) to a configuration of compact

curves (P1’s) of negative self-intersection 0, 1 or 2 in 6D Type IIB with varying axiodilaton

(with C
2 internal space and seven-branes wrapped on the noncompact curves indicated by

[H], providing an H flavor group). Not all compact curves may be simultaneously shrunk to

a point; the size of the curve which remains finite sets the mass scale Ms of the LST [7]. Let

us focus on the (e) theory. We can add the C
2/ΓG orbifold to the heterotic string with N

small instantons (i.e. the four internal dimensions span a singular K3 surface), and turn (2.2)

into the (e′) theory, with the following F-theory configuration of curves:15

(e′): [E8]
g

1
g

2
g

2 · · ·
g

2
g

2
g

1︸ ︷︷ ︸
N+1

[E8] . (2.3)

This is not the end of the story however, as the presence of the orbifold generically requires

(in order to have a well-defined Weierstrass model in F-theory) further blowups in the base.

These extra blow-up modes are interpreted in terms of 6D conformal matter after [46].

For more general (e′) theories, characterized by an embedding (injective homomorphism)

12The 0 curve (which can never appear in the construction of 6D SCFTs) decorated by a usp gauge algebra

is necessarily a P
1 with C × P

1 normal bundle [7].
13This was already observed in [23].
14Briefly,

g

n denotes an algebraic curve (P1) in the base of F-theory with negative self-intersection n and

hosting a gauge algebra g; [F ] denotes a noncompact flavor curve, i.e. a base divisor hosting an algebra f.

Adjacency of two curves means transversal intersection, unless otherwise stated.
15The quiver for (o′) can be found in [19].
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µL,R : ΓG → E8 (one per E8 factor, left and right, of the E8 × E8 string) one obtains more

general F-theory geometries, dictated by the commutant of the embedding in E8 × E8. The

latter have been determined in [42, 43] building upon [17, 46, 57], and have the structure

Ω1(F (µL), G)
G TN−2(G, G)

G
Ω1(F (µR), G) (2.4)

where Ω1(F (µ), G) is the theory of one orbi-instanton (i.e. one M5) with global symmetry

F (µ)×G corresponding to the embedding µ : ΓG → E8, TN−2(G, G) is the G-type conformal

matter corresponding to N − 2 M5s probing a G-type singularity [46], and
G

denotes

a fusion operation [48, 49] on the corresponding 6D SCFTs replacing a global symmetry

G×G with a gauge node
g
n. See [44] for a review of the resulting systems. An equivalent

presentation of the above result is as follows

ΩNL
(F (µL), G)

G
ΩNR

(F (µR), G) (2.5)

where we represent the system as the fusion of two higher orbi-instanton teories, with

NL + NR = N the total number of M5s in the dual Hořava-Witten setup.

Let us specialize to the case G = SU(k). (We will say a few words on the other cases in

the outlook section at the end of the paper.) To fully specify the instanton configuration in

the 6D heterotic string, on top of the instanton number N we should also specify a nontrivial

flat connection F = 0 for the gauge group at the spatial infinity S3/ΓG of the orbifold

(since π1(S3/ΓG) ̸= 0). This is given by a representation ρ∞ : ΓG → E8, i.e. the embedding

µL,R we just introduced which encodes the F-theory configuration. For G = SU(k) these

embeddings can be conveniently classified in terms of so-called Kac labels [58] (also known

as Kac diagrams in the mathematics literature), i.e. integer partitions of the order k of the

orbifold in terms of the Coxeter labels 1, . . . , 6, 4′, 3′, 2′ of the affine E8 Dynkin:

k =

(
6∑

i=1

ini

)
+ 4n4′ + 3n3′ + 2n2′ , (2.6)

which will be denoted k = [1n1 , . . . , 6n6 , 4n4′ , 3n3′ , 2n2′ ] (and we will also say that the ni, ni′ —

some of which may be zero — are the multiplicities of the parts of the Kac label).

Each embedding preserves a subalgebra of E8 determined via a simple algorithm:16 one

simply “deletes” all nodes with nonzero multiplicity ni, ni′ in this partition, and reads off the

Dynkin of the leftover algebra, which may be a sum of nonabelian algebras, plus a bunch of

u(1)’s to make the total rank eight. E.g. the trivial flat connection (embedding), which exists

for any k, is given by the label k = [1k] and preserves the full E8. In this case a further k

blowups are required in the middle of each of the two pairs [E8]
su(k)

1 in (2.3) (introducing

each time a new 1 curve, decorated by su(k − i), i = 1, . . . , k, and turning the “old” 1 into

a 2), and the full electric quiver reads [17]:

[E8]
∅
1
su(1)

2
su(2)

2 · · ·
su(k−1)

2︸ ︷︷ ︸
k

su(k)

2
[Nf=1]

su(k)

2 · · ·
su(k)

2
su(k)

2
[Nf=1]︸ ︷︷ ︸

N+1

su(k−1)

2 · · ·
su(2)

2
su(1)

2
∅
1︸ ︷︷ ︸

k

[E8] . (2.7)

16In this paper we do not pay attention to the global structure of the flavor group, so that it can be identified

with its Lie algebra.
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1 2
· · ·

k k
· · ·

k k
· · ·

2 1

7 1 1 7

Figure 1. Type I’ engineering of (2.7). A vertical dashed line represents an O8−-plane, vertical solid

lines represent D8’s, horizontal solid lines represent D6’s (with their number in the stack on top of the

line), circles represent NS5s. The total D8 charge vanishes (as it should, in a compact space) because

of the two negatively charged orientifolds.

Equivalently, we may engineer this F-theory configuration in Type I’. We first go to M-theory

on an interval [59, 60]. Each E8 gauge group of the heterotic string (represented by a

noncompact E8 seven-brane in Type IIB) is engineered in M-theory by an M9-wall; each

of the original N instantons (NS5-branes) corresponds to an M5; the orbifold lifts to an

equivalent orbifold probed by the M5’s. We can now reduce the system to Type I’: the M9

becomes an O8−-plane plus eight D8’s, each M5 reduces to an NS5, and the orbifold to

k D6’s suspended between the NS5s. See figure 1. Importantly, because of the 2k extra

blowups (k per “tail” in (2.7)) we have 2k new NS5s in Type I’, giving rise to “fractional

instantons”. In M-theory, they can be explained by considering that the M9-wall actually

fractionates in presence of the orbifold.

2.2 Fractional instantons and 6D SCFTs

In the fully blown-up electric quiver (2.7) (which represents the generic point on the tensor

branch of the LST), and using the heterotic/F-theory/Type I’ dictionary (see again figure 1),

we see that we have a total of

M ≡ (N + 1 + k + k)− 1 = N + k + k (2.8)

heterotic NS5s (small instantons). N of them correspond to the “full” M5’s originally

present in the Hořava-Witten setup (2.2), whereas the other 2k correspond to new fractional

instantons: the M9 in presence of the orbifold fractionates [23, 46], and the number of

fractions depends on the chosen Kac label. (In F-theory, these k fractions correspond to k

blowups in the base.) E.g. for µL,R = [1k] we have k new fractions. Let us call this number

Nµl,r for a general choice of µL,R.

We have two tails from su(1) = ∅ to su(k) (this latter gauge algebra with one flavor),

and N + 1 “central” su(k)’s (i.e. a plateau in the gauge ranks). All 2 curves but one may be

shrunk to a point; its size sets the LST scale Ms. In each of the two “halves” of the Type I’

setup (left and right), Nµl,r = k also corresponds to the largest linking number lL,R: for each

of the 8 D8’s this number is defined as the number of D6’s ending on it from the right minus

from the left plus the number of NS5s to the immediate left of it [32] (where for concreteness

we have assumed the O8 sits on the left of each half, when considered individually). The

linking numbers are read off after having brought all D8’s close to the O8 via a series of simple

Hanany-Witten moves (as done e.g. below in figure 2). Therefore in general we will have

M = N + Nµl + Nµr = (NL + Nµl) + (NR + Nµr) = ML + MR (2.9)
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heterotic small instantons, or NS5-branes in the (e′) LST. Let us explain the meaning

of this formula.

In (2.7) we recognize the same quiver as in (1.2), with M−2k+1 = N +1 in light of (2.8).

This is not a coincidence, as the latter is the T 3 compactification of the former, as mentioned

in the introduction. Now consider the two halves of the Type I’ setup. We may split the

number N + 1 of 2 curves into NL + NR + 1 arbitrarily (i.e. the pleateaux of the two halves

need not be of the same length). Each of the two halves provides the Type IIA engineering

of a 6D (1, 0) SCFT (rather than an LST) on the tensor branch, which is known as A-type

orbi-instanton [39, 46]. The instantonic NS5s contribute tensor multiplets; at strong coupling

the NL,R + Nµl,r (i.e. full plus fractional) NS5s are on top of each other and get absorbed into

the O8-D8 wall. The NS5s can then move freely along this wall, thereby liberating a 6D HB.

We should keep track of this effect in the QFT: at strong string coupling there is a phase

transition whereby each tensor multiplet turns into twenty-nine hypermultiplets [61]. In 6D

this transition appears as we hit the origin of the tensor branch, so that the orbi-instanton

HB dimension17 at “infinite (gauge) coupling” [62] (i.e. in the SCFT) is

dimH HB∞
6D,µL,R

= dimH HB6D,µL,R
+ 29(NL,R + Nµl,r) (2.10)

if there are NL,R + Nµl,r (dynamical) tensor multiplet scalars whose VEVs can be simultane-

ously tuned to zero. This should also correspond to a “jump” in the dimension of the 3D

HB and CB (compactifying on a T 3 and taking the mirror, respectively). In the simplest

case of µL = µR = [1k] where Nµl,r = k (and N = NL + NR), and gluing the two halves

into an LST setup, we predict that

dimH HB6D(1.4) = dimH CB3D(1.8) = M + k − 1 =
M=N+2k

N + 3k − 1 = dimH HB6D(2.7)

(2.11)

should “jump” to

dimH HB∞
6D = dimH CB∞

3D = 29M +M +k−1 =
M=N+2k

30N +61k−1 = dimH HBMs

6D . (2.12)

Here CB∞
3D stands for the CB of a new 3D theory capturing HBMs

6D . By the latter we mean

the HB of the LST at energies of order Ms or higher. (We will sometimes say that the LST

is at infinite coupling, in the sense just explained.) As we said earlier, this is the size of

the 2 curve that remains compact in the F-theory picture, while all other 2’s are shrunk

to a point (i.e. all NS5s are absorbed into the O8’s). Equivalently, M2
s = 1/g2

YM is the

finite gauge coupling of the LST, and the distance between two consecutive NS5s (all other

distances being zero) — see again figure 1.

Going back to the description of the two halves as orbi-instantons, i.e.

[E8]
∅
1
su(1)

2
su(2)

2 · · ·
su(k−1)

2︸ ︷︷ ︸
Nµl,r =k

su(k)

2
[Nf=1]

su(k)

2 · · ·
su(k)

2 [SU(k)]

︸ ︷︷ ︸
NL,R+1

(2.13)

17At finite coupling, i.e. classically, the quaternionic dimension of the HB in any spacetime dimension

with eight supercharges can easily be computed as the total number of hypermultiplets minus that of

vector multiplets.
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in F-theory (see e.g. [39] for more details), we see that gluing two orbi-instantons to create

an LST means gauging together the flavor [SU(k)] at the end of their respective plateaux

of length NL,R + 1 (see (2.7)). This is the new su(k) at finite coupling 1/g2
YM that sets the

LST mass scale. The above electric quiver is the low-energy description (i.e. quiver gauge

theory plus tensors) of the UV SCFT that resides at infinite coupling (i.e. at the origin of

the tensor branch). Luckily, we already have a description of the latter’s HB∞
6D as the CB of

a magnetic quiver, CB∞
3D, which will make its appearance in section 3.

2.3 General electric quivers

More generally, for G = SU(k) the orbi-instanton has an electric quiver given by

[FL,R]
gL,R

1
su(m1)

2
su(m2)

2 · · ·
su(mNµl,r −1)

2︸ ︷︷ ︸
max(Nµl,r ,1)

su(k)

2
[Nf=k−mNµl,r −1]

su(k)

2 · · ·
su(k)

2 [SU(k)]

︸ ︷︷ ︸
NL,R+1

, (2.14)

where [FL,R] is (the nonabelian part of) a maximal subalgebra of E8,18 and where gL,R is one

among {∅, usp(m0), su(m0)}. In the last case we also have one (half) hypermultiplet in the

two-index (three-index) antisymmetric representation of su(m0) for all m0 ̸= 6 (m0 = 6). All

ranks are determined by the chosen µL,R. The algorithm to determine from the Kac label

the full electric quiver (i.e. including matter representations, which we have mostly omitted,

except for the fundamentals at the beginning of the plateau) can be found in [63].

In particular, the number Nµl,r is given by [41]

Nµl,r =
6∑

i=1

nl,r
i + pL,R , pL,R = min

(⌊
nl,r

3′ + nl,r
4′

2

⌋
,

⌊
nl,r

2′ + nl,r
3′ + 2nl,r

4′

3

⌋)
, (2.15)

and is identical to the total number of unprimed parts in a Kac label when it does not

contain any primes.19 For some primes-only labels it may still happen that pL,R = 0 (e.g. for

[4′]);20 then Nµl,r = 0 but max
(
Nµl,r , 1

)
= 1, and the only surviving curve is the leftmost

gL,R

1 , which is a remnant of
su(k)

1 in (2.3). In other words, the F-theory configuration does

not require any extra blowups in this case.

In light of the above, the general (µL, µR) LST will have an electric quiver given by

[FL]
gL
1

su(m1)
2

su(m2)
2 ···

su(mNµl −1)
2︸ ︷︷ ︸

max(Nµl ,1)

su(k)
2

[Nf=k−mNµl −1]

su(k)
2 ···

su(k)
2

su(k)
2

[Nf=k−ℓNµr −1]

︸ ︷︷ ︸
NL+NR+1

su(ℓNµr −1)
2 ···

su(ℓ2)
2

su(ℓ1)
2

gR
1︸ ︷︷ ︸

max(Nµr ,1)

[FR] ,

(2.16)

having identified (i.e. gauged a diagonal subgroup of) the two [SU(k)] factors in (2.14). This

generalizes (2.7); all possibilities have been classified in [6].

The “minimal” choice with N = 0 deserves some attention. In this case the LST has

only fractional instantons, exactly M = ML + MR = Nµl + Nµr of them, which are created

18For the abelian factors needed to make the total rank 8, see [39].
19Notice that our pL,R also appears in [32] with the same name, and in [63] denotes the difference between

NS and N6 in their five-case classification of electric quivers.
20k = 7 is the first case where we can have a nonzero p.
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by the fractionalization of the two M9’s against the orbifold. E.g. for k = 2 we have the

electric quivers [42]

([12], [12]), N = 0, Nµl = Nµr = lL,R = 2 : [E8]
∅
1
su(1)

2
su(2)

2
[Nf=2]

su(1)

2
∅
1 [E8] , (2.17)

([2], [2]), N = 0, Nµl = Nµr = lL,R = 1 : [E7]
∅
1

su(2)

2
[Nf=4]

∅
1 [E7] , (2.18)

both with a plateau of only one su(2). However notice that

([2′], [2′]), N = −1, Nµl = Nµr = lL,R = 0 : [SO(16)]
usp(2)

1
usp(2)

1 [SO(16)] (2.19)

is a gauge anomaly-free electric quiver as is (corresponding to zero full or fractional instantons).

In the notation of (2.16), this is equivalent to formally continuing N to −1. This is because

the +1 in the NL + NR + 1-long plateau of the generic LST (2.16) comes from fusing

the two [SU(k)]’s from left and right orbi-instantons (i.e. gauging a diagonal subgroup).

However sometimes we may be able to build anomaly-free LSTs even without a central

plateau, just as in (2.19).

3 3D magnetic quivers

We are now ready to formulate our proposal for the HB of the LST. As we just explained,

the latter is obtained by gluing two A-type orbi-instantons. The electric quiver of each is

engineered by an NS5-D6-D8-O8− configuration (half of the Type I’ setup), and is obtained

by reading off the massless (electric) degrees of freedom obtained by stretching F1’s between

D6’s when the latter are suspended between NS5s. The HB of the orbi-instanton at a generic

point on the tensor branch (i.e. when the SCFT is approximated by a quiver as in (2.13))

is captured by the CB of a 3D N = 4 quiver gauge theory colloquially known as magnetic

quiver [32]. In this case the massless degrees of freedom are provided by D4’s stretched

between D6’s, NS5s, or D6-NS5s in a phase where the D6’s are suspended between the D8’s

and the NS5s are “lifted off” of the D6’s.

The magnetic quiver is star-shaped,21 and is obtained by gluing a T (SU(k)) tail [28],

1− 2− · · · − (k − 1)− k , (3.1)

to another quiver of affine E8 Dynkin shape (which we will call E
(1)
8 following [58]) along

the k node. Moreover, there is a “bouquet” of 1’s attached to k, representing the NS5s

suspended over the D6’s. The shape of the generic magnetic quiver is thus [32]:

1− 2− · · · − (k − 1)−

NL,R+
∑6

i=1
ni︷ ︸︸ ︷

1 · · · 1\ /

k − r1 − r2 − r3 − r4 − r5 −
r3′

|
r6 − r4′ − r2′ (3.2)

or, equivalently,

1−2−···−(k−1)−

ML,R=NL,R+Nµl,r︷ ︸︸ ︷
1 ··· 1\ /

k −(r1−p)−(r2−2p)−(r3−3p)−(r4−4p)−(r5−5p)−

(r3′ −3p)
|

(r6−6p) −(r4′ −4p)−(r2′ −2p) , (3.3)

21It made its first appearance in [64], even though this name was not adopted at the time.
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remembering the definition in (2.15). (In the above formula we have omitted the L,R

subscripts (on ni, ri, ri′ , p) to avoid clutter.) Let us also call

M̃L,R = ML,R − pL,R = NL,R +
6∑

i=1

nl,r
i . (3.4)

Of course, M̃L,R = ML,R for Kac labels for which p = 0.

The ranks ri, ri′ of the U gauge groups along the E
(1)
8 tail (some of which may be zero)

are determined by the specific Kac label chosen to determine the embedding µL,R : Zk → E8.

Concretely, for both left and right orbi-instanton:

rj = (1− δj6)
6−j∑

i=1

ini+j + 2n2′ + 3n3′ + 4n4′ = k −
6∑

i=1

ini + (1− δj6)
6−j∑

i=1

ini+j (3.5)

for j = 1, . . . , 6, and

r2′ = n3′ + n4′ , (3.6a)

r3′ = n2′ + n3′ + 2n4′ , (3.6b)

r4′ = n2′ + 2n3′ + 2n4′ . (3.6c)

Going to the origin of the tensor branch requires computing the infinite-coupling HB of

the orbi-instanton. As we explained above, this is achieved via ML,R small E8 instanton

transitions which simply “add” ML,R times an E
(1)
8 Dynkin to the right tail of the magnetic

quiver.22 Using the simpler version of the latter in (3.2), we get:

1−2−···−k−(r1+M̃L,R)−(r2+2M̃L,R)−(r3+3M̃L,R)−(r4+4M̃L,R)−(r5+5M̃L,R)−

r3′ +3M̃L,R

|

(r6+6M̃L,R)−(r4′ +4M̃L,R)−(r2′ +2M̃L,R) .

(3.7)

Computing the CB dimension of the above quiver (and substituting (3.5)–(3.6)–(3.4)) yields

dimH CB∞
3D (3.7) = 30(NL,R + k) +

k

2
(k + 1)− ⟨wL,R, ρ⟩ − 1 , 23 (3.8)

just as predicted in [63], where ⟨wL,R, ρ⟩ is the so-called height pairing in E8:

⟨wL,R, ρ⟩ = 29n2 + 57n3 + 84n4 + 110n5 + 135n6 + 46n2′ + 68n3′ + 91n4′ . (3.9)

As a final note, one may expect the electric and magnetic quivers to be related. This is

indeed the case, as one may obtain the latter by taking three T-dualities and an S-duality in

the NS5-D6-D8-O8− setup (along directions spanned by all branes) “probed” by F1-strings

which engineers the former. At the QFT level, the magnetic quiver is the mirror dual to the

T 3 compactification of the electric one, as mentioned multiple times by now.

3.1 µ = [1k] SCFT

Consider for simplicity the orbi-instanton with electric quiver in (2.13). It is specified by Kac

label [1k] and admits the Type IIA engineering of figure 2. From the bottom frame we can

22This quiver addition may be thought of as the reverse of “quiver subtraction” [65–67].
23 The dimension of the moduli space of E8 instantons on the deformation/resolution of C2/Zk reads instead

dimH = 30(NL,R + k) − ⟨wL,R, ρ⟩ [63].
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Figure 2. Top: the Type IIA engineering of (2.13). Middle: an equivalent configuration up to

Hanany-Witten moves, i.e. a D8 in position m is equivalent to a D8 in position 0 (close to the O8−)

with m D6’s ending on it. Bottom: the magnetic phase, obtained by lifting all NS5s off of the D6’s,

and brining in k D8’s from the right infinity (i.e. having each semi-infinite D6 end on a separate D8).

directly read off the magnetic quiver in the phase where all NS5s are still separated:

1− 2− · · · − (k − 1)−

M̃L,R=M̃L,R=NL,R+k︷ ︸︸ ︷
1 · · · 1\ /

k . (3.10)

That is, all ri, ri′ in (3.2) are zero in this case. The symmetry on the CB can be read off as

follows [28, 66, 68, 69]. Separate the nodes between balanced, i.e. those for which 2Nc = Nf,

and unbalanced (those which are not balanced — they could be either overbalanced, 2Nc < Nf,

or underbalanced, 2Nc > Nf). The subset of the balanced nodes gives the Dynkin of the

nonabelian part of the symmetry GIR
J on the CB at the IR fixed point. The number of

unbalanced nodes minus one gives the number of U(1)’s in the abelian part of the symmetry.

(There may be enhancements in the IR, so GIR
J is only the minimum symmetry we must

have. Such an enhancement can be checked by computing the spectrum of 3D monopole

operators [70, 71] or the superconformal index.) The quaternionic dimension of the CB is

given by the total rank of the gauge group of the magnetic quiver minus one.

For instance, for (3.10) we have GIR
J = SU(k)×U(1)NL,R+k, since the 1− 2−· · ·− (k− 1)

portion of the T (SU(k)) tail is balanced (while U(k) as well as the collection of U(1)’s

is generically overbalanced), and dimH CB3D (3.10) = k(k + 1)/2 + NL,R + k − 1 (which

is obviously integer for any k). When NL,R = 0 we have GIR
J = SU(k) × U(1)k and

dimH CB3D(3.10)|NL,R=0 = k(k + 1)/2 + k − 1. The infinite-coupling HB is found where all

NS5s are coincident and brought on top of the O8; upon performing k small E8 instanton

transitions, (3.10) turns into24

1− 2− · · · − (k − 1)− k − k − 2k − 3k − 4k − 5k −
3k

|

6k − 4k − 2k . (3.11)

24It has been conjectured [37] that the CB of the magnetic quiver at infinite-coupling (as a hyperkähler space)

is obtained via a discrete gauging by SML,R
of the finite-coupling CB. (This also reflects into an equivalent

statement on the 6D HBs.) In the case of conformal matter of type (A, A) (i.e. just bifundamentals) [46], this

can also be confirmed via a gravity calculation [38].
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Figure 3. The magnetic phase of the configuration in figure 1.

All nodes but the rightmost U(k) in the left tail and the extending (i.e. leftmost) U(k) node of

E
(1)
8 are balanced, hence GIR

J = SU(k)×E8×U(1) (which coincides with the flavor symmetry

in (2.13) and is generically smaller than that at finite coupling),25 and

dimH CB∞
3D(3.11) = k(k + 1)/2 + 30k − 1 = dimH CB3D(3.10)|NL,R=0 + 29k , (3.12)

as expected.

3.2 (µL, µR) = ([1k], [1k]) LST

We are now ready to derive the magnetic quiver for the simplest (e′) LST of type A (i.e.

for G = SU(k)). We simply glue two orbi-instantons of type A specified by µL,R = [1k]

along their common [SU(k)], as done in (2.7). We now see the usefulness of figure 1: we

can easily read off the magnetic phase (see figure 3) and write down the magnetic quiver.

When all NS5s are separated it is simply given by

M̃L+M̃R︷ ︸︸ ︷
1 · · · 1\ /

k , (3.13)

with M̃L,R = ML,R = NL,R + Nµl,r = NL,R + k and thus ML + MR = N + 2k. The U(k) node

in 3D comes from the T 3 compactification of the 6D vector multiplet obtained by gauging the

common [SU(k)] of left and right orbi-instanton. Now every node is generically overbalanced,

so GIR
J = U(1)ML+MR and dimH CB3D(3.13) = ML +MR +k−1 = N +3k−1. This is nothing

but (1.8) with M = ML + MR, so the LST in the phase of separated NS5s has a HB captured

by the CB of U(k) with M flavors, which as shown in (2.11) has dimension N + 3k − 1.

We can now explore the “infinite-coupling” limit of the LST (i.e. we probe the theory

at energies of order Ms or higher) for the choice (µL, µR) = ([1k], [1k]) and determine the

associated HBMs

6D as the CB∞
3D of a new magnetic quiver, which is the first result of this paper.

We simply need to perform ML + MR instanton transitions, i.e. bringing the left ML NS5s

on top of each other and onto the left O8−-plane and repeating the same procedure for the

right stack of MR NS5s. Doing so, we obtain the magnetic quiver

2ML−4ML−

3ML
|

6ML−5ML−4ML−3ML−2ML−ML−k−MR−2MR−3MR−4MR−5MR−

3MR
|

6MR−4MR−2MR , (3.14)

which we will compactly write as

MLE
(1)
8

∨
− k −MRE

(1)
8 , (3.15)

25See [72] for the M/F-theory origin of this U(1) in the 6D SCFT. For the special case k = 2, the U(1) is

known to enhance to SU(2). The reduction of the symmetry on the CB passing from finite to infinite coupling

has been linked to the discrete gauging of Sk in [37].
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where once again E
(1)
8 stands for the quiver of affine E8 Dynkin shape, with the ranks of the U

groups appearing therein being equal to the Coxeter labels, and E
(1)
8

∨
is the Dynkin mirrored

around the vertical axis, i.e. with the bifurcated tail on the left. Generically, all nodes in (3.14)

but U(k), U(ML), U(MR) are balanced, producing GIR
J = E8×E8×U(1)2 as expected from the

E8×E8 heterotic string on an A-type singularity with trivial flat connections at infinity (i.e. for

µL = µR = [1k]).26 Moreover dimH CB∞
3D(3.15) = 30(ML + MR) + k− 1 = 30(N + 2k) + k− 1.

This nicely matches our prediction in (2.12). We will see another application of this formula

in (4.20).

3.3 General rule

Suppose we now glue (by gauging the common [SU(k)]) two orbi-instantons of type A defined

by two different embeddings µL,R : Zk → E8 (i.e. two different Kac labels, producing two

different sets of {ri, ri′}L,R as in (3.2)), and different lengths NL,R + 1 of the respective

plateaux. The electric quiver is the one in (2.14). Repeating the above game (i.e. writing

down the Type I’ configuration realizing the electric quiver, and moving to the magnetic

phase), it is easy to convince oneself that the general rule for the magnetic quiver of the LST

at finite coupling of the constituent orbi-instantons is given by

rL
2′ − rL

4′ −

rL
3′

|

rL
6 − rL

5 − rL
4 − rL

3 − rL
2 − rL

1 −

M=M̃l+M̃r︷ ︸︸ ︷
1 · · · 1\ /

k − rR
1 − rR

2 − rR
3 − rR

4 − rR
5 −

rR
3′

|

rR
6 − rR

4′ − rR
2′ ,

(3.16)

and by

(
M̃LE

(1)
8

∨
+ rL

2′ −rL
4′ −

rL
3′

|

rL
6 −rL

5 −rL
4 −rL

3 −rL
2 −rL

1

)
− k −

(
rR

1 −rR
2 −rR

3 −rR
4 −rR

5 −

rR
3′

|

rR
6 −rR

4′ −rR
2′ + M̃RE

(1)
8

)

(3.17)

at infinite coupling for all gauge algebras but one (setting the scale M2
s = 1/g2

YM and

corresponding to the U(k) node in the 3D quiver), i.e. the “infinite-coupling” phase of the

LST we are interested in. (The sums in the parentheses in (3.17) are performed node-by-node.)

This is our second result. Notice also that, by construction, the collection rL,R
1 , . . . , rL,R

6 is

non-decreasing, i.e. rL,R
1 ≥ . . . ≥ rL,R

6 , and rL,R
2′ , rL,R

3′ , rL,R
4′ < rL,R

6 .

In light of (3.5)–(3.6), the CB dimension of the above quiver can be shown to be equal to

dimH CB∞
3D (3.17) =

(
30(NL + k) +

k

2
(k + 1)− ⟨wL, ρ⟩ − 1

)
+

+

(
30(NR + k) +

k

2
(k + 1)− ⟨wR, ρ⟩ − 1

)
− (k2 − 1) . (3.18)

The meaning of the −(k2 − 1) term will be clarified at the beginning of section 4.

A final observation is in order here. If one thinks of an LST as being obtained by fusion

of two orbi-instanton constituents (in the sense of [48]), then there is no ambiguity in how

many transitions we should perform “on the left” and how many “on the right”. These two

26Here the two U(1)’s can be seen as arising from the rotation symmetry of probe M5’s inside each of the

two M9’s in presence of the C
2/Zk orbifold, which preserves a U(1) ⊂ SU(2) × SU(2) = SO(4) at the level of

Lie algebras.
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numbers are dictated by the ML and MR numbers (respectively) of the orbi-instantons we

started off with. However, when taken at face value (i.e. “forgetting” about its orbi-instanton

origin), for an LST with M instantons there are multiple shape-inequivalent choices for the

infinite-coupling magnetic quiver (3.17), corresponding to the number of different partitions

of M into two integers (M̃L + pL, M̃R + pR). These shape-inequivalent 3D quivers will have

the same CB dimension, but generically different GIR
J when read off from the UV Lagrangian.

Our guiding principle should be to reproduce the same symmetry preserved by the choice of

labels (µL, µR) in the LST. As a heuristic explanation, consider the following. It is easy to

convince oneself that most choices of (M̃L, M̃R) in (3.17) produce magnetic quivers which

preserve the “right” GIR
J , i.e. identical to the algebra preserved by the left and right Kac

labels. However some choices (e.g. (0, M) or, equivalently, (M, 0) for ([1k], [1k]) for any k)

do not, and hence have to be excluded. We do not know of a deeper explanation of this

fact at the moment. It may signal that most, but not all, infinite-coupling magnetic quivers

represent IR-dual UV Lagrangians.

Finally, in the above quiver Nµl,r (see the discussion below (2.14)) coincides with the

largest linking number lL,R (out of the nine lL,R
1 , . . . , lL,R

8 , lL,R
9 ) in the Type IIA engineering

of the left, respectively right orbi-instanton, i.e. in the two halves of the Type I’ setup [32].

The same paper also provides a convenient map between linking numbers l1, . . . , l8, l9 and

multiplicities ni, ni′ of the parts in a Kac label, so that both the set {ri, ri′}L,R and Nµl,r are

fully determined by the (left or right) Kac label. Therefore the number ML,R = NL,R + Nµl,r

will generically differ for different choices of µL,R (with NL,R being arbitrary while Nµl,r

determined by the chosen label).

3.4 A simple case study: k = 2

For low enough k it is easy to list all possibilities (i.e. all LSTs) and their magnetic quivers,

both at finite and infinite gauge coupling. Take k = 2. The possible Kac labels are

µL,R = [12], [2], [2′]. For all these labels p = 0, so there is no need to distinguish ML,R from

M̃L,R. The associated orbi-instantons with length-(NL,R + 1) plateau have the following

electric quiver and Type IIA engineering:27

[12] : [E8]
∅
1
su(1)

2
su(2)

2
[Nf=1]

su(2)

2 · · ·
su(2)

2 [SU(2)]

︸ ︷︷ ︸
NL,R+1

, 2 2 2
· · ·

2

71

(3.19)

with ri = ri′ = 0 for all i, ML,R = NL,R + Nµl,r = NL,R + 2 (in the notation of (2.13))

and largest linking number lL,R = 2;

[2] : [E7]
∅
1

su(2)

2
[Nf=2]

su(2)

2 · · ·
su(2)

2 [SU(2)]

︸ ︷︷ ︸
NL,R+1

, 1

1
2

· · ·
2

611

(3.20)

with ri = ri′ = 0 for all i but r1 = 1, ML,R = NL,R + Nµl,r = NL,R + 1 and largest linking

number lL,R = 1;

27After having performed all necessary Hanany-Witten moves to bring all D8’s close to the O8.
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[2′] : [SO(16)]
usp(2)

1
su(2)

2 · · ·
su(2)

2 [SU(2)]︸ ︷︷ ︸
NL,R+1

, 2 2
· · ·

2

8

(3.21)

with r1 = . . . = r6 = 2, r4′ = r3′ = 1, r2′ = 0, ML,R = NL,R + Nµl,r = NL,R + 0 and largest

linking number is lL,R = 0, but max
(
Nµl,r , 1

)
= 1.

There are six inequivalent (e′) LSTs we can build out of these Kac labels; namely:

(µL, µR) = ([12], [12]), ([2], [2]), ([2′], [2′]), ([12], [2]), ([12], [2′]), ([2], [2′]) . (3.22)

To build them, we simply glue any two among (3.19)–(3.21) along [SU(2)]. We have already

analyzed the case ([12], [12]) for any k in (3.14)–(3.15); for k = 2 it has infinite-coupling

magnetic quiver (NL + 2)E
(1)
8

∨
− 2 − (NR + 2)E

(1)
8 . The other cases read:

([12], [2]) :

ML+MR︷ ︸︸ ︷
1 · · · 1\ /

2− 1 ,
M

2

71 116

(3.23)

with MLE
(1)
8

∨
− 2 −

(
1−0−0−0−0−

0
|

0−0−0
+ MRE

(1)
8

)
as infinite-coupling limit;

([12], [2′]) :

ML+MR︷ ︸︸ ︷
1 · · · 1\ /

2− 2− 2− 2− 2− 2−
1
|
2− 1 ,

M

2

71 11111111

(3.24)

with MLE
(1)
8

∨
− 2 −

(
2−2−2−2−2−

1
|

2−1−0
+ MRE

(1)
8

)
as infinite-coupling limit;

([2], [2]) : 1−

ML+MR︷ ︸︸ ︷
1 · · · 1\ /

2 − 1 ,
M

2

611 116

(3.25)

with
(
MLE

(1)
8

∨
+

0−0−

0
|

0−0−0−0−0−1

)
− 2 −

(
1−0−0−0−0−

0
|

0−0−0
+ MRE

(1)
8

)
as infinite-

coupling limit;

([2′], [2′]) : 1−

1
|

2−2−2−2−2−2−

ML+MR︷︸︸︷
1···1

\ /

2 −2−2−2−2−2−

1
|

2−1 ,
M

2

11111111 11111111

(3.26)
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with
(
MLE

(1)
8

∨
+

0−1−

1
|

2−2−2−2−2−2

)
− 2−

(
2−2−2−2−2−

1
|

2−1−0
+ MRE

(1)
8

)
as infinite-coupling

limit;

([2]L, [2′]R) : 1−

ML+MR︷ ︸︸ ︷
1 · · · 1\ /

2 − 2− 2− 2− 2− 2−
1
|
2− 1 ,

M

2

611 11111111

(3.27)

with
(
MLE

(1)
8

∨
+

0−0−

0
|

0−0−0−0−0−1

)
− 2−

(
2−2−2−2−2−

1
|

2−1−0
+ MRE

(1)
8

)
as infinite-coupling

limit.

4 Checks

The first nontrivial check that we perform to confirm that the proposed 3D quiver gives a

good description of the HB we are after is that the quaternionic dimension dimH CB∞
3D(3.17)

of the former matches that of the HB of the LST at Ms.

We will show this explicitly only for k = 2. All other k’s work in the same way. Let us

begin by counting, for each orbi-instanton (3.19)–(3.21): the dimension of the associated 3D

CB both at finite and infinite coupling (after performing NL,R small instanton transitions),

the dimension of the 6D HB both at finite and infinite coupling (i.e. in the low-energy quiver

and in the SCFT, respectively), the dimension of the 4D HB for the class-S model [73]

obtained by T 2 compactification of the 6D orbi-instanton.

As already stated above, the dimension of the 3D CB is given by the total gauge rank

minus one, whereas the dimension of the 6D HB at finite coupling is given by counting the total

number of hypermultiplets and subtracting the total number of vector multiplets, nH−nV. At

infinite coupling, i.e. at the origin of the tensor branch, we should turn each tensor multiplet

into twenty-nine hypers.28 The dimension of the HB of the LST “at infinite coupling” (i.e.

with only one 2 curve of finite Kähler size, M2
s ) is obtained simply by summing the dimensions

of the infinite-coupling HB of its two orbi-instanton constitutents (i.e. (nH + 29nT) − nV)

and subtracting the dimension of the central su(k) gauge algebra, as it provides k2 − 1 new

vectors. This explains the appeareance of the term −(k2 − 1) term in (3.18).

4.1 Gravitational anomaly matching

As a further independent check, it was already shown in [16] that, for the case (µL, µR) =

([1k], [1k]), ’t Hooft gravitational anomaly matching imposes

dimH HBMs

6D (LST([1k],[1k])) = (nH + 29nT)− nV = 30M + r , (4.1)

28This is because each orbi-instanton half of the LST is an “(obviously) very Higgsable” theory in the

language of [74, 75], and thus at the origin of the tensor branch each dynamical tensor turns into twenty-nine

hypers, as proven in [76].
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with M the total number of small instantons of E8 × E8 and r the number of resolution

(i.e. Kähler) parameters of the C
2/Zk orbifold. Namely:

dimH HBMs

6D (LST([1k],[1k])) = 30M + r = 30(N + 2k) + k− 1 = 30(NL + NR) + 61k− 1 . (4.2)

This can easily be generalized to any other choice (µL, µR); we simply need to compute the

gravitational anomaly of the LST, since

ILST
8 ⊃ dimH HBMs

6D (LST(µL,µR))
7p1(T )2 − 4p2(T )

5760
, (4.3)

where ILST
8 is the eight-form anomaly polynomial. The contribution of each of the two

orbi-instanton constituents has already been computed in [63]; putting everything together

we obtain

ILST
8 ⊃

[
7(k(k + 61) + 60NL − 2(⟨wL, ρ⟩+ 1))

11520
+

+
7(k(k + 61) + 60NR − 2(⟨wR, ρ⟩+ 1))

11520
+
−7
(
k2 − 1

)

5760

]
p1(T )2 (4.4)

and equivalently for p2(T ). In the third term in parenthesis we have added the contribution of

k2− 1 vectors (coming from the new decorated
su(k)

2 curve), each contributing − 7
5760 p1(T )2.29

All in all we obtain

dimH HBMs

6D (LST(µL,µR)) = 30(NL + NR) + 61k − ⟨wL, ρ⟩ − ⟨wR, ρ⟩ − 1 , (4.5)

which satisfactorily matches with (3.18) (and reduces to (4.2) for (µL, µR) = ([1k], [1k]), since

⟨wL,R, ρ⟩ = 0 in that case — see again (3.9)).

4.2 4D class-S fixtures

The 4D theory obtained by T 2 compactification of the orbi-instanton [63] is an A-type

fixture [77], call it TPL,R
{Y1, Y2, Y3}, with three regular punctures

Y1 = [ML,R − n6, ML,R − n6 − n5, . . . , ML,R − n6 − n5 − n4 − n3 − n2 − n1, 1k] , (4.6)

Y2 = [2ML,R + 2n4′ + n3′ + n2′ , 2ML,R + n4′ + n3′ + n2′ , 2ML,R + n4′ + n3′ ] , (4.7)

Y3 = [3ML,R + 2n4′ + 2n3′ + n2′ , 3ML,R + 2n4′ + n3′ + n2′ ] , (4.8)

which are integer partitions of

PL,R ≡ 6ML,R + k − n1 − 2n2 − . . .− 6n6 = 6ML,R + 2n2′ + 3n3′ + 4n4′ . (4.9)

The ni, ni′ are the multiplicites of the parts in a Kac label of k as in (2.6). This fixture can

be understood as a modification of the one realizing the rank-6M E8 Minahan-Nemeschansky

theory (which has Y1 = [M6], Y2 = [(2M)3], Y3 = [(3M)2] and is indeed of type A6M−1).

29The tensor multiplet associated to this new 2 curve does not contribute to the total coefficient of p1(T )2

or p2(T ) in ILST
8 : since the curve cannot be shrunk to zero size, the associated tensor scalar is nondynamical.
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The dimension of the HB of this fixture can easily be computed as follows [78]:

2 dimH HB4D(TPL,R
{Y1, Y2, Y3}) = 3 dimR SU(PL,R)− rank SU(PL,R)−

3∑

i=1

dimC Yi ,

(4.10)

where by dimC Yi we mean the complex dimension of the nilpotent orbit of su(PL,R) defined

by the partition Yi = [n1, . . . , np] of PL,R, which is given by

dimC Yi = P 2
L,R −

p′∑

j=1

s2
j , (4.11)

with Y t
i = [s1, . . . , sp′ ] the transpose partition of Yi (obtained by reflexion along a diagonal).

4.3 Matching dimensions for k = 2

We can now compute all relevant dimensions as explained at the beginning of this section,

and perform various nontrivial checks of our proposal.

We begin with the orbi-instantons of section 3.4. For the Kac labels [12], [2], [2′] of

k = 2 we find:30

[12]

ML,R=NL,R+2

Nµl,r =lL,R=2

:





dimH CB3D = 4 + NL,R

dimH CB∞
3D = 4 + NL,R + 29ML,R = 62 + 30NL,R

dimH HB6D = 1 · 2 + 2 · 1 + NL,R · 2 · 2−NL,R · (22 − 1) = 4 + NL,R

dimH HB∞
6D = 4 + NL,R + 29ML,R = 62 + 30NL,R

dimH HB4D(T6(NL,R+2){Y1, Y2, Y3}) = 62 + 30NL,R

,

(4.12)

[2]

ML,R=NL,R+1

Nµl,r =lL,R=1

:





dimH CB3D = 4 + NL,R

dimH CB∞
3D = 4 + NL,R + 29ML,R = 33 + 30NL,R

dimH HB6D = 2 · 2 + NL,R · 2 · 2−NL,R · (22 − 1) = 4 + NL,R

dimH HB∞
6D = 4 + NL,R + 29ML,R = 33 + 30NL,R

dimH HB4D(T6(NL,R+1){Y1, Y2, Y3}) = 33 + 30NL,R

,

(4.13)

[2′]

ML,R=NL,R

Nµl,r =lL,R=0

:





dimH CB3D = 16 + NL,R

dimH CB∞
3D = 16 + NL,R + 29ML,R = 16 + 30NL,R

dimH HB6D = 16·2· 1
2

+2·2+(NL,R−1)·2·2−(22−1)−(NL,R−1)·(22−1) = 16 + NL,R

dimH HB∞
6D = 17 + NL,R + 29ML,R = 16 + 30NL,R

dimH HB4D(T6NL,R+2{Y1, Y2, Y3}) = 16 + 30NL,R

.

(4.14)

30As a curiosity, we point out that dimH CB∞
3D = dimH HB∞

6D,µL,R
also equals the dimension of certain strata

(or symplectic leaves) in the double affine Grassmannian of E8 specified by the Kac diagram µL,R, which

together with NL,R and k identifies the chosen orbi-instanton [41]. Notice that the dimensions appearing

in (4.12)–(4.13)–(4.14) match with those in [63] only upon sending NL,R → NL,R − Nµl,r ≡ Nthere. This is

because of the different definition of the length of the plateau between the two papers.
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We are finally ready to test our proposal (3.16)–(3.17): the CB dimension of the 3D magnetic

quiver in (3.17) has to match the dimension of the HB of the 6D LST at infinite coupling,

which may alternatively be found as the dimension of the HB of a new class-S theory, call it

SM ′{Y ′
1 , Y ′

2 , Y ′
3 , Y ′

4}, obtained by colliding Y L
1 with Y R

1 “along” their [1k] part (i.e. gauging a

diagonal SU(k) subgroup of the flavor symmetries associated with Y L
1 and Y R

1 ). Therefore:

dimH HBMs

6D (LST(µL,µR)) = 30N + 61k − ⟨wL, ρ⟩ − ⟨wR, ρ⟩ − 1 (4.15)

= dimH HB∞
6D,µL

+ dimH HB∞
6D,µR

− dimR SU(k)diag (4.16)

= dimH CB∞
3D(3.17) (4.17)

= dimH HB4D(TPL
{Y L

1 , Y L
2 , Y L

3 }) +

+ dimH HB4D(TPR
{Y R

1 , Y R
2 , Y R

3 })− dimR SU(k)diag (4.18)

= dimH HB4D(SM ′{Y ′
1 , Y ′

2 , Y ′
3 , Y ′

4}) . (4.19)

It is straightforward to check that this is indeed the case for all possibilities (µL, µR) of k = 2.

Recalling the definition N = NL + NR, we find:

dimH HBMs

6D (LST([12],[12])) = 30N + 61 · 2− 0− 0− 1 (4.20)

= 62 + 30NL + 62 + 30NR − 3 = 121 + 30N ,

dimH HBMs

6D (LST([2],[2])) = 30N + 61 · 2− 29− 29− 1 (4.21)

= 33 + 30NL + 33 + 30NR − 3 = 63 + 30N ,

dimH HBMs

6D (LST([2′],[2′])) = 30N + 61 · 2− 46− 46− 1 (4.22)

= 16 + 30NL + 16 + 30NR − 3 = 29 + 30N ,

dimH HBMs

6D (LST([12],[2])) = 30N + 61 · 2− 0− 29− 1 (4.23)

= 62 + 30NL + 33 + 30NR − 3 = 92 + 30N ,

dimH HBMs

6D (LST([12],[2′])) = 30N + 61 · 2− 0− 46− 1 (4.24)

= 62 + 30NL + 16 + 30NR − 3 = 75 + 30N ,

dimH HBMs

6D (LST([2],[2′])) = 30N + 61 · 2− 29− 46− 1 (4.25)

= 33 + 30NL + 16 + 30NR − 3 = 46 + 30N .

5 3D T-dualities

In [42, 43] the authors considered the action of T-duality on the (e′) LSTs (essentially obtained

by swapping the roles of NS5s and D6’s in their Type I’ engineering, i.e. via a 9-11 flip in

the Hořava-Witten M-theory setup), and proposed a series of (o′) duals. In this section we

would like to construct the 3D magnetic quivers of the proposed T-duals and make some

comments about their relation with those presented in section 3.3.

To construct the (o′) T-duals (all coming from the (o) LST on a C
2/Z2k̃ orbifold) we

must specify an embedding λ : Z2k̃ → Spin(32)/Z2. We restrict our attention to the heterotic

string “without vector structure” (in the language on [52]), i.e. the second Stiefel-Whitney

class of the compactification vanishes [79].31 The embedding is concretely determined by the

relative position of the 16 D8’s with respect to the k̃ physical NS5s along the interval.

31For the case in which it does not vanish, see [18].
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Rather than constructing the (o′) T-duals in full generality (i.e. for any choice of M, k

on the (e′) side), we will focus on a few concrete examples. Take k = 2k̃ = 2. In this case λ

is determined by a choice of two integers wi such that 16 = w1 + w2 (the numbers of D8’s

before and after the NS5). It is convenient to parameterize them as

w1 = 2p , w2 = 16− 2p , (5.1)

and we can restrict our attention to the cases p = 0, . . . , 4 without loss of generality.32 The

electric quiver and Type I’ engineering are given by, respectively:

[SO(4p)]
usp(2Ñ)

1
usp(2Ñ+8−2p)

1 [SO(32− 4p)] ,
12Ñ 2Ñ + 8 − 2p

2p 16 − 2p

. (5.2)

To read off the magnetic quiver, we first perform 8− 2p Hanany-Witten moves (i.e. we move

8 − 2p D8’s from the right to the left and across the NS5, generating 8 − 2p D6’s behind

them, and leaving only 8 D8’s in the right stack), and then we lift the NS5 off of the D6’s

(stretching D4’s between D6’s and NS5-D6’s):

1

8−2p︷ ︸︸ ︷

1

2Ñ
2Ñ + 1

2(Ñ + 4 − p)

Ñ + 4 − p

Ñ + 4 − p

2p 1 1 1

· · ·

11111111

. (5.3)

The 2Ñ D6’s in the left portion of the setup (those which cross the left O8) must be broken

along the 2p D8’s, following the same pattern as seen on the right.

Calling L = 2Ñ + 8 − 2p, we can read off the finite-coupling magnetic quiver; for

p = 0 we have

(L−8)/2−

(L−6)/2
|

(L−6)−(L−5)−(L−4)−(L−3)−(L−2)−(L−1)−

1
|
L−L−L−L−L−L−

L/2
|
L−L/2 , (5.4)

with dimH CB3D = 15L − 28 = 30Ñ + 92. For p = 1, 2, 3 we have instead

(L−8+2p)/2 −

(L−8+2p)/2
|

(L−8+2p) −···−(L−8+2p)︸ ︷︷ ︸
2p−1

− (L−7+2p)−···−(L−2)−(L−1)︸ ︷︷ ︸
7−2p

−

1
|
L−L−L−L−L−L−

L/2
|
L−L/2 ,

(5.5)

and for p = 4 we have

L/2−

L/2
|

L − L− L− L− L− L−
1
|

L− L− L− L− L− L−

L/2
|

L − L/2 , (5.6)

32We also neglect the case denoted w1 = w2 = 8∗ in [42] for the reasons explained therein (briefly, it is

equivalent to w1 = w2 = 8 upon shifting Ñ → Ñ − 1).
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with

dimHCB3D = 15L−28+p(2p−1) = 30Ñ +92−31p+2p2 =





30Ñ +63 p = 1

30Ñ +38 p = 2

30Ñ +17 p = 3

30Ñ p = 4

. (5.7)

The p = 4 quiver (which is good in the sense of [28]) is special, and engineers (through

its CB) the moduli space of L/2 = Ñ instantons of SO(32) on C
2/Z2 [80]. It has GIR

J =

SO(16) × SO(16) × SU(2).

How do we obtain the infinite-coupling version of the above magnetic quivers? We

simply need to perform one small SO(32) instanton transition [19, 23, 56] (i.e. bring the NS5

into one of the O8’s), which again turns one tensor into twenty-nice hypers. We propose

this is done by adding an affine D16 Dynkin-shaped quiver to the magnetic quivers (akin

to the more usual E8 case):

D
(1)
16 : 1−

1
|
2− 2− 2− 2− 2− 2− 2− 2− 2− 2− 2− 2−

1
|
2− 1 . (5.8)

This is compatible with the (5.4)–(5.5)–(5.6) quiver “shapes”, and adds 29 quaternionic

units to the dimension of the CB (once we subtract the overall decoupled U(1)). Adding

D
(1)
16 once we obtain:

(L−6)/2−

(L−4)/2
|

(L−4)−(L−3)−(L−2)−(L−1)−L−(L+1)−(L+2)−(L+2)−(L+2)−(L+2)−(L+2)−(L+2)−

(L+2)/2
|

(L+2)−(L+2)/2 ,

(5.9)

for p = 0;

(L/2−3+p) −

(L/2−3+p)
|

(L−6+2p) −···−(L−6+2p)︸ ︷︷ ︸
2p−1

− (L−5+2p)−···−L−(L+1)︸ ︷︷ ︸
7−2p

− (L+2)−···−

(L+2)/2
|

(L+2)︸ ︷︷ ︸
7

−(L+2)/2 , (5.10)

for p = 1, 2, 3;

(L + 2)/2−

(L + 2)/2
|

(L + 2) − · · · −

(L + 2)/2
|

(L + 2)︸ ︷︷ ︸
13

−(L + 2)/2 (5.11)

for p = 4.

Remembering that L = 2Ñ + 8 or L = 2Ñ + 8 − 2p (if p ≠ 0), we obtain:

dimHCB∞
3D

(5.9)

(5.10)

(5.11)

= 15L+1+p(2p−1) = 30Ñ +121−31p+2p2 =





30Ñ+121 p=0

30Ñ+92 p=1

30Ñ+67 p=2

30Ñ+46 p=3

30Ñ+29 p=4

, (5.12)

– 23 –



J
H
E
P
0
1
(
2
0
2
4
)
1
6
7

and (minimum) symmetries in the IR

GIR
J (p = 0) = SO(16)× SU(8)×U(1) , (5.13)

GIR
J (p = 1, 2, 3) = SO(16)× SO(4p)× SU(8− 2p)×U(1) , (5.14)

GIR
J (p = 4) = SO(32) . (5.15)

For p = 0 it is reasonable to expect the enhancement

SO(16)× SU(8)×U(1)→ SO(16)× SO(16)→ SO(32) (5.16)

to match with the Type I’ setup in (5.2); for p = 1, 2, 3

SO(4p)× SU(8− 2p)×U(1)× SO(16)→
SO(4p)× SO(16− 4p)× SO(16)→
SO(4p)× SO(32− 4p) ,

(5.17)

by the same token. For p = 4 the flavor algebra is naively affine SO(32), but one U(1)

decouples. We can decide to decouple the U(1) center of one of the U((L + 2)/2) groups

(turning into SU((L + 2)/2)), so that we are left with a finite SO(32). The infinite-coupling

magnetic quiver however is bad, as we will review below.

At this point, one may correctly wonder whether the magnetic quivers at infinite coupling

for the E8 × E8 and Spin(32)/Z2 strings, i.e. (3.7) and (5.9)–(5.10)–(5.11) respectively, are

related in any way (at least for k = 2k̃ = 2). We propose the following picture. Denoting

LST(w1,w2) the k̃ = 1 (o′) LSTs engineered by (5.2), the T-dualities found in [42, 43] identify

LST(µL,µR) (at k = 2k̃ = 2) and LST(w1,w2) in the following way:

LST([12],[12]) = LST(0,16) , LST([2],[2]) = LST(4,12) , LST([2′],[2′]) = LST(8,8) , (5.18a)

LST([12],[2]) = LST(2,14) , LST([12],[2′]) = LST(4,12) , LST([2],[2′]) = LST(6,10) . (5.18b)

In all cases but those in the central column (where two different E8 × E8 LSTs are mapped

to the same Spin(32)/Z2 one) the 3D CBs at infinite coupling have the same dimension

upon identifying N = Ñ , again as already predicted in [42, 43]. The 3D HB dimensions

on the contrary do not match. Remember however that T-duality between LSTs is an

equivalence between compactified theories (i.e. between effective descriptions in 5D), so we

expect the explicit choice of Wilson lines on the circle to play a crucial role. For instance,

the flavor symmetries FL × FR and SO(4p)× SO(32− 4p) need to be broken to a common

subgroup for the matching to occur. (There are also constraints on the so-called two-group

structure constants that have to be satisfied by the T-dualities [15, 42].) This suggests that

the infinite-coupling magnetic quivers for both sides should be modified to accommodate

this, rather than being considered appropriate descriptions of the compactified LSTs at face

value. Once that is done, the two magnetic quivers should become IR dual (upon choosing

an appropriate CB vacuum) and it is reasonable to expect that they can also be obtained

as magnetic quivers of 5D QFTs representing the compactified LSTs.

The above point can be illustrated rather concretely. Consider e.g. the following T-duality:

LST([2′],[2′]) = LST(8,8) , dimH HBMs

6D = dimH CB∞
3D = 30N + 29 = 30Ñ + 29 . (5.19)
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The electric quivers read33

LST([2′],[2′]) : [SO(16)]
usp(2)

1
su(2)

2 · · ·
su(2)

2︸ ︷︷ ︸
N

usp(2)

1 [SO(16)] , (5.20)

LST(8,8) : [SO(16)]
usp(2Ñ)

1
usp(2Ñ)

1 [SO(16)] , (5.21)

so that the flavor symmetries already match in 6D, and we naively expect that no Wilson

line has to be turned on the circle.34 Then the magnetic quivers at infinite coupling read,

respectively (remember that for [2′] we have Nµl,r = 0):

2NL−(1+4NL)−

(1+3NL)
|

(2+6NL)−(2+5NL)−(2+4NL)−(2+3NL)−(2+2NL)−(2+NL)−2−

−(2+NR)−(2+2NR)−(2+3NR)−(2+4NR)−(2+5NR)−

(1+3NR)
|

(2+6NR)−(1+4NR)−2NR

(5.22)

(where · · · − 2− in the first line is connected to the second line in the obvious way) and

(Ñ + 1)−

(Ñ + 1)
|

(2Ñ + 2)− (2Ñ + 2)− · · · − (2Ñ + 2)−

(Ñ + 1)
|

(2Ñ + 2)︸ ︷︷ ︸
13

−(Ñ + 1) . (5.23)

We know T-duality imposes N = NL + NR = Ñ in the 6D setups. The first model has

GIR
J = SO(16)×SO(16)×U(1)2, of rank 18, but each of the two U(1)’s is known to enhance to

SU(2) (because of the isometry of the C
2/Z2 orbifold); the second however has GIR

J = SO(32)

from (5.15), of rank 16.

In fact (5.23) is known to be bad in the sense of [28]: some of the (dressed) monopole

operators have zero or negative R-charge (below the unitarity bound). There is an overall

decoupled U(1) which is bad, as it has no flavors, adding a C× C
∗ ∼= R

3 × S1 “direction” to

the CB. This was cured in [81] by adding an “over-extending” flavor node to the D
(1)
n quiver:

Ñ−

Ñ
|

2Ñ−2Ñ−···−2Ñ−

Ñ
|

2Ñ︸ ︷︷ ︸
n

−Ñ− 1 . Now the rightmost U(Ñ) is overbalanced, GIR
J = SO(32)×SU(2),

and the quiver engineers through its CB the reduced moduli space of Ñ instantons of SO(32)

on C
2.35 Since in our present situation we cannot add a flavor brane by hand to make (5.23)

33We are making a small deviation from the notation used in (2.16) and (2.19). Here N = 0 means zero

full instantons.
34This construction can also be easily generalized to the case of even k = 2k̃ > 2:

[SO(16)]
usp(2k̃)

1
su(2k̃)

2 · · ·
su(2k̃)

2︸ ︷︷ ︸
N

usp(2k̃)

1 [SO(16)] ,

[SO(16)]
usp(2Ñ)

1
su(2Ñ)

2 · · ·
su(2Ñ)

2︸ ︷︷ ︸
k̃−1

usp(2Ñ)

1 [SO(16)] .

35The over-extending procedure is presumably implemented by “reducing the flavor symmetry one box at a

time” [82]. We would like to thank S. Cremonesi for discussion on this and related points.
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over-extended, we simply turn one U group into SU , and we interpret the mismatch in the

ranks of GIR
J as a diagnostic for the “incompleteness” of (5.23) to described the compactified

LST. The mismatch presumably goes away once we have a proper understanding of the

T-dual magnetic quivers from 5D.

For zero instantons (i.e. when N = Ñ = 0) we can formulate a more precise statement.

The two magnetic quivers are identical, collapsing to the D
(1)
16 quiver itself. For N = 0 there is

no instanton transition, and indeed looking at the finite-coupling magnetic quivers (3.26)–(5.6)

we already recognize the shape and ranks of D
(1)
16 . Looking at the Type I’ engineerings,

(e′) : 2

8 8

(o′) :
1

8 8

, (5.24)

we see that T-duality of the LSTs (i.e. a 9-11 flip in M-theory) exchanges k = 2k̃ = 2 D6’s

with k̃ = 1 NS5 [42], as expected. For the (e′) string D
(1)
16 arises from the breaking pattern

of the D6s onto the 8 + 8 D8s just as in (3.26). Then, because of T-duality, we learn that

the (o′) string must have the same light magnetic degrees of freedom.

A quick glance at the mismatching dimensions between equations (4.20) (and following)

and (5.12) seems to suggest the following explanation. In one case we clearly see that

75− 29 = 46, hence we are one instanton transition away from the “right” dimension (N and

Ñ need to be shifted of one unit). In the other case the bad quiver is off by 4 quaternionic units

from the good one on the dual side. This also seems to indicate we are missing some degrees of

freedom on the (o′) side. We do not have a good explanation of this remark at this stage, and,

as we have stressed above, we believe the source of the explanation will lie in the 5D matching

of HBs across T-dual theories. We plan to come back to this question in future work [83].

We close this section with an intriguing observation. D16 and E2
8 are the only two even

unimodular (i.e. self-dual) lattices in dimension 16 [84], and are known to be related by

T-duality of the two 9D heterotic strings [53, 54], where these lattices play a central role in the

construction of the (chiral bosonic) worldsheet CFT at cL = 16, cR = 0 [85] (see e.g. [86, 87]

for a modern perspective),36 and in the umbral moonshine (see e.g. [89] for an introduction

to this subject). For 3D heterotic strings with sixteen supercharges, i.e. compactified on a

T 7, [90] showed that at special points the heterotic moduli space splits into a sum of two

lattices, the E8 root lattice and any of the twenty-four 24-dimensional Niemeier lattices.37 For

3D heterotic strings with eight supercharges, i.e. on T 3 ×K3, it is possible that the moduli

space at special points splits into two 16-dimensional lattices, each of which being a copy of

either D16 or E2
8 . Therefore it is not inconceivable to think that T-duality of the two heterotic

strings on T 3 ×K3 (see e.g. [79]) along an S1 ⊂ T 3 gives rise to the equivalence between the

3D magnetic quivers (5.22)–(5.23) when N = Ñ = 0.38 In fact, the maximal gauge symmetry

enhancement for toroidal compactifications of the heterotic strings can be obtained by means

36There are only two such CFTs [88], and they are precisely the worldsheet CFTs of the two 10D spacetime-

supersymmetric heterotic strings.
37We would like to thank B. C. Rayhaun for discussion on this point.
38For a suggestive relation between 2D fermionic chiral CFTs built out of the D16 or E2

8 lattices that uses

fermionization, see [86].
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of an “extended Dynkin diagram” [91–94] (see also [95] for the non-supersymmetric version of

this statement).39 It is amusing to notice that for the enhancement to E8 × E8 this diagram

is nothing but (3.7), which has a physical realization as a 3D QFT in our work. It also has

a physical realization as the intersection graph of two-cycles of a real K3 on which one has

compactified F-theory [96], such a configuration being again dual to a brane setup in Type I’,

or to the 9D heterotic string with a certain SO(32) Wilson line on the circle.

6 Conclusions

In this section we would like to discuss the implications of our findings in a broader context.

First of all, given the validity of (4.19), it would be interesting to construct explicitly

SM ′{Y ′
1 , Y ′

2 , Y ′
3 , Y ′

4}. This class-S theory is given by two fixtures connected by a tube (i.e. an

N = 2 vector multiplet gauging an SU(k) flavor symmetry), so it must be a sphere with four

punctures Y ′
1 , . . . , Y ′

4 . The collision of Y L
1 and Y R

2 along [1k] can be computed via the “OPE

of punctures” technique introduced in [99]. Once we have constructed SM ′{Y ′
1 , Y ′

2 , Y ′
3 , Y ′

4},
it should be easy to take the mirror of its circle compactification à la [64] and confirm that

this is precisely our star-shaped, four-arm 3D quiver in (3.17). For consistency, given that

the latter’s central node is U(k), it should be possible to also understand SM ′{Y ′
1 , Y ′

2 , Y ′
3 , Y ′

4}
as a class-S theory of type Ak−1 (in some duality frame).

The second task is to understand the geometry, not just the dimension, of the CB

of (3.17),40 i.e. the geometry of the HB of the LST at “infinite coupling” which realizes

the heterotic hypermultiplet moduli space, extending nontrivially the N = 0 results by

Witten [30] and Sen [29].41 For k = 2 Witten found that the moduli space is smooth, and

is the Atiyah-Hitchin manifold of dimH = 1, i.e. the simplest hyperkähler space. For higher

k Sen found that the space is (the smoothing of) a multi-Taub-NUT one, with topology

(R3 × S1)k/Sk (Sk being the symmetric group of k letters, whose standard action coincides

with that of Weyl(SU(k))).42 Also in presence of small instantons (i.e. when N ̸= 0), string

theory suggests [100] that the heterotic hypermultiplet moduli space should again be smooth.

(The smoothness statement is translated into D-brane charge conservation in the Type I’

engineering.) Thanks to the mapping of the problem to the LST setup, we can put forth

the following picture. It has been proposed [39–41] that the HB at infinite coupling of an

orbi-instanton is a stratum of the so-called affine Grassmannian of E8 (more precisely, of

the double affine Grassmannian of E8 [101, 102] once one accounts for small E8 instanton

transitions). Strata and slices are classified [103], and the connection to CBs of 3D N = 4

theories has already been made in multiple papers (see e.g. [26, 67, 104–106] and references

therein). It remains to be understood how to “glue” two such strata, coming from the right

and left orbi-instanton needed to construct the wanted LST at infinite coupling. Because

39This diagram has appeared for the first time in [53, 54, 96] in the heterotic context, and in [97, 98]

in others.
40The quantum corrected CB is notoriously hard to compute in nonabelian (quiver) gauge theories because

of perturbative (at one loop) and nonperturbative corrections. Classically, it is given by (R3 × S1)rV /Weyl(G)

if the (product) gauge group G has rank rV, and the UV symmetry acting on it is given by U(1)rV . See [26]

for a proposal on how to compute quantum corrections in general.
41In our language, they only considered the case (µL, µR) = ([1k], [1k]).
42Satisfactorily, for both theories the techniques of [26] yield the same quantum corrected (i.e. smooth) result.
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3D N = 4 CBs, or 6D (1, 0) HBs, are hyperkähler cones (and thus may be c1 = 0 examples

of symplectic singularities [107]) it is natural to apply the holomorphic symplectic quotient

construction of [51] (w.r.t. the diagonal action of the [SU(k)] that we are gauging, i.e. the

central su(k) algebra at finite coupling in the LST). The outcome should be a new hyperkähler

space which coincides with the HB of the class-S theory SM ′{Y ′
1 , Y ′

2 , Y ′
3 , Y ′

4}.43 Checking

smoothness is likewise nontrivial.

A third direction would be to investigate further into the action of T-dualities on 3D

quivers, and determine whether they always (or, if not, under which conditions) induce 3D

dualities between magnetic quivers associated with compactified LSTs. It is also known

that the LSTs enjoy higher-form symmetries [42], and it would be interesting to determine

their avatar in 3D (for instance, as a choice of global structure for the groups appearing

in the magnetic quiver).44

Finally, we note that the (2, 0) LSTs (which are also classified by ADE groups [2, 4, 110])

compactified on a cylinder with punctures (associated with partitions of any semisimple,

simply laced Lie algebra, i.e. of ADE type) have been studied in [111–113]. They admit a

description as 4D quivers depending on the punctures (reminiscent of class-S constructions),

and as 2D (2, 0) SCFTs of type ADE if we take a further compactification on T 2 followed

by the field theory limit Ms →∞ (which is reminiscent of the AGT correspondence [114]).

The Coulomb moduli of this 2D SCFT are the same as those of a 3D N = 4 SCFT, whose

CB is given by a slice in an affine Grassmannian. It would be very interesting to investigate

whether a similar analysis carries over to the (1, 0) LSTs (in particular (e′)), and if so whether

there is any connection with our conjecture on the holomorphic symplectic quotient along

SU(k) of two slices of the affine Grassmannian of E8 realizing the HB or the LSTs.

An obvious extension of this work would be to repeat the whole construction for C
2/Dk

and C
2/ΓE orbifolds of the heterotic string. The D and E-type orbi-instantons lack a simple

“Kac label classification”, but can nonetheless be constructed and given an F-theory electric

quiver [46, 57]. In type D the associated magnetic quivers can be constructed extending the

rules in [32, 115, 116]. It should then be feasible to propose an analog of (3.17). (In type E,

the orbi-instanton electric quivers can once again be constructed [57], but there is no known

construction of the associated magnetic quivers.) It would also be interesting to construct

renormalization group flows LST(µL,µR) → LST(µ′
L

,µ′
R

) between LSTs defined by different Kac

labels at fixed k. This possibility was already mentioned in [42], and is obvious from the

perspective of the orbi-instanton constituents, for which it has been thoroughly investigated

in [40, 41, 57, 117]. We plan to come back to this in the future.
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