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A B S T R A C T

The decision of whether to cross a road or wait for a car to pass, humans make frequently and effortlessly.
Recently, the application of drift-diffusion models (DDMs) on pedestrians’ decision-making has proven useful in
modelling crossing behaviour in pedestrian–vehicle interactions. These models consider binary decision-making
as an incremental accumulation of noisy evidence over time until one of two choice thresholds (to cross or not)
is reached. One open question is whether the assumption of a kinematics-dependent drift-diffusion process,
which was made in previous pedestrian crossing DDMs, is justified, with DDM-parameters varying over time
according to the developing traffic situation. It is currently unknown whether kinematics-dependent DDMs
provide a better model fit than conventional DDMs, which are fitted per condition. Furthermore, previous
DDMs have not considered reaction times for the not-crossing option. We address these issues by a novel
experimental design combined with modelling. Experimentally, we use a 2-alternative-forced-choice paradigm,
where participants view videos of approaching cars from a pedestrian’s perspective and respond whether they
want to cross before the car or to wait until the car has passed. Using these data, we perform thorough
model comparison between kinematics-dependent and condition-wise fitted DDMs. Our results demonstrate
that condition-wise fitted DDMs can show better model fits than kinematics-dependent DDMs as reflected in the
mean-squared-errors. The condition-wise fitted models need considerably more parameters, but in some cases
still outperform kinematics-dependent DDMs in measures that penalize the parameter number (e.g., Akaike
information criterion). Introducing a starting point bias provides support for the novel hypothesis of rapid early
evidence build-up from the initial view of the vehicle distance. The drift rates obtained for the condition-wise
fitted models align with the assumptions in the kinematics-dependent models, confirming that pedestrians’
decision processes are kinematics-dependent. However, the partial preference for condition-wise fitted models
in the model selection suggests that the correct form of kinematics-dependence has not yet been identified
for all DDM-parameters, indicating room for improvement of current pedestrian crossing DDMs. Developing
more accurate models of human cognitive processes will likely facilitate autonomous vehicles to understand
pedestrians’ intentions as well as to show unambiguous human-like behaviour in future traffic interactions
with humans.
1. Introduction

As of 2023, autonomous vehicles (AVs) are still no reality for
public users with the exception of ride-hailing services in few selected
places (Schwall et al., 2020). Expectations of the deployment of AVs
to the public market in the last ten years have not been reached
(cf. Litman (2013, 2022)). One remaining problem is the control of AVs
in crowded urban areas (Schwarting et al., 2018; Rasouli and Tsotsos,
2019), where AVs need to simultaneously interact with multiple hu-
man drivers and with vulnerable road users (VRUs; e.g., pedestrians,
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cyclists), who are less likely to stick to predefined paths or obey
traffic rules. To adequately interact with humans (vehicle drivers or
VRUs), the AV should predict their intentions and adapt its own actions
accordingly. In turn, the AV itself should show human-like behaviour
to help humans understand the AV’s own motion intentions (Li et al.,
2018). Both to predict and to show human-like behaviour, it can be
beneficial to approximate the cognitive processes underlying human
behaviour in the form of cognitive models (Markkula and Dogar, 2022).
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In the present study, we consider a specific case of human be-
haviour in traffic, the decision as to whether and when to cross a
road in front of an oncoming vehicle. In this scenario multiple fac-
tors can influence the pedestrian’s crossing decision, for example, the
vehicle’s static appearance (type, colour, size) and dynamic factors
(time gap, speed, distance, communication to pedestrians), physical
context (street width, number of lanes, weather), social factors (group
size, age, gender, culture) or the pedestrian’s state (walking speed,
waiting time, attention) (Rasouli and Tsotsos, 2019). In this study, we
focus on pedestrians’ (time) gap acceptance and how it is influenced
by different vehicle speeds, a subject that has already been studied
extensively (Oxley et al., 2005; Lobjois and Cavallo, 2007; Schmidt
and Faerber, 2009; Petzoldt, 2014). These studies have shown that
pedestrians do not behave optimally in that they are more likely to
cross a road at smaller critical time gaps if a vehicle approaches
with higher speeds, leaving less avoidance time in case of an error
(which is especially critical given the non-linear relationship between
velocity and kinetic energy in a potential collision). Some previous gap
acceptance models have used a logistic regression to model pedestrians’
crossing behaviour (Zhao et al., 2019; Tian et al., 2022). For the
use case of AVs, it is, however, crucial to dynamically estimate the
decision process of a pedestrian throughout the interaction. Extending
beyond previous studies, we therefore consider cognitive models of
road crossing that adapt their parameters to the kinematic variables
of the interaction and compare them to static models. Specifically,
we consider different cases of drift-diffusion models (DDMs, Ratcliff
and McKoon (2008)), which have the additional advantage that their
parameters can be readily interpreted and therefore provide insight
in the temporal evolution of the pedestrian’s decision process. On the
experimental side, we enable testing these models by not only querying
the time point of a positive crossing decision (go/no-go task), but also
the time point of a negative crossing (waiting) decision by using a 2-
alternative-forced choice (2-afc) paradigm; that is, participants have to
respond in any case, either to cross or to wait.

Originally introduced by Ratcliff (1978), the DDM describes deci-
sion situations with two alternative options, in our case a pedestrian
deciding whether or not to cross a road in front of an oncoming
vehicle. The model assumes that evidence is accumulated incrementally
over time until one of two thresholds is reached, at which point the
corresponding decision (e.g., crossing or waiting) is considered made.
In its simplest form the DDM consists of four parameters (see Fig. 1):

• the mean drift rate 𝜉 (reflecting the speed at which evidence
accumulates for one option over the other — the higher the more
confident the decision-maker)

• the boundary separation 𝑎 (reflecting the amount of accumulated
evidence needed to make a decision — the higher the more
cautious the decision-maker)

• the non-decision time 𝑇𝑒𝑟 (reflecting the part of reaction time
that is unrelated to decision-making, e.g., perception and motor
execution)

• the starting point bias 𝑧 (reflecting the decision-maker’s tendency
to favour one option over the other from the start), which in the
symmetric case of 𝑧 = 0 effectively reduces the basic DDM even
further to a 3-parameter model

It is assumed that the evidence accumulation process is stochastic,
o additionally a noise parameter 𝑠 (reflecting the fluctuations in the
vidence accumulation process) needs to be specified, which is conven-
ionally kept constant to scale all other parameters (𝑠 = 1 in our case).
he 4-parameter basic DDM was later extended to the 7-parameter full
DM by Ratcliff and Rouder (1998), Ratcliff and Tuerlinckx (2002) in
rder to allow for the inter-trial variabilities of drift rate 𝜂, non-decision
ime 𝑠𝑡 and starting point bias 𝑠𝑧. Thereby, potential differences in the
peed of response of choices A and B (in our case, crossing and waiting)
an be explained (Lerche and Voss, 2016).
2

DDMs are often applied to situations where within a trial the
timulus parameters do not vary over time, such that the amount of
vidence that can be accumulated per unit time remains constant. In
hese cases, DDM parameters are fitted condition-wise, as within a
ondition parameters do not vary. In the pedestrian crossing task, in
ontrast, the available information changes over the course of a trial
s the car approaches the pedestrian. Hence, several previous studies
hat have applied DDMs to the road crossing task (e.g., Markkula et al.
2018), Giles et al. (2019) and Pekkanen et al. (2022)) have fitted
heir models across conditions, with situation kinematics determining
DM parameters (e.g., drift rate, boundary separation) in the individual
xperimental conditions. The same applies for Zgonnikov et al. (2022)
ho addressed left-turning before or after an oncoming vehicle and

ested the Giles et al. (2019) model but also introduced a new model
ith collapsing boundaries which has not been tested for pedestrian

rossing yet.
Therefore, these models have taken quite a large conceptual leap

rom the conventional DDMs introduced by Ratcliff (1978), and it has
ot been strictly shown that all those changes were motivated and
ndeed improve the models’ predictive performance. To compare such
odels to simpler models is particularly relevant as for the case of

ondition-wise fits, less complex DDMs can outperform full 7-parameter
DMs, especially if the number of trials is low (Lerche and Voss,
016). It remains an open question whether this is also the case for
more complex task where the stimulus information available to the

ser varies over a trial, such as in a pedestrian crossing task. We
ry to fill this gap by connecting the pedestrian crossing DDMs back
o their roots in the conventional DDMs — in terms of the fitting
rocedure, rigorous model comparisons and an adapted experimental
pproach. Specifically, we compare DDMs with kinematics-dependent
nd kinematics-independent drift rates and boundary separations in
erms of goodness-of-fit (mean squared error — MSE) and model quality
egarding simplicity (Akaike information criterion — AIC and Bayesian
nformation criterion — BIC). We compare model fits that include the
ondition (condition-wise fits) to fits that are not given the condition
xplicitly (but implicitly through the kinematic parameter settings).
hereas earlier studies on traffic-related interactions (e.g., Markkula

t al. (2018), Giles et al. (2019), Zgonnikov et al. (2022) and Pekkanen
t al. (2022)) focused on crossing decisions and thereby disregarded
0% of the information (the timing of the waiting decision), we here
reat crossing and waiting decisions symmetrically. This required the
ollection of new experimental data, which allow us to test the DDMs to
heir full extent. As such, our contribution is two-fold: on the modelling
ide, we provide a rigorous comparison of DDM models of varying
omplexity for the pedestrian crossing task, on the experimental side,
e provide a novel dataset that makes the otherwise covert waiting
ecision experimentally accessible.

. Methods

.1. Experiment

articipants
135 participants (65 male, 69 female, 1 did choose to not state

heir gender) aged between 18 and 80 years took part in the online
xperiment (𝑀 = 37.6 years, SD = 16.9 years). The recruiting procedure

specifically targeted individuals experienced in psychophysical and/or
traffic psychology experiments. Study participants were recruited via
the participant pool of the Institute of Transportation Systems of the
DLR and via a mailing list dedicated to recruit participants of the TU
Chemnitz. All participants had normal or corrected to normal vision
and participated voluntarily. Each participant received course credit for
the duration of the experiment or the opportunity to take part in the
draw for a voucher. An ethical review application was submitted to the
ethics commission of the DLR. The ethics commission stated that there
is no relevance for an assessment and decided to waive the requirement

of an in-depth ethical review for this study.
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Fig. 1. Schematic representation of the different DDMs for the road-crossing task compared in this paper including exemplary crossing and waiting probability density functions
PDFs).
ource: Adapted after Wagenmakers et al. (2007), Farrell and Lewandowsky (2018) and Zgonnikov et al. (2022).
t

rocedure
The participants were instructed to take the role of a pedestrian

tanding at the roadside of an urban road (without zebra crossing or
raffic lights) who wants to cross the road (see Fig. 2). Furthermore,
he participants were told that in each trial of the experiment a single
ar would be driving towards them with constant speed on the right
ide of the road. It was stated that the left side of the road was
lways clear to cross. In the experiment the participants had to decide
hether they would cross the road in front of the oncoming vehicle
r would not cross the road and wait until the car had passed by. The
articipants were instructed to use their index fingers to report their
3

a

decision outcome (crossing or waiting) with the orientation keys F and
J and to use their thumbs to start the next trial with the space bar. We
counterbalanced the assignment of the keys, so half of the participants
reacted with F to cross and J to wait and the other half with J to cross
and F to wait.1 Participants were instructed to react as fast as possible
and keep their hands in the position at any time during the experiment.

1 In practice, this was done by alternating the assignment, such that for
he odd number of participants there was in fact one more of the former
ssignments.
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Fig. 2. Screen shot of the video stimulus material generated with CARLA simulator (Dosovitskiy et al., 2017). For example videos see Appendix B.
Design
The experiment used a 7 × 3 within-subject design with the car’s

time-to-arrival (TTA) and velocity2 as independent variables. The TTA
was measured as the time that the car needs to travel from its position
in the first frame of the video until it reaches the position of the pedes-
trian. We varied the TTA between 2 s and 8 s in steps of 1 s. Regarding
the car’s velocity we used three different conditions that are typical for
urban traffic: 20, 40 and 60 km/h. Since constant velocities were used,
our independent variables 𝑣 and 𝑇𝑇𝐴 are inversely proportional to each
other, connected via the distance 𝑑 between vehicle and pedestrian:

𝑣 = 𝑑
𝑇𝑇𝐴

= 𝑐𝑜𝑛𝑠𝑡. (1)

The video and the trial ended as soon as the participants reacted
with one of the orientation keys (i.e., the video turned to a white
screen and the next trial could be started with the space bar). If the
participants did not press a button, the trial ended by itself after the
car had passed. There was no feedback provided to the participants
whether the crossing was successful or not. The experiment consisted
of a training block with 7 trials and three blocks of 21 trials so that
each possible combination of TTA and velocity was repeated once per
block. The order of trials in each block was random.

Materials
The participants performed the experiment on their own com-

puter. The web-browser-based experiment was created using jsPsych
(De Leeuw, 2015) and the video stimulus material was generated with
CARLA simulator (Dosovitskiy et al., 2017). The videos were presented
with a frame rate of 30 Hz and a resolution of 1280 × 720 px.
Compared to a laboratory study there are more sources of variabil-
ity to be regarded, since the experiment is performed with different

2 Intuitively, one might assume that velocity explains no additional vari-
ance/information beyond TTA (which combines information on velocity and
distance). However, previous studies have found that velocity, even though
it should not guide pedestrians’ choice, has an impact beyond what TTA
explains (Oxley et al., 2005; Lobjois and Cavallo, 2007; Schmidt and Faerber,
2009; Petzoldt, 2014). Therefore, we believe that it is relevant to assess
velocity independently, despite its apparent redundancy. Additionally, velocity
– given constant TTAs – can be seen as a proxy for initial distance (for identical
TTAs, a faster car will be further away).
4

hardware and software for each participant. For the measurement error
of the reaction times we have to consider the trial-to-trial variability
and the computer-to-computer variability (lag) of different hardware
and software sources, most importantly keyboard, browser and plat-
form (Bridges et al., 2020). Different USB-keyboards can have quite
different latencies (lag) of roughly 15 to 60 ms (Luu, 2017), whereas the
trial-to-trial variability is typically below 10 ms. According to Bridges
et al. (2020) also the combination of different computer platforms
(e.g., Win10, macOS, Ubuntu) and internet browsers (e.g., Chrome,
Firefox, Safari, Edge) used together with jsPsych introduce an addi-
tional lag of 15 to 55 ms and a trial-to-trial variability of up to 10 ms.
Since the different error sources are additive the total (maximum) error
of the reaction time measurement adds up to 115 ms in lag and 20 ms
in trial-to-trial variability. Since we use a within-subject design the
absolute lag is additive and is subtracted out in the between-condition
within-subject comparison, such that only the trial-to-trial variability
limits precision. This possible 20 ms trial-to-trial variability needs to
be borne in mind when interpreting the results. In our model, the
variance-in-non-decision-time parameter 𝑠𝑡 can capture this variability
in trial-to-trial-delays.

2.2. Modelling

Model implementation
To analyse the participants’ decision-making, we used the drift-

diffusion modelling framework PyDDM (Shinn et al., 2020) (Details
can be found in Appendix A). We employed maximum likelihood
estimation as the fitting method to estimate the parameters of the DDM.
We compared the three kinematics-dependent models introduced in
the supplementary information of Zgonnikov et al. (2022) with four
conventional DDMs that we fitted condition-wise to an aggregated
set of all participants. Instead of fitting a separate model to each
participant, we aggregated the data for the condition-wise fitted and
kinematics-dependent models over all participants because there were
too few observations per participant and condition. In practice, this
amounts to the simplifying assumption that all participants are the
same — an assumption that was already made by previous pedestrian
crossing models (Pekkanen et al., 2022). According to Lerche and Voss
(2016) especially across-trial variability in drift rate 𝜂 and starting
point 𝑠 are typically estimated less accurately than the other DDM
𝑧



International Journal of Human - Computer Studies 183 (2024) 103200M. Theisen et al.

A
i
w

M

a
r

parameters (Vandekerckhove and Tuerlinckx, 2007; van Ravenzwaaij
and Oberauer, 2009; Lerche et al., 2017). Therefore, following previ-
ous road-crossing models, we assume that for all models across-trial
variability in drift rate (𝜂 = 0) and in starting point (𝑠𝑧 = 0) are zero.

dditionally, for all kinematics-dependent models we assume that there
s no starting point bias towards one decision boundary (𝑧 = 0), as this
as the case in previous pedestrian crossing models.

odel comparison
For the kinematics-dependent models, one model is computed for

ll experimental data. The kinematics-dependent models are (see grey
ows in Table 1):

• 8-parameter-Zgonnikov-DDM (after Zgonnikov et al. (2022)):
A dynamic drift rate 𝜉(𝑡) depending on TTA and speed 𝑣 of the
oncoming car:

𝜉(𝑡) = 𝛼
[

𝑇𝑇𝐴(𝑡)
(

1 + 𝛽𝑣
)

− 𝜃
]

(2)

with the drift-rate-scaling-parameter 𝛼, the TTA-and-speed-
weighting-parameter 𝛽, a critical parameter 𝜃 and a dynamic
decision boundary 𝑎(𝑡) depending on the time-to-arrival 𝑇𝑇𝐴(𝑡)
of the oncoming vehicle at time 𝑡:

𝑎(𝑡) =
𝑎0

1 + 𝑒−𝑘
(

𝑇𝑇𝐴(𝑡)−𝜏
) (3)

with the boundary-scaling-parameter 𝑎0, the TTA-sensitivity-
parameter 𝑘 and the time gap 𝜏 where the boundary is at its
baseline value and a Gaussian-distributed non-decision time with
mean 𝑇𝑒𝑟 and variance 𝑠𝑡.

• 6-parameter-Giles-DDM (after Giles et al. (2019)): A dynamic
drift rate 𝜉(𝑡) depending on TTA and speed 𝑣 of the oncom-
ing car according to Eq. (2), a constant decision boundary 𝑎
and a Gaussian-distributed non-decision time with mean 𝑇𝑒𝑟 and
variance 𝑠𝑡.

• 6-parameter-Ratcliff-DDM (after Ratcliff (1978)): A static drift
rate 𝜉 determined by the speed 𝑣 of the oncoming car and its
time-to-arrival 𝑇𝑇𝐴𝑡=0 at the start of the video:

𝜉 = 𝛼
[

𝑇𝑇𝐴𝑡=0
(

1 + 𝛽𝑣
)

− 𝜃
]

(4)

and a constant decision boundary 𝑎 and a Gaussian-distributed
non-decision time with mean 𝑇𝑒𝑟 and variance 𝑠𝑡.

For the condition-wise fitted models, one model is computed per
TTA/velocity condition. In order to compare the results with the
kinematics-dependent models, the MSE, AIC and BIC values of a com-
bined model are computed by testing how well the sub-models for each
TTA/velocity condition explain the combined data-set. The condition-
wise fitted models are (see white rows in Table 1):

• 3-parameter-DDM: A constant drift rate 𝜉, a constant decision
boundary 𝑎, and a constant non-decision time 𝑇𝑒𝑟 are fitted per
condition.

• 4-parameter-DDM (ND-time variance): A constant drift rate
𝜉, a constant decision boundary 𝑎, and a Gaussian-distributed
non-decision time with mean 𝑇𝑒𝑟 and variance 𝑠𝑡 are fitted per
condition.

• 4-parameter-DDM (Starting point): A constant drift rate 𝜉, a
constant decision boundary 𝑎, a constant non-decision time 𝑇𝑒𝑟
and a constant starting point 𝑧 are fitted per condition.

• 5-parameter-DDM: A constant drift rate 𝜉, a constant decision
boundary 𝑎, a Gaussian-distributed non-decision time with mean
𝑇𝑒𝑟 and variance 𝑠𝑡 and a constant starting point 𝑧 are fitted per
5

condition.
3. Results

3.1. Experiment

135 participants each performed 63 trials accounting for 8505 total
trials. We excluded every trial where the participant reacted only after
the car had passed by the exact position of the camera recording the
scene. If this happened in more than 10% of a participant’s trials,
we excluded the whole data-set assuming that the participant did not
understand the task correctly or did not pay enough attention to the ex-
periment. We therefore completely excluded the data of 3 participants
according to that criterion, reducing the data to 8316 trials. If it hap-
pened less often, we only excluded the trial as an outlier, keeping the
rest of the data-set of the participant (8289 trials left). Additionally, we
used skew-adjusted boxplots to identify trial outliers for each condition
with the lengths of the upper and lower whiskers according to Hubert
and Vandervieren (2008). This mostly excluded long reaction times that
are likely due to an attentional lapse rather than a decision-making pro-
cess. This reduced the total data further down to 7859 trials (92% of the
original data). Next to reaction time we also checked if any participants
seemed to randomly choose between crossing and waiting. As accuracy
criterion, we verified that all participants would cross the road more
often for high TTAs (6–8 s) than low TTAs (2–4 s). In doing so, we
identified two individuals that did not meet this criterion and therefore
were excluded, but this exclusion did not affect the interpretation of the
model results. This reduced the total data further down to 7777 trials
(91% of the original data), which is the final data-set for all further
modelling and calculations. This led to reaction times between 0.37 s
and 2.34 s. Provided the reaction-time and accuracy data, we have no
reason to assume that any of the participants applied some kind of
inappropriate fast-guessing strategy to finish the experiment quickly;
rather, all seemed to have complied with task instructions.

Our results show that, given a constant approaching velocity, a
bigger time gap of the car also leads to a bigger willingness to cross
the road for the pedestrian (see Fig. 3, left side). The probability of
gap acceptance for different vehicle speeds is qualitatively in line with
previous studies since higher vehicle speeds at constant TTA lead to
a higher gap acceptance and a similar relationship between crossing
probability and distance for different vehicle speeds (e.g., Lobjois and
Cavallo (2007) and Tian et al. (2022)). So, for the same time gap,
pedestrians were more likely to cross the road the faster the approach-
ing car was driving. Even though it is counterintuitive at first, it is
well known that pedestrians are more likely to cross in front of faster
cars (given constant TTA, see e.g. Oxley et al. (2005), Lobjois and
Cavallo (2007), Schmidt and Faerber (2009) and Petzoldt (2014)),
presumably because they overly base their decision on distance (faster
cars are further away given constant TTA) rather than TTA alone.
That is why we think that it could be possible that higher velocities
(given constant TTA) at least to some extend lead to higher biases
towards the crossing option. Quantitatively, gap acceptance in our
study was slightly more conservative, presumably because participants
had to cross a two-lane road, whereas most previous studies focused on
one-lane roads. If participants were ideal observers, only TTA should
matter for the crossing decision. We replicate this observer-bias, even
though we have changed two things compared to previous experiments
(two response buttons and conducting the experiment online). The
difference is most prominent for medium time gaps. For example, if
the car started appearing 5 s away driving at 60 km/h, pedestrians
decided to cross the road in 76% of cases but only in 34% if the
car was driving 20 km/h. These results indicate that the paradigm
was successful in eliciting typical pedestrian crossing behaviour that
is in line with that observed in previous studies. Regarding reaction
times we find that in all velocity conditions, participants decided fastest
(≈ 0.8 − 1.0 s) if the car appeared closest to them (TTA of 2–3 s).
Interestingly, for bigger time gaps the reaction time increased until

a maximum of ≈ 1.2 − 1.5 s for medium time gaps of 5–6 s, until it
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Fig. 3. Crossing decisions observed in the online experiment compared to the best-performing condition-wise fitted (5-parameter DDM) and kinematics-dependent model (Zgonnikov-
DDM). Left side: Crossing probability data (round markers) for different time gaps and velocities of the car averaged over all participants supplemented by a sigmoidal trend as a
guide-to-the-eye (dotted line) and model predictions of the 5-parameter DDM (crosses) and the Zgonnikov-DDM (triangles). Right side: Reaction times for different time gaps and
velocities of the car averaged over all participants separated after crossing (top) and waiting (bottom) decision outcome. Error bars show standard errors of the mean. Solid lines
show the prediction of the 5-parameter DDM, dashed lines show the Zgonnikov-DDM.
Table 1
Model comparison of different DDMs fitted to our data. Models with kinematics-dependent parameters (drift rate, boundary separation) are indicated by a grey background.
Condition-wise fitted models without explicitly assumed kinematics-dependent parameters are indicated by a white background. Numbers in parentheses indicate the number of
parameters that were fitted per column of Table 1, adding up to the total number of parameters per DDM indicated in the second column. Static means that constant values were
fitted, dynamic means that varying time-dependent values were fitted for each trial. Best performing (smallest) MSE, AIC and BIC values are indicated by a green background.

Model name Parameters Drift rate Boundary separation Starting point ND-time mean ND-time variance MSE AIC BIC
Ratcliff-DDM in Zgonnikov et al. (2022) 6 Static, kin. dep. (3) Static (1) 0 Static (1) Static (1) 0.070 9780 9822
Giles-DDM in Zgonnikov et al. (2022) 6 Dynamic, kin. dep. (3) Static (1) 0 Static (1) Static (1) 0.070 9665 9707
Zgonnikov-DDM in Zgonnikov et al. (2022) 8 Dynamic, kin. dep. (3) Dynamic, kin. dep. (3) 0 Static (1) Static (1) 0.065 9470 9526
Cond.-wise fitted 3-param. DDM 63 Static (21) Static (21) 0 Static (21) 0 0.062 10 868 11 306
Cond.-wise fitted 4-param. DDM (ND-time variance) 84 Static (21) Static (21) 0 Static (21) Static (21) 0.059 9215 9800
Cond.-wise fitted 4-param. DDM (Starting point) 84 Static (21) Static (21) Static (21) Static (21) 0 0.060 10 127 10 712
Cond.-wise fitted 5-param. DDM 105 Static (21) Static (21) Static (21) Static (21) Static (21) 0.057 8811 9542
decreased again for the biggest time gaps (TTA of 7–8 s) leading to
an inverted U-shaped RT-TTA-distribution. This inverted U-shape could
represent participants making snap decisions based on initial distance:
For short TTAs (where the initial distance from the car is smaller), they
almost immediately decide to wait because the car is close; for long
TTAs (where the car is further away), decision making is again rapid, as
participants immediately judge the car as far away and quickly decide
to cross. Consequently, if pedestrians decided to cross the road in front
of the car they reacted faster if the car was driving at a higher speed
(faster cars are further away given the same TTA — thereby creating
an easier crossing decision). Conversely, if the decision was made to
not cross the road, the decision was made faster if the car was going
slowly (slower cars are closer given the same TTA — thereby creating
an easier waiting decision).

3.2. Modelling

The condition-wise fitted 5-parameter DDM (Fig. 4) overall showed
the best results in terms of goodness-of-fit (MSE) and partly also in
6

model quality regarding simplicity (AIC), but narrowly lost to the
Zgonnikov-DDM in BIC, due to the BIC placing a large penalty term for
the number of parameters (see Table 1). The Zgonnikov-DDM scored
best among the kinematics-dependent models in all indicators showing
that the assumption of a dynamic drift rate and boundary separation
can help improving the fit to our data. In terms of MSE, all condition-
wise fitted models consistently showed better results in fitting the
data than the kinematics-dependent models. Condition-wise models
achieve this fit with a substantially larger number of parameters than
kinematics-dependent models; when taking this fact into account by us-
ing the AIC as criterion, two models still outperformed the Zgonnikov-
DDM, which is the best performing kinematics-dependent DDM: the
condition-wise fitted 5-parameter DDM and the 4-parameter DDM with
a Gaussian-distributed non-decision time. The reason why the AIC
prefers these condition-wise fitted models over the Zgonnikov-DDM is
that – although the penalty for the former having more parameters
is about an order of magnitude larger than for the Zgonnikov-DDM
– the penalty terms are small compared to the influence that the log
likelihood (data | model) has on the AIC (where the condition-wise
fitted models fit the data much better). On the other hand, only the best
performing kinematics-dependent model, the Zgonnikov-DDM, outper-

formed the best condition-wise fitted DDM (the 5-parameter DDM)
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he best-performing kinematics-dependent model as a reference (solid lines). Coloured solid lines represent velocity-dependence, green solid lines represent velocity-independence.
otted lines serve as a guide to the eye.
f
s
s

t
p
b
e
D
a

a
c
w
d
(
F
d
b
t
m
(
r

n terms of BIC, despite the large difference in estimated parameters
etween condition-wise fitted and kinematics-dependent models.

The condition-wise fitted 4-parameter DDM with a Gaussian-
istributed non-decision time of variance 𝑠𝑡 (Fig. 7 in Appendix A)

scored the second best MSE and AIC value overall. We interpret that
including an across-trial variability in the non-decision component of
the reaction time is likely improving the overall fit, especially if the
fitting is done per condition. According to Lerche and Voss (2016)
including the intertrial variability of the non-decision time could coun-
teract the negative influence of fast contaminants. The condition-wise
fitted 5-parameter DDM is able to capture the kinematics-dependence
(regarding TTA and speed) of the crossing probability as well as the
reaction times for both decision outcomes (see Fig. 3). The model fits
the choice and reaction time data well, however, reaction times are
consistently predicted too small.

All condition-wise fitted drift-diffusion models show a monoton-
ically increasing drift rate for larger time gaps (see Fig. 4, resp.,
Figs. 6, 7 and 8 in Appendix A). Additionally, the drift rate is higher
the faster the approaching car is driving. Qualitatively, the drift rate
in the condition-wise fitted models strongly resembles the assumed
kinematics-dependency of the drift rate in the Giles- and Zgonnikov-
DDMs (Fig. 4). This supports the assumption of a kinematics-dependent
drift rate, that was made by previous pedestrian crossing decision-
making studies (e.g., Markkula et al. (2018), Giles et al. (2019) and
Pekkanen et al. (2022)), although not necessarily proving their exact
functional form (e.g., assumed linearity).

Regarding the boundary, the results from the condition-wise fitted
DDMs (see Fig. 4, resp., Figs. 6, 7 and 8 in Appendix A) do not
fully resemble the assumed boundary from the Zgonnikov-DDM (see
Figs 1(b) or 12) that is exponentially collapsing with smaller TTAs.
Rather, we find a roughly U-shaped distribution with smallest boundary
separation at medium TTAs of about 5 s and bigger separation towards
smaller and bigger time gaps.

The fitting results of the 5-parameter DDM (see Fig. 4) for drift
rates are remarkably similar regardless of vehicle speed. So, a lot of
the speed-dependence seems to come from the starting point variations
— which are quite big in relation to the boundary separation. This
suggest a mechanism where pedestrians first look at the distance to
7

the vehicle (which is here determined by a combination of TTA and
speed) to form an initial idea of what decision to make and then they
finalize that decision by looking at the TTA. For example, if the car
is driving slowly (20 km/h) there is approximately no starting point
bias (𝑧 = 0) for any time-gap. However, if the car is driving at medium
(40 km/h) or high (60 km/h) speeds (which makes the vehicle spawn
further away from the pedestrian), there is a proportional starting point
bias towards the crossing option. Recent studies seem to support our
results that a starting point bias proportional to the vehicle speed in
the direction of the crossing decision improves the model fit (Zgonnikov
et al., 2023). When we tried to restrict the starting point to non-positive
values (representing a bias towards the waiting option) in additional
model tests, the BIC results showed that model quality deteriorated
dramatically. Regarding the distribution of non-decision time mean 𝑇𝑒𝑟
and variability 𝑠𝑡 in the condition-wise fitted 5-parameter DDM we each
ind an inverted U-shaped distribution regarding the TTA with a visible
peed-dependency (higher non-decision time mean and variability for
lower vehicles; see Fig. 4).

When comparing the condition-wise fitted 5-parameter DDM as
he best-performing model overall to the Zgonnikov-DDM as the best-
erforming kinematics-dependent model, it is visible in Fig. 4 that in
oth models drift rates are monotonically increasing with TTA. How-
ver, drift rates are bigger (meaning more positive) in the Zgonnikov-
DM, compensating for the fact that positive starting biases were not
llowed (unlike in the condition-wise fitted 5-parameter model).

Fig. 5 depicts the reaction time distributions (grey area) of crossing
nd waiting decisions for the different TTA (columns) and speed (rows)
onditions. The black solid lines show the model fit of the condition-
ise fitted 5-parameter DDM as the best-performing kinematics-
ependent model and additionally as a reference the Zgonnikov-DDM
red dashed lines) as the best-performing kinematics-dependent model.
or bigger time-gaps to the vehicle (within rows) the reaction time
istributions are shifting more and more from waiting to crossing. For
igger velocities of the vehicle (within columns, so assuming constant
ime-gaps) the reaction time distributions are also shifting more and
ore from waiting to crossing (speed-dependency, e.g., Oxley et al.

2005)). Additionally, whereas the mode for crossing and waiting
eaction times appear equal if the car drives at 20 km/h; for 40 km/h
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Fig. 5. Measured reaction time distributions (grey area) of crossing and waiting decisions for the different TTA (columns) and speed (rows) conditions; plus, model fits of the
condition-wise fitted 5-parameter DDM (black solid lines) as the best-performing condition-wise fitted model and the Zgonnikov-DDM (red dashed lines) as the best-performing
kinematics-dependent model.
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and even more for 60 km/h the mode of the distributions are differing,
namely crossing decisions happen faster than waiting decisions. The
condition-wise fitted 5-parameter model is able to reproduce this
asymmetry, whereas the Zgonnikov-model is not. This difference can
be quantified with the help of Fig. 3 (right side), which shows that
the condition-wise fitted 5-parameter model is better suited than the
Zgonnikov-DDM to model the measured reaction time data. Further-
more, the Zgonnikov-DDM underestimates the maximum of waiting
PDFs in most of the conditions, yet overestimates the maximum of
crossing PDFs for conditions with high speed and high TTA (when
the vehicle is far away). The condition-wise fitted 5-parameter model
however is able to capture the form of the crossing and waiting PDFs
better, making it the best model fit, also by visual inspection. Related
to this point, the 5-parameter DDM is able to model the crossing
probability for different vehicle TTAs and velocities quite accurately,
whereas the kinematics-dependent Zgonnikov-DDM generally overesti-
mates the pedestrians’ crossing probability (compare Fig. 3, left side).
With regard to these points, the kinematics-dependent models perform
worse in terms of the goodness-of-fit. As a consequence, despite the
reduced number of free parameters, the kinematics-dependent models
also perform worse in AIC, but not in BIC. Overall, it is a close
race between the model classes in BIC: first, third and fifth place
are kinematics-dependent models, second and fourth place are fitted
condition-wise. In other words, our AIC results suggest that the large
number of parameters for the condition-wise fitted DDMs is warranted
given the large improvement in goodness-of-fit, whereas our BIC results
suggest the opposite, but by a smaller margin.

We checked for convergence of modelling results by decreasing
the step size for numerically solving the Fokker–Planck equation (see
8

Eq. (6) in Appendix A) by one order of magnitude (𝑑𝑡 = 0.001 s),
xemplary for the condition-wise fitted 5-parameter DDM. We found
hat all parameters (drift rate, boundary separation, starting point, non-
ecision time mean and variance) show similar values for all different
TA and velocity conditions. Also, MSE and BIC values were very
imilar. For this reason we assume that all initial calculations with
𝑡 = 0.01 s were valid (see Shinn et al. (2020) for reference).

Finally, we model all individuals in a Bayesian hierarchical model,
making use of the dependency between individuals’ data, to test
whether our approach of pooling across participants led to any de-
viation in the estimation of DDM parameters. We performed addi-
tional hierarchical DDM calculations with the modelling framework
HDDM (Wiecki et al., 2013). With the Bayesian hierarchical model,
we find very similar trends for the estimated DDM parameters as in
the non-hierarchical DDMs in our manuscript that neglect the inter-
individual differences. Similar to the condition-wise fitted 3-parameter,
4-parameter and 5-parameter models, the drift rate is monotonically
increasing with TTA from 𝜉 ≈ −3 for TTA = 2 s until 𝜉 ≈ 2 for TTA = 8 s
with a flattening for very high TTAs (see Fig. 13 in Appendix A).
For the boundary separation we similarly find a U-shaped distribution
regarding TTA with the smallest boundary separation for TTA = 5 s as
in the 5-parameter model (see Fig. 14 in Appendix A). The hierarchical
fit also reproduces our initial findings for the condition-wise fitted
5-parameter DDM of a positive starting point bias that increases for
smaller (time) gaps (see Fig. 15 in the Appendix A). Based on these
results, we think that the validity of our original approach has been
demonstrated.
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4. Discussion

We compared two main classes of DDMs to model experimental
pedestrian-crossing data, condition-wise fitted and kinematics-
dependent DDMs. We find that the 5-parameter condition-wise fit-
ted model provides a better goodness-of-fit (MSE) than any of the
kinematics-dependent models. Importantly, the better model fit is not
solely attributable of the former having more free parameters, as for
overall model quality (AIC), which accounts of the number of param-
eters, the 5-parameter condition-wise fitted model also outperforms
all other models tested, but not according to BIC. Summarizing these
results, it is clear that the condition-wise fitted models fit the data
much better than the kinematics-dependent models, which can be taken
to indicate that there is clear room for further improvements to the
exact formulations of current kinematics-dependent models. The AIC
results are strongly in line with this perspective. The BIC results, with
their larger penalty on model complexity, suggest that the very large
improvements in goodness of fit may be due to excessive complexity of
the condition-wise fitted models. This finding can be seen as a positive
result for the general idea of kinematics-dependent models. Overall, we
would argue that a reasonable conclusion from our findings is that there
is substantial scope for improved formulations of kinematics-dependent
models, but that these improved models should not need anywhere near
as many parameters as the condition-wise fitted models we have tested
here.

While in the field of human gap-acceptance decisions in traffic
(e.g., pedestrians crossing roads (Giles et al., 2019; Pekkanen et al.,
2022) or drivers performing left-turns with oncoming traffic
(Zgonnikov et al., 2022, 2023)) kinematics-dependent DDMs are abun-
dantly used, in other fields conventional (condition-wise fitted) DDMs
are predominant. In our data the conventional models still show that
there is a clear kinematics-dependency, which the condition-wise fitted
DDMs do not model explicitly, but rather absorb it into a multitude of
parameters. This suggests that there is room for further improvement
for kinematics-based DDMs in pedestrian road crossing by obtaining
a better understanding as to how the kinematics relates to decision
variables.

All condition-wise fitted models support the assumption of a TTA-
dependent and speed-dependent drift rate. The best-performing
condition-wise fitted model (the 5-parameter DDM) showed that the in-
troduction of a starting point bias could explain the speed-dependence
of crossing decisions differently to previous research: At first pedes-
trians use the distance to the vehicle to form an initial idea of what
decision to make. This distance-bias is modelled in the DDM by the
starting point. This interpretation is consistent with the fact that the
distance to the vehicle can in principle be inferred from a single
instant (i.e., from a static picture), while speed and TTA estimates
need integration of information over time. Hence, in contrast to speed
or TTA, the distance to the vehicle can directly and immediately be
derived at the start of the decision process. Only when the vehicle is
approaching and its image is increasing on the observer’s retina via
visual looming (faster than a certain perceptual threshold) (Tian et al.,
2022) pedestrians can use the TTA and integrate it into finalizing their
decision regarding the road crossing.

In sum, there are various factors that influence pedestrian crossing
decisions, which are not fully captured by standard DDM theory. One
possible such difference is the dependence of drift rates on vehicle
kinematics, as assumed by the Giles et al. (2019) and Zgonnikov et al.
(2022) models. Another difference could be a rapid early evidence
build-up from the initial view of how far away the car is. What we
are doing in this paper is to fit standard DDMs condition-wise to
probe what these underlying differences might be. The DDM drift
rates we obtain support the hypothesis of kinematics-dependent (mostly
TTA-dependent) drift rates, and the DDM starting points we obtain
support this novel hypothesis of rapid early evidence build-up from the
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initial view of the vehicle distance. These results seem to be consistent
with our interpretation that the initial distance of the vehicle leads
pedestrians to prefer either crossing or waiting immediately at the
onset of the trial. On the other hand, time is needed to integrate the
additional information about how fast the vehicle is approaching into
a TTA estimate and finalize the crossing decision. It will be an exciting
issue for future studies to test a model that combines a TTA-dependent
drift-rate and a distance-dependent starting point bias and to relate this
to additional experimental data, but this is beyond the scope of this
manuscript.

Regarding the boundary separation the results of the condition-wise
fitted models indicate a small separation for medium time-gaps and a
bigger separation for smaller but also bigger time-gaps. This contradicts
earlier assumptions about specific kinematics-dependencies of decision
boundaries, especially that of two symmetrically collapsing boundaries
that was previously made to model gap acceptance in traffic (Zgonnikov
et al., 2022). Recent studies on other traffic scenarios seem to support
our findings that collapsing boundaries do not play a significant role in
explaining human gap acceptance decisions in road traffic (Zgonnikov
et al., 2023). One possible explanation could be the assumption of
asymmetrical decision-bounds, for example, an exponentially collaps-
ing waiting bound and an exponentially increasing crossing bound
(similar to the kinematics-dependent model in Fig. 1(b), but with a
crossing boundary horizontally mirrored at the half of the time axis).
This specific boundary shape would also explain why crossing RTs
are shorter than waiting RTs in our experiment: the longer one is
accumulating evidence over time, the closer the car has approached
in the meanwhile and therefore the more likely the waiting option
becomes, while the crossing option gets more unlikely. Since there is
currently no option to model asymmetric boundaries in PyDDM, this
remains to be tested by future studies.

In general, one has to be careful in interpreting parameter values
of the condition-wise fitted DDMs because different parameters can
trade off against each other. For example, the dip in the middle for
the boundary separation coincides with the peak in the middle for non-
decision time (see Fig. 4), making those two potentially to some extend
counteract each other (while having different individual effects on the
joint distribution of reaction time and choice). So, whether it is just the
model fit trying to capture a subtle aspect of the shape of the distribu-
tion and doing it by offsetting these parameters or whether it means
something significant about the pedestrian’s decision-making process is
hard to differentiate. In summary, our results support the assumption
of a drift rate that is monotonically increasing with TTA that was made
by previous kinematics-dependent models (e.g., Markkula et al. (2018),
Giles et al. (2019) and Pekkanen et al. (2022)), but not the assumption
of (symmetrically) collapsing boundaries (e.g., Zgonnikov et al. (2022))
or an unbiased starting point for evidence accumulation (e.g., Markkula
et al. (2018), Giles et al. (2019), Zgonnikov et al. (2022) and Pekkanen
et al. (2022)) which is the reason why the condition-wise fitted models
currently outperform the kinematics-dependent models according to
MSE and AIC values.

Regarding the validity of our experimental approach, we consider
it safe to assume that every participant is already very well trained
in the gap-acceptance task prior to the experiment because of every
day experience in road-traffic. Our experimental data shows that par-
ticipants very rarely crossed at small TTAs, so we assume that it was
uncomfortable to press the cross button when the vehicle was close
(similar to a real-life scenario). To further prove the validity of our
design we compared our results with reaction time data of other road
crossing experiments. To our knowledge there is no other experiment
that queries response times for the waiting decision nor response times
in general in a real-traffic setting. There is, however, a VR cave study
that reports the mean reaction time to a crossing opportunity of adults
(indicated by pressing a button) to be 1.1 ± 0.1 s (Tapiro et al., 2020),
which is very similar to our results of 1.11 ± 0.01 s for crossing and

1.13 ± 0.01 s for waiting, respectively.
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When modelling or measuring road crossing, it is often assumed that
pedestrians commence the crossing process after having come to a full
stop. In this case, the decision to cross is clearly evident (by movement
onset), while there is no obvious overt marker of the decision to wait.
Consequently, most experimental studies (e.g., Lobjois et al. (2013),
Zito et al. (2015) and Tapiro et al. (2016)) only query the timing of the
crossing decision, and a non-response is considered a waiting decision,
without any information about the latter’s timing (go/no-go paradigm).
We assume that pedestrians make a conscious decision in the real-world
whether to cross or whether not-to-cross in front of an approaching
vehicle. Hence we do not think that people in real-life make neither
decision at all and just wait (completely undecided) until the car
has passed. Therefore, we here decided to treat crossing and waiting
decision more symmetrically and used a 2-afc paradigm, which is also
the more commonly used approach for testing DDMs in a wide range
of contexts. Importantly, key findings of go/no-go pedestrian crossing
tasks – most relevantly, the speed-dependence of gap acceptance – are
replicated in our 2-afc paradigm, making it unlikely that the report
mode influences the decision as such. Consequently, the 2-afc task
has the advantage to provide substantial additional information (the
distribution of decision times for waiting), which allow us a more
detailed model comparison.

In addition, the presumption that road crossing starts from a station-
ary situation might not hold generally for real-life situations (Gorrini
et al., 2018), such that there are also overt signals of the waiting
decision (slowing down or stopping). It will be an interesting issue
for further research to experimentally test road crossing behaviour for
pedestrians approaching the curb walking, for example by combining
virtual reality with motion capture. Such a setting would also allow
capturing more than the one-dimensional decision available from a
button press, as in reality, the decision may be signalled by a high-
dimensional set of parameters (walking speed, trajectory, posture, angle
between joints etc.; Kalantarov et al. (2017)). Nonetheless, in the end
a decision has to be reached and to obtain meaningful data from high-
dimensional data, they need to be reduced in a meaningful way, which
again can be aided by appropriate behavioural models developed using
paradigms and scenarios of reduced complexity. This has also been
our rationale to start with a scenario that includes only one car and
one pedestrian, but extending DDMs to cover situations with more cars
will be an exciting prospect for further experimental and modelling
research.

In traffic, humans typically obtain good predictions of other road
users’ behaviour. For pedestrians with respect to cars this is a skill that
needs to be acquired during childhood (Tapiro et al., 2016; Biassoni
et al., 2018), and in turn, drivers need to be able to estimate pedestrian
behaviour. The fact that this is done while occupied with other driving
related tasks, suggests that human drivers in most cases accomplish
the reduction of the high-dimensional data available when sighting
a pedestrian at the curbside to a robust estimate of their crossing
intention with ease, while this is still a major challenge for autonomous
vehicles (Kooij et al., 2014). Hence, computational cognitive models,
like investigated herein, are a key step towards and beyond human-
like performance for such systems (Janssen et al., 2022). A sound
understanding of human behaviour and its formalization in cognitive
models will aid the development of automated vehicles in at least
three respects: (i) The prediction of VRU’s (e.g., pedestrian’s) behaviour
is improved. (ii) The automated vehicle can adapt its own driving
choices to be more human-like and thereby signal its intentions to-
wards human road users in an unambiguous and readily accessible
way. This also increases the vehicle’s ability to nudge humans to
make decisions (Zgonnikov et al., 2023), for example, encouraging
pedestrians to cross the road by slowing down briefly when approach-
ing. (iii) Unlike self-learning algorithms, for which explainability is a
challenge (Gunning and Aha, 2019), decision variables in cognitive
models are typically readily interpretable. This makes it easier to assign
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responsibility and consequently liability (e.g., in case of an accident)
and therefore may help overcoming legal and acceptance challenges
that may impede the wide-spread deployment of autonomous vehicles.
Hence, the development of autonomous vehicles will benefit from good
and experimentally-validated cognitive models that approximate the
human decision process, towards which we here present a relevant
stepping stone.
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Appendix A

Modelling details

The accumulated evidence 𝑥 in the drift-diffusion model can be
expressed mathematically with a differential equation:

𝑑𝑥 = 𝜉(𝑥, 𝑡)𝑑𝑡 + 𝜎(𝑥, 𝑡)𝑑𝑊 (5)

with the drift 𝜉(𝑥, 𝑡) and the diffusion coefficient 𝐷(𝑥, 𝑡) = 𝜎2(𝑥, 𝑡)∕2 of
the Wiener process 𝑊 . To analyse the participants’ decision-making,
we used the drift-diffusion modelling framework PyDDM (see details
in Shinn et al. (2020)), which numerically solves the DDM equation
(5) using the Fokker–Planck equation (6):
𝜕
𝜕𝑡
𝑝(𝑥, 𝑡) = − 𝜕

𝜕𝑥
[𝜉(𝑥, 𝑡)𝑝(𝑥, 𝑡)] + 𝜕2

𝜕𝑥2
[𝐷(𝑥, 𝑡)𝑝(𝑥, 𝑡)] (6)

The Fokker–Planck equation describes the time evolution of the
probability density function 𝑝(𝑥, 𝑡) under the influence of drift and
diffusion. We employed maximum likelihood estimation as the fitting
method to estimate the parameters of the drift-diffusion-model. We
fitted by using the full-distribution maximum likelihood on the full
probability distribution (Shinn et al., 2020). The optimization algo-
rithm used in the fitting process was differential evolution (Storn and
Price, 1997). The models were simulated for a duration of 𝑇𝑑𝑢𝑟 = 3 s
with a reasonable (Shinn et al., 2020) time-step of 𝑑𝑡 = 0.01 s and an
evidence grid size of 𝑑𝑥 = 0.001. For an introduction to the logic and
structure of evidence accumulation models and DDMs, see for example

Ratcliff et al. (2016) and Dutilh et al. (2019).
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Fig. 6. Parameters of the condition-wise fitted 3-parameter DDM. Per TTA- and velocity-condition a separate model was fitted. Data was aggregated over all participants. Dotted
lines serve as a guide to the eye.
Table 2
Model parameter values of the condition-wise fitted 3-parameter DDM.

v (km/h) TTA (s) Drift rate Boundary separation Non-decision time mean

20 2 −2.45059117 1.08198777 0.48378354
20 3 −2.10599752 1.11979932 0.50640773
20 4 −1.12299546 0.9034387 0.53658031
20 5 −0.34914691 0.86978613 0.55092393
20 6 0.2169275 0.97636514 0.44741754
20 7 0.79967791 0.9212585 0.52994509
20 8 1.05752427 0.96938403 0.5157492
40 2 −2.49251848 1.38692817 0.3625686
40 3 −1.32567163 1.03411283 0.45143325
40 4 −0.56682339 0.95182208 0.48657254
40 5 0.4274359 0.90291679 0.50984859
40 6 0.77401328 0.93652023 0.47885267
40 7 1.30265647 1.0846644 0.42770143
40 8 1.56583106 1.01234381 0.50169025
60 2 −1.81733776 1.11774067 0.44116137
60 3 −1.07740981 0.98529717 0.46208506
60 4 −0.28260581 0.85570412 0.5296974
60 5 0.74141644 0.87396725 0.50311926
60 6 1.13837 0.92440629 0.5149182
60 7 1.55373188 1.13212721 0.46069674
60 8 1.98785005 1.31164788 0.46438048
3-parameter DDM

See Fig. 6 and Table 2.

4-parameter DDM (ND-time variance)

See Fig. 7 and Table 3.
11
4-parameter DDM (starting point)

See Fig. 8 and Table 4.

5-parameter DDM

See Fig. 9 and Table 5.
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p

Fig. 7. Parameters of the cond.-wise fitted 4-parameter DDM (ND-time variance). Per TTA- and velocity-condition a separate model was fitted. Data was aggregated over all
articipants. Dotted lines serve as a guide to the eye.
Table 3
Model parameter values of the condition-wise fitted 4-parameter DDM (ND-time variance).

v (km/h) TTA (s) Drift rate Boundary separation Non-decision time mean Non-decision time variance

20 2 −2.59395623 0.74122869 0.62905132 0.09179156
20 3 −2.31346934 0.77758017 0.68500675 0.11744086
20 4 −1.83421976 0.50470235 0.91563532 0.24000972
20 5 −0.59518924 0.48222954 1.02066815 0.303595
20 6 0.3413216 0.5538931 0.97766569 0.27212553
20 7 0.96967901 0.7050376 0.77215506 0.18259652
20 8 1.34683099 0.67891883 0.8082147 0.19398363
40 2 −2.48283049 0.75232177 0.6014223 0.0950447
40 3 −1.54724238 0.71355475 0.70545399 0.1347646
40 4 −0.79094058 0.61707321 0.88688655 0.24038507
40 5 0.59265367 0.61961943 0.87501502 0.26460143
40 6 0.94886711 0.70290233 0.74640145 0.20884285
40 7 1.59170442 0.75002801 0.72038353 0.18869439
40 8 1.75952649 0.78467845 0.67645048 0.13134068
60 2 −2.06105913 0.71804797 0.68047172 0.11926084
60 3 −1.45793227 0.61775599 0.81166474 0.18200871
60 4 −0.35021807 0.66137457 0.77932642 0.19878185
60 5 0.83597855 0.73535709 0.66353104 0.13598394
60 6 1.30875138 0.7355759 0.69614105 0.13912023
60 7 1.77544956 0.79231134 0.71016069 0.1552216
60 8 2.10225199 0.95149109 0.65942804 0.13719726
Ratcliff-DDM in Zgonnikov et al. (2022)

See Fig. 10 and Table 6.

Giles-DDM in Zgonnikov et al. (2022)

See Fig. 11 and Table 7.
12
Zgonnikov-DDM in Zgonnikov et al. (2022)

See Fig. 12 and Table 8.

Bayesian hierarchical model

See Figs. 13–15.
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Fig. 8. Parameters of the condition-wise fitted 4-parameter DDM (Starting point). Per TTA- and velocity-condition a separate model was fitted. Data was aggregated over all
articipants. Dotted lines serve as a guide to the eye.
Table 4
Model parameter values of the condition-wise fitted 4-parameter DDM (Starting point).

v (km/h) TTA (s) Drift rate Boundary separation Starting point Non-decision time mean

20 2 −2.84647845 1.03675559 0.29571416 0.45582907
20 3 −2.49375458 1.10375226 0.30968731 0.46501535
20 4 −1.2787609 0.90770831 0.10077709 0.5299224
20 5 −0.22436691 0.86514477 −0.08807932 0.56723196
20 6 0.32305085 0.96577246 −0.08813005 0.4584566
20 7 0.94809042 0.94058536 −0.10934114 0.50544489
20 8 1.22599861 0.96787135 −0.12457563 0.50699677
40 2 −3.05256529 1.14414367 0.49762994 0.37738377
40 3 −1.91772823 1.01274862 0.36775062 0.46423681
40 4 −0.95799431 0.98504631 0.32119519 0.498403
40 5 0.30701618 0.9041317 0.093336 0.51952436
40 6 0.93127309 1.04439983 −0.17159335 0.3411488
40 7 1.49702285 1.07930748 −0.16922413 0.40237351
40 8 1.82898616 1.0222041 −0.19607891 0.47526085
60 2 −2.44900356 1.05387427 0.40795847 0.44451329
60 3 −1.951104 1.04631719 0.48944321 0.48696021
60 4 −0.88920847 0.93637193 0.38206275 0.54825235
60 5 0.59047126 0.88629378 0.11043719 0.51738357
60 6 1.22073968 0.92980789 −0.058365 0.50092546
60 7 1.83344955 1.09861291 −0.24651016 0.44827616
60 8 2.30188125 1.30499999 −0.3438489 0.40075279
13



International Journal of Human - Computer Studies 183 (2024) 103200M. Theisen et al.
Fig. 9. Parameters of the condition-wise fitted 5-parameter DDM. Per TTA- and velocity-condition a separate model was fitted. Data was aggregated over all participants. Dotted
lines serve as a guide to the eye.
Table 5
Model parameter values of the condition-wise fitted 5-parameter DDM.

v (km/h) TTA (s) Drift rate Boundary separation Starting point Non-decision time mean Non-decision time variance

20 2 −2.52654139 0.72385446 −0.03507681 0.64218557 0.09469506
20 3 −2.16560848 0.74103367 −0.08114234 0.71662348 0.12334117
20 4 −1.55192445 0.49546691 −0.06539154 0.92534196 0.23809625
20 5 −0.64633761 0.47872858 0.00972628 1.02404378 0.30529462
20 6 −0.20682009 0.497 0.13954743 1.04957384 0.30099839
20 7 0.93692338 0.69499933 0.01975445 0.78479569 0.18844778
20 8 1.15416523 0.6415575 0.09367803 0.85217766 0.20588482
40 2 −2.60380434 0.79044789 0.07114518 0.57363577 0.08837145
40 3 −1.89553453 0.81578827 0.20733488 0.62095519 0.10576159
40 4 −1.315039 0.728 0.25906828 0.79314809 0.19362861
40 5 −0.77704634 0.58600008 0.3813472 1.0141443 0.29415281
40 6 0.41453556 0.659 0.24209529 0.83375585 0.22286647
40 7 1.02243264 0.63202608 0.28551786 0.87755512 0.23080014
40 8 1.64854127 0.75383088 0.07026277 0.70895204 0.14003594
60 2 −2.28933158 0.7834927 0.1378943 0.62660392 0.10869637
60 3 −2.16109466 0.84565634 0.40487448 0.64957596 0.10600535
60 4 −1.30826107 0.81028997 0.44557951 0.72283876 0.11611412
60 5 −0.16361374 0.67099998 0.41280883 0.85876734 0.19598005
60 6 0.27366551 0.64309618 0.41888455 0.8989531 0.1935539
60 7 1.58317349 0.73199999 0.12908308 0.77733222 0.17388544
60 8 2.11013325 0.95508304 −0.00683118 0.65610238 0.13640722
14
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Fig. 10. Parameters of the kinematics-dependent Ratcliff-DDM in Zgonnikov et al. (2022) adapted after Ratcliff (1978). A single model was fitted over all TTA- and velocity-
conditions. Data was aggregated over all participants. Drift rates are static over time per condition and depend on speed and TTA of the approaching vehicle at the start of the
trial. Colour-coding is blue for 20 km/h, red for 40 km/h and black for 60 km/h. Boundary separation, non-decision time mean and variance are constant over time for all TTAs
and velocities of the car.
Table 6
Model parameter values of the kinematics-dependent Ratcliff-DDM.

v (km/h) TTA (s) Drift rate Boundary separation Non-decision time mean Non-decision time variance

20 2 −2.48283145 0.725539 0.718868 0.156660
20 3 −1.8250082 ’’ ’’ ’’
20 4 −1.1671850 ’’ ’’ ’’
20 5 −0.5093618 ’’ ’’ ’’
20 6 0.14846130 ’’ ’’ ’’
20 7 0.80628449 ’’ ’’ ’’
20 8 1.46410768 ’’ ’’ ’’
40 2 −2.3139010 ’’ ’’ ’’
40 3 −1.5716126 ’’ ’’ ’’
40 4 −0.8293243 ’’ ’’ ’’
40 5 −0.0870359 ’’ ’’ ’’
40 6 0.65525244 ’’ ’’ ’’
40 7 1.39754082 ’’ ’’ ’’
40 8 2.13982920 ’’ ’’ ’’
60 2 −2.1449706 ’’ ’’ ’’
60 3 −1.3182171 ’’ ’’ ’’
60 4 −0.4914635 ’’ ’’ ’’
60 5 0.33529001 ’’ ’’ ’’
60 6 1.16204357 ’’ ’’ ’’
60 7 1.98879714 ’’ ’’ ’’
60 8 2.81555071 ’’ ’’ ’’
15
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Fig. 11. Parameters of the kinematics-dependent Giles-DDM in Zgonnikov et al. (2022) adapted after Giles et al. (2019). A single model was fitted over all TTA- and velocity-
onditions. Data was aggregated over all participants. Boundary separation, non-decision time mean and variance are constant over time for all TTAs and velocities of the
ar.
Table 7
Model parameter values of the kinematics-dependent Giles-DDM.

v (km/h) TTA (s) Drift rate Boundary separation Non-decision time mean Non-decision time variance

20 2 −2.29040825 0.734311 0.715728 0.156082
20 3 −1.62781225 ’’ ’’ ’’
20 4 −0.96521626 ’’ ’’ ’’
20 5 −0.30262026 ’’ ’’ ’’
20 6 0.35997574 ’’ ’’ ’’
20 7 1.02257173 ’’ ’’ ’’
20 8 1.68516773 ’’ ’’ ’’
40 2 −2.10957426 ’’ ’’ ’’
40 3 −1.35656126 ’’ ’’ ’’
40 4 −0.60354827 ’’ ’’ ’’
40 5 0.14946473 ’’ ’’ ’’
40 6 0.90247772 ’’ ’’ ’’
40 7 1.65549071 ’’ ’’ ’’
40 8 2.40850371 ’’ ’’ ’’
60 2 −1.92874026 ’’ ’’ ’’
60 3 −1.08531027 ’’ ’’ ’’
60 4 −0.24188028 ’’ ’’ ’’
60 5 0.60154971 ’’ ’’ ’’
60 6 1.4449797 ’’ ’’ ’’
60 7 2.28840969 ’’ ’’ ’’
60 8 3.13183968 ’’ ’’ ’’
16
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Fig. 12. Parameters of the kinematics-dependent Zgonnikov-DDM in Zgonnikov et al. (2022). A single model was fitted over all TTA- and velocity-conditions. Data was aggregated
over all participants. Boundary separation is exponentially decreasing for smaller TTAs independent of the vehicle’s velocity. Non-decision time mean and variance are constant
over time for all TTAs and velocities of the car.
Table 8
Model parameter values of the kinematics-dependent Zgonnikov-DDM.

v (km/h) TTA (s) Drift rate Boundary separation Non-decision time mean Non-decision time variance

20 2 −2.29735775 0.64479673 0.699153 0.147472
20 3 −1.64231754 0.68289979 ’’ ’’
20 4 −0.98727732 0.7212748 ’’ ’’
20 5 −0.33223711 0.75971197 ’’ ’’
20 6 0.3228031 0.79800012 ’’ ’’
20 7 0.97784331 0.83593134 ’’ ’’
20 8 1.63288353 0.87330544 ’’ ’’
40 2 −2.07865732 0.64479673 ’’ ’’
40 3 −1.3142669 0.68289979 ’’ ’’
40 4 −0.54987647 0.7212748 ’’ ’’
40 5 0.21451395 0.75971197 ’’ ’’
40 6 0.97890438 0.79800012 ’’ ’’
40 7 1.7432948 0.83593134 ’’ ’’
40 8 2.50768523 0.87330544 ’’ ’’
60 2 −1.8599569 0.64479673 ’’ ’’
60 3 −0.98621626 0.68289979 ’’ ’’
60 4 −0.11247562 0.7212748 ’’ ’’
60 5 0.76126502 0.75971197 ’’ ’’
60 6 1.63500565 0.79800012 ’’ ’’
60 7 2.50874629 0.83593134 ’’ ’’
60 8 3.38248693 0.87330544 ’’ ’’
17
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Fig. 13. Posterior probabilities for different drift rates 𝜉 for each TTA condition merged over all velocity conditions.
Fig. 14. Posterior probabilities for different boundary separations 𝑎 for each TTA condition merged over all velocity conditions.
Fig. 15. Posterior probabilities for different starting points 𝑧 for each TTA condition merged over all velocity conditions.
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Supplementary material related to this article can be found online
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