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Abstract

The human brain tracks available speech acoustics and extrapolates missing information such as the speaker’s articulatory pat-
terns. However, the extent to which articulatory reconstruction supports speech perception remains unclear. This study explores
the relationship between articulatory reconstruction and task difficulty. Participants listened to sentences and performed a
speech-rhyming task. Real kinematic data of the speaker’s vocal tract were recorded via electromagnetic articulography (EMA)
and aligned to corresponding acoustic outputs. We extracted articulatory synergies from the EMA data with principal component
analysis (PCA) and employed partial information decomposition (PID) to separate the electroencephalographic (EEG) encoding of
acoustic and articulatory features into unique, redundant, and synergistic atoms of information. We median-split sentences into
easy (ES) and hard (HS) based on participants’ performance and found that greater task difficulty involved greater encoding of
unique articulatory information in the theta band. We conclude that fine-grained articulatory reconstruction plays a complemen-
tary role in the encoding of speech acoustics, lending further support to the claim that motor processes support speech
perception.

NEW & NOTEWORTHY Top-down processes originating from the motor system contribute to speech perception through the
reconstruction of the speaker’s articulatory movement. This study investigates the role of such articulatory simulation under vari-
able task difficulty. We show that more challenging listening tasks lead to increased encoding of articulatory kinematics in the
theta band and suggest that, in such situations, fine-grained articulatory reconstruction complements acoustic encoding.

articulatory synergies; EEG; mutual information; partial information decomposition; speech entrainment

INTRODUCTION

During speech production, speakers engrave their message
in the air by employing vocal cord vibrations and vocal tract
resonance to hierarchically organize different units of infor-
mation, such as phonemes, syllables, words, and sentences.
As a result, the acoustic output is shaped around a mixture of
quasi-periodic signals, reflecting the intrinsic rhythms of
speech-motor commands (1, 2). During speech perception, en-
dogenous neural oscillations are phase-aligned to the physical
regularities of the incoming speech stimulus (“speech entrain-
ment”) (3) to track different units of information (4, 5) and
to support the speech comprehension process (3, 6–10).

Neural tracking of slow temporal fluctuations of the speech
amplitude envelope has been consistently reported in delta
and theta bands in both electroencephalography (EEG) and
magnetoencephalography (MEG) studies (3, 6, 11–13).

Speech tracking occurs even in the absence of physical
cues in the spectrum of the acoustic stimulus, highlighting
the relevance of top-down reconstructive influences on
incoming speech signals (14). Phonemic restoration (15, 16) is
one such example in which perceptual experience does not
coincide with the pure bottom-up encoding of physical
acoustic regularities. The cocktail party effect (17) further
nourishes these considerations: in multiple-talker scenarios,
the cortical representation of speech reflects the encoding of
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features related to the attended acoustic stream rather than
the true content of the acoustic scenario (18–20). Multimodal
speech perception (i.e., audiovisual) is another key example
of a top-down process (21). In fact, visual cortices track visual
speech-related signals to support speech perception under
acoustically degraded conditions (22, 23).

Growing experimental evidence suggests that an impor-
tant source of top-down compensatory modulation may
originate from the motor system, underlining the impor-
tance of speech production areas during speech listening (11,
24). Indeed, signals coming from the motor cortex causally
modulate the phase of delta- and theta-band oscillations in
the left auditory cortex only when listening to intelligible
speech, and the more motor cortex transfers information to
auditory cortex, the stronger low-frequency auditory oscilla-
tions entrain to the speech envelope (25). This result is best
explained by assuming an internal replay of articulatory
movements constrained or guided online by the perception
of visible movements. Recently, Pastore et al. (26) found that
the brain reconstructs articulatory movements (i.e., the
speaker’s tongue motion) that are never accessible through
vision, either during the experiment or during development
(see also Ref. 27). This result was interpreted as demonstrat-
ing that acoustic-motormappings originate from the acquisi-
tion of speech production competence (for a recent review
see Ref. 28), rather than from exposure to the regularities of a
multisensory environment. However, it is unclear to what
degree the reconstruction of motor gestures depends on the
difficulty of the listening task and whether the neural mech-
anisms subserving acoustic-motor mappings in such situa-
tions rely on delta- or theta-band dynamics.

To investigate this question, we asked participants to
listen to sentences followed by a rhyming task to assess
their ability to match speech sounds phonetically from
memory. We used sentences from the Multi-SPeaKing-
style Articulatory Corpus (MSPKA) (29), which provided us
with an accurate description of the articulatory move-
ments of the speaker’s vocal tract aligned with the pro-
duced audio. Considering that the motor system does not
control individual articulators (30) but rather orchestrates
multiple articulators to achieve an acoustic target, we used
principal component analysis (PCA) to extract meaningful
patterns of articulatory coordination over time. We then
used partial information decomposition (PID) (31) to quan-
tify the unique encoding of articulatory and acoustic fea-
tures as well as synergistic and redundant information in
the neural response (EEG data). We evaluated the diffi-
culty of the presented sentences according to the partici-
pants’ performance and divided them into easy and hard
sentences. Our hypothesis is that the presentation of more
difficult stimuli would prompt a stronger engagement of artic-
ulatory processes and, as a consequence, enhance the encod-
ing of information uniquely attributable to the articulatory
components. In line with our hypothesis, we observed a
dissociation between delta and theta bands, with theta-
band oscillations playing a complementary role with
respect to acoustic encoding when presented with more
difficult material. This finding contributes to a number of
current areas such as 1) recent empirical evidence showing
the functional dissociation of neural tracking in the two
bands and 2) the idea of the motor system supporting

speech perception, especially in more challenging listen-
ing conditions.

MATERIALS AND METHODS

Participants

Twenty-three healthy and naive subjects (Italian native
speakers, right-handed and with normal vision or corrected-
to-normal vision) were recruited for the study and were paid
30e for their participation. Written informed consent was
obtained from all participants. The experiment was
approved by the local ethical committee, “Comitato Etico
Unico della Provincia di Ferrara” (approval no. 170592).
One participant was excluded because of technical prob-
lems during data acquisition. The analysis was performed
on the remaining 22 subjects (13 females; age: 23.04 ± 3.44
yr, mean ± SD).

Stimuli

This study used stimuli selected from the Multi-SPeaKing-
style Articulatory Corpus (MSPKA) (29). This dataset pro-
vides simultaneous recordings of audio and articulatory
movements of the vocal tracts of three Italian mother-tongue
speakers. The audio was recorded at a sampling rate of 22.05
kHz, whereas the kinematics of the articulators (lips, jaws,
and tongue) were tracked at a frequency of 400 Hz. An accu-
rate description of the vocal tract motion during audio pro-
duction was obtained with an electromagnetic articulography
(EMA) system (NDI Wave, Northern Digital Instruments,
Canada) (32). Research on speech technology commonly uti-
lizes EMA data to accurately describe mouth kinematics
owing to its excellent spatial and temporal resolution (33).
Seven sensors were placed on the upper lip (UL), lower lip
(LL), upper jaw (UJ), lower jaw (LJ), tongue tip (TT), tongue
middle (TM), and tongue back (TB) (see Fig. 1A for a schematic
illustration) to record their x, y, and z positions (head move-
ment corrected). We used 50 sentences pronounced by the
same female speaker (“lls” in the dataset). The duration of the
sentences ranged from 6.2 to 9.4 s. Segments corresponding
to any silent part at the beginning and end of the acoustic
stimuli were removed from all signals (audio and EMA). All
the acoustic stimuli were normalized to the same average in-
tensity (71 dB). Data corresponding to one sentence (out of 50)
were discarded from the analysis because the corresponding
EMA signals were partially corrupted. The acoustic stimuli
were presented to the subjects, whereas EMA data were exclu-
sively used during the data analysis.

Experimental Setup and Procedure

During the experiment, the participants sat in front of an
LCDmonitor (VIEWPixx/EEG; 24 in., 120 Hz) at a distance of
�80 cm and were asked to put their right hand on a button
box (Cedrus RB-840 response box). Two loudspeakers were
placed�20 cm from each side of the screen. The session con-
sisted of 200 trials divided into four blocks (50 trials each),
with short in-between breaks. In each trial, the following
sequence of events occurred: 1) participants were presented
with a black fixation cross at the center of a uniformly col-
ored gray screen; 2) after a variable time (between 0.1 and 1.1
s), a randomly selected sentence was presented acoustically;
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3) after a variable time (between 0.1 and 1.1 s) from the end of
the acoustic stimulus, a word appeared at the center of the
screen in place of the fixation cross; 4) participants had to
indicate whether or not the word presented rhymed with
one of the words in the previously heard sentence by press-
ing one of two buttons, always using the right index finger;
and 5) the trial ended when the participant gave a response
or after a time-out of 10 s if no response was given. In each
block, all 50 sentences were presented to the subject (1 for
each trial) in random order. Rhyming words were selected to
exclude any rhyme with the first and last words of the pre-
sented sentence and any monosyllabic word. To avoid possi-
ble biases in the participants’ responses, we ensured that
rhyming and nonrhyming words were matched for the num-
ber of syllables and their frequency of use in Italian, using an
online software tool (http://linguistica.sns.it/esploracolfis/
home.htm). Different words were selected for each repetition
of the same sentence, resulting in four words per sentence (2
rhyming and 2 nonrhyming), for a total of 200 words.
Therefore, words presented in the session rhymed 50% of the

time. Participants were asked to reduce their blinks as much
as possible and to maintain their eyes on the fixation cross for
the entire duration of the sentence. The entire experiment
lasted�2 h, including the EEG capmounting and preparation.
Stimulus presentation and button-press acquisition were con-
trolled via MATLAB (The MathWorks, Inc.; https://www.
mathworks.com; RRID:SCR_001622) and the PsychToolbox-3
extensions (http://psychtoolbox.org; RRID:SCR_002881). All
relevant events in the trial (e.g., trial start, stimulus onset, and
button press) were converted into a TTL (transistor-transistor
logic) by the VIEWPixx/EEG system to accurately synchronize
themwith the EEG data.

EEG Recording

EEG data were recorded continuously during the experi-
ment with a 64-channel active electrode system (BrainAmp
MR Plus; Brain Products GmbH, Gilching, Germany).
Electrooculograms (EOGs) were recorded with four electro-
des from the cap (FT9, FT10, PO9, and PO10) that were
removed from the original scalp sites and placed bilaterally

Figure 1. Stimuli split and feature descrip-
tion. A: schematic illustration of the posi-
tions of the electromagnetic articulography
(EMA) coils: upper lip (UL), lower lip (LL),
upper jaw (UJ), lower jaw (LJ), tongue tip
(TT), tongue middle (TM), and tongue back
(TB). B: split of the 48 sentences between
easy stimuli (ES) and hard stimuli (HS).
Accuracy was obtained from the pooled
answers of all subjects. The scatterplot
shows the negative correlation between
accuracy and stimulus length (r ¼ �0.37,
P ¼ 0.01). C: mean and SEM of the normal-
ized (1/f) power spectra for all features
[speech envelope (SE), principal compo-
nent (PC)1, PC2, PC3, PC4] in both classes
of stimuli (ES and HS). Only PCs explaining
at least 5% of the variance [variance
accounted for (VAF)] were selected for the
analyses. Bar plots show the contribution
of all sensors to each of the selected kine-
matic components.
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at the outer canthi and below and above the right eye to re-
cord horizontal and vertical eye movements, respectively.
All the electrodes were online referenced to the left mastoid.
The impedance of the electrodes was kept below 10 kX. EEG
signals were acquired at 1,000 Hz.

Data Analysis

The present study involved reanalyzing a dataset previ-
ously recorded by our group (26) to answer a different
research question. Analyzes were performed within the
MATLAB and Python computing environments with open-
source toolboxes and libraries: FieldTrip (http://www.
fieldtriptoolbox.org; RRID:SCR_004849) (34), MNE (https://
mne.tools/stable/index.html; RRID:SCR_005972) (35), GCMI
(https://github.com/robince/gcmi) (36), and PID (https://
github.com/robince/partial-info-decomp) (37) libraries as
well as custom-made code (https://doi.org/10.5281/zenodo.
10580338).

Behavioral Data Analysis and Dataset Split

To classify the selected stimuli (i.e., sentences) into two
classes of difficulty, we examined the participants’ responses
to the rhyming task. In practice, we used the 22 participants
as the a posteriori jury. Before proceeding, we excluded one
randomly selected sentence to achieve class balance (i.e., an
equal number of items), thus retaining 48 sentences in total.
We then pooled the responses of all participants and calcu-
lated, separately for each sentence (4 presentations � 22 par-
ticipants ¼ 88 answers per sentence), the accuracy (the ratio
of the total number of correct responses to the number of
pooled trials). Sentences with higher accuracy were consid-
ered easier than those with lower accuracy values, which
was assumed to pose a greater challenge in the speech-rhym-
ing task. We then performed a median split on the accuracy
of all sentences, yielding two classes containing 24 stimuli
each: easy sentences (ES) and hard sentences (HS) (Fig. 1B).

Speech Envelope Extraction

Speech signals were processed to obtain the amplitude en-
velope of each sentence, using an adapted version of a previ-
ously described method (38, 39). As in the Chimera toolbox
(39), we defined six frequency bands in the range of 80–
8,820 Hz equally spaced on the cochlear map. We then filtered
the speech signals within these six frequency bands (MNE fil-
ter_data function, 2-pass Butterworth filter, 4th order). We
then computed the absolute value of the Hilbert transform for
each band-pass filtered signal. Finally, we obtained the speech
envelope (SE) by summing the results over all frequency
bands. The envelope was then downsampled to 400 Hz to
match the sampling rate of the EMA data.

Kinematic Feature Extraction

The high-dimensional EMA data (i.e., 7 sensors� 3 dimen-
sions ¼ 21 time series of position data) were reduced in
dimensionality by applying principal component analysis
(PCA; FieldTrip function: ft_componentanalysis; method:
pca) to extract meaningful synergies between the individual
articulators. Precisely, each stimulus i is represented as a ma-
trix of shape (21,Nsamplesi): recording dimensions by number
of samples in the ith stimulus recording. We concatenated all

the stimuli matrices along the last dimension to obtain a sin-

gle matrix D of shape 21;
PN

i¼1 Nsamplesi
� �

, where N is the

number of stimuli, and applied the algorithm to the matrix of
concatenated data D. PCA rotates the original (sensor) space
to maximize the amount of information stored in the projec-
tion of the data along the first principal components (PCs),
thus allowing for dimensionality reduction. This result is
obtained by applying eigendecomposition to the data covari-
ance matrix RD. Each PC is a vector obtained as a linear
combination of the coordinates in the original sensor
space. Therefore, each PC attributes a weight to each of the
original coordinates, which can easily be used to interpret
the composition of each feature dimension. In practice, we
visually inspected the absolute value of the PC weights to
assess the physiological validity of the identified articula-
tory pattern (Fig. 1C). By selecting a subset of the PCs (the
first 4), we reduced the dimensionality of the data while
retaining most of the information. Importantly, perform-
ing a single PCA on concatenated data, rather than one
PCA for each stimulus, maximized the extraction of articu-
latory synergies consistent across sentences. This can bet-
ter approximate prototypical patterns of articulation in
the spoken material and therefore, possibly, the most sa-
lient signal for the listener’s brain.

EEG Preprocessing

The continuous EEG data were band-pass filtered between
0.5 and 100 Hz (2-pass Butterworth filter, 4th order) and
downsampled to 400 Hz to match the sampling rate of the
EMA data. Data were then rereferenced to the common aver-
age and epoched around the acoustic stimulus onset (from
�1 s to the duration of the longest sentence plus 1 s). The
noisy trials were removed after visual inspection. Artifacts
related to eye movements and heartbeat were identified and
removed by independent component analysis (ICA). Noisy
channels (T8 for 1 subject) were excluded from the ICA analy-
sis and substituted by the linear interpolation of neighboring
channels. The total number of trials retained for further
analysis was 179.2 ±21.1 (mean ± SD).

Neural Coupling to Speech Envelope and Kinematic
Features

We quantified the information encoding of delta- and
theta-band features of the speech envelope and the articula-
tory features in the two classes of sentences (ES and HS)
employing themutual informationmeasure (MI) (40). Mutual
information is a measure of the reduction of uncertainty in
the output of a random variable X given the observation of a
second variable Y and can be viewed as a test against the null
hypothesis that the two variables are statistically independ-
ent, thus considering also nonlinear and nonmonotonic rela-
tionships. In other words, MI measures the extent to which
the variability of X can be predicted by looking only at Y. We
used the Gaussian CopulaMutual Information (GCMI) estima-
tor, which provides a lower bound to the true MI value and is
robust to a limited quantity of collected data (36). During
speech listening, the brain encodes information about the
speech envelope as well as the movement of the invisible
articulators of the speaker’s vocal tract (26). As in Ref. 26, we
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only considered the first four PCs (accounting for most of the
variance in the kinematic data) and separately computed the
MI between the EEG and each of the selected features (speech
envelope: SE; principal components: PCi, i ¼ 1,. . .,4).
Precisely, we first cut 0.5 s at the beginning of every trial to
remove the initial transient components evoked by the onset
of speech and shifted the EEG signals 0.2 s backward in time
with respect to the speech-related stimulus to account for
a natural lag between stimulus presentation and brain
response. This means that the EEG timestamp corresponding
to 0.2 s of each epoch was associated to the start of the trial
(0.0 s) and all the other EEG timestamps shifted accordingly,
while the stimuli signals remained unchanged. The selection
of this time interval is justified by the large literature on brain
coupling to audiovisual speech cues (41–43) and past analyses
performed on this dataset showing maximal values of MI at
0.2-s time lag (26). An inspection of the power spectra of the
stimuli (SE and PCs) showed that most of the spectral infor-
mation was confined to the delta and theta bands and that ES
and HS stimuli showed comparable spectral power distribu-
tion in all five selected features (Fig. 1C). Consequently, all sig-
nals (EEG, SE, PCs) were mirror-padded and band-pass
filtered between 0.5 and 4 Hz (delta band) and between 5 and
7 Hz (theta band) with a two-pass Butterworth second-order
filter in both cases.We then concatenated and copula-normal-
ized the trials belonging to the same class. Specifically, a cop-
ula is a statistical structure that represents the dependence of
two or more variables independently of their marginal distri-
butions. It is a useful concept since mutual information
between X and Y [I(X,Y)] is directly linked to it. Precisely,

I X;Yð Þ ¼ H Xð Þ þ H Yð Þ � H X;Yð Þ

HðX;YÞ ¼ HðXÞ þ HðYÞ þ HðCÞ
where H is the entropy function and C the statistical copula.
Consequently, I(X,Y) is equal to the opposite of the entropy
of the statistical copula:

IðX; YÞ ¼ �HðCÞ
Therefore, if we preserve the copula linking the variables

X and Y, mutual information does not change. In this con-
text, we transform the marginal distributions of X and Y to
be univariate Gaussian while still preserving their statistical
copula (copula normalization). Finally, we computed the
mutual information I(X,Y), using the analytical expression
for Gaussian variables (function: gcmi_cc):

IðX;YÞ ¼ 1
2ln 2

ln
jRXjjRY j
jRXY j

� �

[where RX, RY, and RXY are the covariance matrix of X, Y, and
the joint variable (X, Y), respectively] between each recorded
EEG channel and 1) the speech envelope I(EEG;SE), and 2)
each of the first four extracted PCs (kinematic components)
I(EEG;PCi), i¼ 1,. . .,4.

Partial Information Decomposition

Acoustic and kinematic features are strongly related to
each other, as speech acoustic outputs are directly con-
strained by phonoarticulatory movements. Therefore, the
neural encoding of the two could produce overlapping infor-
mation. Shannon’s mutual information only measures the

relationship between two variables at a time (SE and EEG or
PC and EEG). For systems modeled by n > 2 variables, the
mutual information between one of these variables and the
joint distribution of the others can be computed. However,
this procedure does not reveal the internal structure of mul-
tivariate information. Interaction information (44) (or coin-
formation; Ref. 45) partially solves this problem: it identifies
components of unique information provided by the predic-
tors on a target value and one of interaction information.
However, this last variable merges the redundant and syner-
gistic effects of predictors (38). Instead, partial information
decomposition (PID) is a mathematical framework proposed
by Williams and Beer (31) that is capable of decomposing the
total information provided by a set of variables, called sour-
ces, about a target variable into clearly interpretable atoms
of partial information (46, 47). In the bivariate case (2 sour-
ces and 1 target), PID outputs four atoms of partial informa-
tion: two atoms of information exclusively provided by each
of the two sources (“unique”), one accounting for the infor-
mation only available when the two sources are considered
together and never accessible when looking at one source at
a time (“synergistic”), and the last one for information
shared between the two sources (“redundant”). Thus, we
employed PID to account for the simultaneous encoding of
the speech envelope and first kinematic component (the
only one showing significant results in the MI values) during
listening. We used a recent modification of the algorithm
based on the common change in surprisal, which can quali-
tatively capture redundant information between variables
(37) (MATLAB function: calc_pi_mvn; see also https://github.
com/AlessandroCorsini/PyPID_mvn for a precise implemen-
tation in Python). We ran the PID separately for each class of
sentences (ES and HS), considering the speech envelope (SE)
and the first kinematic component (PC1) as sources and each
single EEG channel as the target variable. All signals were
preprocessed as described for MI (exclusion of onset-locked
evoked potentials, EEG backward shifting by 0.2 s, and
band-pass filtering in delta and theta bands separately). The
choice of the lag is again justified by previous analyses on
the same dataset, which showed how maximal information
encoding of both SE and PC1 is reached with a 0.2-s lag
(26). We then concatenated and copula-normalized trials
belonging to the same class of stimuli and computed the
PID using the redundancy measure proposed by Ince (37)
(function: Iccs_mvn). The algorithm provides four terms
(for each channel):

• Unq1(EEG; SE, PC1): the information encoded in the
EEG signal conveyed by the speech envelope and not by
the kinematic principal component. This piece of infor-
mation is feature specific, meaning that it would be lost
if the SE was not available to the brain.

• Unq2(EEG; SE, PC1): the information encoded in the
EEG signal conveyed by the kinematic principal compo-
nent and not by the speech envelope. This piece of in-
formation is specific to the reconstruction of PC1 by the
listener’s brain, meaning that it would be lost if the
brain did not encode the kinematic feature.

• Syn(EEG; SE, PC1): the information conveyed by the si-
multaneous presence of SE and PC1. Instead, this infor-
mation is specific to the set of sources {SE, PC1} and
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cannot be accessed by the brain if one of the two sources
is unavailable. Therefore, it is related to how the two
features are integrated into the neural response.

• Rdn(EEG; SE, PC1): the information shared between the
two sources, which can be equally retrieved from SE or
PC1. This information is specific neither to the SE nor to
PC1 and is lost if and only if both features are not avail-
able to the brain.

Hereafter, we refer to these quantities as Unq(SE), Unq
(PC1), Syn(SE,PC1), and Rdn(SE,PC1).

Notably, the concatenation of the trials belonging to the
ES class was shorter than that of the HS trials in all the sub-
jects (ES: 618.04± 74.15 s; HS: 663.14± 77.86 s; mean ± SD). To
exclude the possibility that a possible bias in the PID compu-
tation dependent on the length of the signals affected our
results, we matched the lengths of the ES and HS concatena-
tions 1,000 times for each subject by cutting a segment of ad-
jacent samples (every time at a randomly selected point)
from the longer one and computed the PID at each repeti-
tion. Eventually, we ran the statistical analysis (see below)
on the average (across 1,000 repetitions) PID output.

Statistical Analysis

To test whether the neural encoding of acoustic and kine-
matic stimulus information differed in the two classes of
sentences at the group level, the MI/PID outputs were statis-
tically evaluated for one condition against the other by
applying two-tailed cluster-based permutation statistics, as
described by Maris and Oostenveld (48). In practice, we
tested the null hypothesis that the two (ES, HS) multisensor
MI/PID values belong to the same probability distribution.
We did this using a nonparametric statistic, thus without
making any assumption on the probability distributions of
the information values. All MI/PID output samples (1 per
condition for each subject) were collected in a single set and
then randomly partitioned into two sets, and the test statistic
was calculated. Specifically, a univariate statistical test was
first employed to compute a channel-specific t value (using
the formula for dependent samples). All channels whose
absolute t values exceeded an a priori decided threshold
were clustered based on spatial adjacency (separately for
positive and negative t values). We fixed the threshold to the
97.5th quantile of the T distribution, which, in a two-sided
test, sets the probability of rejecting the null hypothesis to a
critical alpha level of 0.05. At this point, the cluster-level sta-
tistics were calculated by summing all t values of the chan-
nels inside a cluster. This procedure was repeated for 5,000
random permutations to construct a histogram of the distri-
bution of the largest (in absolute value) of the cluster-level
statistics found at each repetition. Finally, the test statistic
was performed on the nonpermuted data (original ES and
HS conditions), clusters of channels were identified, and
their P value was calculated as the proportion of randomper-
mutations yielding a larger (in absolute value) test statistic
compared with that computed for the nonpermuted data
(Monte Carlo estimate). Crucially, this method inherently
controls the FA (false alarm) rate setting the probability of
type 1 errors equal to the critical alpha level (0.05 here) and
solves the MCP (multiple comparison problem) by testing a
hypothesis only once at the cluster level.

RESULTS

Behavioral Performance and Articulatory Feature
Extraction

We first analyzed behavioral data to split the dataset into
easy and hard stimuli. The pooled-subjects accuracies
related to easy sentences (ES) varied from 78% to 94%,
whereas those for the hard sentences (HS) ranged from 57%
to 78% (Fig. 1B). Accuracy was also negatively correlated
with sentence length (r ¼ �0.37; P ¼ 0.01; Fig. 1B). We then
evaluated the consistency of the extracted stimuli features
(speech envelopes and kinematic components). In both
classes of stimuli, the peaks of the power spectra of speech
envelopes were mostly confined between 4 and 8 Hz, which
is consistent with consolidated evidence (3, 49–52). The first
four principal components (PCs) together accounted for
85% of the total variance of the EMA data (Fig. 1C), whereas
each of the remaining components explained a negligible
amount of variance [variance accounted for (VAF): <5%
each]. During speech production, the motor system regulates
the activation of several muscles to reach a vocal tract con-
figuration (2, 30). PCA extracted physiologically meaningful
kinematic synergies: PC1 (VAF ¼ 52%) and PC2 (VAF ¼ 17%)
described tongue movement toward (and away from) the
lips (PC1) and the palate (PC2), PC3 (VAF ¼ 10%) instead
accounted for mouth opening and closing, whereas PC4
(VAF ¼ 6%) represented more complex synergies between
tongue and lip movement. The spectral peaks of all four PCs
fell between 0.5 and 4 Hz (delta band) under both conditions
(ES and HS).

Neural Encoding of Acoustic and Kinematic Features

We quantified neural encoding of the speech envelope
(SE) and of each of the selected kinematic components (PCi,
i ¼ 1,. . .,4) separately for the two types of stimuli by mutual
information (MI) (40) and then statistically evaluated their
difference (ES vs. HS). Only the neural tracking of the speech
envelope [I(EEG,SE)] and the first kinematic component [I
(EEG,PC1)] showed significant results (2-tailed cluster-based
statistics). Importantly, the only frequency band showing
consistent differences in the encoded information was the
delta band, whereas tracking of the theta band dynamics
was not affected by the class of stimuli (Fig. 2; 2-tailed clus-
ter-based statistics). One significant cluster covering parieto-
occipital electrodes (P4, CP4, P2, PO7, PO4; P ¼ 0.02) was
obtained for the speech envelope, indicating greater infor-
mation encoding for HS than for ES (negative cluster). On
the other hand, two significant positive clusters, indicating
greater information encoding for ES than HS, were found for
PC1 (Fig. 2): the first covers parieto-occipital electrodes (CP1,
CP2, Pz, C2, CPz, CP4, P1, P2, PO3, POz; P ¼ 0.003), whereas
the other is distributed over right frontal electrodes (Fp2, F4,
F8, AF4, AF8, F6; P ¼ 0.012). All in all, this initial analysis
speaks in favor of a functional dissociation between the
encoding of acoustic and articulatory data in relation to task
difficulty, which is, however, limited to the delta band.

Delta-Theta Dissociation

The MI metric, however, may conflate more refined
unique and synergistic modulatory effects that can instead
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be distinguished by the PID method. Interestingly, PID analy-
sis confirmed the pattern of results obtained with MI in the
delta band while providing novel insights into the nature of
speech processing in the theta band (Fig. 3). First, a statisti-
cally significant difference in the theta band also emerged for
PC1. In fact, the encoding of unique articulatory information
[Unq(PC1)] is greater for HS than ES over two distinct clusters
of electrodes, showing right parieto-occipital (CP6, P4, O2, P6,
PO4, PO8; P¼ 0.011) and fronto-central (F3, Fz, FC1, FCz, AF3,
F1, F2; P ¼ 0.008) distributions. Second, ES was associated
with significantly greater encoding of redundant information

(shared between SE and PC1) than HS in the theta band over
right parieto-occipital (CP6, P8, TP8, P6, PO8; P ¼ 0.008) and
fronto-central (F4, AF4, F2, FC4; P ¼ 0.014) electrodes (Fig.
3A). In the delta band, greater encoding of unique acoustic in-
formation [Unq(SE); P ¼ 0.008] was observed for HS than for
ES, whereas the opposite pattern (ES > HS) holds for unique
articulatory information [Unq(PC1); parietal cluster, P ¼
0.004; right frontal cluster, P ¼ 0.023], closely resembling the
results reported above for MI.

Overall, these results highlight a delta-theta dissociation
for Unq(PC1) and an opposite trend for Unq(SE) in the delta

Figure 2. Topographical distributions show the
mean mutual information (MI) difference across
subjects [easy stimuli (ES) � hard stimuli (HS)]
computed for the speech envelope [I(EEG,SE)]
and the 4 principal components [I(EEG, PCi), i ¼
1,. . ., 4] for band-pass filtered data (EEG, SE, PCs)
in the delta (0.5–4 Hz) and theta (5–7 Hz) bands.
Black dots highlight the electrodes belonging to
the clusters that survived 2-tailed cluster-based
statistics (ES vs. HS; alpha level¼ 0.05).

Figure 3. Partial information decomposition (PID) delta-
theta analysis. A: topographical distributions show the
mean of the information difference across subjects (ES
� HS) for the unique [Unq(SE), Unq(PC1)], redundant
[Rdn(SE,PC1)] and synergistic [Syn(SE, PC1)] atoms of in-
formation obtained for band-pass filtered data in the
delta and theta bands. SE, speech envelope; PC, princi-
pal component. Black dots highlight the electrodes
belonging to the clusters that survived 2-tailed cluster-
based statistics [easy stimuli (ES) vs. hard stimuli (HS);
alpha level ¼ 0.05]. B: group average and SEM of the
difference between the average information across all
channels in the 2 conditions (ES � HS) for Unq(SE) (left)
and Unq(PC1) (right) in delta and theta.
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band, whereas theta-band modulations for the acoustic fea-
tures did not reach statistical significance (Fig. 3B). In other
words, listening to easier stimuli resulted in greater encod-
ing of articulatory information in the delta band, whereas
preferential encoding of the same articulatory features for
harder stimuli occurred in the theta band.

However, harder sentences are, at a first-order approxima-
tion, longer than easy sentences (see above). Therefore, to
further test the robustness of the results and to account for a
possible bias in the PID algorithm depending on the length
of the dataset, the two sets of data (ES, HS) were matched in
length, and PID was computed 1,000 times. We then
repeated the statistical analysis of the average PID outputs at
the group level. Overall, the analysis completely validated
the reported pattern of results in both the delta and theta
bands (Supplemental Fig. S1) and excluded potential con-
founds owing to unbalanced data length. In fact, for features
filtered in the delta band, the statistics run on Unq(SE)
yielded one significant negative cluster on the same (and
extending to others) parieto-occipital electrodes (P ¼ 0.002)
and confirmed the significant positive cluster on central pari-
eto-occipital channels (P ¼ 0.004) for Unq(PC1). Similarly,
theta-band analysis confirmed the significant clusters for
both Unq(PC1) (negative clusters; both P ¼ 0.007) and Rdn
(SE,PC1) (positive clusters; P¼ 0.006 and P¼ 0.012). This sug-
gests that the difference between ES and HS is not length per
se, but rather it must be found in the complexity of storing
into and retrieving from memory the phonetic content of
each sentence. Indeed, considering the nature of our task,
which forces participants to concentrate on the acoustic/pho-
netic properties of the words rather than on their semantics,
harder listening tasks may have forced subjects to enrich the
content of the acoustical objects via integration of alternative
streams (kinematic representations).

DISCUSSION
During speech perception, brain rhythmic activity syn-

chronizes with the quasi-periodic properties of speech sig-
nals (3). This synchronization is believed to support the
segregation of relevant units of information such as syllables
and phrases (1). Recent evidence suggests that brain oscilla-
tions originating frommotor or premotor areas may contrib-
ute to speech entrainment via top-down mechanisms (25).
However, determining the motor nature of brain-speech
coupling phenomena is inherently ambiguous, as the local-
ization of activities in motor areas may not necessarily
describe motor processes. Consider, for example, the classic
increase in firing rate in neurons of the primarymotor cortex
following passive finger displacement (53) and the recent
demonstration in mice that spontaneous activity in the pri-
mary visual cortex is largely explained by motor behavior
and is not interrupted by visual stimulation (54). Here, we
approached this problem by exploiting a dataset containing
synchronized acoustic and articulatory information, apply-
ing specific information-theoretic tools that led us to quan-
tify information encoding in the brain uniquely attributable
to the acoustic cues and articulatorymovements as well as to
both (redundancy) and to the ensemble of the two (synergy).
Finally, we evaluated how such encoding schemes differ
based on task difficulty.

The Importance of True Articulatory Data

To achieve this goal it was essential to get access to the
articulatory side of speech, and, unlike techniques normally
used to track vocal tract productions (i.e., ultrasound, real-
time MRI, or electromyography), EMA allows for the refined
evaluation of vocal tract coordination dynamics with high
temporal and spatial resolution. Prior studies have made
use of articulatory features recovered from vocal acoustics
(55, 56) or limited the investigation to one external articu-
lator (i.e., lip motion from video recordings, e.g., Refs. 24,
56). However, it must be considered that the motor system
coordinates the activation of multiple articulators simulta-
neously, according to synergistic principles (57), to reach
specific acoustic targets (58–60).

Indeed, the same acoustic target can be achieved via mul-
tiple context-based (i.e., coarticulation) configurations of the
phono-articulatory tract. This many-to-one mapping is a
clear example of an ill-posed inverse problem, and, although
it has been amatter of extensive investigations for the last 30
years, the speech technology field has yet to find a solution
to the acoustic-to-articulatory inversion problem (e.g., Ref.
61). This fact places a hard limit on what can be demon-
strated concerning the encoding of motor features in brain
signals unless we record the articulatory output. The cur-
rently accepted view is that articulation in all its spatial-tem-
poral details is not directly computable from the speech
signal (61–67).

Therefore, we deliberately circumvented the acoustic-to-
articulatory inversion problem by identifying patterns of
articulatory coordination directly from kinematic data, thus
avoiding the arbitrariness inherent in adopting a (number
of) combination(s) of acoustic features that loosely map to
these articulators. In this study, as is often the case with
studies on upper limb motor control (68, 69), we used a data
reduction technique to identify movement synergies.

Delta/Theta Encoding of Articulatory Synergies

Our analyses based on the PID framework showed that
increased task difficulty gave rise to greater encoding of the
speech envelope in the delta band (0.5–4 Hz) as opposed to a
reduced encoding of articulatory information. The delta
band appears to be related to the processing of slower acous-
tic features, such as the pitch contour (12), and is thus con-
cerned with the grouping of words and phrases (4, 16, 70, 71).
Greater entrainment for more difficult sentences may there-
fore be the consequence of increased listening effort (72),
probably associated with information integration across lon-
ger temporal windows and thus larger contextual tokens to
compensate for the increased difficulty of the task. Speech
tracking in the left auditory cortex is, in fact, also modulated
by delta oscillations in motor areas (25), whereas left motor/
premotor cortex engagement explains speech comprehen-
sion (73) and multisensory integration (74). Delta-band
entrainment to speech is stronger when listening to mean-
ingful sentences than to lists of randomized words (75, 76),
suggesting its involvement in encoding meaningful content
above and beyond phonetics (77, 78). In fact, as long as the
speech signal remains intelligible, delta entrainment is
reduced neither by the injection of increasing levels of noise
nor by the spectral impoverishment of acoustic cues (79).
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In contrast, theta-band activity has been linked to acous-
tic-phonetic processing and thus to the encoding of features
critical for speech intelligibility (3, 80, 81). Here we show that
increased task complexity causes the brain to encode articu-
latory information in a unique and thus complementary
neural pattern. This finding fits well with the principle of
inverse effectiveness in multimodal integration (82), accord-
ing to which perception obtains maximum gain from a
second modality when unimodal stimuli evoke weaker indi-
vidual responses. This idea has been tested in audiovisual
speech processing and started from an observation by
Sumby and Pollack (83), who showed that the presence of
visual cues becomes more important as speech recognition
tasks become more difficult (larger vocabulary sizes and/or
higher speech-to-noise ratios). This research has led to the
conclusion that visual information aids speech processing in
two concomitant ways, that is, “correlated” and “comple-
mentary” (84). Visual processing assumes a complementary
role when it conveys information inaccessible through the
auditory stream (the same applies here for articulatory dy-
namics), thus being particularly useful in adverse listening
conditions (85, 86). Instead, it takes on a correlated role
when it provides a redundant contribution (87, 88), which is
especially the case under optimal listening conditions, and
at best helps reduce cognitive demands during speech recog-
nition (23). In line with this hypothesis, our data suggest that
the contribution of the motor system to the perception of au-
ditory speech at the theta-band timescale is comparable to
that of the visual system in audiovisual speech. Indeed,
when listening to ES stimuli, the fine-grained articulatory
simulation is highly redundant to the encoding of the
speech envelope [see the significantly positive clusters in
Rdn(SE,PC1)]: in this sense motor processes assume a “cor-
related” (redundant) role with respect to acoustic encod-
ing. Instead, HS stimuli forced listeners to acquire novel
information from motor processes [see the significantly
negative clusters in Unq(PC1)], which is not retrieved in
any way from the speech envelope, thus supporting a
“complementary” role.

Delta- and theta-band oscillations contribute distinc-
tively to speech encoding, yet both encoded unique kine-
matic information [see Unq(PC1)]. Delta-band top-down
signals in speech listening originate from the frontal and
precentral gyri, whereas theta-band sources are located
in the left precentral gyrus and posterior temporal area
(25). Here, the topographical distribution of information
patterns is suggestive of a possible dissociation of delta
and theta sources in the unique articulatory encoding
that could be explored in the future. However, the
uniqueness of the kinematic encoding is bounded to the
comparison with the acoustical feature that we utilized.
Indeed, the speech envelope is one fundamental feature
of speech recordings and particularly salient for the
human brain, as its computation highly resembles the
physical preprocessing undertaken by the cochlea in
the inner ear. Nonetheless, it does not preserve the en-
tirety of information in the acoustic input. This limitation
extends to each PC of kinematic data, whichmerely provides a
linear approximation of the full content of the signals.
Consequently, addressing these challenges demands further
scientific inquiry in the future.

Conclusions

Neural signals are known to track speech acoustics in both
the delta and theta bands. Pastore et al. (26) found that the
brain also encodes the articulatory movements of the
speaker. Here we show that heightened task complexity
involves a fundamental enhancement of articulatory encod-
ing in the theta band. More importantly, these articulatory
features relate to the tongue, which is (almost) never visually
accessible to the listener either during conversations or dur-
ing development. As a consequence, the encoding of articu-
latory features cannot emerge from passive exposure to
environmental statistics, as in the case of audiovisual speech
perception, but requires a speech-producing agent to learn
the mapping between motor and sensory (acoustic and pro-
prioceptive) feedback (89, 90). At the same time, the kine-
matic information of the tongue must necessarily be
represented (at least part of it) in the acoustic stream for the
participant to pick it up and possibly complete it through in-
ternal model reconstruction. Crucially, the present study
and the previous one (26) demonstrate that (the combination
of) acoustic cues reflecting (all or part of) tongue movements
are particularly salient for brain speech processing. These
results add more stringent evidence that motor processes
contribute to speech perception (90–102).
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