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Abstract. In this article, I describe the miesize command for the calculation of
effect sizes in imputed data. There may be situations where an effect size needs
to be estimated for an intervention, an exposure, or a group membership variable
but data on the independent or dependent variable are missing. Such missing data
are commonly dealt with by multiply imputing plausible values. However, in this
circumstance, the estimated effect size and associated standard errors will need to
be pooled and estimated from the imputed dataset. The miesize command auto-
mates this process and calculates effect sizes for a binary variable from multiply
imputed data in wide format. The estimates and standard errors (used to calculate
the confidence intervals) are recombined using Rubin’s (1987, Multiple Imputation
for Nonresponse in Surveys [Wiley]) rules. These rules are applied such that the
average point estimate for the effect size is calculated from the imputed datasets.
The pooled standard error, and hence confidence intervals, is calculated to account
for both the variance between the imputed datasets and the variance within them.
Pooled effect sizes and confidence intervals for Cohen’s (1988, Statistical Power
Analysis for the Behavioral Sciences, 2nd ed. [Lawrence Erlbaum]) d, Hedges’s
(1981, Journal of Educational Statistics 6: 107-128) g, and Glass’s (Smith and
Glass, 1977, American Psychologist 32: 752-760) delta are provided by miesize.

Keywords: st0755, miesize, effect size, imputation, Rubin’s rules, Cohen’s d,
Hedges’s g, Glass’s delta

1 Introduction

The term “effect size” usually refers to the magnitude, and direction, of an association
between two variables or the mean difference between two groups. Statistical tests
that produce p-values indicate the probability that the observed result, or one more
extreme, was due to chance alone. In contrast, effect sizes indicate the magnitude of the
association between variables, or mean group difference. Such estimation is intended
to help interpret the results and understand what they may mean in practical terms.
For example, in a healthcare situation, an experimental treatment may result in a
statistically significant difference in a symptom outcome between the experimental and
control group. However, the treatment is unlikely to be useful in practice unless the
magnitude of the difference is clinically meaningful—that is, one that makes a difference
to the average quality of life of patients.

In relation to estimating a mean difference for a continuous outcome across groups,
these methods are sometimes referred to as the “d” family. The average group difference
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described by an effect size could be applied to experimental data. In this situation, the
mean value of an outcome of interest between a group of individuals randomized to
either an experimental intervention or a control condition is compared and contrasted.
In observational data, the mean value can refer to a mean intergroup difference in
relation to a sociodemographic or other characteristic.

Effect sizes, relating to a mean group difference, can be described in the original
metric of an outcome measure. However, these may not be easily interpretable. For
example, the outcome may relate to an attitudinal questionnaire, with responses scored
and summed according to a Likert scale. Some experts may understand what a difference
of “five points” may mean in this situation, but many others would not. Thus, the term
“effect size” often refers to such differences quantified in a standardized metric. The d
family of estimators provides an effect size that is standardized according to the standard
deviation (SD) (that is, square root of the variance) of the outcome of interest. All the
d family of estimators assume that the outcome of interest is normally distributed, and
thus, departure from this can introduce bias (Grissom and Kim 2001).

One of the most commonly used metrics of effect size is Cohen’s (1988) d. For
Cohen’s d, standardization is performed according to the pooled SD for both groups
being compared (see below). In general, the d family communicates effect size as the
scaled difference between the means, divided by the SD of the outcome of interest. Here
we see in the following equation that Cohen’s d is given by the difference in the means
of the outcome between the two groups (Z; and Z,) divided by the pooled SD (s*):

L @7

S*

The pooled SD (s*) is calculated as

fZVw—nﬁ+%—wﬁ
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where n,; and n, refer to the number of observations in each of the two comparison
groups, respectively. Here s; and s, are the SDs of the outcome for each respective

group.

However, Hedges showed that Cohen’s d can be biased, especially when there are rel-
atively small numbers of observations (for example, N < 20), and proposed a correction
factor could be applied to d (Hedges 1981; Hedges and Olkin 1985). Let d represent
Cohen’s d and m the summed total number of observations across groups (that is,
m = n; + ny). Where I' represents the gamma function, Hedges’s g is calculated as
g = d x ¢(m), where

m
)= 7 o
2 2
Though not implemented in Stata, Hedges also provided a simplified version of the
correction factor. This is slightly biased but computationally easier to calculate. Here

d.f. represents the degrees of freedom, given by d.f. = n; + ny, — 2, for an independent



P. A. Tiffin 505

group design (Borenstein et al. 2021). Once again, d represents Cohen’s d, and this
approximation (g*) is calculated as

9*‘“(14@.5—1)

Both Cohen’s d and Hedges’s g use the pooled variance of the outcome. In contrast
Glass’s delta (A) provides two effect sizes, A; and A, relating to the variance in the
respective groups of observations. Where Z; and T, once again represent the group
means of the continuous outcome, and s;and s, represent the group specific SDs for the
outcome, Glass’s As are calculated as

A =TT

)

A, = 5

Originally, this approach was intended to be applied to experimental data where A,
related to the control group (Smith and Glass 1977). For experimental data, usually
the SD for the control group is used when calculating A. However, for observational
data, the choice of which of the group’s SD to use appears arbitrary, while for dummy-
coded group variables (one or zero/absent or present), the group with “zero” status
could be the one to have the SD used in calculating A. However, in the absence of a
compelling reason to consistently report A based on one or the other group’s SD, it has
been recommended that both effect-size estimates (As) be reported for observational
data (Kline 2013).

Irrespective of the method used, there are well-known rules of thumb for interpreting
effect sizes. That is, effect sizes of 0.2 to 0.5 are usually regarded as “small/modest”,
0.5 to 0.8 as “medium sized”, and 0.8 or above as “large sized”. However, these interpre-
tations will need to be contextualized. For example, in healthcare it is for stakeholders
and experts (patients and clinicians) to agree on what magnitude of difference may be
considered to constitute a clinically meaningful effect size. Moreover, from an economic
perspective, cost effectiveness of an intervention may not be achieved even with an effect
size that is classed as “large” in this context. Thus, it is important to understand the
meaning and implications of an effect size within its specific substantive context.

Missing data may be present in both experimental design and observational studies.
Analyzing data using listwise deletion may give biased results. It is also wasteful of
the information available in the remaining values in the variables that are present in
observations with one or more missing values. Thus, best practice when analyzing
data with missing values is to use multiple imputation (van Ginkel et al. 2020; Sterne
et al. 2009). This involves drawing plausible values for those missing from conditional
probability distributions. These distributions are shaped by the relationship observed
between the variables for which the values are nonmissing. These values are imputed
for multiple datasets (usually five or more), and the results recombined. Such results
are unbiased if the data are missing completely at random (that is, because of chance
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only) or missing at random (missing values depend on the observed values of variables)
according to Rubin’s (1987) missing data mechanism classification. Indeed, even if
the data are not missing at random (the missing values may depend on unobserved
variable values), the results from multiply imputed data may be less biased than that
derived from listwise deletion (van Ginkel et al. 2020). When recombining the results
from multiply imputed data, one must account for the uncertainty introduced by the
imputation process when deriving standard errors (SEs). Stata currently offers a wide
range of analyses that work with multiply imputed data. These are invoked by using
the command after the prefix mi estimate, for example, mi estimate: regress ....

Rubin (1987) provided rules for how means and SEs (and hence confidence intervals)
could be combined from results derived from multiply imputed datasets. Known aptly
enough as “Rubin’s rules”, these are as follows.

To pool an effect estimate, such as the pooled mean difference (6), one uses the
following formula. Here, on this occasion, m represents the number of imputed datasets
used, and ¢ denotes the ith dataset:

9:771%@;9”')

This is effectively the mean of the mean differences calculated across the m imputed
datasets.

Pooling the SE for such estimates is more complicated and must account for the sam-
pling variance both within and between the imputed datasets. The “within imputation
variance” is the average of the mean of the within variance estimate. In effect, this is
the squared SE calculated for each imputed dataset. This value reflects the sampling
variance in each of the datasets generated by the multiple imputation process. Thus, as
expected, this value will be relatively large in small samples and more modest in larger
samples (Heymans and Eekhout 2019). It is given by the following equation, where Vy;,
is the within imputation variance:

Vi 1 iSEQ
W= i
mi:l

The between imputation variance is intended to reflect the additional variance due
to the uncertainty relating to the value of the imputed data. This is estimated by
calculating the variance of the parameter of interest estimated over all the imputed
datasets. This formula is the same as that ordinarily used to calculate the variance in
a given sample. The value is large when the missing data are extensive and relatively
smaller with fewer missing data. Here Vj is the between imputation variance, 6 is the
overall pooled estimate for the parameter of interest, and 6, is the parameter of interest
estimated in each of the m imputed datasets:

> (6, -9)

V., =
B m—1



P. A. Tiffin 207

To date, Stata does not include a command to estimate effect sizes from multiply
imputed data. This function may be useful given that missing data are regularly en-
countered in experimental and observational data where it may be desirable to calculate
effect sizes.

2 The miesize command

2.1 Syntax

miesize wvarname [if] [in], by(groupvar) [glass countdown level(#) ]

varname is the outcome variable of interest. groupvar is a variable that defines the two
groups that miesize will use to estimate the effect sizes.

The command returns a range of results in r(). Do not confuse the by() option
with the by prefix; you can specify only the former in miesize.

2.2 Options

by (groupvar) specifies the groupvar that defines the two groups that miesize will use
to estimate the effect sizes. by () is required.

glass reports Glass’s A (Smith and Glass 1977) using each group’s SD.
countdown specifies that a countdown of analysis steps remaining be displayed.

level (#) specifies the confidence level to be reported. This can be set between 10 and
99.99%. The default is 1level (95).
2.3 Stored results

miesize stores the following results in r():

If the glass option is not specified:

Macros
r(pooled_se_d) pooled SE for Cohen’s d
r(pt_est_d) pooled point estimate for Cohen’s d
r(ub_d) upper confidence limit for the estimate of Cohen’s d
r(1b_d) lower confidence limit for the estimate of Cohen’s d
r(pooled_se_g) pooled SE for Hedges’s g
r(pt_est_g) pooled point estimate for Hedges’s g
r(ub_g) upper confidence limit for the estimate of Hedges’s g

r(lb_g) lower confidence limit for the estimate of Hedges’s g
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If the glass option is specified:

Macros

r(pooled_se_gl) pooled SE for Glass’s A for group 1

r(pt_est_gl) pooled point estimate for Glass’s A for group 1

r(ub_gl) upper confidence limit for the estimate of Glass’s A for group 1
r(1b_gl) lower confidence limit for the estimate of Glass’s A for group 1
r(pooled_se_g2) pooled SE for Glass’s A for group 2

r(pt_est_g2) pooled point estimate for Glass’s A for group 2

r(ub_g2) upper confidence limit for the estimate of Glass’s A for group 2
r(lb_g2) lower confidence limit for the estimate of Glass’s A for group 2

All methods:

Macros
r(by_var) grouping variable used in the by () statement
r(varname) outcome variable used in the command

2.4 How to use miesize

The miesize command calculates two-sample effect sizes from multiply imputed data
in wide format. The command can handle situations where either one or both variables
(namely, the outcome and grouping variables) are imputed. When neither variable is
detected as imputed, then the esize command for nonimputed data will be invoked,
and a message will be provided to alert the user of this: It appears that neither
of the variables is imputed. The standard 'esize twosample' analysis will be
performed. You may wish to check your imputed data are in standard Stata
wide format. The imputed data should be in the wide format that Stata provides.
That is, imputed variables are named sequentially as _m_varname, where m is the
imputation number, for example, _2_price, where this is the second imputed dataset
for the variable price. As described in section 1, Rubin’s rules are used to estimate the
pooled effect size, SEs, and hence the associated confidence intervals around the point
estimate. The miesize command also operates where only a single imputed value is
used for the grouping or outcome variable. miesize also handles the situation where
either only the outcome variable contains imputed values or only the grouping variable
includes imputed values.

The default for miesize is to calculate Cohen’s d and Hedges’s g. The two methods
differ in how they estimate the pooled SD of the two groups, as outlined above. In effect,
Cohen’s d uses the arithmetic mean of the two group variances. In contrast Hedges’s g
uses a weighted average that accounts for the sample sizes of each group. As mentioned
in section 1, Glass’s A is more appropriate where the variance of the outcome varies
significantly between the two groups. In Stata, this can be formally tested using the
sdtest command. In this context, the variance across the groups will be compared.
Thus, the form of the command used will be

sdtest wvarname, by (groupvar)
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where the varname is the outcome of interest and the groupvar is the group-identifying
variable. Where a statistically significant difference between the variances for each group
is present, it is likely to be more appropriate to use Glass’s A to report the effect size,
rather than d or g. For Glass’s A, the two effect sizes (A; and A,) are given relating to
the SDs of the two groups. For experimental data, usually the SD for the control group
is used when calculating A,. However, as stated earlier, for observational data, the
choice of which of the group’s SDs to use appears arbitrary. For dummy-coded group
variables (one or zero/absent or present), the group with “zero” status could be the
one to have the SD used in calculating A;. However, in the absence of a compelling
reason to consistently report a A value based on one or the other group’s SD, it has
been recommended that both effect-size estimates (As) be reported for observational
data (Kline 2013).

3 Example

For this example, an analysis of data used for evaluating the recruitment and selection
process into UK-based general practice postgraduate medical training is used for illus-
trative purposes (Tiffin et al. 2024).1 One aim of the analysis was to estimate effect sizes
in relation to selection test scores for various demographic characteristics. Clearly, any
substantial association with such personal qualities would influence the demographics
of the population of doctors in training finally selected. In this context, there were com-
plete data for the first stage of selection, which comprised a situational judgment test
(sJT) and clinical knowledge assessment (the clinical problem solving [CPS] test). These
scores are combined into a summed total that is used in the selection process. While
all candidates had SJT and CPS scores, not all had received a standardized face-to-face
selection center (SC) assessment. This was a special case of missing data by design.
For some years, those who achieved only low combined scores on the SJT and CPS did
not proceed to the SC stage. In addition, for some later years, candidates who had
achieved relatively high combined SJT and CPS scores were exempted the face-to-face
selection stage. Moreover, the face-to-face selection process was suspended completely
during the COVID-19 pandemic. Overall, this means that SC scores were not present
for around half the doctors in the sample with first-stage selection assessment scores.
Thus, estimating the “true” underlying effect size for each demographic characteristic
in relation to the scores for the face-to-face SCs required data imputation. This was
performed in Stata using chained equations (Royston and White 2011). The estimates
from the imputations stabilized after m = 5 imputations, but as a precaution, m = 10
imputed datasets were used. For this particular illustrative example, we will estimate
the effect size of male gender on SC scores. Using the sdtest command in Stata, we
see the results indicate that the assumption of equal variance in SC scores across gender
groups can be rejected:

1. The dataset used in the example is held within the UK Medical Education Database (UKMED) in
a trusted research environment.
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. sdtest sc, by(male)

Variance ratio test

Group Obs Mean Std. err. Std. dev. [95% conf. interval]

0 8,689 45.81666 .047401 4.418472 45.72375 45.90958

1 6,260 44.18115 .0605609 4.791592 44.06243 44.29987

Combined 14,949 45.13178 .0380222 4.648829 45.05725 45.20631

ratio = sd(0) / sd(1) f = 0.8503

HO: ratio = 1 Degrees of freedom = 8688, 6259
Ha: ratio < 1 Ha: ratio !=1 Ha: ratio > 1

Pr(F < f) = 0.0000 2xPr(F > £) = 0.0000 Pr(F > £) = 1.0000

Because there is evidence of unequal variances between the groups, we will use Glass’s
A to estimate the effect size using miesize:

. miesize sc, by(male) glass
Average obs per Group 1 18417
Average obs per Group 2 12800

Effect size ‘ Pooled estimate [95% conf. intervall
Glass's Delta 1| .41731 .3819939 .4526262
Glass's Delta 2| .3982446 .3644922 .431997

As can be seen from the results, the effect size for male gender is around 0.40 (that
is, commonly interpreted as “modest”). As expected, it varies slightly depending on
whether the SD of the SC scores for males (0.40) or females (0.42) is used. We can
compare our results with those obtained using the esize twosample command, which
uses only the observed data:

. esize twosample sc, by(male) glass
Effect size based on mean comparison

Obs per group:

male==0 = 8,689

male==1 = 6,260

Effect size Estimate [95% conf. intervall
Glass's Delta 1 .3701538 .3371882 .4030987
Glass's Delta 2 .3413301 .3082789 .3743549

As might be anticipated, the effect sizes for gender are modestly smaller than those
estimated from the imputed data. This is because certain candidates that scored either
especially high or low on the first stage of selection tests will not have observable SC
scores. Given that, in this sample, males, on average, achieve lower scores on the first-
stage assessments, this will produce “indirect range restriction”. This in turn restricts
the range of observable SC scores, especially for females. This effect attenuates the effect
size observed, a well-recognized phenomenon in personnel selection studies. Indeed,
multiple imputation has been shown to be one way of addressing this (Zimmermann,
Klusmann, and Hampe 2017; Mwandigha 2017). Thus, the imputed values will offset
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this effect by simulating the unobserved SC scores. Note that, as expected, the confidence
intervals for these effect sizes are slightly wider for the results derived by miesize,
compared with esize. This is because, as explained above, the variance between, as
well as within, imputed datasets is accounted for. In this case, the former effect is not
large. This is because, across the 10 imputed datasets, the imputed SC scores vary
little. Indeed, the range of observed SC scores in this sample is 20 to 52. However,
between the m = 10 imputed datasets, the imputed SC scores only vary by a range of
around 2 points. This is because the relationships between the SC scores and the other
variables in the sample are relatively strong. For example, the 8 coefficient for the SC
scores regressed on SJT scores in the observed data is 0.30. Thus, the chained equations
impute values with a reasonable level of (apparent) certainty. However, as explained
earlier, where the variance in imputed values is higher, this effect will be more marked.

4 Conclusions

The d family of effect size estimators calculates standardized mean group differences
for continuous variables. The miesize command avoids the tedious task of calculating
the pooled estimates and SEs for these estimators when working with multiply imputed
data. A number of limitations with the current miesize command should be acknowl-
edged. At present, neither miesize nor esize accommodates weights (for example,
survey weights). Also, the derivation of SEs for both commands rests on an assumption
of normality. One way of addressing this would be the option to derive the SEs via
bootstrapping, or other resampling methods, which is not presently included for the
commands. Note that the standard Stata command esize can be used to calculate
effect sizes from unpaired data. This is achieved by calling esize unpaired, then by
specifying the two variables of interest with a pair of equal signs between them, for
example, esize unpaired mpgl == mpg2. This manner of estimating effect sizes in
unpaired data does not currently accommodate multiply imputed data in Stata. Thus,
these three limitations offer potential areas for future development of these commands.
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6 Programs and supplemental material
To install the software files as they exist at the time of publication of this article, type

. net sj 24-3
. net install st0755 (to install program files, if available)
. net get st0755 (to install ancillary files, if available)
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