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Abstract—Predicting pedestrian behavior when interacting with
vehicles is one of the most critical challenges in the field of
automated driving. Pedestrian crossing behavior is influenced by
various interaction factors, including time to arrival, pedestrian
waiting time, the presence of zebra crossing, and the properties
and personality traits of both pedestrians and drivers. However,
these factors have not been fully explored for use in predicting
interaction outcomes. In this paper, we use machine learning
to predict pedestrian crossing behavior including pedestrian
crossing decision, crossing initiation time (CIT), and crossing
duration (CD) when interacting with vehicles at unsignalized
crossings. Distributed simulator data are utilized for predicting
and analyzing the interaction factors. Compared with the logistic
regression baseline model, our proposed neural network model
improves the prediction accuracy and F1 score by 4.46% and
3.23%, respectively. Our model also reduces the root mean squared
error (RMSE) for CIT and CD by 21.56% and 30.14% compared
with the linear regression model. Additionally, we have analyzed
the importance of interaction factors, and present the results of
models using fewer factors. This provides information for model
selection in different scenarios with limited input features.

Index Terms—Pedestrian behavior prediction, machine learning,
pedestrian-vehicle interaction, simulator study, automated driving

I. INTRODUCTION

The demand for protecting pedestrians impels the vehicular

automation industry to develop automated driving (AD) tech-

nologies. One of the most critical and challenging tasks in this

domain is understanding and predicting pedestrian behavior

during crossing, especially when they are interacting with

vehicles at unsignalized crossings. Unsignalized crossings are

crossings without signal displays or traffic lights, and can be

marked (zebra crossings) or unmarked (non-zebra crossings).

The interaction outcome prediction can provide AD systems

and drivers with additional information to make safer decisions,

thereby preventing vehicle-pedestrian conflicts.

Predicting pedestrian crossing behavior is challenging be-

cause pedestrian behavior is influenced by many factors [1].
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the Environment of Tomorrow”. This project has received funding from the
European Union’s Horizon 2020 research and innovation programme under
the Marie Skłodowska-Curie grant agreement 860410.
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Many researchers have investigated the objective interaction

factors that impact pedestrian-vehicle interaction such as time

to arrival (TTA), waiting time, crossing location, age, and

gender [1]–[9], and the subjective interaction factors related

to pedestrians’ personality traits such as sensation seeking

(SS) and social value orientation (SVO) for prediction [5],

[10], [11]. These studies have investigated factors that impact

interaction and crossing behavior. However, they only focused

on analyzing the effects of the interaction from a statistical

point of view, but have not evaluated the predictability of the

pedestrian crossing models with these factors.

Some studies predicted crossing intention or action using

machine learning-based methods and neural networks [12]–

[16], but they mainly considered pedestrians’ states and

environment cues, while neglecting the interaction between

pedestrians and vehicles. This may be because these studies

used naturalistic data making it hard to study interaction factors

without being cautious about potential latent variables that

might affect pedestrian behavior. Furthermore, it is usually

difficult to distinguish the original intention from the actual

action in naturalistic data, thereby making it intractable to

investigate the outcome of the interaction. Moreover, it is

impractical to get pedestrians’ personality traits such as SS

and SVO from naturalistic data. Hence, a simulator study with

controlled conditions is a way to understand pedestrian-vehicle

interactions and develop predictive models.

To the best of the authors’ knowledge, there are no studies

on machine learning-based predictive models for pedestrian

crossing behavior that focus on pedestrian-vehicle interaction

at unsignalized crossings and consider personality traits. To fill

this research gap, we use the dataset collected from a distributed

simulator to investigate pedestrian-vehicle interaction while

crossing and predict pedestrian crossing behavior. In this paper,

we aim to develop machine learning-based models to predict

whether a pedestrian will cross first or wait when interacting

with a vehicle at unsignalized crossings. We consider both

objective factors related to crossing conditions and subjective

factors related to personalities, and develop predictive models

using machine learning methods. The key factors that influence

pedestrian crossing decisions are analyzed and identified. The

main contributions of this paper are:
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1) We use the distributed simulator data collected by

Kalantari et al. [5] for prediction and analysis. We build

a baseline predictive model using logistic regression

and linear regression with the factors used by Kalantari

et al. Compared with previous statistical models, our

predictive model provides the baseline information on

the predictability of pedestrian interaction outcomes.

2) We develop machine learning interaction models for

prediction using the support-vector machine (SVM),

random forest (RF), and neural network (NN). We

investigate factors including TTA, pedestrian waiting

time, being at zebra crossings or not, and both the driver’s

and the pedestrian’s age, gender, SVO slider measure [17],

and Arnett inventory of sensation seeking (AISS) [18].

Compared to the baseline model, our proposed crossing

decision model improves the accuracy and F1 score by

4.46% and 3.23%. Our model also reduces the mean

absolute error (MAE) and root mean squared error

(RMSE) by 30.84% and 21.56% for crossing initiation

time (CIT) prediction, and by 35.00% and 30.14% for

crossing duration (CD) prediction.

3) We analyze interaction factors that influence pedestrian

crossing behavior. We do an ablation study to investigate

how a model performs when lacking the information of

drivers’ and pedestrians’ age, gender, SVO, and AISS

information. This provides guidance on model selection

in scenarios when there are only partial input features.

II. RELATED WORK

A. Studies on Pedestrian-Vehicle Interaction

Studies have investigated factors that impact pedestrian-

vehicle interactions [1], [19]. These interaction factors include

time-related factors such as time gap or time to arrival

(TTA) [2], [3], [5] and waiting time [5]–[7], the vehicle’s

dynamics including velocity and deceleration [20], crossing

places such as whether at zebra crossings or not [5], [8], [9],

and demographics such as age and gender [1]–[3], [5], [8].

In addition to these objective factors, psychological sub-

jective factors that reflect drivers’ and pedestrians’ individual

personality traits also influence their decision-making during

the interaction. Arnett [18] defined SS as the need for varied

and novel experiences, and the inclination to take risks for

such experiences. The author presented a new scale namely

the Arnett inventory of sensation seeking (AISS) that is related

to risk behavior. SS has been found to be related to pedestrian

crossing behavior [5], [10], [21]. Individuals with higher SS

are more likely to take risks in traffic. SVO is used to describe

how much an individual values the welfare of others compared

to their own, and the individual’s preference for distributing

resources in social exchanges [17], [22], [23], and can be

measured by SVO slider measure [17]. SVO is found to be

related to a person’s decision making [5], [11], [24]. Individuals

with higher SVO values are more likely to be altruistic and

yield or wait while interacting in traffic, while those with lower

SVO values tend to behave more aggressively.

However, most of these studies are from a statistical view,

while less attention has been paid to predictive models to

evaluate the accuracy that can be achieved using these factors.

To contribute to the AD industry, only understanding the

influencing factors of interaction outcomes is not sufficient. In

this paper, we build predictive models to provide additional

information to AD systems.

B. Pedestrian Crossing Behavior Prediction

Many existing learning-based models on pedestrian crossing

behavior prediction are based on naturalistic data [12]–[16].

These studies mainly focused on the features of the pedestrians

and the environment, but have not considered the interaction

between pedestrians and vehicles explicitly. One possible

reason is that these studies used naturalistic data collected

under uncontrolled conditions. Since there are too many latent

factors that can simultaneously affect pedestrian behavior

and pedestrian-vehicle interaction in naturalistic data, it is

difficult to investigate the interactions. Furthermore, without a

controlled environment, it is hard to distinguish the intention

and the actual action in naturalistic data, as labeling the

intention of a pedestrian is a challenging task. However, without

knowing the intention, it is hard to analyze the outcome of the

interaction. Rasouli et al. [25] addressed and labelled intention

by asking multiple annotation participants to observe the video

of pedestrians and label the crossing intention, and then took

the average, which is very time-consuming and costly. Besides,

the naturalistic data contain noise making it harder to identify

the factors that influence interactions.

Moreover, although some of the studies using naturalistic

data considered pedestrian-vehicle interaction [20], [26], [27],

it is hard to get the human factor parameters and personality

traits such as SVO slider measure and AISS without the help

of questionnaires. Völz et al. [20], [26] predicted pedestrian

crossing behavior at zebra crossing considering the relative

position and relative velocity between a pedestrian and a

vehicle. Zhang et al. [27] proposed a predictive model at

the zebra crossing, considering factors including TTA, the

speed and position of both the vehicle and the pedestrian, and

the age and gender of the pedestrian. Jayaraman et al. [28]

used simulator data for analyzing and predicting the crossing

behavior considering waiting time, but they only focused on

interaction with AV approaching at different speeds. These

studies have not included personality traits such as SVO and

AISS due to the scarcity in such information, and they also have

not investigated the influence of the presence of zebra crossing.

Therefore, to overcome the challenges of using naturalistic

data for crossing behavior prediction, this paper is based on a

distributed simulator study (DSS). We focus on pedestrian-

vehicle interaction and consider personality traits and the

presence of zebra crossing.



(a) (b)

Fig. 1. Illustration for the distributed simulator study (DSS). (a) A pedestrian from the driver’s view: the pink bubbles are the body markers representing the
pedestrian. (b) An interaction example: a pedestrian is crossing the zebra and interacting with the vehicle to their right.

Fig. 2. Top view of the zebra (left) and non-zebra crossing (right) with the designated standpoints (blue × markers). The first marker shows the pedestrian’s
standing point, and the second shows the curb of the virtual road. The grey rectangles are visual obstructions (bus stops).

III. METHODOLOGY

A. Distributed Simulator Data Collection

In this section, we briefly introduce the dataset. We use the

same data collected by Kalantari et al. [5] in their distributed

simulator study (DSS).

The DSS was conducted by connecting two high-fidelity

simulators: the University of Leeds Driving Simulator (UoLDS)

was connected to the Highly Immersive Kinematic Experimen-

tal Research (HIKER) pedestrian lab. UoLDS is a motion-

based driving simulator having eight degree-of-freedom which

is housed in a 4 m-diameter spherical projection dome. The

field-of-view of the projection system is 300°. HIKER is a

CAVE-based simulator with dimensions equal to 9× 4 m and

eight Barco F90 4k projectors used to project virtual scenes

at 120 Hz to its floor and walls. Fourteen body markers were

attached to the pedestrian’s body representing them as pink

spheres to the driver as shown in Fig. 1a. The vehicle was also

observable as an entity to the pedestrian as shown in Fig. 1b.

Sixty-four participant pairs (32 drivers at age: mean (M) =
31.53, range (R) = 21− 50, standard deviation (SD) = 1.72;

paired with 32 pedestrians at age: M = 25.09, R = 19 −
34, SD = 0.87) interacted with each other under different

scenarios. The traffic scenarios relied on five different TTAs

(3, 4, 5, 6 and 7 s) and four crossing locations (two zebra

and two non-zebra crossings as shown in Fig. 2). This led to

20 conditions repeated in two separate experimental blocks,

resulting in 40 randomized trials per participant pair. An 890 m

two-way urban road with traffic on both lanes was created in

Unity 3D to apply these settings.

Both participants were told that they were with the assump-

tion that they were in a hurry (e.g., late for a work meeting)

while they wanted to pass safely as well. They were also

reminded that the priority at zebra crossings was for pedestrians.

The pedestrian was asked to stand at a point on the HIKER’s

floor where their vision was obstructed by a bus stop on the

right side making them unable to see when the subject vehicle

was approaching but they could see that vehicles were going

both ways. Whenever they heard an auditory tone, they needed

to step up to a second point where they could see the subject

vehicle, and then they could decide whether to cross or not.

Drivers were told that they needed to watch the speed limit

(30 mph) and they could see that sometimes pedestrians are

coming from behind one of these bus stops. Likewise, they

could either drive on or slow down and yield to the pedestrians.



B. Input and Output Variables

We aim to predict the “cross or wait” decisions of all

pedestrians, and for those crossing cases, we are also concerned

about their crossing initiation time (CIT) and crossing duration

(CD). The candidate variables to be used as prediction input

features are listed in Table I. Kalantari et al. [5] used the

participant pair as a feature. However, as we usually cannot

get the same participant pair in a real driving scenario, i.e.,

the same driver meets the same pedestrian, this information

is not practical to be used for prediction. So we do not use

participant pair as our input feature. The interaction outcomes

are listed in Table II.

TABLE I
CANDIDATE VARIABLES USED FOR PREDICTION (MODEL INPUTS).

Variable [Unit] Description (type)

Ta [s]
Time to arrival (TTA), which was set to 3, 4, 5, 6,
and 7 s. TTA represents the time for the vehicle to
approach the center of the crossing (continuous)

Tw [s]

Waiting time (M = 52.71, R = 13.8 − 106.98,
SD = 19.04), the time that the pedestrian needed
to wait in each trial before prompting to cross by
auditory tone. In the actual environment, it denotes
the pedestrians’ duration of stay towards the crossing
area due to different reasons such as working with
their smartphones (continuous)

L
Crossing location type, including two categories:
zebra and non-zebra (categorical)

Ad, Ap Age for both pedestrians and drivers. (discrete)

Gd, Gp Gender for both pedestrians and drivers (categorical)

SV Od, SV Op

[degree]

SVO slider measure for both pedestrians and drivers,
calculated from the SVO slider measure question-
naire [17]. SV Od: M = 53.17, R = 45.00−78.38,
SD = 8.35, SV Op: M = 53.67, R = 43.92 −
75.26, SD = 7.82 (continuous)

AISSd, AISSp

AISS for both pedestrians and drivers, calculated
from the 20-item AISS questionnaire [18]. AISSd:
M = 53.78, R = 43.00 − 69.00, SD = 6.70,
AISSp: M = 50.47, R = 27.00 − 61.00, SD =

7.17 (continuous)

TABLE II
VARIABLES OF PEDESTRIAN INTERACTION OUTCOMES (MODEL OUTPUTS).

Variable [Unit] Description (type)

P
Cross or wait, pedestrians’ crossing decision as
outcome of the interaction, 1 for crossing, 0 for
waiting (binary categorical)

CIT [s]
Crossing initiation time, from the time the pedestrians
were prompted to cross by the auditory tone to the
time they started crossing the road (continuous)

CD [s]
Crossing duration, the time pedestrians started cross-
ing to the time they reached the central hatch
(continuous)

Three feature sets are used in prediction, as listed below.

• Baseline: features used in Kalantari et al.’s work [5],

including Ta, Tw, L, Ap, Gp, ∆SV O, ∆AISS,

ParticipantPair, where ∆SV O = SV Op − SV Od,

∆AISS = AISSp −AISSd.

• Ours: all input features listed in Table I, including Ta,

Tw, L, Ad, Ap, Gd, Gp, SV Od, SV Op, AISSd, AISSp.

• Ours with ∆SV O, ∆AISS: in addition to the listed

input features, the delta information of SVO and AISS is

added. The features include Ta, Tw, L, Ad, Ap, Gd, Gp,

SV Od, SV Op, AISSd, AISSp, ∆SV O, ∆AISS.

C. Predictive Models

The following machine learning models are used for pre-

dicting pedestrian-vehicle interaction.

a) Linear Models: Logistic regression and linear regres-

sion were used by Kalantari et al. [5] for analysis. We use

them as a baseline for prediction.

b) Support-Vector Machine (SVM): SVM aims to find

a hyperplane in the feature space and can be used for

classification. Here we use a linear kernel for classification, so

the SVM is also considered as a linear-based model.

c) Random Forest (RF): RF is an ensemble learning

method for classification and regression. RF constructs a large

number of decision trees. It outputs the most selected label for

the classification task and outputs the average prediction for

the regression task. The number of estimators is set to 100.

The maximum depth is set to five to avoid over-fitting.

d) Neural Networks (NNs): NNs are based on a collection

of artificial nodes and can be used for both classification and

regression. NNs usually contain several node layers, including

an input layer, an output layer, and one or several hidden layers.

As the number of our model’s input features is small, here we

use the multilayer perceptron (MLP), which is a fully connected

feedforward NN. Since the input variables are in different types

and with different scales, normalization is required to scale

the input variables in the same range. To avoid over-fitting of

MLP models, we used two hidden layers with node sizes of

16 and four, respectively.

D. Evaluation Metrics

The prediction of the crossing decision is a classification

problem, so we use prediction accuracy (ACC) and F1 score

for evaluation. The evaluation functions are shown below,

where P and N denote the numbers of positives and negatives,

respectively. TP, TN, FP, FN are the numbers of true positives,

true negatives, false positives, and false negatives, respectively.

ACC =
TP + TN

P +N
(1)

F1 =
2TP

2TP + FP + FN
(2)

The predictions of CIT and CD are regression problems, so

we use mean absolute error (MAE) and root mean squared

error (RMSE) for evaluation. The evaluation functions are as

follows, where yi denotes the groundtruth for the ith trail, and

ŷi denotes the corresponding prediction, n denotes the number

of trails.

MAE =
Σ|ŷi − yi|

n
(3)

RMSE =

√

Σ(ŷi − yi)2

n
(4)



E. Model Implementation Details

There were a total of 1279 trials collected, where 836 trials

were crossing cases. To better evaluate models, we use five-

fold cross-validation. We randomly divide the dataset into five

sets, and each time we use one set for testing and the rest for

training. There is no overlap between the training and test sets.

We report the average performance over test sets.

The information of categorical features (e.g., crossing

location type and gender) is represented by categories rather

than in numeric formats. We apply the commonly used one-hot

encoding to encode non-ordinal categorical variables.

IV. RESULTS AND DISCUSSIONS

A. Crossing Decision

The prediction accuracy and F1 score of the pedestrian

crossing decision are shown in Table III. Using our proposed

MLP model, the accuracy and F1 score are improved by 4.46%

and 3.23% compared with logistic regression based on the

effective input features stated by Kalantari et al. [5].

TABLE III
PREDICTION ACCURACY AND F1 SCORE OF CROSSING DECISION

Model Zebra Non-zebra Total
(features) ACC F1 ACC F1 ACC F1

LR(baseline) [5] 91.39% 95.32% 80.16% 75.81% 85.77% 89.24%
LR (ours) 91.39% 95.30% 80.47% 76.01% 85.93% 89.32%
SVM (ours) 91.24% 95.22% 81.09% 77.04% 86.16% 89.55%
RF (ours) 91.24% 95.33% 88.44% 85.93% 89.84% 92.44%
MLP (ours) 91.55% 95.28% 88.91% 86.63% 90.23% 92.47%

We investigate the prediction results of zebra and non-zebra

crossing (Table III). The prediction results on zebra crossing

cases are better than non-zebra crossing cases, showing that

zebra crossing cases are more predictable. All models perform

similarly in zebra crossing cases. For non-zebra crossing cases,

the non-linear models (RF and MLP) perform significantly

better than the linear models (LR and SVM). Compared to the

LR model with baseline features, our proposed MLP model

improved the accuracy and F1 score by 8.75% and 10.82%

respectively. This implies that the non-zebra crossing cases

are more complex because of non-linearity and can be better

handled by our proposed non-linear models.

The prediction accuracy and F1 score versus TTA for

different models are shown in Fig. 3. Smaller TTAs lead to

lower prediction accuracy and F1 score, which indicates higher

prediction difficulty. One possible reason is a smaller TTA

means shorter reaction time and more interaction between

pedestrians and drivers. This increases the uncertainty of

crossing behavior and makes it harder to predict. Non-linear

models (RF and MLP) perform better than linear models (LR

and SVM). This implies that the interaction process involves

non-linearity that can be better handled by non-linear models.

The seven most important input features in each model are

listed in Table IV. As MLP is fully connected with all input

features with hidden nodes, we do not list its feature importance

here. In all three compared models, crossing location type L

(whether crossing at a zebra cross or not) and time to arrival

(a)

(b)

Fig. 3. The (a) prediction accuracy and (b) F1 score versus time to arrival
for logistic regression (LR), support-vector machine (SVM), random forest
(RF), and multilayer perceptron (MLP) models.

Ta are the most important features. The AISS of pedestrians

and the pedestrian waiting time are also important for all three

models. In linear models (LR and SVM), the models rely more

on objective properties such as age and gender, while in non-

linear models (RF), personality traits such as AISS and SVO

are more important for prediction. As the non-linear models

that rely on AISS and SVO for prediction gain better prediction

results, this indicates that the personality traits contribute to the

crossing decision prediction in a non-linear way. In Sec. IV-C,

we present more results on prediction without these features

to show the features’ impacts.

B. Crossing Initiation Time and Crossing Duration

For crossing cases, we are also interested in the crossing

initiation time (CIT) and crossing duration (CD) as interaction

outcomes. The unit of MAE and RMSE is seconds. The smaller

error represents better performance.



TABLE IV
MOST IMPORTANT FEATURES IN THE CROSSING DECISION MODEL

Model Most Important Features (sorted by importance)

LR L, Ta, Gp, AISSp, Ad, Ap, Tw

SVM L, Ta, Gp, AISSp, Ad, Tw, SV Op

RF Ta, L, Tw, AISSd, SV Od, AISSp, Ap

Fig. 4. Box plots of crossing initiation time for groundtruth (GT), linear
regression (LR), RF, and MLP models. Outliers are marked as diamond dots.

a) Crossing initiation time: The prediction error of CIT is

shown in Table V. Features with ∆SV O and ∆AISS are used

as inputs for RF and MLP models. Both RF and MLP show

a great improvement compared with the baseline LR model,

while RF achieves the best performance, and reduces the MAE

and RMSE error by 30.84% and 21.56%, respectively.

TABLE V
PREDICTION ERROR OF CROSSING INITIATION TIME

Model (features) MAE [s] RMSE [s]

LR (baseline) [5] 0.618 0.897
RF (ours with ∆SV O, ∆AISS) 0.428 0.704

MLP (ours with ∆SV O, ∆AISS) 0.500 0.794

The box plots of CIT for the groundtruth and different

models at different crossing locations are shown in Fig. 4.

Compared with zebra crossing cases, non-zebra crossing cases

have shorter CIT with a narrower distribution. This implies

that when pedestrians cross at the non-zebra crossing, there

are fewer chances for them to hesitate and they have to make

a quicker decision. The prediction of the LR baseline model is

more concentrated, while the MLP model is more distributed.

We further compare the distribution of predicted CIT of RF

and MLP models with groundtruth. The distribution density is

shown in Fig. 5. Although the error of RF is the smallest, the

distribution of MLP is closer to the groundtruth, which indicates

the neural network model may have better generalizability.

b) Crossing duration: The prediction error of CD is

shown in Table VI. Input features are the same as in crossing

decision prediction models. Compared with the baseline LR

Fig. 5. Distribution of predicted crossing initiation time. The y-axis is the
normalized density such that the total area of the histogram in each subplot is
equal to 1.

results, RF and MLP gain great improvements. The MLP

model achieves the best results, where the MAE and RMSE

are 0.282 s and 0.446 s, respectively, showing an improvement

of 35.00% and 30.14% compared with the LR model.

TABLE VI
PREDICTION ERROR OF CROSSING DURATION

Model MAE [s] RMSE [s]

LR (baseline) [5] 0.434 0.638
RF (ours) 0.297 0.458
MLP (ours) 0.282 0.446

The box plots of CD for the groundtruth and different models

at different crossing locations are shown in Fig. 6. Pedestrians

who crossed the road at zebra crossings took longer time

than those who crossed at non-zebra crossings. This could be

because people feel safer to cross at a zebra crossing so they

can take their time. The prediction of the LR baseline model is

more concentrated, while the MLP model is more distributed.

The CD distribution density of the groundtruth and RF and

MLP predictions are shown in Fig. 7. The errors of RF and

MLP prediction results are close, while the distribution of MLP

is shown to be closer to the groundtruth. This indicates that the

MLP model is more capable of predicting crossing duration.

C. Ablation Study

In practice, it is usually difficult to obtain all the features

we use in our models. Therefore, it is necessary to investigate

the performance of the predictive models with only parts of

the features. We consider four subsets of features as follows.

Feature subset 1: Ta, Tw, L,Ad, Ap, Gd, Gp. Compared with

the original feature set, subset 1 removes the features related

to the personalities of the drivers and pedestrians, i.e. SVO

and AISS information. This feature set fits scenarios without

personality traits.



Fig. 6. Box plots of crossing duration for GT, linear regression (LR), RF, and
MLP models. Outliers are marked as diamond dots.

Fig. 7. Distribution of predicted crossing duration. The y-axis is the normalized
density such that the total area of the histogram in each subplot is equal to 1.

Feature subset 2: Ta, Tw, L,Ad, Gd. Subset 2 removes the

age and gender information of pedestrians while keeping this

information for drivers. This feature set fits scenarios where

the driver’s information is known to aid decision-making on a

private vehicle for example.

Feature subset 3: Ta, Tw, L,Ap, Gp. Subset 3 removes the

age and gender information of drivers while keeping this

information for pedestrians. This feature set fits scenarios

where the pedestrian’s age and gender information is known,

for example, for the predictions on a labeled publicly available

dataset.

Feature subset 4: Ta, Tw, L. Subset 4 only keeps TTA,

waiting time, and crossing location type. This is the basic

feature set that the information is easy to get, and the features

are important for all predictive models.

a) Crossing decision: The crossing decision prediction

results using different subsets of features are shown in Table VII.

Surprisingly, with fewer input features, the LR model does

not get a significant drop in performance, while the RF and

MLP models get much worse results compared with using all

features. This shows that the LR model depends mainly on

several important basic features for prediction, while the other

two models rely on all features.

For subset 1, the MLP model gets the best results with

accuracy and F1 score of 88.43% and 91.30%, respectively.

The neural networks are able to handle the case when there

are many features with non-linear relations. Without SVO

and AISS information, the performance of MLP drops, so

they are important for the MLP model. For subsets 2 and 3,

the RF model gets the best performances, while MLP gets

the worst results. This indicates that age and gender features

play important roles in the MLP model. As discussed in

Sec. IV-A, the age and gender features are not in the top six

important features of the RF model. Therefore, even without

age and gender information, it can still provide a relatively good

prediction compared with the other two models. For subset 4,

the RF model gets the best performance, while the LR model

achieves competitive results. This indicates that for a simple

model with very few input features, the linear model is still

strong and powerful compared with the other two non-linear

models.

TABLE VII
CROSSING DECISION PREDICTION USING A SUBSET OF THE FEATURES

Model LR RF MLP

Features ACC F1 ACC F1 ACC F1

All 85.93% 89.32% 89.84% 92.44% 90.23% 92.47%

SubSet 1 85.77% 89.24% 87.89% 90.90% 88.43% 91.30%

SubSet 2 85.38% 88.97% 86.09% 89.54% 83.35% 87.38%
SubSet 3 85.93% 89.34% 86.56% 89.92% 83.19% 87.26%
SubSet 4 85.54% 89.15% 85.77% 89.36% 85.69% 89.35%

b) Crossing initiation time: The prediction results for

CIT using subsets of features are shown in Table VIII. With

fewer input features, the errors of LR models are increased

slightly, and the errors of RF and MLP models are increased to

a great extent. This indicates that the LR model relies more on

TTA, waiting time, and crossing location type, while the other

two non-linear predictive models also depend on personality

trait features, age, and gender.

TABLE VIII
CROSSING INITIATION TIME PREDICTION USING A SUBSET OF THE

FEATURES

Model LR RF MLP

Features MAE RMSE MAE RMSE MAE RMSE

All 0.616 0.900 0.428 0.704 0.500 0.794
Subset 1 0.646 0.945 0.485 0.757 0.524 0.802
Subset 2 0.665 0.959 0.542 0.817 0.679 0.999
Subset 3 0.644 0.948 0.558 0.823 0.618 0.901
Subset 4 0.678 0.970 0.659 0.949 0.694 0.980

c) Crossing duration: The prediction results for CD

using subsets of features are shown in Table IX. With fewer

input features, the errors of LR models slightly increase. The

other two non-linear models show a great increase in errors

with fewer features. MLP performs best with all features and

performs worst with subset 4. This indicates that MLP is more



suitable for prediction with a large number of input features

while less capable for prediction with fewer features.

TABLE IX
CROSSING DURATION PREDICTION USING A SUBSET OF THE FEATURES

Model LR RF MLP

Features MAE RMSE MAE RMSE MAE RMSE

All 0.428 0.615 0.297 0.458 0.282 0.446

SubSet 1 0.474 0.668 0.345 0.496 0.321 0.478

SubSet 2 0.478 0.677 0.418 0.563 0.454 0.618
SubSet 3 0.472 0.668 0.418 0.613 0.507 0.708
SubSet 4 0.476 0.677 0.491 0.685 0.502 0.702

V. CONCLUSION

In this paper, we have proposed predictive models for

pedestrian crossing behavior when interacting with vehicles at

unsignalized crossings. Our proposed MLP predictive model

has improved the prediction accuracy and F1 score of crossing

decisions by 4.46% and 3.23% compared to that of the logistic

regression baseline. For crossing initiation time prediction, the

proposed RF model decreases the RMSE error by 21.56%, and

for crossing duration, the MLP model reduces the RMSE error

by 30.14%. Furthermore, we have analyzed the importance

and influence of the various input features in different models.

The presence of zebra crossing, TTA, AISS of pedestrians, and

pedestrian waiting time are important features for all models

for crossing decision prediction. Additionally, we have applied

an ablation study and presented the predictability of crossing

behavior with fewer input features. This provides guidance

for selecting proper models when there are only limited input

features. In future work, more information such as pedestrians’

trajectories and postures can be included to support building

predictive models.
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