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We settle a longstanding question about the hypermultiplet moduli spaces of the heterotic strings on

asymptotically locally Euclidean singularities. These heterotic backgrounds are specified by the singularity

type, an instanton number, and a (nontrivial) flat connection at infinity. Building on their interpretation as

six-dimensional theories, we determine a class of three-dimensional N ¼ 4 quiver gauge theories whose

quantum corrected Coulomb branch coincides with the exact heterotic hypermultiplet moduli space.
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Introduction and motivation. What is the hypermultiplet

moduli space of the heterotic string on an asymptotically

locally Euclidean (ALE) singularity? This question was

posed long ago by Witten, Sen and many others [1], and

an answer was proposed for singularities of the form C
2=Zk

both in absence andpresence of small instantons [2–4].Upon

a further toroidal compactification, this moduli space should

be quaternionic Kähler [5] (i.e. it has holonony contained in

USpð2Þ ×USpð2nÞ where n is its quaternionic dimension

[6]) and receivesα0 andworld sheet instanton corrections [7].

However, in the limit of decoupled gravity it becomes

hyperkähler (with USpð2nÞ holonomy, and a unique

Ricci-flat metric) and most corrections disappear. The

corrections that remain are such that the resulting space is

a smooth manifold, in all calculable examples. For instance,

for C2=Z2 and in absence of small instantons this moduli

space is the celebrated Atiyah-Hitchin manifold MAH, of

unit quaternionic dimension [8]. Importantly, thismanifold is

also the Coulomb branch (CB) of three-dimensional (3D)

N ¼ 4 pure SUð2Þ gauge theory, which may be further

identified with the moduli space of two BPS ’t Hooft-

Polyakov monopoles of SUð2Þ. It is then natural to con-

jecture that the heteroticmoduli space on aC2=ZkALEspace

should be the CB of pure SUðkÞ, which is the same as the

moduli space [9] of k BPS monopoles of SUð2Þ [10–13].
This observation lends itself to a further natural generaliza-

tion, which led [3] to propose that the hypermultipet moduli

space of the heterotic string on anALEspace locallymodeled

by a C2=ΓG singularity (with ΓG ⊂ SUð2Þ finite) should be
the same as theCB of 3DN ¼ 4 pureG gauge theory, where

G is the McKay dual group [14] to ΓG [15]. This conjecture

has been verified using a variety of techniques [16–18]. For

instance, in the simplest case of G ¼ SUðkÞ, ΓSUðkÞ ¼ Zk

and the dimension of the heteroticmoduli space is counted by

the number of resolution parameters of the C2=Zk orbifold,

i.e. k − 1. This is indeed the same as the (quaternionic)

dimension of the Coulomb branch of pure SUðkÞ.
The above setup requires no instantons of the heterotic

gauge group (i.e. no heterotic NS5-branes), that is we take

F ¼ 0 identically and thus the instanton number TrF2 is

also vanishing. The equation of motion for the dilaton in the

heterotic string reads schematically Δϕ ¼ TrF2 − TrR2,

with R the Riemann tensor (regarded as a two-form valued

in the Lie algebra of the orthogonal group, i.e. the curvature

of the spin connection ω). With F ¼ 0 and R large we are

driven to weak string coupling, and we will not see

fluctuations around F ¼ 0 which may distinguish the

two heterotic strings. The analysis of [3] then proceeds

by performing a calculation in the heterotic sigma model

CFT (valid at weak string coupling) to establish the correct

moduli space (the Atiyah-Hitchin manifold in the k ¼ 2

case of ΓG ¼ Zk, i.e. G ¼ SUð2Þ).
What happens if we add say M small (i.e. zero-size, or

pointlike) instantons of the heterotic string gauge group?

On top of the instanton number M, these should be speci-

fied by the value of a (possibly nontrivial) flat connection

F ¼ 0 at the spatial infinity S3=ΓG surrounding the orbi-

fold point of the ALE space (since π1ðS
3=ΓGÞ ≠ ∅).

This flat connection is a representation (i.e. an injective

homomorphism, or embedding) of the orbifold group in

the gauge group, λ∶ ΓG → Spinð32Þ=Z2 or μ∶ ΓG → E8

(one per E8 factor), for the two possible heterotic strings.
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These instantons have to be interpreted appropriately in

string theory. In the case of the Spinð32Þ=Z2 string, they

are dual to type I D5-branes [19], whereas in the case of the

E8 × E8 string they are given by M5-branes in the dual

Hořava-WittenM-theory background on an interval [20,21].

(More precisely, we will have say N “full” instantons given

by the M5’s plus Nμ “fractional” instantons produced by

the fractionalization of each of the two M9-walls against

the orbifold [4,22], so that M ¼ N þ Nμ). In the heterotic

string, they will act as sources in the Bianchi identity for the

strength of the B-field, dH ¼ TrF ∧ F − TrR ∧ R, with

M ¼
R
dH=ð4πÞ2 in appropriate units [23].

What is the role of these instantons in the 3D theory?

How do they modify its CB so as to capture the new

heterotic moduli introduced by them? In the G ¼ SUðkÞ
case it was soon realized [16,18,24] that their addition in

the E8 × E8 heterotic string corresponds to adding M
flavors (i.e. fundamental hypermultiplets) to the 3D pure

G gauge theory, when the flat connection at infinity is

trivial, i.e. when the full E8 × E8 group is preserved.

Moreover [4] gave an interpretation of the 2 BPS monop-

oles of SUð2Þ in the heterotic setup (when k ¼ 2): they

correspond to 2 half-NS5-branes stuck on an O8−-plane

obtained by reducing each of the two E8 M9-walls of the

Hořava-Witten setup to Type IIA. (This can be generalized

to k NS5s.) The question as to what is the 3D theory

corresponding to the hypermultiplet moduli space in

presence of a nontrivial flat connection at infinity was

however left open in [4].

The main question we address in this work is how to

capture the quantum corrected hypermultiplet moduli

space in presence of a possibly nontrivial flat connection

at infinity in the heterotic string. Our main result is that we

can still construct 3D theories that capture this space via

their CB.

3D quivers from 6D. Consider the E8 × E8 heterotic string

compactified on a real four-dimensional ALE space,

namely a K3 surface with a singularity locally modeled

by C
2=ΓG. The resulting 6D theories, dubbed T MðμL; μRÞ,

have recently been completely determined [25–27], build-

ing on [28–32], and have the structure of a fusion [33,34]

of two 6D orbi-instanton superconformal field theories

ΩNðμÞ [35]. Schematically:

T MðμL; μRÞ ¼ ΩNL
ðμLÞ −G −ΩNR

ðμRÞ: ð1Þ

The Higgs branch of this 6D theory is the quantum

corrected hypermultiplet moduli space of the heterotic

string MHet
G;M;μL;μR

. Since a fusion is the 6D generalization

of a gauging operation, the result is a simple hyperkähler

quotient [36]

MHet
G;M;μL;μR

¼ ðMΩNL
ðμLÞ ×MΩNR

ðμRÞÞ===G ð2Þ

of the Higgs branches of the known 6D theories ΩNL
ðμLÞ

and ΩNR
ðμRÞ. Here, as above, M¼NLþNμL

þNRþNμR
.

This is the starting point for our paper: the 3D theories of

interest can be determined starting from these 6D models.

We will outline the construction in full detail only in type

A, i.e. for G ¼ SUðkÞ; the other types are computationally

more challenging but not conceptually harder [37]. In

each case, the Higgs branch of interest is captured by a

3D N ¼ 4 quiver gauge theory, colloquially known as

“magnetic quiver” [38], which flows in the infrared (IR) to

a 3D N ¼ 4 superconformal field theory (SCFT). The

hypermultiplet moduli space of the heterotic string is

captured by the CB of the moduli space of this SCFT.

In the case where we already know the answer, i.e. the case

of M small instantons for G ¼ SUðkÞ with trivial flat

connection (i.e. the E8 × E8 case), this quiver ought to be

the one for SUðkÞ with M flavors, i.e.

ð3Þ

This quiver is related to the magnetic quiver construction

of [38] upon replacing SUðkÞ with UðkÞ and M with a

bouquet ofMUð1Þ gauge nodes. (The opposite operation is
the so-called hyperkähler implosion [39,40], [41] preserv-

ing the hyperkähler structure of the moduli space and the

action of (a maximal torus of) the flavor symmetry group.)

The SU group arises in 3D from a reduction of the 6D SU
gauge group (since the Uð1Þ centers of unitary groups are

massive in 6D, and hence decouple from the low-energy

dynamics); the (opposite of the) implosion is related to a

gauging of a SM discrete symmetry which exchanges theM
identical M5s=NS5s in 6D (see [42] for more details). The

result is:

ð4Þ

with an overall Uð1Þ decoupled from the IR dynamics.

In (3) and (4) (and henceforth) we have adopted standard

quiver notation, where a non-negative integer k denotes a

3D N ¼ 4 UðkÞ vector multiplet, an edge connecting two

such non-negative integers k1 and k2 denotes a bifunda-

mental hypermultiplet [43], and p − k denotes p hyper-

multiplets transforming in the fundamental of the UðkÞ
gauge group.

Notice that, for this theory to be “good” in the sense of

[44], i.e. to flow to a standard non-Gaussian (interacting)

fixed point in the IR, we must have M ≥ 2k (or, more

generally, Nf ≥ 2Nc) [45]. In other words, a configuration

with M < 2k does not have a mirror dual [46]. For this

reason, one cannot simply take the M ¼ 0 limit and get

back to Witten’s original configuration with no heterotic

instantons.
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More generally, we will construct 3D quivers whose CB

captures the hypermultiplet moduli space of the E8 × E8

heterotic string on C
2=Zk for any k and choice of flat

connection at infinity. The latter (trivial and nontrivial

alike) are classified by group homomorphisms, i.e. embed-

dings, μL;R∶ Zk → E8 (one per gauge group factor). Each

such embedding is specified by a so-called Kac label [47],

i.e. an integer partition of k in terms of the Coxeter labels

1;…; 6; 40; 30; 20 of the affine E8 Dynkin diagram:

k ¼

�
X6

i¼1

ini

�

þ 4n40 þ 3n30 þ 2n20 ; ð5Þ

which will be denoted in general μL;R ¼ ½1n1 ;…; 6n6 ; 4n40 ;

3n30 ; 2n20 � (and we will also say that the ni; ni0 are the

multiplicities of the parts of the Kac label). Each embed-

ding preserves a subalgebra of E8 determined via a simple

algorithm: one simply “deletes” all nodes with nonzero

multiplicity ni; ni0 in this partition, and reads off the Dynkin
of the leftover algebra, which may be a sum of non-Abelian

algebras plus a bunch of uð1Þ’s. As an example, the trivial

flat connection (embedding), which exists for any k, is

given by the label k ¼ ½1k�, and preserves the full E8. In this

case, as stated above, the moduli space is given by the CB

of (4). As an example of nontrivial flat connection, consider

the case k even, which admits a partition k ¼ ½2m� and
corresponds to a nontrivial flat connection breaking the

heterotic gauge group to E7 × SUð2Þ.
Can we see a more direct engineering of these 3D quivers

from the heterotic string?The answer is a resounding yes, and

comes from looking at the compactification of the heterotic

string on aK3as a so-called 6D (1,0) little string theory (LST)

[48]. In the E8 × E8 case in presence ofM small instantons,

with nontrivial flat connection at infinity, such LSTs are

precisely the theories T MðμL; μRÞ in equation (1). The latter
can be given a quiver description via “geometric engineer-

ing” in terms of F-theory [28], which we reproduce below

in (15) for the case μL ¼ μR ¼ ½1k�. Taking the T3 compac-

tification of this quiver produces a 3D theory which we will

call “electric quiver,” and which reads

ð6Þ

with an overall Uð1Þ decoupled from the IR dynamics [11].

The above quiver is mirror dual to the one in (3) [11,46]:

it clearly shows that we must have M − 2kþ 1 ≥ 1, i.e.

M ≥ 2k [which is the same as the s-rule constraint valid

in (4)], ensuring the existence of a mirror in the first place.

The rest of the paper showcases general 3D quivers

(derived in the companion paper [49]), whose CB captures

the hypermultiplet moduli space of interest in the heterotic

string. As outlined above, when the latter is compactified

on a K3, and moreover gravity is decoupled, its dynamics is

captured by a 6D little string theory of type T MðμL; μRÞ,
which in turn is obtained by “gluing” together two 6D

SCFTs known as orbi-instantons as in Eq. (1). We will

consider LSTs specified by M small instantons, where

M ¼ ML þMR ¼ ðNL þ NμL
Þ þ ðNR þ NμR

Þ: ð7Þ

N ≡ NL þ NR is the total number of full heterotic NS5’s

and NμL;R
is the number of fractional instantons in the left

and right “half” (orbi-instanton) of the LST. This piece of

data can be defined in terms of μL;R, generalizing appro-

priately the case NμL;R
¼ k of a trivial flat connection.

The “minimal” case (i.e. no full instantons) has N ¼ 0;

however, as is clear from the above formula, this does not

imply that M ¼ 0. This is because each M9-wall in the

Hořava-Witten setup fractionates once we introduce the

orbifold C
2=Zk [22]. The number of fractions NμL;R

(corresponding to new NS5-branes in the dual Type I’

setup) depends on the specific choice of embedding μL;R.

For instance, in (4)–(6) we made the choice μL;R ¼ ½1k�
implying M ¼ 2k if N ¼ 0. In this case, we say the

magnetic quiver is exactly balanced (since Nf ¼ 2Nc) [44].

It may happen that for other choices of μL;R the quiver is

overbalanced (i.e. Nf > 2Nc). Importantly, we will show

that the quiver is never underbalanced (i.e. bad, in the sense

of [44]) for any choice of μL;R.

Coulomb branch and heterotic moduli spaces. The upshot

of our companion paper [49] is the construction of new

3D N ¼ 4 QFTs flowing in the IR to SCFTs, whose CB

captures the hypermultiplet moduli space of the heterotic

string on the orbifold with a choice of flat connection at

infinity. Such QFTs are encoded in the following quiver

diagrams:

ð8Þ
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where in the formula above the sums in the parentheses are

performed node-by-node and the ranks rL;Ri ; rL;R
i0

of the U

gauge groups along the tails (some of which may be zero)

are determined by the specific Kac label chosen to

determine the embeddings μL and μR. The explicit algo-

rithm was obtained in [50] and is summarized below.

Moreover E
ð1Þ
8 stands for the quiver of affine E8 Dynkin

shape, with the ranks of the U groups appearing therein

being equal to the Coxeter labels, and E
ð1Þ
8

∨

is the Dynkin

mirrored around the vertical axis, i.e. with the bifurcated

tail on the left:

ð9Þ

ð10Þ

It is easy to convince oneself that the above quiver is

generically overbalanced, sometimes balanced, but never

underbalanced, and hence it always flows to a well-defined

3D N ¼ 4 SCFT in the IR. We also have

dimHM
Het
G;M;μL;μR

¼ 30M þ k − 1þ

 
X6

i¼1

rLi

!

þ rL
40
þ rL

30
þ rL

20
þ

 
X6

i¼1

rRi

!

þ rR
40
þ rR

30
þ rR

20
; ð11Þ

with

rj ¼ ð1 − δj6Þ
X6−j

i¼1

iniþj þ 2n20 þ 3n30 þ 4n40 ð12Þ

for j ¼ 1;…; 6, and

r20 ¼ n30 þ n40 ; ð13aÞ

r30 ¼ n20 þ n30 þ 2n40 ; ð13bÞ

r40 ¼ n20 þ 2n30 þ 2n40 : ð13cÞ

The dimension in (11) is obtained by summing the

dimensions dimH CB3D of the CBs of the quivers in the

parentheses in (8) and subtracting dimR SUðkÞ ¼ k2 − 1

because of the hyperkähler quotient by SUðkÞ performed to

glue the magnetic quivers of left and right orbi-instanton

according to (2). It reduces to what we have already com-

puted below (6) in the case μL ¼ μR ¼ ½1k�, for which ri ¼
ri0 ¼ 0 for all i (left and right), according to the following

observation. In that case, (8) is nothing but the “infinite-

coupling” magnetic quiver obtained from (4) performing a

total of M small E8 instanton transitions, which turn the

bouquet of M 1’s into a sum of M E
ð1Þ
8 tails, or more

precisely to ML E
ð1Þ
8

∨

tails to the left, and MR E
ð1Þ
8 to the

right of node k there. The dimension of its CB jumps by

29M, going fromM þ k − 1 to 30M þ k − 1. More general

checks can be found in [49].

As a simple consistency check of the above we can

reproduce the case with no full small instantons (closer to

the original setup by Witten and Sen); it simply amounts to

taking N ¼ 0 in (7) so that we are left only with the

“inevitable” fractional instantons coming from the frac-

tionalization of each of the M9’s (left and right) against

the orbifold. It is easy to determine explicitly NμL;R
from

F-theory via a case-by-base analysis [25–27]. In the case of

singularities of type A, however, an explicit algorithm

determining NμL;R
from μL;R was found in [51]. Once one

constructs the Type I’ setup dual to the heterotic string on

the orbifold one can easily read off, for each choice of

ðμL; μRÞ, the so-called largest linking number lL;R on

the left and right of the setup, i.e. the largest among the

numbers ðlL;R1 ;…; lL;R8 ; lL;R9 Þ, which are defined as the

number of D6’s ending from the right on the ith D8,

minus the number of D6’s ending on the left, plus the

number of NS5’s to the immediate left of it (where for

concreteness we have assumed the O8 sits on the left of

each half, when considered individually). More precisely,

we have the relation

NμL;R
¼ lL;R ¼

X6

i¼1

ni þ p ð14Þ

with p ¼ min ðbðn30 þ n40Þ=2c; bðn20 þ n30 þ 2n40Þ=3cÞ. To
determine the Type I’ configuration dual to the heterotic

string, or equivalently to find the electric quiver in the

F-theory notation, one can apply the algorithm of [52]. For

instance, for μL ¼ μR ¼ ½1k� it produces

½E8�1
∅

2
suð1Þ

2
suð2Þ

� � � 2
suðk−1Þ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

NμL
¼k

2
suðkÞ

½Nf¼1�
2

suðkÞ

� � � 2
suðkÞ

2
suðkÞ

½Nf¼1�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

NLþNRþ1¼Nþ1

2
suðk−1Þ

� � � 2
suð2Þ

2
suð1Þ

1
∅

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

NμR
¼k

½E8�: ð15Þ
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(All more general choices have been analyzed in detail

in [25–27,32].) The T3 compactification of the above

electric quiver is nothing but (6), which is mirror to (4).

The dimension of the HB of the above quiver equals

M þ k − 1, as expected. To obtain 30M þ k − 1 we first

move to infinite coupling in each of the two orbi-instanton

constituents, compute the dimension of their HB, and

subtract the (real) dimension of the diagonal SUðkÞ flavor
group from the two which we are gauging, producing one

exra suðkÞ algebra [53].

Conclusions. In this paper we have identified the hyper-

multiplet moduli space of the E8 × E8 heterotic string on an

A-type ALE space with the exact quantum corrected CB of

a 3D quiver gauge theory [the magnetic quiver (8)] flowing

in the IR to an SCFT. The magnetic quiver is the mirror of

the T3 compactification of a 6D quiver gauge theory (plus

tensor multiplets) that gives the dynamics of a 6D (1,0) LST

with a Higgs branch that coincides with the heterotic

moduli space (in the limit of decoupled gravity). To obtain

this magnetic quiver, one also has to perform M small E8

instanton transitions in 6D.

The dimension of the moduli space in question can be

computed both in absence and in presence of N full small

instantons, where one is also required to specify a flat

connection at infinity for the heterotic gauge group. The

various choices of flat connection give rise to different

magnetic quivers, with different CBs. One is moreover led

to conjecture (due the same string theory arguments used

by [4]) that this CB (which is a hyperkähler space) is

smooth, as was the case in absence of small instantons

[2,3]. It remains to be understood what is the underlying

geometry of the CB. In the companion paper [49], based on

observations about 6D (1,0) SCFTs made in [51,54,55], we

have proposed that this CB is given by the holomorphic

symplectic quotient construction of [56] applied to two

strata of the so-called affine Grassmannian of E8. It would

be extremely interesting to prove this conjecture. The

minimum symmetry on this CB in the IR can also be

easily computed, which may help with the proof.

As a final remark, the hyperkähler/quaternionic Kähler

correspondence [57,58] suggests that one can also deter-

mine the gravitational quantum moduli space of the

heterotic string on these backgrounds building from our

results.
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