Review

Targeting Protein Tyrosine Phosphatases to Improve
Cancer Immunotherapies

Robert J. Salmond

check for
updates

Citation: Salmond, R.J. Targeting
Protein Tyrosine Phosphatases to
Improve Cancer Immunotherapies.
Cells 2024, 13, 231. https://
doi.org/10.3390/ cells13030231

Academic Editor: Yona Keisari

Received: 21 December 2023
Revised: 17 January 2024
Accepted: 23 January 2024
Published: 25 January 2024

Leeds Institute of Medical Research at St. James'’s, School of Medicine, University of Leeds, Leeds LS9 7TF, UK;
rj.salmond@leeds.ac.uk

Abstract: Advances in immunotherapy have brought significant therapeutic benefits to many cancer
patients. Nonetheless, many cancer types are refractory to current immunotherapeutic approaches,
meaning that further targets are required to increase the number of patients who benefit from these
technologies. Protein tyrosine phosphatases (PTPs) have long been recognised to play a vital role
in the regulation of cancer cell biology and the immune response. In this review, we summarize
the evidence for both the pro-tumorigenic and tumour-suppressor function of non-receptor PTPs
in cancer cells and discuss recent data showing that several of these enzymes act as intracellular
immune checkpoints that suppress effective tumour immunity. We highlight new data showing
that the deletion of inhibitory PTPs is a rational approach to improve the outcomes of adoptive T
cell-based cancer immunotherapies and describe recent progress in the development of PTP inhibitors

as anti-cancer drugs.
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1. Introduction

In recent decades, the development of therapies that bypass immunosuppressive
pathways to enhance immune responses has resulted in improved outcomes in the treat-
ment of cancer. Function-blocking antibodies that target immune checkpoint receptors,
such as programmed death 1 (PD-1) or cytotoxic T lymphocyte antigen 4 (CTLA-4), have
become the standard of care for the treatment of melanoma [1] and carcinomas of the head
and neck [2], lung [3], kidney [4] and bladder [5]. Furthermore, adoptive cell therapies
(ACT) using chimeric antigen receptor T cells (CAR-T) have revolutionised the treatment
of haematological malignancies [6]. Despite these advances, many patients do not benefit
from current immunotherapy modalities; even in “immunotherapy-sensitive” cancers, such
as melanoma, ~50% of patients fail to respond to immune checkpoint inhibitors, whilst
CAR-T therapy has yet to be translated successfully to the treatment of solid tumours.
Therefore, the identification of novel targets to improve immune responses in cancer stands
to bring benefit to the majority of cancer patients.

Protein tyrosine phosphatases (PTPs) are a diverse family of enzymes that play fun-
damental roles in the propagation, regulation and termination of intracellular signalling
pathways. For a general overview of the biological functions of the PTPs, we recommend
excellent review articles [7-10]. At the most basic level, PTPs act to counteract the activity
of protein tyrosine kinases (PTKs) by removing phosphate groups from phosphorylated
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2. PTPN1 and PTPN2
2.1. Roles of PTPN1 and PTPN2 in Cell Signalling

PTPN1, commonly referred to as PTP1B, and PTPN2, referred to as T cell PTP (TC-
PTP) in some of the literature, are related phosphatases with a high degree of sequence
homology, particularly in their catalytic domains [11]. The basic domain structure of PTPN1,
PTPN2 and the other PTPs discussed in the current work is given in Figure 1. PTPN1 is
expressed in a variety of tissues and plays an important role in metabolic signalling. In
this regard, mice lacking PTPN1 display enhanced insulin sensitivity and resistance to
weight gain when fed a high-fat diet [12]. PTPN2 is also ubiquitously expressed and plays
a vital role in the regulation of Janus kinase (JAK)—signal transducer and activator of
transcription (STAT) signalling downstream of a wide variety of cytokine and growth factor
receptors. Germline deletion of Ptpn2 in mice results in stunted growth, haematopoietic
defects, anaemia, systemic inflammation and the death of homozygous animals by 5 weeks
postnatally [13,14]. In T cells, PTPN2 is a negative regulator of both T cell receptor (TCR)
signalling and JAK-STAT pathways [15,16], whilst PTPN2 polymorphisms have been
identified as risk factors for the development of autoimmunity [17].
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Figure 1. Domain structure of protein tyrosine phosphatases (PTPs). Overview of the basic structure of
non-receptor PTPs (PTPNs) and CD45, described in the current review. PTPNs with shared structural
domains (e.g., PTPN6 and PTPN11) are depicted as such. Image created with BioRender.com.

2.2. PTPN1 and PTPN2 as Regulators of Cancer Cell Biology

Evidence for cancer cell-intrinsic roles for PTPN1 and PTPN2 in the development
or suppression of tumour growth has emerged. For example, PTPN1 plays a positive
role in human epidermal growth factor receptor 2 (HER2) signalling during breast cancer
development [18]. Pharmacological inhibition of PTPN1 using a small molecule inhibitor
MSI-1436 antagonises HER?2 signalling and blocks the growth of breast cancer xenografts
in mice [19]. In contrast, PTPN1 can also act as a tumour suppressor. Thus, lineage-specific
deletion of Ptpnl using LysM-Cre results in the development of myeloid leukaemias [20].
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Development of leukaemia in myeloid-specific Ptpn1-deficient mice was associated with
hyperphosphorylated STAT3 and JAK-dependent signalling. Similarly, PTPN2 acts as a
tumour-suppressor protein in T cell leukaemias and triple-negative breast cancer (TNBC)
by counteracting oncogenic Src kinase and JAK-STAT signalling [21-23]. Furthermore,
loss of PTPN1 and PTPN2 expression was recently identified as an important driver of
anaplastic large cell lymphoma (ALCL) resistance to anaplastic lymphoma kinase (ALK)
inhibitors [24]. Thus, both PTPN1 and PTPN2 regulate ALK phosphorylation and activity,
whilst ALCL patients who had developed resistance to ALK inhibitors demonstrated
downregulation of PTPN1/PTPN2 expression. PTPN1 also acts to dephosphorylate another
tyrosine phosphatase family member, PTPN11 [24], which is a positive regulator of ALK-
dependent RAS/mitogen-activated protein kinase (MAPK) signalling [25]. Consequently,
the loss of PTPN1 and/or PTPN2 expression in ALCL results in hyperactive PTPN11,
MAPK and JAK-STAT signalling [24].

Evidence suggests that PTPN2 plays a key role in regulating the cell-intrinsic sensitivity
of tumour cells to immunotherapy. An in vivo CRISPR-Cas9 screen in mice identified genes
that regulate interferon-y (IFNvy) signalling as being key determinants of B16 melanoma
sensitivity to combinations of tumour vaccines and anti-PD-L1 immunotherapy [26]. The
deletion of Ptpn2 sensitised B16 tumours to immunotherapy, whereas PTPN2 overexpres-
sion rendered cells resistant. The enhanced efficacy of immunotherapy following the loss
of PTPN2 was associated with increased granzyme B* cytotoxic CD8" T cell and y5 T cell
recruitment to tumours. Mechanistically, increased IFNy-dependent JAK-STAT signalling
led to enhanced antigen processing and presentation in Ptpn2~/~ B16 cells with subsequent
effects on T cell activation [26].

2.3. PTPN1 and PTPN2 as Targets in T Cell Cancer Immunotherapies

As described above, PTPN1 and PTPN2 regulate cancer development and responses
to immunotherapy. Increasing evidence also points towards an important cell-intrinsic
function for these phosphatases in regulating T cell responses to cancer. Wiede and col-
leagues demonstrated that T cell-specific deletion of Ptpn2 in mice prevented the formation
of tumours induced by p53 loss of heterozygosity [27]. Using OT-I TCR transgenic T cells
and an ovalbumin (OVA)-expressing AT3 mammary tumour cell model, these investigators
determined that Ptpn2~/~ CD8* T cell ACT enhanced tumour clearance compared to the
control T cell ACT [27]. Similarly, deletion of PTPN2 enhanced the efficacy of HER2-specific
mouse CAR-T cells, resulting in superior clearance of HER2-expressing E0771 mammary
tumours in vivo and prolonged survival. Enhanced efficacy of PTPN2-deficient CAR-T
cells was associated with elevated Lck and STAT5-dependent cytotoxic T lymphocyte (CTL)
function and superior STAT5-dependent and CXC chemokine receptor 3 (CXCR3)-mediated
homing of CAR-T cells to tumours [27]. The same research team reported a similar T cell-
intrinsic role for PTPN1 in regulating tumour immunity. Thus, they determined that
PTPNI1 expression was elevated in intratumoural T cells compared to splenic counterparts,
suggesting that PTPN1 may function as an intracellular immune checkpoint [28,29]. Like
PTPN2, PTPN1 regulates STAT5-dependent signalling in T cells, whilst the deletion of
PTPN1 enhances the efficacy of CD8* conventional T cell and CAR-T cell ACT in mouse
models of cancer [29]. In proof-of-principle studies, the deletion of PTPN1 or PTPN2 also
enhanced human CAR-T cell function in vitro [27,29], suggesting that these phosphatases
may represent valid targets for future improvements in therapeutic CAR-T design.

2.4. Dual PTPN1-PTPN?2 Inhibitors as Cancer Therapeutics

The data described above suggest that the use of small molecule inhibitors to block
PTPN1/2 function has the potential to exert anti-cancer effects via acting directly on
cancer cells and by promoting anti-tumour immunity. Furthermore, acute pharmacological
inhibition may reveal distinct effects from the genetic deletion of phosphatases. Thus,
gene knockout approaches may result in some degree of functional compensation by other
phosphatases, whilst phenotypes associated with the loss of protein expression may be
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independent of phosphatase catalytic activity. Consistent with the role of the phosphatases
in limiting T cell anti-cancer responses, as described using gene knockout models, PTPN1
and PTPN2 inhibitors have been used to enhance anti-tumour immunity and sensitise
tumours to other immunotherapy modalities in pre-clinical models [27,29,30]. In recent
studies, dual inhibitors that target both phosphatases have been shown to have potent anti-
tumour effects in mouse models [31,32]. A small molecule inhibitor, ABBV-CLS-484 [31],
and a related compound-182 [32] inhibit PTPN1/PTPN2 with high selectivity over other
phosphatases and mediate anti-tumour effects via direct effects on cancer cells and via the
enhancement of NK and T cell recruitment and effector function within tumours (Table 1).
ABBV-CLS-484 was shown to have broad effects on a range of immune cells, including
T cells, natural killer (NK) cells, macrophages and dendritic cells, and had efficacy in
experimental settings in which T cell immunity was insufficient, e.g., in MHC1-deficient
tumour models [31]. Furthermore, both compounds show efficacy in mouse models that
are resistant to PD-1 blockade, without provoking overt inflammation or symptoms of
autoimmunity. These data suggest that dual blockade of PTPN1/PTPN2 might represent
an approach to overcome tumour immune evasion mechanisms. A phase I trial of the use
of ABBV-CLS-484 as a monotherapy, or in combination with anti-PD-1 or tyrosine kinase
inhibitors (TKIs), in cancer patients with locally advanced or metastatic solid tumours, is
currently underway (NCT04777994).

Table 1. Development of small molecule PTP inhibitors as anti-cancer drugs. a.s.—active site
(competitive) inhibitor. *—Trial discontinued due to lack of interest by sponsor. **—recruiting.
***_trial completed, results not yet reported.

Inhibitor (Mechanism) Target PTP(s) Stage of Development Cancers Targeted
MSI-1436 (allosteric) PTPN1 Phase I * Metastatic breast cancer
Compound 8 (a.s.) PTPN2 Pre-clinical Mouse models
PTP9 (a-s.) PTPN2 Pre-clinical Mouse models
ABBV-CLS-484 (a.s.) PTPN1/PTPN2 Phase I Locally advanced /metastatic solid tumours
Compound 182 (a.s.) PTPN1/PTPN2 Pre-clinical Mouse models
TNO155 (allosteric) PTPN11 Phase I/11 Advanced solid tumours
PF-07284892 (allosteric) PTPN11 Phase I Advanced solid tumours
RMC-4630 (allosteric) PTPN11 Phase I ** Metastatic KRAS mutant tumours
BBP-398 (allosteric) PTPN11 Phase I Advanced solid tumours with KRAS-G12C
JAB-3068 (allosteric) PTPN11 Phase I Advanced solid tumours
JAB-3312 (allosteric) PTPN11 Phase I/1la Advanced solid tumours with KRAS-G12C
RLY-1971 (allosteric) PTPN11 Phase I *** Advanced/metastatic solid tumours
HBI-2376 (allosteric) PTPN11 Phase I ** Advanced solid tumours
ETO0038 (allosteric) PTPN11 Phase I Advanced solid tumours
ERAS-601 (allosteric) PTPN11 Phase I/Ib Advanced solid tumours
BR790 (allosteric) PTPN11 Phase I/Ila Advanced solid tumours
L-1 (a-s.) PTPN22 Pre-clinical Mouse models
D14/D34 (a.s.) PTPN22 Pre-clinical Mouse models

3. PTPN6 and PTPN11
3.1. Roles of PTPN6 and PTPN11 in Cell Signalling

PTPN6 and PTPN11 are related Src Homology 2 (SH2) domain-containing PTPs
(Figure 1) frequently termed SHP-1 and SHP-2, respectively (reviewed in [33,34]). PTPN6/
SHP-1 is predominantly expressed within the haematopoietic system, whereas PTPN11/SHP-2
is ubiquitously expressed. The role of PTPNG6 in the regulation of the immune response
has been widely studied through the analysis of the spontaneously arising motheaten and
motheaten viable mouse strains, which lack PTPN6 expression or have reduced PTPN6
activity, and, more recently, through mouse strains with lineage-specific deletion of Ptpn6.
In the complete absence of PTPN6, mice succumb to a severe autoinflammatory disease
that is driven by the combined effects of inflammatory neutrophils, macrophages, dendritic
cells, B and T cells [35-37]. In T cells, PTPNG6 is a negative regulator of Lck-dependent
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TCR signals [38] and interleukin (IL)-4-driven STAT6-dependent signalling [36]. PTPN11 is
essential for mouse embryonic development [39] and subsequent lymphopoiesis [40]. In
contrast to other phosphatases, PTPN11 has a predominantly positive regulatory role in
cell signalling, acting to enhance RAS/MAPK activation. Activating mutations in PTPN11
underlie ~50% of the cases of Noonan Syndrome, a RASopathy that presents with skeletal
malformations and congenital heart disease [41,42].

3.2. PTPN11 Is an Oncogenic Phosphatase

Activating mutations in PTPN11 have been associated with the development of
leukaemia through their effects on RAS activation [43-46]. Furthermore, cancers driven by
mutant KRAS are dependent on PTPN11 expression [47-49]. Subsequently, the anti-cancer
effects of allosteric PTPN11 inhibitors have been widely assessed in pre-clinical models
and are under evaluation in early-stage clinical trials for the treatment of cancer (reviewed
in [50,51]). As of December 2023, at least ten PTPN11 inhibitors have reached Phase 1/11
clinical trials for the treatment of solid tumours either as monotherapies or in combination
with other anti-cancer drugs, including TKIs and immune checkpoint inhibitors (Table 1).
Encouragingly, the results from a Phase 1 trial indicated that the use of the allosteric
PTPN11 inhibitor PF-07284892 was able to overcome resistance to diverse TKIs in a range
of cancer types. Specifically, therapeutic effects of combined PF-07284892 + TKIs were seen
in individuals with EML4-ALK fusion-positive lung cancer, BRAFY®"E-mutant colorectal
cancer, KRASC12D_mutant ovarian carcinoma and GOPC-ROS1 fusion-positive pancreatic
cancer [49].

An important question is whether PTPN11 inhibitors exert their anti-tumour function
solely via effects on cancer cells or whether they also influence the immune response to
tumours. Studies demonstrated that an allosteric PTPN11 inhibitor, RMC-4550, reduced
CT26 tumour growth in immunocompetent mice but not in recombinase activating gene 2
(RAG2)-deficient mice, indicating a requirement for adaptive lymphocytes in mediating
the protective effect [52]. In this setting, PTPN11 inhibition induced a shift in tumour
microenvironment (TME) myeloid cell populations towards an inflammatory, anti-tumour
phenotype, in part via effects on colony-stimulating factor 1 (CSF1) signalling pathways [52].
Similarly, the treatment of mice with an alternative allosteric PTPN11 inhibitor, SHP099, re-
sulted in enhanced T cell recruitment to orthotopic non-small cell lung carcinoma (NSCLC)
nodules [53]. Antibody-mediated depletion of either CD4* or CD8* T cells diminished
the anti-tumour effects of SHP099, suggesting an important role for T cell responses in
the protective effects of PTPN11 inhibition. Of note, the growth of B16-F10 melanomas
was suppressed in mice with specific deletion of Ptpn11 in myeloid lineages compared to
control strains [54]. Improved control of tumour growth in mice with myeloid-specific
Ptpnll-deficiency was associated with decreased myeloid-derived suppressor cell activity
and enhanced activation of tumour-infiltrating T cells [54]. In contrast, T cell-specific
deletion of Ptpn11 does not improve T cell anti-tumour responses [55], indicating that the
effects of PTPN11 inhibitors on T cell responses in cancer settings are likely to be indirect
and secondary to the modulation of myeloid cell phenotypes.

3.3. PTPN6 Acts as Tumour Suppressor

PTPNG6 predominantly serves as a negative regulator of signalling. Hypermethylation
of PTPNG is frequently seen in acute lymphoblastic leukaemia [56], multiple myeloma [57]
and mantle cell and follicular lymphomas [58], resulting in the loss of PTPNG6 protein ex-
pression. Reduced PTPNG6 function is associated with enhanced activatory kinase signalling
in haematological malignancies. More recently, a similar role for PTPN6 as a tumour-
suppressor in solid tumours has also been postulated (reviewed in [59]). Indeed, loss
of PTPNG is associated with poor prognosis in hepatocellular carcinoma (HCC), whilst
in healthy hepatocytes and HCC cell lines, PTPNG6 inhibits the JAK-STAT, nuclear factor
(NF)-kB and Akt-dependent signalling pathways [60]. PTPN6 has been reported to be a
negative regulator of epithelial-mesenchymal transition (EMT) and metastasis in HCC [61].
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In this regard, PTPN6 suppresses transforming growth factor beta (TGFf{3)-dependent
STATS5 phosphorylation and subsequent EMT features in HCC cell lines [61].

3.4. Role of PTPN6 and PTPN11 in PD-1 Signalling and Function

A dominant role for PD-1-mediated suppression of immune responses is a feature
of many cancers. Receptor ligation leads to the recruitment of PTPN6 and PTPN11 to
an immunoreceptor tyrosine-based switch motif ITSM) in the PD-1 intracellular tail [62].
Thus, the recruitment of phosphatases and the subsequent dephosphorylation of CD28
has been suggested to be important in mediating the inhibitory effects of PD-1 signalling
in T cells [63]. Furthermore, disruption of the ITSM region prevented PD-1-mediated
inhibition of TCR-driven proliferation and cytokine production [62], whilst a vital role for
PTPN11 in immune checkpoint receptor function in tumour-infiltrating leukocytes (TILs)
has been suggested [64-66]. However, T cell-specific deletion of Ptpn11 does not impact T
cell responses to PD-1 [55], whereas the concomitant deletion of both Ptpn6 and Ptpnl1lin T
cells has been reported to abrogate the anti-tumour efficacy of PD-1 blockade in the MC38
colorectal cancer model [67] but not impede PD-1 function in other settings [68]. These data
suggest functional redundancy for PTPN6 and PTPN11 in PD-1 function.

3.5. Targeting PTPNG6 to Enhance T Cell Immune Responses to Cancer

A number of studies have addressed the question of whether and how PTPNG6 influ-
ences T cell responses in cancer. Conditional deletion of Ptpn6 renders conventional T cells
resistant to the inhibitory effects of regulatory T cells (Tregs) [69], a property that may be
beneficial in the suppressive TME. Knockdown of Ptpn6 expression using short hairpin
RNA (shRNA) enhanced OT-I TCR transgenic CD8* T cell responses to B16 melanomas
expressing OVA variant proteins as tumour-associated antigens [70]. In particular, the
recruitment of Ptpn6-deficient OT-I T cells to tumours expressing low-affinity antigen was
enhanced compared to control cells. Furthermore, combining Ptpn6=/~ OT-1T cell ACT
with anti-PD-1 treatment resulted in superior control of tumours expressing low-affinity
TAA compared to control ACT + PD-1 combinations [70]. Previous studies demonstrated
an enhanced capacity for motheaten F5 TCR transgenic T cells compared to control F5
T cells to control the growth of B16-NP68 tumours in ACT experiments [71], further
adding to the evidence for a negative regulatory function of PTPNG6 in the control of T cell
anti-cancer responses.

The role of PTPN6 in CAR-T cells has also been assessed. The deletion of PTPN6, using
CRISPR-Cas9 technology, has been reported to enhance the cytolytic capacity of CD133-
targeting CAR-T cells in vitro and anti-tumour activity in vivo [72]. Of note, enhanced
PTPNG6 expression has been associated with functional exhaustion of CAR-T cells [73].
However, rather than being a driver of exhaustion, an alternative possibility is that PTPN6
recruitment to CAR intracellular domains may act to balance T cell activation and prevent
terminal exhaustion [74]. A further factor to consider is that PTPN6 recruitment to CAR
cytosolic signalling domains appears to selectively impede T cell inflammatory cytokine
production, and thereby reduce the incidence of cytokine release syndrome without im-
peding anti-tumour activity [75]. Therefore, further studies will be required to determine
whether deleting PTPN6 has a net beneficial effect on the outcome of CAR T cell therapies.

4. PTPN22
4.1. Roles of PTPN22 in T Cell Signalling

PTPN22 is a member of the proline-, glutamic acid-, serine- and threonine-enriched
(PEST) group of phosphatases, which also includes PTP-PEST (PTPN12) and PTPN18.
Alternative names for PTPN22 include PEST-domain enriched phosphatase (PEP) and
Lymphoid phosphatase (LYP). PTPN22 is predominantly expressed in the cytoplasm of
cells of haematopoietic origin. Human and mouse PTPN22 proteins share ~70% amino
acid sequence identity, with the N-terminal catalytic domain being the most highly con-
served region. Following the catalytic domain and a long “interdomain” region, in the
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C-terminus of PTPN22, there are four proline-enriched domains termed P1-P4 that reg-
ulate protein interactions and turnover (Figure 1). Of note, the P1 region regulates the
association of PTPN22 with the Src Homology 3 (SH3) domain of C-terminal Src kinase
(CSK) [76], whilst single nucleotide polymorphisms (SNPs) in this region, which disrupt
PTPN22-CSK binding, have been identified as genetic risk factors for the development of
autoimmune diseases, such as rheumatoid arthritis, type I diabetes and systemic lupus
erythematosus [77-79].

In T cells, PTPN22 serves as a negative regulator of antigen receptor signalling and in-
fluences lymphocyte function-associated antigen 1 (LFA-1)-dependent adhesion (reviewed
in [80-82]). In brief, PTPN22 dephosphorylates activatory tyrosine residues in kinases, such
as Lck and zeta chain-associated protein kinase 70 (ZAP70), thereby dampening proximal
TCR signals, as summarized in Figure 2. In the absence of PTPN22, the threshold for
activation of T cells following TCR triggering is reduced [83,84], particularly in response to
low-affinity TCR ligands [85]. Subsequently, both mouse and human PTPN22-deficient T
cells respond more robustly to weak antigenic stimulation than PTPN22-sufficient coun-
terparts [85-87]. Furthermore, enhanced TCR-induced IL-2 secretion renders PTPN22-
deficient T cells less susceptible to the anti-proliferative effects of the immunosuppressive
cytokine TGF{ than wild-type cells [88].

APC
eptide-MHC~_(@
REPH P — ICAMT

TCR 4 » . —LFA-1
- complex ( g
|
Tcell | }
/ Integrin
activation and
adhesion

T cell activation

Figure 2. PTPN22 regulates proximal TCR signalling and LFA-1-dependent adhesion. Upon TCR
ligation by peptide-MHC complexes, Lck phosphorylates the immunoreceptor tyrosine-based ac-
tivation motifs of the CD3/ (-chain complex, resulting in the recruitment and activation of ZAP70.
ZAP70 subsequently induces downstream TCR signalling and T cell activatory signals as well as
“inside-out” signalling via the GTPase Rap1. Rapl activation results in enhanced LFA-1-dependent
adhesion processes. PTPN22 dephosphorylates tyrosine residues in TCR proximal kinases Lck and
ZAP70 to suppress T cell activation. Image created with BioRender.com.

4.2. Deletion of PTPN22 Improves T Cell Responses to Cancer

These data suggest a mechanistic basis for the regulation of autoimmunity by PTPN22
but also imply that PTPN22 expression or activity can be manipulated to enhance T cell
reactivity in cancer. In this regard, the growth of transplanted MC38 colon carcinoma
tumours is suppressed in PTPN22-deficient mice compared to control animals, particularly
in the context of PD-1 immune checkpoint blockade [89,90]. Improved control of tumour
growth in Ptpn22~/~ mice is associated with enhanced cytotoxic T cell infiltration into
tumours, increased inflammatory cytokine production and alterations in myeloid cell pop-
ulations. Similar results were reported for knock-in mice that express the autoimmune
disease-associated PTPN22 R619W (equivalent to human R620W) variant [89,91]. Further-
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more, evidence suggests that expression of the PTPN22 R620W variant is associated with
enhanced responses to immune checkpoint therapies in human cancer patients [89,90]. To-
gether, these data provide evidence that PTPN22 is a key negative regulator of anti-tumour
immunity in both mice and humans.

Several approaches have been used to address the question of whether PTPN22 can
be targeted to enhance cancer immunotherapy. The deletion of PTPN22 did not improve
the in vivo anti-tumour activity of murine HER2-specific CAR-T cells [92], reflecting a lack
of effect of PTPN22-deficiency on very high-affinity T cell responses [85,86]. Nonetheless,
adoptive T cell transfer studies, using TCR transgenic T cells and ID8 ovarian carcinoma
and EL4 lymphoma cells modified to express model antigens, demonstrated an enhanced
capacity of PTPN22-deficient CD8" T cells to clear established tumours in mice [88,93].
The enhanced anti-tumour function of PTPN22-deficient CD8* T cells was particularly
evident in response to tumours expressing low-affinity TCR antigens and was associated
with elevated cytokine secretion and direct TCR-dependent cytotoxicity. Importantly,
memory-phenotype PTPN22-deficient CD8* T cells, polarized in vitro in the presence of IL-
15, had the capacity to clear tumours and were retained in mice for months after tumours
became undetectable [93]. However, recent studies suggest that under conditions of
chronic stimulation, PTPN22-deficient effector CD8* T cells can become exhausted and may
function less well than wild-type T cells in anti-cancer responses [94]. Therefore, balancing
an enhanced capacity for effector responses with an increased propensity for exhaustion is
a key concern for future targeting of PTPN22 in adoptive T cell cancer therapies.

4.3. PTPN22 Is a Druggable Target

The pharmacological inhibition of PTPN22 may also represent a valid approach to
improve anti-cancer immune responses. Ho and colleagues reported that treatment with a
PTPN22 selective inhibitor, L-1, reduces the growth of MC38 and CT26 colon carcinomas
in wild-type but not PTPN22-deficient mice [90]. L-1 treatment in WT mice phenocopies
PTPN22-deficiency in terms of enhancing T cell and myeloid cell-dependent tumour im-
munity. Importantly, L-1 appears to be non-toxic and in combination with PD-1 blockade,
results in improved control of tumour growth [90]. More recently, similar data were re-
ported using chemically distinct PTPN22 inhibitors termed D14 and D34 [95], adding to
the evidence for the utility of targeting PTPN22 to improve cancer immunity.

5. Roles for Other Tyrosine Phosphatases in Cancer Biology and Tumour Immunity
5.1. PTPN3, PTPN4 and PTPN13

PTPN3 AND PTPN4 are related phosphatases that contain band 4.1, ezrin, radixin,
moesin (FERM) and PSD-95, Dlg, ZO-1 (PDZ) domains, in addition to a C-terminal PTP
domain (Figure 1). Although implicated in the regulation of TCR signal transduction,
knockout mouse studies indicate that the deletion of PTPN3 and PTPN4 alone or in
combination does not impact T cell responses [96-98]. Nonetheless, reports have suggested
that shRNA-mediated knockdown of PTPN3 enhances human T cell responses to ovarian
cancer [99] and small-cell lung carcinoma [100] xenografts in mice. PTPN3 may also
negatively regulate dendritic cell function in cancer [101] and has tumour-suppressor
activity, which is independent of phosphatase activity, by potentiating TGF{3-driven growth
inhibitory responses in HCC cell lines [102].

PTPN13, called PTPL1, FAP1 and PTP-BL in some of the literature, has lower sequence
homology to PTPN3 and PTPN4 but also contains FERM and PDZ domains (Figure 1).
PTPN13 has been implicated in the regulation of PI3K signalling [103] and apoptosis via the
regulation of Fas death receptor expression [104]. Roles for PTPN13 in both promoting and
suppressing tumour development have been reported (reviewed in [105]). Thus, PTPN13
may suppress oncogenic Src signalling [106], whilst the loss of PTPN13 expression [107]
or germ-line mutations in PTPN13 [108] have been described in NSCLC and acute lym-
phoblastic leukaemia, respectively. PTPN13 has been described as a STAT phosphatase



Cells 2024, 13, 231

9of 16

and regulates CD4" T helper cell differentiation in mice [109]. However, to date, the role of
PTPN13 in the regulation of cancer immunity has yet to be determined.

5.2. PTPN12

PTPN12, also called PTP-PEST, is a cytosolic phosphatase that has a tumour-suppressor
function in breast cancer [110-112] and renal cell carcinoma [113]. PTPN12 function or ex-
pression is frequently lost in TNBC, whereas PTPN12 activity inhibits HER2 and epidermal
growth factor receptor (EGFR) signalling pathways and transformation. The re-expression
of PTPN12 suppresses TNBC growth and metastasis in vivo [112] and restrains RTK-
dependent signalling [111]. In T cells, PTPN12 was originally described as a negative
regulator of TCR-induced activation [114] but has subsequently been shown to be dispens-
able for primary T cell responses [115]. Instead, PTPN12 acts as a positive regulator of
secondary T cell responses via the suppression of anergy [115]. The role of PTPN12 in the
regulation of anti-cancer immune responses has yet to be defined.

5.3. CD45

CD45 is a receptor-like PTP (Figure 1) and is one of the most abundant glycopro-
teins expressed on the surface of haematopoietic cells (reviewed in [116]). CD45 can
suppress the development of T cell lymphomas in mice expressing an active Lck transgene
(LckF505) [117] and myeloproliferative phenotypes in mice expressing activating mutations
in the FLT3 RTK [118]. Furthermore, loss-of-function mutations in PTPRC, which encodes
CD45, have been detected in acute lymphoblastic leukaemia [119], suggesting that CD45
may have tumour-suppressor activity. CD45 has dual positive and negative regulatory
functions in T cells via effects on Lck phosphorylation [120-124]. In particular, CD45 exclu-
sion from the TCR—peptide-MHC interface and segregation from kinases is thought to be
important to enable activatory signals in T cells [120]. Similarly, the exclusion of CD45 from
the vicinity of CAR-surface antigen pairing is important for enabling signalling in therapeu-
tic CAR T cells [125]. The expression of longer CD45 isoforms, such as CD45RABC, results
in enhanced CAR T cell signalling and activation compared to cells expressing smaller
CD45RO0 isoforms [125], suggesting that the manipulation of CD45 isoform expression
could be used to tune CAR T cell activity.

6. Concluding Remarks

There has long been an understanding that PTPs play an important role in the regula-
tion of tumour cell signalling, the development of cancer and the regulation of immune
responses. As described in the current work, a wealth of data has demonstrated that a num-
ber of PTPs can be targeted to improve cancer responses via effects on therapeutic T cells
and endogenous immune responses as well as direct anti-cancer effects, as summarized in
Figure 3. In recent years, there has been an appreciation that PTPN family members, such
as PTPN1, PTPN2 and PTPN22, may serve as intracellular immune checkpoints, analogous
to the function of cell surface checkpoint receptors. As described in this review, approaches
to manipulate PIPN family expression have resulted in enhanced therapeutic function of
anti-cancer T cells and ACT responses in pre-clinical tumour models, raising the hope that
PTP family members might be targeted to improve therapeutic CAR-T or conventional
TCR-expressing T cell therapies in patients. Of note, patients are currently being recruited
to a Phase 1 trial assessing the impact of the deletion of the inhibitory signalling protein
Cish on TIL ACT therapy for lung cancer (NCT05566223). It is hoped that similar studies to
assess the impact of the deletion of inhibitory PTPs in therapeutic T cells will proceed in
the near future.

For many years, it was thought that tyrosine phosphatases were poor drug targets
due to the similarity in PTP catalytic domains between different family members and the
potential for off-target effects. However, the catalytic site-targeting drug ABBV-CLS-484
has a high degree of selectivity, inhibiting PTPN1 and PTPN2 at nanomolar concentrations
and only significantly inhibiting PTPN9, but not other PTP family proteins, at millimolar
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levels [31]. These data suggest that targeting catalytic sites remains a viable approach for
the development of selective phosphatase inhibitors. Nonetheless, the use of allosteric
inhibitors that target unique regions outside the PTP domain has expanded the potential
for selectively targeting these enzymes. Of note, allosteric PTPN11 inhibitors have shown
high specificity over the related PTPN6 whilst retaining anti-cancer effects in pre-clinical

studies and early-stage clinical trials.

Conventional Anti-cancer Immune-stimulating
CARTcell  roptcen/TIL  small molecule small molecule
inhibitor inhibitor
Therapeutic e
modality ?
N H l A\
g B ()2 @K
ey & PR
PTPN1 PTPN1 PTPN1 PTPN1
Target PTPN2 PTPN2 PTPN2 PTPN2
PTPs PTPN6 PTPN3 PTPN11 PTPN11
CD45 PTPN6 PTPN22
PTPN22

Figure 3. Targeting protein tyrosine phosphatases in cancer therapy. In pre-clinical studies, deletion
of several PTPs can improve the functional capacity of therapeutic CAR-T and conventional TCR
T cells for ACT approaches. Small molecule PTP inhibitors have shown efficacy in pre-clinical and
early-stage clinical trials for the treatment of cancer via direct anti-cancer and immune-stimulatory
effects. Image created with BioRender.com.

A further key consideration for the development and use of any novel drug is toxicity.
Allosteric PTPN11 inhibitors appear to have an acceptable toxicity profile in stage 1 clinical
trials, although further dose escalation studies are ongoing [49,126]. Of note, trials assessing
the efficacy of several PTPN1 inhibitors for the treatment of type 2 diabetes were halted
due to low efficacy and toxicities, including vomiting and diarrhoea [127,128]. Pre-clinical
studies suggest low toxicity of novel dual PTPN1/2 inhibitors in mice; it is hoped that
similar safety profiles are revealed in ongoing clinical trials [31]. However, given the
reported toxicities of PTPN1-selective inhibitors and the key role that PTPN1 plays in
metabolic regulation and PTPN2 plays in immune responses, it is likely that these will not
be without any side effects. In summary, the use of highly specific phosphatase inhibitors
with both anti-cancer and immune-stimulating capacity has shown great potential in mouse
models and has now reached early-stage clinical trials. The hope is that these advances in
our understanding of PTP biology will progress to the development of improved cancer
therapies in the coming years.
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