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Samantha Williams *, Paul Foulkes , Vincent Hughes 
Department of Language and Linguistic Science, University of York, York, UK   

A R T I C L E  I N F O   

Keywords: 
Automatic methods 
L2 english 
Forced alignment 

A B S T R A C T   

There is growing interest in how speech technologies perform on L2 speech. Largely omitted from this discussion 
are tools used in the early data processing steps, such as forced aligners, that can introduce errors and biases. This 
study adds to the conversation and tests how well a model pre-trained for the alignment of L1 American English 
speech performs on L2 English speech. We test and discuss the impact of language variety, demographic factors, 
and segment type on the performance of the forced aligner. We also examine systematic errors encountered. 

Forty-five speakers representing nine L2 varieties were selected from the Speech Accent Archive and force 
aligned using the Montreal Forced Aligner. The phoneme-level boundary placements were manually corrected in 
order to assess differences between the automatic and manual alignments. Results show marked variation in the 
performance across language groups and segment types for the two metrics used to assess accuracy: Onset 
Boundary Displacement, a distance metric between the automatic and manual boundary placements, and 
Overlap Rate, which indicates to what extent the automatically aligned segment overlaps with the manually 
aligned segment. The highest accuracy on both measures was obtained for German and French, and lowest ac-
curacy for Russian. The aligner’s performance on all varieties was comparable to that on conversational 
American English and non-standard varieties of English. Furthermore, the percentage of boundary placements 
within 10 and 20 ms of the corrected boundary was similar to that observed between transcribers. Apart from 
errors due to variety mismatch, most issues encountered in the alignment were due to issues not exclusive to L2 
speech such as inaccurate orthographic transcriptions, hesitations, specific voice qualities, and background noise. 

The results of this study can inform the use of automatic aligners on L2 English speech and provide a baseline 
of potential errors and information to help the development of more robust alignment tools for further devel-
opment of automatic systems using L2 English.   

1. Introduction 

Forced aligners provide a semi-automatic method of aligning an 
acoustic signal with phoneme-level segmentation. Provided with an 
orthographic transcript they can greatly reduce the amount of manual 
work by giving an estimate of the time-alignments of words and seg-
ments. While forced aligners perform well on languages they were 
trained on (e.g., McAuliffe et al., 2017), the underlying language models 
tend to be based on monolingual speakers of standard varieties of ma-
jority languages such as English and French. Unless a researcher has 
adapted an existing model to a new variety or built a new model based 
on smaller datasets (outlined in McAuliffe, 2021b), many languages and 
varieties do not have models readily available. This means that the 
performance of forced aligners on those varieties may suffer. Previous 
studies on the performance of forced aligners have compared the rela-
tive performance of different aligners (e.g., Gonzalez et al., 2020), 

investigated the effects of various factors on their accuracy (e.g., Fro-
mont and Watson, 2016), and tested variety mismatch of the acoustic 
model with non-standard varieties of English (e.g., regional British En-
glish varieties in Mackenzie and Turton, 2020). Surprisingly few studies, 
however, have considered the impact of L2 speech. Yet there are esti-
mated to be well over twice as many L2 speakers of English as L1 
speakers (1.08 billion L2 speakers in 146 countries compared to 373 
million L1 speakers; Eberhard et al., 2022). 

The degradation in the performance of speech technologies for 
speakers of L2 or even non-standard varieties has long been discussed in 
both research and media (e.g., Chan et al., 2022; Markl, 2022; Koenecke 
et al., 2020; Wu et al., 2020; Harwell et al., 2018). However, this topic is 
typically restricted to the user-facing aspects of speech technology such 
as automatic speech recognition (ASR) or text-to-speech. By comparison, 
the methodological tools used behind the scenes, such as forced align-
ment, are largely omitted from the discussion. This is perhaps due to 
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primarily being used in research contexts for large-scale analyses in 
areas such as (socio)phonetics and forensic speech science. However, as 
force-aligned data is used as the foundation for training many speech 
technologies, it stands to reason that issues and biases stemming from 
phoneme-level models which rely on tools such as forced aligners could 
be translating to issues further upstream (as discussed in Hutiri and 
Ding, 2022). 

Examining the complications that L2 speech can present for tools 
such as forced alignment is increasingly relevant due to a recent shift 
towards segmentally informed models (i.e. phoneme-level segmenta-
tion) for many applications (e.g., Brown et al., 2021; Shi et al., 2020; 
Ferragne et al., 2019). Accurate time-aligned phonemic transcriptions 
are crucial when building this type of model. Inaccurate alignments 
indicate that the models may not accurately represent what they are 
trying to describe, classify, or identify. However, with the need for large 
amounts of data to train most state-of-the-art systems, manual seg-
mentation becomes an unworkably time-consuming task. 

1.1. The present study 

This study contributes to better understanding of background pro-
cesses in speech technology by testing how well a forced aligner trained 
for the alignment of L1 General American (GA) English speech performs 
on L2 English speech. 

While there are several options for selecting the acoustic model used 
for forced alignment, in cases where several varieties are being analysed, 
building or adapting separate models for each is prohibitive. It is 
therefore useful to explore how accurate an ‘off-the-shelf’ standard- 
variety model would be. Additionally, this data will be used for the 
comparison of L2 varieties as part of an L1 identification system in future 
research. As the intention is to directly compare the realisations of 
phonemes, it is thus beneficial to use the same dictionary, phone set, and 
acoustic model across varieties (Brown, 2014; Huckvale, 2004). Using a 
single language model with its accompanying grapheme-to-phoneme 
dictionary therefore allows for straightforward comparison between 
varieties. 

While only a few studies have tested off-the-shelf models on a mis-
matched variety (a variety the model was not trained on), the perfor-
mance has been reassuring. The GA English model for the Montreal 
Forced Aligner (MFA; McAuliffe et al., 2017) has been tested on 
non-standard English varieties (Mackenzie and Turton, 2020), other 
languages (Babinski et al., 2019), and New Englishes (institutionalized 
Englishes such as Indian English; Meer 2020). Results have been com-
parable to the performance on American English, suggesting that a 
standard GA English model could be sufficient for L2 English speech, at 
least in certain contexts (discussed further in Section 2.2). 

This paper will first provide some background on forced aligners and 
the performance of the MFA in prior studies, as well as outline factors 
that could present difficulties for alignment. We then examine the per-
formance of the aligner with respect to L2 variety, sociophonetic/de-
mographic factors, and segment type, followed by outlining systemic 
issues and in what contexts errors occur. Finally, we discuss whether an 
off-the-shelf GA English model is sufficient for use on L2 English speech 
and provide some recommendations for how to mitigate or address 
specific error types. 

2. Background 

2.1. Forced alignment 

Forced aligners require three components: an orthographic tran-
script, an acoustic model, and a pronunciation dictionary. The ortho-
graphic transcript can be from a manual transcription, a set text (if 
recordings are of a read passage), or using speech-to-text software, 
although this introduces its own errors. The acoustic model and pro-
nunciation dictionary are ideally matched with the target variety. This is 

because the acoustic model provides information about the expected 
pronunciation for each phone in the variety it has been trained on, while 
the pronunciation dictionary provides a list of words with their corre-
sponding phonemic pronunciation(s). In addition, unless grapheme-to- 
phoneme capability has been added, for example with Pynini (Gor-
man, 2016) or Sequitur G2P (Bisani and Ney, 2008), the aligner is un-
able to predict the pronunciation of words outside of those in the 
dictionary. 

The acoustic models for the MFA were built using Kaldi Speech 
Recognition Toolkit (Povey et al., 2011) and use a gaussian mixture 
model - hidden markov model (GMM-HMM) architecture. These models 
contain the expected distribution of acoustic features over time for each 
phone in the phone set. Contextual information is also taken into ac-
count by training on triphones along with monophones (McAuliffe et al., 
2017). There are a large number of pretrained acoustic models available 
(40 languages as of writing). However, these have mostly been trained 
on L1 speakers of standard varieties or majority dialects such as Stan-
dard British English. 

For non-standard varieties, forced alignment is typically limited to 
utilizing existing standard variety acoustic models or those adapted with 
additional data. If used in their off-the-shelf form, the acoustic model 
may not match or include all of the phones required to provide an ac-
curate phonemic transcription. For example, Meer (2020) found that the 
MFA performed worse on vowels that were specific to Trinidadian En-
glish (and therefore lacked a matched vowel/acoustic model) than 
vowels that were present in both the standard and Trinidadian English 
varieties. Even if an L2 speaker’s L1 acoustic model might be more 
appropriate, a mismatch in the phone set between the model and the 
dictionary will cause errors. 

2.2. Performance of MFA in prior studies 

A summary of the performance of the MFA from relevant studies, 
along with inter-rater agreement ratings from early studies using 
manual methods, is provided in Table 1. The accuracy of the aligner has 
been assessed using various thresholds and measures depending on the 
purpose for using the forced aligner as well as if the MFA was used 
directly or through another software. For example, DARLA (Dartmouth 
Linguistic Automation; Reddy and Stanford, 2015), which uses the MFA, 
extracts formant measurements to produce vowel plots. Babinski et al. 
(2019) then used the vowel space and subsequent distance of F1 and F2 
from the manually measured means as a test of aligner accuracy. 
However, performance is more commonly measured directly, by the 
mean boundary displacement (BD), or percentage of BD measurements 
under a given threshold (see further detail in Section 3.4). While it is 
difficult to compare the accuracy measures from different studies 
directly, typical accuracy ranges from 6.4 to 28 ms for mean BD and 77 - 
90 % for percentage of boundary placements less than 25 ms. 

Gonzalez et al. (2020), MacKenzie and Turton (2020), and Meer 
(2020) all used a standard pre-trained acoustic model (General Amer-
ican English) to align data from non-standard varieties of English. These 
include Anglo-Australian English, regional British English varieties, and 
Trinidadian English, respectively. Findings showed that although vari-
ety had minimal impact on the overall performance (cf. target variety 
matched with acoustic model, McAuliffe (2021a) and McAuliffe et al. 
(2017); Table 1) the aligner tended to perform worse on varieties and 
phones that deviated markedly from American English. For example, 
Westray, a variety of Scots, had 79 % BD <20 ms compared to RP 
(Received Pronunciation had 90 % of BD <20 ms (MacKenzie and 
Turton, 2020). Using adapted pronunciation dictionaries, standard En-
glish acoustic models have also been used to align other languages with 
relative success (e.g., Babinski et al., 2019; Table 1). 

2.3. Complications for alignment 

There are several factors that can present difficulties for the aligner. 

S. Williams et al.                                                                                                                                                                                                                                
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Sociolinguistic and demographic factors such as gender and regional 
variety can result in phonetic realisations which deviate from the stan-
dard acoustic model, or introduce words not contained in the grapheme- 
to-phoneme dictionary. This is typically due to underrepresentation of 
speech from certain groups within the training data. For this reason, the 
performance of the aligner in our study was tested against the various 
demographic information provided by the speakers (see Section 3.1 and 
Appendix). 

Another key factor that introduces variation into the realisation of 
phones is phonological context. Gonzalez et al. (2020) found that there 
was a significant impact on accuracy due to the phonological context of 
vowel segments. Surrounding sonorants (laterals, nasals, and approx-
imants) tended to affect the accuracy more negatively than stops and 
fricatives, because vowel-sonorant boundaries are often acoustically 
unclear. However, the onset boundaries for vowels closely aligned with 
manual boundary placement. Meer (2020) also observed a negative 
impact on performance depending on the segment categories sur-
rounding the boundary. They found reduced performance for 
vowel-vowel boundaries, pre- and post-pausal position, and – more 
generally – contexts where there is no clear acoustic boundary. How-
ever, these tended to also be boundaries that would also cause problems 
when manually labelling (Wesenick and Kipp, 1996). 

Speaker-specific factors also impact the performance of forced 
aligners. Faster speech rate, for example, has been shown to negatively 
impact performance, although less so for the MFA compared with other 
aligners (MacKenzie and Turton, 2020; Bailey, 2016). For example, 
MacKenzie and Turton (2020) found that massive phonetic reduction, 
characteristic of fast speech, caused instances of extreme misalignment 
when using FAVE (Forced Alignment and Vowel Extraction suite, 
Rosenfelder et al., 2014). 

Besides understanding all the factors that could impact the accuracy 
of the forced aligner, additional systematic errors due to particularities 

of the aligner are inevitable. When and why these occur is useful to 
know, especially if there is expected to be minimal manual intervention 
post-alignment, as is the case with many automatic systems. Previous 
studies have cautioned against leaving alignments unchecked for mea-
surements that rely on precise alignments (e.g., Gonzalez et al., 2020; 
and MacKenzie and Turton, 2020; Babinski et al., 2019). 

2.4. Complications arising from L2 varieties 

L2 speech introduces sources of variability within- and between- 
speakers. Factors such as varying degrees of competence, strength of 
accent, as well as phonetic and phonological transfer from the L1 in-
troduces larger within-variety differences than for non-standard L1 va-
rieties (Lo and Wong, 2024; Davidson, 2011; Little, 1995; Flege and 
Bohn, 1989). For example, Wade et al. (2007) showed that Spanish 
speakers of English had approximately 33 % more variability in the 
acoustic realisation of vowels, in both height and backness, than L1 
speakers of English. The L2 speakers in Laturnus’ (2020) study showed 
on average twice as much variability in vowel production. Some L2s 
varied primarily along a single dimension (e.g., F1 for the Italian speaker 
of English) and others along both F1 and F2 (e.g., Thai and Russian 
speakers of English). Furthermore, the vowel space for each L2 variety 
differed in a unique way from L1 English vowel productions. 

Insertions and deletions, resulting in deviations from the standard 
model, may also be more prevalent in L2 speech, although it is unclear 
how consistent or predictable they may be. For example, Broselow et al. 
(1998) discusses data from Wang (1995) testing how Mandarin Chinese 
speakers of English simplify stops /p, t, k/ and /b, d, g/ in coda position, 
none of which are permissible in the L1 phonology. Of the 81 % of 
voiceless and 98 % of voiced stops pronounced incorrectly, speakers 
most often either omitted the final stop (43–46 %) or added a vowel (36 
%). Both strategies lead to CV structure, in line with the general 

Table 1 
Summary of accuracy scores from studies where an English acoustic model was used with the Montreal Forced Aligner (MFA) for the matched and mismatched test- 
train conditions, along with inter-rater agreement scores. Studies shown in reverse chronological order.   

Paper Aligner Acoustic Model Testing Variety Number of 
Speakers 

Number of 
Boundaries 

Metric Value 

Matched 

McAuliffe (2021a) MFA American 
English 

(LibriSpeech) 

American English 
(Buckeye Corpus) 

40 – Mean BD 16.3 ms 

McAuliffe et al. (2017) MFA 
American 
English 

(LibriSpeech) 
American English 
(Buckeye Corpus) 40 – 

% < 10 ms 41 % 
% < 25 ms 77 % 
Mean BD 17 ms 

Std Dev BD 11.2 ms 

Mismatched 

Meer (2020) MFA American 
English Trinidadian English 11 1352 

% < 10ms 
onset = 47.2 

% 
offset = 50.2 

% 

% < 20 ms 
onset = 89.1 

% 
offset = 77.8 

% 

Gonzalez et al. (2020) MFA 
American 
English 

(LibriSpeech) 
Anglo-Australian 
(stressed vowels) 4 (2 M, 2F) 2158 

Mean Onset 
BD 

28 ms 

Mean End 
BD 

30 ms 

MacKenzie and Turton 
(2020) 

MFA 
(via 

DARLA) 

American 
English 

(LibriSpeech) 
Six British English 

varieties 6 (5F, 1 M) ~1000 per 
speaker 

% < 20 ms ~79–90 % 
Mean Onset 

BD 
6.4 – 17.5 ms 

Babinski et al. (2019) 
MFA  
(via 

DARLA) 
American 
English Yidiny 2 – 

Mean F1 < 6Hz 
Mean F2 < 20Hz 

Inter-rater 

Raymond et al. (2002) Manual – 
American English 
(Buckeye Corpus) – 2813 % < 10 ms 62 % 

% < 20 ms 79 % 
Kvale (1993) Manual – Norwegian 4 (2 M, 2F) – % < 20 ms 96.5 % 

Cosi et al. (1991) Manual – Italian 
(IRST-MAIA IWSDB 

database) 

– – % < 20 ms 88–90 %  
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demands of the L1 phonology. However, in 19 % of cases, the voiced 
stops were instead devoiced. This would not be an expected simplifi-
cation based on the L1 grammar. Insertions and deletions result in a 
mismatch between the acoustic signal and the grapheme-to-phoneme 
dictionary. This is likely to cause confusion with boundary placement, 
leaving the aligner looking for a missing phoneme or figuring out how to 
fit an additional one in. How systematically this is done by the aligner 
will be explored later in this paper. 

While there could be adjustments made to dictionary entries, it is 
clear they would have to be language-specific due to differences be-
tween languages in the treatment of illegal grammatical structures. 
Hancin-Bhatt and Bhatt (1997) compared the production of complex 
onsets and codas of monosyllabic words with Japanese and Spanish 
learners of English. While both vowel epenthesis and consonant deletion 
were used for complex onsets, in the word-final codas consisting of 
liquid+obstruent or liquid+nasal, consonant deletion was over-
whelmingly preferred over vowel epenthesis for both languages. 
Notably, however, they differed in what part of the consonant cluster 
was deleted. The Japanese speakers tended to delete the non-final 
consonant (the liquid) while the Spanish speakers tended to delete the 
final consonant (the nasal or obstruent). Davidson (2005, 2006) pro-
vides another interesting example of L1 English speakers who showed 
some difficulty with the articulatory movements required to produce 
certain onset consonant clusters in pseudo-Czech and Polish words. Not 
being able to fully overlap the articulation of successive consonants, 
such as /zg/, led to the impression of vowel epenthesis, although at a 
much shorter length than would be expected for actual lexical vowel 
epenthesis. 

Variation between L2 speakers is likely to be further influenced by a 
range of social factors. Flege et al. (1995) identifies specific measurable 
factors found to impact the perceived strength of accent. In particular, 
significant factors included: age of learning (AOL), length of residence in 
an English-speaking country (LOR), speaker sex, and how often speakers 
use their L2 relative to their L1. AOL, LOR and speaker sex are included 
in the demographic information collected with the dataset for the cur-
rent study (see Appendix for the full list of questions). While this in-
formation does not provide a comprehensive assessment of the speaker’s 
competency and strength of accent, it does offer additional insight into 
aligner performance. 

The types of inconsistencies presented above all have the potential to 
cause reliability issues with the performance of the aligner on the cur-
rent dataset. 

2.5. Research questions 

The research questions in this study aim to evaluate the performance 
of the MFA with respect to issues identified in previous research 
regarding forced aligners more generally and with using a standard pre- 
trained model with non-standard speech. 

RQ1 To what extent is aligner performance impacted by L2 variety? 
RQ2 To what extent is aligner performance impacted by other 

sociophonetic/demographic factors? 
RQ3 Does the aligner perform better or worse on specific segment 

types? 
RQ4 How does the aligner deal with inconsistencies in transcription 

and dictionary? 

3. Methods and materials 

3.1. Data 

The recordings used in this study were taken from the speech accent 
archive (SAA) corpus (Weinberger, 2015). The recordings are each 
approximately 30 s in length and consist of a speaker reading a 69-word 
passage (included in the Appendix). This passage contains most of the 
consonants, vowels, and consonant clusters of standard American 

English. In addition, the speakers were asked for information about their 
linguistic background (questions listed in Appendix), including place of 
birth, other language(s) spoken, and how they learned English. 

Five speakers from each of nine L2 English varieties were selected for 
analysis (Table A.4), with a balance of male and female speakers (24 F, 
21 M). The nine L2 varieties as labelled in the corpus were: Arabic 
(Jiddah,1 Saudi Arabia), Dutch (Antwerp, Belgium), French (Montreal, 
Canada), German (various cities, Germany), Italian (Naples, Italy), 
Korean (Seoul, South Korea), Mandarin (Shanghai, China), Portuguese 
(Sao Paulo, Brazil), and Russian (Moscow, Russia). The varieties will 
henceforth be referred to by the L1 of the speakers. For example, 
‘German’ refers to L2 English material spoken by German L1 speakers. 
Where possible, speakers for a given language group were selected from 
the same city of birth (although this was not possible for German). 
Residence listed as ‘USA’ or ‘Canada’ was prioritized to ensure a target 
L2 of GA English. A full list of speakers can be found in the Appendix 
(Table A.4). While we expect degree of accentedness and fluency to have 
an impact on the performance of the aligner, this information was not 
provided with the corpus and therefore was not controlled for in this 
study. Potential correlations are briefly discussed in Section 5.1 (RQ1). 

In total, 45 recordings were force aligned with the passage and then 
manually corrected for alignment (see Section 3.3). 

3.2. Forced aligner 

Several aligners were considered for this study, including WebMAUS 
(Munich Automatic Segmentation system, Schiel 1999), LaBB-CAT 
(Language, Brain and Behaviour Corpus Analysis Tool; Fromont and 
Hay 2012), and FAVE (Rosenfelder et al., 2014), each offering their own 
benefits and drawbacks. The decision to use the MFA (McAuliffe et al., 
2017) was made based on recommendations from related studies which 
have directly compared aligner performance (mainly MacKenzie and 
Turton, 2020 and Gonzalez et al., 2020) as well as ease of use, accuracy, 
replicability, and ability to make modifications if necessary. 

The CMU English pronunciation dictionary uses ARPABET (stressed) 
notation, which indicates stress via a number attached following a vowel 
and eliminates the use of reduced vowel transcriptions in the dictionary 
(Carnegie Mellon University, 1993). These labels will be referred to as 
segments and indicated by bolded uppercase letters e.g., T or AH, to 
distinguish them from a phone or phoneme which will be indicated 
using their IPA symbol. Approximate ARPABET-to-IPA list for the pho-
nemes present in this dataset can be found in the Appendix (Tables A.2 
and A.3). 

3.3. Manual correction 

The Praat script provided in the Corpus Phonetics Tutorial by 
Chodroff (2018) was used to generate a TextGrid for each recording as 
input to the MFA. Following automatic alignment, a duplicate of the 
MFA phone transcription in Praat (duplicate TextGrid tier) was created 
and hand-corrected by the first author to allow for direct comparison of 
boundary differences. 

Notes on each of the speakers were made during corrections such as 
any significant impressions of voice quality, speaking rate, or large de-
viations in pronunciation that could impact the accuracy of the aligner, 
along with any decisions made in adjusting boundaries. 

An auditory-acoustic approach was taken to make decisions with 
respect to boundary placement. This meant listening for sound transi-
tions as well as looking at changes in the spectral characteristics and 
waveform, mainly following the principles laid out in Turk et al. (2006). 
Some error in the manual correction is expected; inter-rater agreement 

1 Note that this is also spelled Jeddah but is referred to here as Jiddah to 
remain consistent with the labelling in the Speech Accent Archive (Weinberger, 
2015). 
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for a 20 ms threshold has ranged from 79 to 96.5 % in previous studies 
(e.g., Raymond et al., 2002; Kvale, 1993; Cosi et al., 1991; Table 1). 

Some difference in phonetics and phonology relative to the target 
variety was expected since the pronunciation dictionary is based on 
American English. Therefore, decisions had to be made about how to 
treat inconsistencies. The segment/phoneme labels did not always 
match the phone. However, since realisations of phonemes with the 
same label are going to be compared in future research, as described in 
Section 1.1, the segment labels were left as they were. For other research 
questions this may not be the case, and a more accurate phone set/ 
dictionary may be appropriate. Epenthesis and deletion were also ex-
pected issues. Inserted sounds were included with the phoneme they 
most likely represent according to existing literature on the variety. For 
example, in Spanish initial /sC / clusters are not phonotactically 
possible, and thus a Spanish L2 speaker of English might break the 
cluster by inserting a vowel preceding the cluster (e.g. [əskul] for 
‘school’). In such cases, the two phones would not be represented 
separately in the aligner transcription; both would be merged under the 
S segment label. This is more difficult to correct when the ungrammat-
ical phoneme cluster occurs between words. In this case, the inserted 
sound was merged with the word-final segment (e.g., Fig. 15 in Section 
4.4.3). 

The following additional decisions were made consistently when 
adjusting the alignment:  

• Voicing boundaries and onset/offset of a periodic waveform were 
used for decisions on vowels and used the ‘max’ criterion that in-
cludes laryngeal activity (Turk et al., 2006:17).  

• The initial boundary for stops was left alone when it was unclear 
when the closure occurred (e.g., for phonemically voiceless stops 
following a pause).  

• Stop releases were included with the stop segment to remain 
consistent with existing automatic systems (Jurafsky and Martin, 
2009: 255).  

• For vowel-approximant boundaries, the boundary marker was 
placed at the approximate midpoint of the transition.  

• The N-D boundary of “and” was left alone because it was almost 
always reduced to some variation of /æn/. This variant was later 
added as a dictionary item. 

3.4. Measurements and calculations 

The accuracy of the automatic alignment was analysed by comparing 
the placement of boundaries from the aligner (MFA) with those of the 
manually corrected boundaries. Two main metrics were used to assess 
accuracy for individual segments/boundaries: Boundary Displacement (1) 
and Overlap Rate (2). Two additional metrics were then calculated to 
assess the accuracy for a whole recording or group: Percent <20 ms and 
10 ms, and Total Overlap Rate (TOR) (3). 

3.4.1. Boundary Displacement (BD) 
Further specified as Segment Onset Boundary Displacement (OBD), 

and Segment End Boundary Displacement (EBD). This measures the 
absolute displacement between a boundary placed by the automatic 
aligner and the manually corrected placement of the boundary 
measured in milliseconds. The lower the boundary displacement, the 
greater the accuracy. 
BD = |boundarymanual − boundaryautomatic| (1) 

An additional measure, Directional BD is calculated using Eq. (1) 
without taking the absolute value, to provide information on whether 
there is any bias towards early or late placement of the boundary. The 
resultant value is positive when the automatic aligner has placed a 
boundary too early (i.e., need to add 5 ms to the boundary placement), 
and negative when the boundary was placed too late (i.e., need to 
subtract 5 ms from the boundary placement). 

3.4.2. Overlap Rate (OvR) 
This is a duration-independent measure based on the percentage of 

overlap between the automatically aligned segment and the manually 
aligned segment (Paulo and Oliveira 2004: 39). Both onset and end 
boundary displacement are considered in this measurement, therefore 
providing a better general assessment of the accuracy for a segment than 
the boundary displacement values individually. A value of 1 indicates 
complete overlap while a value of 0 indicates no overlap. 

OvR =
durshared

durman + durauto − durshared

(2) 

Where, 
durshared = duration between the latest time stamp and the earliest 

time stamp 
durman = duration of manually aligned segment 
durauto = duration of automatically aligned segment 

3.4.3. Percent <20 ms; Percent <10 ms 
Percentage of boundary displacements within 10 milliseconds and 

20 milliseconds of manually corrected boundary placement. For this 
study, the percentage of OBD was used because all segments were 
included in the analysis, and it would therefore be redundant to take 
both the onset and end displacements. This metric is an indicator of the 
percentage of the boundary corrections that are small. Additionally, Cosi 
et al. (1991) showed that choosing a threshold of 20 ms was optimal for 
inter-rater agreement. The consensus following this has been that 20 ms 
is a good threshold for final evaluation of aligner accuracy (Fromont and 
Watson, 2016) and has been used as the primary measure for accuracy in 
most of the related literature. Interpretation of these scores should also 
take into consideration that the MFA works in 10 ms frames. Therefore, 
the percent <20 ms can be interpreted as within two frames of analysis 
and percent <10 ms within one frame. 

3.4.4. Total Overlap Rate (TOR) 
While the percent <20 ms OBD measurement does provide a good 

indication of the accuracy of the alignment, and in particular, the 
magnitude of errors, it can be skewed by length of phones and speaking 
rate. Another measure of accuracy, using the time independent OvR, 
involves measuring how much the automatically aligned segments 
overlap with the manual alignments for the whole language group. This 
can be measured as in (3) for a given group where n is the number of 
segments: 

TOR =

∑n

1OvRi

n
(3) 

Eq. (3) calculates how accurate the aligner is across all segments in a 
recording, and therefore can provide a good estimate of overall accuracy 
for a speaker or language group. By taking the average, each segment is 
treated as equal instead of each unit of time, providing a more accurate 
assessment of accuracy than taking the overall ratio of shared duration 
and total duration. 

3.5. Removal of speaker errors 
Before the analysis of accuracy (RQ 1–3), speaker errors were 

removed. Since all speakers were tasked with reading the same passage, 
the orthographic transcription used as input to the aligner was the same. 
Therefore, speakers who deviated from the passage created unexpected 
input for the aligner; albeit errors may also indicate competency in the 
language. 

Segments were removed from analysis only if they were due to errors 
unrelated to the accuracy of the aligner and there was no assumption 
that the aligner could deal with them without manual intervention. 
Reasons for segment removal included:  

• Repetition of a phrase 
’to bring- to bring these things’ [Korean 23; 3.0 s] 
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• False starts 
’into th- into three’ [Arabic 44; 22.8 s]  

• Incorrect order of words / inserted words 
from the store 
’home from store’ [Russian 6; 4.3 s]  

• Deletion of word(s) 
big toy frog for the kids 
’big toy for the kids’ [Italian 20; 14.9 s]  

• Incorrect word used (not a mispronunciation) 
things into three red bags 
’things in three red bags’ [Portuguese 28; 22.4 s]  

• Segments that were condensed due to a duration hard coded in the 
initial script used to create the TextGrids. When generating the 
TextGrid files, the script expected 20 ms of silence before the end of 
the recording leading to occasional early placement of the last word 
boundary (compare the automatically aligned Phones-Auto tier to the 
corrected Phones-Hum tier in the area indicated by the red box in 
Fig. 1). 

Further investigation of these kinds of errors is discussed in the re-
sults for RQ4 (Section 4.4). This information was used to help create 
error-checkers and inform adjustments to scripts for future use of the 
forced aligner on L2 data. 

Data was not discarded where the issue was something the aligner 
could reasonably be assumed to handle. For example, Fig. 2 shows the 
forced aligner mistaking background noise for a fricative. Comparing 
the Phones-Auto tier to the Phones-Hum tier, we can see that the aligner 
has included background noise as part of the F segment in “for” high-
lighted by the red box. In total, 9852 observations were retained in the 
analysis out of 9931 (99.2 % retained). 

4. Results 

4.1. (RQ1) to what extent is aligner performance impacted by L2 variety? 
The Total Overlap Rate (TOR) was calculated for each variety, 

indicating how much of the aligned segments overlapped with the 
manually aligned segments to provide a segment length-independent 
measure of accuracy (Table 2; Fig. 3). These values ranged from 81.4 
– 92.1 % overlap with the corrected alignments. Also listed is the stan-
dard deviation of TOR and of OvR. The first of these is relative to indi-
vidual speaker TOR values, and as such, displays the degree of variation 
between speakers in a language group (1.0 – 4.5 %). The latter shows the 

variation of OvR for all segments in a language group. These ranged 
from 14.0 – 21.8 %. 

The ranking of TOR is slightly different from that of the standard 
percent <20 ms ranking (cf. Table 3). For languages whose ranking has 
improved, this suggests that while there may have been a higher per-
centage of larger boundary displacements (>20 ms), these were not as 
significant relative to the overall length of the segment. The standard 
deviation of the TOR shows there is little difference in accuracy between 
speakers within a language group for the OvR metric. The standard 
deviation of the segmental OvR however, ranges from 14.0 – 21.8 % for 
the tested varieties. This shows there is considerable variation in the 
OvR between segments. 

For direct comparison against previous studies (Table 1), statistics 
based on OBD were calculated (Table 3; Fig. 4). The MFA showed good 
performance on the tested varieties with the percentage of OBD <20 ms 
for the tested varieties ranging from 80.0 - 93.0 % and mean OBD values 
from 4.6 – 14.1 ms. The aligner performed best on German, Italian, and 
French (all having over 92 % of tokens with OBD <20 ms), and by far 
the worst on Russian (80.0 %). 

The mean OBD values are all lower than those for aligning American 
English (x‾ = 16.9 ms; McAuliffe, 2021a). However, there is consider-
ably more variation in the displacement measurements. The standard 
deviation of OBD for the languages in Table 2 range from 11.8 - 36.2 ms 
compared with 11.3 ms for American English (McAuliffe, 2021a). This 
suggests that while the mean accuracy may be better, the consistency in 
performance is worse than for American English. It is useful to note that 
the measurements for American English used in previous studies were 
based on CVC boundaries in conversational speech (Buckeye Corpus; 
Pitt et al., 2007) and therefore in some ways presents a more challenging 
speech signal to align. However, they also ignore pronunciation varia-
tion that includes insertions and deletions that are present in the data for 
this study. 

The results here also show comparable performance to the use of the 
General American English model/dictionary on non-standard varieties 
of British English (x‾ = 6.7–17.5 ms, MacKenzie and Turton, 2020). This 
may present a more comparable measure of accuracy given all segments 
were included in the analysis as opposed to only CVC boundaries. The 
percentage of boundaries placed within 20 ms of the corrected boundary 
(80.0–93.0 %; Table 3) were also relatively similar to the 77–90 % <20 
ms reported by MacKenzie and Turton (2020). 

The percent <10 ms OBD threshold has a slightly different ranking 
by language from the 20 ms threshold, as well as lower accuracy scores 

Fig. 1. Speaker French 38 saying “station” which finished beyond where the script has placed the last word boundary on the Words-Auto tier. This resulted in the 
remaining segments being condensed into the remaining space within the word boundaries on the Phones-Auto tier. 
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Fig. 2. Speaker Russian 21. Example of the forced aligner mistaking background noise for a fricative. This is considered an error of the aligner and therefore not an 
observation to be removed from the analysis. 

Table 2 
Performance of the MFA on each L2 variety as measured by the average per-
centage of overlap (TOR) between the automatically and manually aligned 
segments with speaker errors removed (as described in Section 3.5). Arranged 
from the highest to lowest percentage of TOR. Both standard deviation of OvR 
and TOR between speakers is provided.  

Language Std. Dev. Of TOR between speakers 
(%) 

Std. Dev. Of OvR 
(%) 

TOR 
(%) 

French 1.0 14.0 92.1 
German 1.8 15.1 91.8 
Italian 1.9 16.1 90.9 
Dutch 2.2 16.9 89.0 
Arabic 2.6 15.1 88.1 
Korean 1.3 18.0 87.6 

Mandarin 2.2 18.0 85.9 
Portuguese 1.4 19.3 83.4 

Russian 4.5 21.8 81.4  

Fig. 3. Distribution of speaker means of TOR ranked by aligner performance from best to worst (cf. Figure 4).  

Table 3 
Statistics of speaker means for each L2 variety with speaker errors removed (as 
described in 3.5). Arranged from the highest to lowest percentage of OBD <20 
ms. Percentage of OBD <10 ms is also listed although has a slightly different 
ranking.  

Language Mean Speaking 
Rate (segments/ 

sec) 

Mean 
OBD 
(ms) 

Std. Dev. 
of OBD 

(ms) 

% OBD 
<20 ms 

% OBD 
<10 ms 

German 11.6 5.0 19.7 93.0 83.2 
Italian 11.0 5.4 19.2 92.7 82.4 
French 11.2 4.6 11.8 92.3 83.9 
Dutch 11.0 6.5 13.3 90.4 78.7 

Portuguese 11.6 8.9 15.9 87.1 69.6 
Korean 9.4 7.7 17.6 87.2 76.3 
Arabic 9.3 9.8 27.9 85.6 74.9 

Mandarin 9.9 9.3 18.8 85.4 71.9 
Russian 10.0 14.1 36.2 80.0 66.8  
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for all varieties. These values range from 66.8 – 83.9 %. Some of the 
varieties, such as Portuguese, Mandarin, and Russian, have notably 
lower accuracy with this reduced threshold. This indicates that fewer 
corrections made for these varieties were small boundary adjustments. 

As a general pattern, it is worth noting that the speakers of the va-
rieties with lower accuracy had slower average speaking rates. It is 
possible this could be correlated with the fluency of the speakers in the 
groups, as speaking rate is often used as an indicator of fluency for L2 
speakers (Tavakoli and Wright, 2020). Speaking rate is further investi-
gated in Section 4.2. 

To test for significant performance difference between varieties, a 
linear model was fitted to the speaker means OBD data (Table 3) as well 
as by-speaker TOR data (Table 2) with a fixed effect of language 
(Table 4). The reference was adjusted to the best performing variety 
according to the TOR ranking (French). Table 4 shows that there was no 
significant difference in aligner performance between French and 
German, or Italian for either OBD or TOR. A significant difference was 
found with Dutch but only for TOR (Table 4 Right). There was, however, 
a significant difference (p<0.05) between French and the remaining 
varieties for both OBD and TOR. 

4.2. (RQ2) to what extent is aligner performance impacted by other 
sociophonetic/demographic factors? 

A linear mixed model was fit to the segmental OBD and OvR data to 
determine the impact of speaker demographic factors on overall per-
formance. The model included AOL, LOR, Number of years knowing En-
glish (an extrapolated value: (age – (age began learning English))), along 
with Speaking Rate as fixed effects, and speaker and previous phonetic 
context as random effects. The only significant predictor was Language, 
which is illustrated in Section 4.1. 

While Speaking Rate was not a significant predictor in the mixed 
model, for comparison with prior studies, Spearman’s rank correlation 
tests were performed against by-speaker mean OBD values as well as the 
by-speaker percent <20 ms threshold accuracy metric. The tests showed 
significant, but relatively weak, correlations indicating better accuracy 
of the aligner and smaller boundary displacements on average for faster 
speaking rates (Figs. 5 and 6; OBD: S = 20,628, p = 0.01, rho =−0.36;% 
<20 ms: S = 8398, p = 0.00, rho = 0.45). However, there are two 
speakers who appear to fall outside the general trend for the OBD metric 
(the Russian speakers with high OBD and low speaking rate in Fig. 5) 
that may be skewing the correlation slightly. 

As indicated by the mixed model, using the individual segment OBD 
tokens as opposed to speaker means, a Spearman’s rank correlation test 
shows that the correlation between OBD and speaking rate is not 

Fig. 4. Distribution of speaker means for Onset Boundary Displacement by language. Listed in order of TOR rankings in Table 2 to maintain consistency between 
plots (cf. Figure 3). 

Table 4 
Linear regression model for distribution of speaker mean OBD and TOR within each variety. The reference value (Intercept) is set at the best performing variety in TOR 
– French. * Indicates statistical significance.  

Model Info   
Observations 45 45 
Dependent Variable OBD TOR 
Model Fit         
R2 0.63 0.75 
Adj. R2 0.55 0.70  

Est. S.E. t val. p Est. S.E. t val. p 
(Intercept) French 4.62 1.05 4.38 0.00 92.04 1.01 91.44 0.00 
Arabic 3.45 1.49 2.31 0.03* −3.43 1.42 −2.41 0.02* 
Dutch 1.84 1.49 1.24 0.22 −2.98 1.42 −2.09 0.04* 
German 0.38 1.49 0.26 0.80 −0.21 1.42 −0.15 0.88 
Italian 0.80 1.49 0.53 0.60 −1.18 1.42 −0.83 0.41 
Korean 3.07 1.49 2.06 0.05* −4.49 1.42 −3.15 0.00* 
Mandarin 4.63 1.49 3.11 0.00* −6.19 1.42 −4.35 0.00* 
Portuguese 4.27 1.49 2.86 0.01* −8.63 1.42 −6.06 0.00* 
Russian 9.46 1.49 6.34 0.00* −10.67 1.42 −7.49 0.00*  
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significant: (S = 1.61e+11, p-value = 0.43, rho = −0.01). Additionally, 
there was no significant correlation between speaking rate and by- 
speaker TOR, indicating speaking rate has a stronger impact on the 
absolute displacement rather than general accuracy. 

It is worth noting that there also appear to be language-specific 
patterns displayed (also seen in Table 3). For example, most Mandarin 
speakers tended to have slower speaking rates, while most Portuguese 
speakers tended to have faster speaking rates. This could be an indicator 
of fluency as mentioned in the previous section. However, there could 
also be interactions with features of the L1. For example, Coupé et al. 
(2019) showed that speaking rate can be constrained by the structure of 
the language being spoken. Of the 17 languages they tested, 
syllable-timed languages such as Spanish and Italian tended to have 
faster speaking rates, while tone languages such as Mandarin tended to 
be slower. If there are language constraints impacting the L2, resulting 
in consonant cluster simplification for example, it is possible this could 
have a secondary impact on the speaking rate. Conversely, other con-
founding factors such as pronunciation competence may affect the 
performance without affecting speaking rate. If the phone realisation 
strongly deviates from the phoneme model, the aligner will have diffi-
culty correctly placing boundaries and could result in more, or larger 
errors (discussed further in 4.4.2). 

4.3. (RQ3) does the aligner perform better or worse on specific segment 
types? 

A more fine-grained analysis of the performance of the aligner was 
conducted by categorising segments by type, defined in terms of manner 
of articulation, and tagging them with new labels following Gonzalez 
et al. (2020). The classification is summarised in Tables A.1 and A.2. 

Vowels were additionally tagged to indicate stress according to their 
dictionary label. It is possible to break down the performance further by 
segment. However, due to limited data, it is unlikely any strong con-
clusions can be drawn from this information, and segment by segment 
data is therefore not shown here. 

It is notable that boundary displacements are more than likely due to 
the interaction between adjoining segments rather than the performance 
of the aligner on any one segment category alone. Therefore, OvR was 
used as the main measure for individual segment accuracy since it takes 
into account both the Onset (OBD) and End BD (EBD), while OBD alone 
was used for segment clusters. Furthermore, some of the variation in 
performance may occur due to mismatches in manner of articulation, 
resulting in accuracy being influenced by both context and acoustic 
model mismatches. 

The presentation of results below begins by discussing segment ac-
curacy as a whole for all languages, followed by a by-language discus-
sion of segment accuracy and a focus on vowels to provide comparison 
with previous studies. 

4.3.1. All segments. Pre-segmental pauses heavily impacted the distri-
bution of the aligner accuracy on different segment types; x‾ = 7.7 ms, 
sd = 20.4 ms when post-pausal boundaries are included, compared with 
x‾ = 6.1 ms, sd = 14.8 ms when they are not. The phone was always 
contained within the post-pausal segment. However, as a buffer, there 
would often be a period of silence included as well. The adjustments 
made to segment boundaries following a pause or silence were mostly 
due to a personal preference to indicate as accurately as possible the 
start of a phone (further discussed in Section 4.4.4). For the following 
analysis, segments that followed a pause were therefore removed to 

Fig. 5. Patterning of OBD as a function of speaking rate using speaker mean OBD values (p = 0.01, rho = −0.36).  

Fig. 6. Patterning of the percent OBD <20 ms as a function of speaking rate (p = 0.00, rho = 0.45).  
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allow for better investigation of the aligner’s performance on different 
segment types. A total of 691 of the 9861 observations (7 % of the data) 
were removed. 

Fig. 7 shows the performance using OBD in milliseconds (7a) and 
OvR (7b) for each segment category. Fig. 7a shows that there is generally 
higher OBD for nasals than other segments. This indicates that segments 
with following nasals require the most manual correction and therefore 
tend to produce the least accurate automatic alignment. It is clear that 
the aligner is very good at identifying the beginning of stops, as they 
displayed the lowest OBD. 

The OvR values indicate that nasals, approximants, and vowels have 
the lowest correct overlap percentage (Fig. 7b). Stops and fricatives, on 
the other hand, had the highest OvR with the least variation, indicating 
they are more accurate and robust to alignment error. 

Vowel-vowel (v-v), fricative-fricative (f-f), and vowel-nasal (v-n) 
clusters had the highest BD values and were therefore less well aligned 
than other cluster types for all varieties (Table 5). This is likely due to the 
acoustic similarities between vowels and nasals, and the difficulty in 
separating adjacent phones produced in the same manner. For fricative- 
fricative clusters, depending on the variety, the center of gravity could 
be either very similar between the two segments, or one could be more 
similar to the acoustic model than the other, causing issues with align-
ment. The best alignment was between approximant-stop (a-s), nasal- 
fricative (n-f), and stop-stop (s-s) clusters. All the best alignments 
seemed to occur where there was a clear difference in the spectral 
characteristics between adjacent segments. No skew in direction of the 
BD was found for any of the segment clusters. 

4.3.2. By language. The performance of the aligner on individual 
segment categories, along with relative performance between segment 
types, was dependent on the L2 variety (Fig. 8). For most varieties, the 
aligner had more difficulty correctly aligning nasals and approximants, 
and displayed similar trends of performance across categories. One 
notable exception was Arabic, which was the only case in which the 
aligner performed the best on nasals. 

The BD between all segment clusters was analysed for each language 
(Table 6). On average, the displacements were 10 ms and below, indi-
cating very good performance by the aligner. 

While the performance on specific cluster types mostly ranked 
similarly between varieties, there were some cluster types that patterned 
differently in certain languages. The coloured cells in Table 6 display a 
few clusters with this type of pattern. For example, the boundary be-
tween stops and nasals (orange cells) is highly accurate for most of the 
languages except Korean, Mandarin, and Russian, while fricative- 
fricative boundaries (blue cells) are generally more difficult for the 
aligner with the exception of French. These patterns could of course be 
influenced by the limited contexts available in the dataset. 

4.3.3. Vowels. The aligner performed slightly better on stressed vowels 
than unstressed vowels. Nonetheless, the difference in accuracy did not 
reach statistical significance for any of the varieties. Secondary stressed 
vowels were ignored due to a comparatively small number of tokens. As 
a whole, the EBD of vowels followed by a nasal or vowel was higher than 
for vowels followed by any other category (Fig. 9; see also Table 5). 
Additionally, boundary placement in vowel-consonant clusters was 
generally more difficult for the aligner than consonant-vowel clusters 
(x‾v−c = 7.5 ms; x‾c−v = 5.2 ms). 

There was of course, a reduced phone set due to the limited number 
of vowel-X combinations, where X is any non-empty unit, in the reading 
passage (e.g., there are only 4 unique v-v combinations). However, of 
the approximants, L had more of an impact than R on the EBD of vowels. 
Of the nasals, N and NG were more likely to cause boundary placement 
problems than M. In addition, apart from S, all segments that heavily 
impacted the end boundary displacement of vowels were voiced. Even 
then, it is possible that the S segments were realised as [z] even though 
they were not labelled as such. 

Fig. 7. OBD (7a) and OvR (7b) by segment category for all languages.  

Table 5 
Average BD for segment clusters listed from lowest BD (most accurate) in milliseconds to highest BD (least accurate). Where, (a) = approximant, (f) = fricative, (n) =
nasal, (s) = stop, and (v) = vowel.  

Lowest BD 
a-s n-f s-s n-s f-s v-s n-v s-v f-v s-f f-n 
2.5 2.8 3.2 4.2 4.4 4.8 4.8 4.9 5.2 5.3 5.8 
s-n a-v v-f f-a a-f v-a s-a v-n f-f v-v  
5.8 6.2 6.2 6.2 7.3 7.7 7.9 11.9 12.6 13.4  

Highest BD  
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Fig. 8. Distribution of OvR by segment category. Coloured by segment category.  

Table 6 
Ranking of segment cluster types from lowest BD to highest BD for each language (decreasing in accuracy). Blue and orange cells depict examples of segment clusters 
that are similarly ranked for most languages but show very different rankings for a few varieties.  

Arabic Dutch French German Italian Korean Mandarin Portuguese Russian

s-n s-n s-n s-n a-s a-s s-s a-s n-s

n-f f-n s-s f-n s-n s-s a-s n-f s-s

n-s v-s f-s a-s n-f n-f n-f f-s a-s

f-s n-s a-s n-s s-s f-s a-f s-n f-v

n-v f-s n-f f-s n-s s-f v-s n-v n-v

s-s a-v s-f n-f f-s n-v f-a a-v v-a

a-s n-f n-s s-s v-s a-f f-n v-a s-v

f-v s-v f-f s-f a-f f-n s-v v-v f-a

s-v n-v v-s a-f s-v n-s f-v s-v n-f

v-s v-f f-a a-v v-v v-f v-f v-s s-f

f-n f-v s-v f-a f-v f-v v-a a-f v-s

a-v v-a v-a n-v s-f s-v f-s v-f a-v

v-f s-a a-f f-v f-n v-s a-v s-f v-f

v-n a-f a-v v-s v-f f-a n-v n-s s-n

f-a s-s v-f s-a n-v s-a s-f f-n v-n

s-f s-f f-n v-f a-v a-v s-a s-s f-s

s-a f-a s-a s-v v-a v-v f-f f-v s-a

f-f v-v n-v f-f s-a s-n v-v s-a f-n

a-f v-n f-v v-v f-a v-a n-s f-a f-f

v-a a-s v-v v-a f-f v-n v-n f-f a-f

v-v f-f v-n v-n v-n f-f s-n v-n v-v
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4.4. (RQ4) how are inconsistencies with the transcription, dictionary, and 
acoustic model treated? Can systemic issues inform post-alignment error- 
checks? 

The following section revisits the data that was removed from 
analysis in the previous research questions (Section 3.5) and discusses 
how the aligner responds to insertions, deletions, and speaker errors 
such as hesitations or repeated phrases when there is no verbatim 
transcription. Additionally, boundary placement errors that were 
greater than 80 ms are categorised 

4.4.1. Speaker errors. Speaker errors that involve additional words or 
phrases such as with false starts and word/phrase repetition (e.g., Fig. 10 
and Fig. 11), are all treated by the aligner in a similar manner. In these 
instances, only the nearest following segment appears to be affected. The 

aligner extends the segment to encapsulate the error unless it is 
following a period of silence. In that case, the initial triggered segment is 
extended. For example, in Fig. 10, in the red box on the left, on the 
Words-Hum tier, we can see the speaker has a false start for the word 
“three” and they then repeat the phrase “into three” in the red box on the 
right. As can be seen on the Phones-Auto tier, the vowel portion of “into” 

(UW0 /u/) is extended to include the false start until the pause, while 
the TH /θ/ segment has been extended following the pause. Similarly, in 
Fig. 11, the additional phrase “bring those- ask her to” shown on the 
Words-Hum tier was captured under the AH0 /ʌ/ segment from “to.” On 
rare occasions, the aligner correctly ignored a word which was not 
present in the transcript, such as the example in Fig. 12 where the 
additional words “of the,” indicated by the red box, were marked as “sp” 

(silence/non-speech). 

Fig. 9. End Boundary Displacement distribution for vowels according to the following segment category. Segments are coloured by segment category.  

Fig. 10. Example of a hesitation and repetition of a word. “into th- into three” by speaker Arabic 44. Only UW0 /u/ for “into” and the TH /θ/ of “three” were 
extended where there were speaker errors. 
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When there is an incorrect word spoken (e.g., Arabic 50 “this” 

instead of “the,” shown in Fig. 13), the word-level segmentation is often 
correct. That is, the boundaries for the word are correct, but the phone 
alignment within the word is skewed in a manner similar to the type of 
error it most closely resembles. For example, it may be treated more like 
phonetic insertion or deletion (Section 4.4.3) depending on the 
substituted word. For instance, in Fig. 13, the word “the” has been 
replaced with “this” by the speaker. Consequently, both the number and 
labels of segments differed from the transcript. Following how the 
aligner tends to treat insertions, the segment AH0 /ʌ/ from “the” (on the 
Phones-Auto tier) has been extended to include the additional S segment 
(correctly transcribed on the Phone-Hum tier). 

4.4.2. Phonetic substitution. Phonetic substitution results in a mismatch 
with the acoustic model. How the aligner treats phonetic substitution 

depends both on what a phone is being substituted with, as well as the 
expected categories of the surrounding segments. This is due to the 
degree of confusability between consecutive segments. For example, 
Fig. 14 shows two instances of phonetic substitution for the segments 
DH /ð/ and TH /θ/. In this example, both fricatives have been replaced 
with stops. However, for DH, neither of the surrounding segments is a 
stop, and the realizations of those sounds match the expected realisa-
tions resulting in correct alignment of the segment. For TH, there is a 
preceding fricative (Z /z/) which the aligner divides in an attempt to 
correctly align both fricatives. The actual realisation of TH by the 
speaker is treated like an insertion with the ‘additional phone’ being 
captured under the TH segment, discussed further in the following 
Section (4.4.3). 

4.4.3. Phonetic epenthesis and deletion. Phonetic epenthesis is similarly 

Fig. 11. Example of a speaker repeating a phrase due to self-correction. “Ask her to bring those- ask her to bring these” as spoken by speaker Arabic 46.  

Fig. 12. Example of the aligner correctly ignoring a repetition and incorrect word, marking it as “sp” (silence/non-speech). “snack of her- for her” as spoken by 
speaker Portuguese 28. 
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dependent on the categories of the surrounding phones. If, for example, 
an additional sound is placed at a v-n boundary, and the additional 
sound has similar spectral characteristics, the aligner will tend to put a 
boundary at the midpoint of the inserted phone. Alternatively, if the 
category matches either of the surrounding phone categories, it will be 
included with the phone it more closely matches. An example of this is 
seen in Fig. 15. There is vowel epenthesis following the D segment in 
“and” which can be seen in the spectrogram indicated by the red box. In 
this case, the spectral characteristics of the vowel more closely resemble 
the expected following vowel segment (AH0 on the Phones-Auto tier) 
than the preceding stop (D on the Phones-Auto tier) and is therefore 
captured under the vowel segment. As can be seen on the corrected 
Phones-Hum tier, the additional vowel was not labelled, but included 
under the D segment (this was a choice of the first author in line with 
how the data will be used for future work). 

When phonetic deletion occurs, the aligner collapses two segments 
under one label and just catches up with the next correct segment. 

Therefore, one sound is divided in two to accommodate two segment 
labels. This happened often with “and” due to reduction; /ænd/ was 
realised as some variant of /æn/ as described in Section 3.3. 

4.4.4. Analysis of boundary displacement errors over 80 ms. Following 
removal of non-aligner related outliers (as described in Section 3.5), the 
OBD values were arranged in descending order, and displacements over 
80 ms (amounting to 96 tokens) were investigated. This was done to 
understand the cause of the top 1 % of errors. 

The errors fell into four distinct categories, as summarised in Table 7: 
(I) Too much silence following a pause, (II) Hesitations and background 
noise, (III) Voice quality, and (IV) Variety-specific differences. 

In particular, the aligner produced a lot of errors for Russian 
speakers, providing 32 of the 96 tokens examined (33 % of the tokens). 

Occasionally, when there is a pause, the aligner treats vowel-like 
hesitations or audible breathing as part of the sound. This results in an 
early boundary placement for word-initial sounds. While the whole 

Fig. 13. Example of a speaker using an incorrect word. “for this kids” instead of “for the kids” as spoken by speaker Arabic 50.  

Fig. 14. Two examples of phonetic substitution for the segments DH and TH. “bring these things” as spoken by speaker Dutch 16.  
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sound is captured within the labelled segment, the duration is likely to 
be misrepresented, and thus acoustic measurements of the sound are 
also potentially unreliable. This is likely caused by the silence model 
from the LibriSpeech corpus (which the English model is trained on). 
This model does not include much noise. Therefore, it is expected that 
noise can heavily impact the accuracy and is more likely to be confused 
for speech than with a noisier silence model. Silence following a pause 
accounts for a large percentage of the errors (28 %). Depending on the 
purpose of the alignment, these could be considered errors or not: 

(i) If location of segments is needed - early segment boundaries should 
not be considered an error because the whole sound is captured 
within the segment. 
(ii) If acoustic measurements of segment are needed - early segment 
boundaries could throw off duration measures, typicality measures 
(if taking the segment as a whole), and mid-point measurements (the 
midpoint of the segment is not equal to the midpoint of the sound 
and in some cases may not even include the target sound). 

Variety-specific differences account for the largest number of errors 
(47 %). This type of error is the result of deviation from the acoustic 
model. This suggests that it will be useful to identify large errors when 
dealing with a variety that does not match the acoustic model. 

5. Discussion 

The main purpose of this study was to determine whether the Gen-
eral American English model and dictionary provided with the MFA are 
sufficient for use with L2 English speech. This was addressed through 
investigating the aligner accuracy by variety, speaker demographics, 
segment type and context, and by analysing the types of errors found in 
the data. A summary of key findings can be found in Table 8. 

5.1. Discussion of the results 
RQ1 Overall, the results indicate that while the MFA trained on 

General American English does show variation in performance for both 
OBD and TOR between varieties, variety does not significantly impact 
the accuracy. In fact, the aligner performed well across varieties. The 
results for all measures were comparable to existing studies that have 
tested an ‘off-the-shelf’ model on other L1 varieties of English and 
nativised Englishes, as well as to the L1 English and inter-rater bench-
marks. We refer to Table 1 for direct comparison. 

The mean BD and OvR in this dataset were lower, and the percentage 
of boundary placements within 10–20 ms of the manual placement were 
higher, in comparison to the matched condition (L1 English) in McAu-
liffe et al. (2017) and McAuliffe (2021a). This could be due to the 
amount and diversity of boundary data included in our study in addition 
to a speech style difference. McAuliffe et al. (2017) and McAuliffe 
(2021a) included only boundaries from 534 CVC words from conver-
sational speech which a) presents a more difficult speech signal than 
read speech and b) is a mismatch in style to the training data (Lib-
riSpeech; Panayotov et al., 2015) which is based on read speech. The 
standard deviations of the BD in the present study, however, were 
generally much higher compared with studies based on matched con-
ditions (L1 English; McAuliffe, 2021a; McAuliffe et al., 2017). Therefore, 
despite appearing to perform better on average, the aligner performs less 
consistently on L2 speech. One possible explanation specific to this study 
could be the lack of verbatim transcription, causing larger displacements 
due to deviations from the read passage. The slightly better performance 
than the MacKenzie and Turton (2020) study on non-standard varieties 
of British English could be due to a closer match in the target English 
variety (American vs British English) for the L2 speakers despite 

Fig. 15. “also need a small” as spoken by speaker Korean 19. Vowel epenthesis following D has been combined with the vowel segment AH0 due to spectral similarity.  

Table 7 
Classification of errors causing boundary displacements over 80 ms.  

Error Type Description Percentage of 
Errors 

(I) Too much silence 
following a pause 

• Tended to be triggered early 
by background noises 

28 % 

(II) Hesitations and 
background noise 

• Vowel-like hesitations were 
sometimes mistaken for 
segments 

14 % 

(III) Voice quality 
(speaker-related) 

• Creaky voice and breathy 
voice tended to cause alignment 
issues 

11 % 

(IV) Variety-specific 
differences 

• Vowel was longer than 
expected or there was a 
difference in vowel quality 
• Different realization of sounds 
e.g., [t] instead of [θ] 
• Sounds with similar spectral 
characteristics next to one 
another (e.g., a dark /l/ next to a 
back vowel) 
• Long stop closures 

47 %  

*Almost half 
from Russian 

speakers  
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expecting similar types of phonetic and phonological deviations. 
There was minimal deviation from the group mean TOR by speakers 

in each language, suggesting little within-group variation. It also sug-
gests that the performance was impacted more by variety differences 
than speaker differences. This result is not too surprising, as the Kaldi- 
based acoustic models include speaker-adaptation which normalises 
the speaker feature space (Chodroff, 2018). Additionally, a review of 
impressionistic notes and post hoc assessment by the second author and 
two experienced phoneticians suggests the performance of the aligner 
may be linked more to fluency and technical quality rather than 
speaker-specific qualities or features. This is supported by findings from 
Tu (2018), who asked native speakers of US American English to rate the 
degree of accentedness for a set of speakers from the same corpus used in 
this study (30 speakers from each of German, French, Mandarin, and 

Spanish). The results showed a lack of strong accent ratings for both 
French and German speakers in the corpus, while the Mandarin speakers 
were deemed to have the strongest accent overall. Additionally, the 
French and German speakers were judged to sound more ‘native.’ These 
results could partially explain the better performance for German and 
French speakers and the poorer performance for Mandarin in the present 
study. 

That there was a significant difference in performance between va-
rieties shows that variety does impact how well the aligner performs. 
Even so, the performance was relatively good on all varieties. The poorer 
performance on Russian could be explained by the comparatively worse 
technical quality of the recordings along with more hesitations, word 
order errors etc. that could in principle be fixed with corrected ortho-
graphic transcriptions. 

RQ2 Available demographic and sociolinguistic factors including 
length of residence in an English-speaking country, age the speaker first 
began to learn English, and speaking rate, were analysed for impact on 
aligner accuracy. Apart from speaking rate, none of the other features 
patterned in any meaningful way with aligner accuracy. One explana-
tion could be limited data resulting in not enough speakers for each 
grouping category. The present study was constrained to prioritize the 
impact of variety and therefore controlled the data for city of birth as a 
proxy for regional variety as opposed to any of the other factors that 
could have been controlled for. 

The impact of speaking rate on aligner accuracy contrasts with 
findings from previous studies on L1 English varieties such as MacKenzie 
and Turton (2020) and Bailey (2016), which found faster speech rates to 
negatively impact performance. In this study, while speaking rate was 
not a significant predictor of accuracy for individual segment bound-
aries, there was a significant but relatively weak correlation with 
speaker mean OBD and percent <20 ms metrics which indicated slightly 
better accuracy and fewer large displacements for faster speaking rates. 
MacKenzie and Turton (2020) did, however, note one exception with the 
Westray variety, where FAVE performed relatively poorly despite the 
slower speaking rate. The variety’s extreme phonetic and phonemic 
deviation from General American English was suggested to be the cause 
of this phenomenon. For the present study, we suspect the effect of 
speaking rate is due to a combination of fluency (slower = generally less 
fluent) (Cucchiarini et al., 2000; Tavakoli and Wright, 2020), less 
reduction present overall in L2 speech leading to longer duration of 
unstressed vowels (e.g., Duckinoska, 2021; Laturnus, 2020; Kim and 
Lee, 2005), and interactions with the L1 (e.g., whether the variety tends 
to have long or short vowels for example). Taken together this suggests 
that the aligner performance will decrease for extreme speaking rates in 
either direction. 

RQ3 The performance of the aligner was not only impacted by va-
riety, but also segment category and boundary context within each 
language. In general, stops and fricatives had the highest OvR with 
minimal spread, indicating they were not only well-aligned, but 
consistently so. In contrast, nasals and approximants had less correct 
overlap and were therefore generally less well aligned, indicating that 
post hoc corrections of alignment should be focused on these segment 
types. This corroborates findings from similar studies such as Gonzalez 
et al. (2020) and MacKenzie and Turton (2020). 

The minimal difference in performance on stressed versus unstressed 
vowels could be due to the nature of L2 speech, i.e., that speakers reduce 
their vowels less often, or to a lesser degree, (e.g., Duckinoska, 2021) 
and thereby produce unstressed vowels closer to their full form. This in 
turn could make it easier for the aligner to identify the correct vowel. 

The by-language rankings of BD between segment clusters displayed 
interesting patterns. While the aligner performed consistently well or 
badly on some cluster types (e.g., nasal-fricative and vowel-nasal 
respectively), other clusters ranked differently depending on the lan-
guage. For example, the aligner consistently performed well on stop- 
nasal clusters for all varieties except Korean and Mandarin, whereas 
the aligner consistently had more difficulty with vowel-vowel clusters 

Table 8 
Summary of findings.  

Research Question Key Findings 

RQ1 Is the performance of the aligner 
impacted by variety? 

OBD 

x‾ 4.6 - 14.1 
ms 

sd 11.8 - 36.2 
ms 

% 
<20 
ms 

80.0 - 
93.0% 

% 
<10 
ms 

66.8 – 

83.9% 

TOR 

x‾ 81.4 - 
92.1% 

sdTOR 1.0 - 4.5% 
sdOvR 14.0 - 

21.8% 

RQ2 
Is there any significant effect from 
other sociophonetic / 
demographic factors? 

significant  Speaking 
rate 

not 
significant  

Age of 
learning 
Length of 
residence 

Years 
learning 

RQ3 
Is the performance of the aligner 
impacted by manner of 
articulation? 

segment • Stops and fricatives 
more accurate than 
nasals and 
approximants 
• Similar spectral 
characteristics next to 
one another caused 
issues for boundary 
placement (e.g., v-a, f- 
f, v-n) 
• No skew in direction 
of displacement 

language • Performance on 
segments and segment 
clusters varied by 
language (see Fig. 8 
and Table 6) 

vowels • No significant 
difference in 
performance between 
stressed and unstressed 
vowels 
• BD v−consonant > BD 
consonant−v 

RQ4 How are inconsistencies with the 
transcription, dictionary, and 
acoustic model treated?  

• Many errors are not 
variety-specific or 
specific to L2 speech 
and will be 
encountered with any 
difference in the 
transcription or 
segmental realisation  
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except for with Italian and Portuguese (Table 6). It is possible these 
patterns are caused by how closely matched the realisation of these 
categories are for a given variety, differences in which segments diverge 
from the acoustic model, as well as potential impacts from stress pat-
terns in the L1 phonology. This explanation is supported by the findings 
in Meer (2020), who showed that the vowels specific to Trinidadian 
English were less well aligned than those shared with the variety the 
acoustic model was trained on. The inconsistency in performance across 
languages further demonstrates how variety can impact the perfor-
mance of the MFA. 

Some of the patterns from the overall alignments appear to apply 
more generally. For example, the findings that vowel-consonant clusters 
were more difficult for the aligner than consonant-vowel clusters sup-
ports findings from McAuliffe et al. (2017) based on American English 
speech. Specifically for vowel boundary placements, the results from 
this study support findings from Gonzalez et al. (2020) that vowel-nasal, 
vowel-vowel, and vowel-approximant clusters are more difficult for the 
aligner; contexts where boundaries can also be difficult to reliably place 
when manually transcribing (e.g., Turk and Nakai, 2006; Wesenick and 
Kipp, 1996). 

One solution to combat alignment errors would be to ignore the 
beginning or end portion of a segment in automatic analyses. We hesi-
tate to recommend favouring one over the other as there was no bias in 
the direction of the BD (whether boundary placement was consistently 
early or late) for any of the clusters or varieties. However, removing a 
portion of the segment prior to acoustic analysis will be less likely to 
remove important information from vowels, nasals, and fricatives than 
stops and approximants. Mid-point measures from vowels, nasals and 
approximants will still have a good chance of being accurate even 
without correction, except possibly for post pausal position. 

RQ4 Many of the types of errors that arise due to variety mismatch 
such as phonetic substitution, deletion, and epenthesis are treated by the 
aligner in a systematic way. Knowing this, one can isolate which clusters 
may be problematic and approach them in a way that best suits the use. 
This could be by adding dictionary entries, as in Bailey (2016), to ensure 
more correct labelling, or by making manual corrections to the align-
ments if duration measurements are important. However, in general the 
MFA is very quick to catch up with the next correct alignment, especially 
with speaker errors, therefore not excessively throwing off the align-
ment of the remaining speech. 

The majority of systematic errors leading to large boundary dis-
placements (described in Section 4.4.4) were the result of issues not 
related to variety mismatch. Therefore, they are to be expected in forced 
alignments for any variety, potentially explaining why variety mismatch 
has a relatively low impact on accuracy. These errors include post- 
pausal excess silence, interference from hesitations and background 
noise, and issues arising from voice quality. These findings support the 
conclusions of McAuliffe et al. (2017) and McAuliffe (2021a), who 
described much larger boundary displacement following a pause than 

not. Hesitations and background noise being mistaken for speech sounds 
depends on how silence or non-speech sounds are modelled in the 
acoustic model. In this case the LibriSpeech silence model is very clean, 
and therefore will be more likely to confuse background noise as speech 
than one which includes more background noise and non-speech sounds 
in their silence model. Creaky voice and breathy voice, while more 
common in some varieties than others, can happen in almost any speech 
(Ladefoged and Maddieson, 1996). These particular voice qualities were 
likely causing issues due to their disruption of the expected spectral 
characteristics of the phones. Creaky voice, for example, introduces 
more irregularity in the vibration of the vocal folds, while breathy voice 
tends to introduce more high-frequency noise into the signal (Ladefoged 
and Maddieson, 1996). 

Based on the types of errors encountered when using a standard 
General American English model with L2 English speech (Section 4.4), 
some recommendations have been presented in the following section. 
This includes recommendations for how to catch or mitigate errors, and 
when it’s best to make adjustments post-hoc. 

5.2. Recommendations 

5.2.1. Speaker errors. If the forced aligner is going to be used on a large 
amount of data without manual correction, being able to screen for 
repetitions or insertions would be useful. Due to the way the aligner 
treats these types of errors, it follows that a useful measure could be 
segment duration. In this dataset, there is a mean segment length of 590 
ms when there is a speaker error; the smallest duration being 60 ms and 
the longest 1,790 ms (Table 9). While the smaller errors, often due to 
hesitations, may be difficult to find, the larger errors would likely be 
easy to identify. 

Based on the average duration for each segment type for each lan-
guage (‘Segment Average’ in Table 9; also listed in summary Table A.3), 
the extended segments are far longer than one would expect for a given 
segment (other than an extended filled pause, perhaps). This means that 
duration of segments would be a good indicator of speaker error in the 
data collection step following automatic alignment. Screening for these 
errors would hopefully identify repeated phrases or false starts without 
needing to pre-screen the recordings. However, this might not be suffi-
cient to identify all errors. For example, in one case the segment is only 
30 ms below the average segment duration. Ignoring this segment, the 
shortest duration of a segment with this type of error is 260 ms. In the 
data set, only 99 segments with corrected alignment are 260 ms or over 
(1 % of the data). 

For vowels and fricatives, 260 ms appears to be a good threshold to 
check for errors for this dataset, but for the remaining segment cate-
gories, the threshold would be better set at a lower duration. Keep in 
mind some of the values may be longer in duration to account for vowel 
epenthesis and that some of the segment categories do not match the 
actual phone, so there will be some variation within a group. The 

Table 9 
Examples of inserted words or hesitations and the duration of the segment that was affected.  

Speaker Affected 
Segment 

Corrected Duration 
(ms) 

Automatic Duration 
(ms) 

Difference 
(ms) 

Segment Average 
(ms) 

Difference from Segment Average 
(ms)  

ARPABET IPA      
Arabic44 UW0 /u/ 74.6 260.0 185.4 110.0 150 
Arabic46 AH0 /ʌ/ 76.3 1790.0 1713.7 105.4 1684.6 
Arabic46 S /s/ 114.8 320.0 205.2 115.3 204.7 
Korean23 AH0 /ʌ/ 108.9 600.0 491.1 124.0 476 
Korean4 T /t/ 29.4 60.0 30.6 89.5 −29.5 
Korean4 AH0 /ʌ/ 104.2 590.0 485.8 124.0 466 

Mandarin9 AH0 /ʌ/ 90.8 360.0 269.2 101.3 258.7 
Portuguese28 ER1 /ɝ/ 204.4 370.0 165.6 115.2 254.8 
Portuguese28 V /v/ 76.7 650.0 573.3 76.3 573.7 

Russian6 P /p/ 70.2 280.0 209.8 114.0 166 
Russian21 TH /θ/ 66.9 510.0 443.1 123.8 386.2  
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majority of segment categories, however, were correctly assigned. 
The exact thresholds set will depend on both speaking rate and 

average durations for the dataset under investigation. However, the top 
1 % of durations, i.e., those approximately >2.3 standard deviations 
from the mean, for a given segment category should be sufficient to 
catch any large errors. At this point, the affected segments could either 
be excluded from analysis or manually corrected. A summary of average 
segment durations for each of the languages is provided in the Appendix 
(Table A.3). 

5.2.2. Phonetic substitution. If greater/improved accuracy is required in 
terms of a specific label, or excessive and consistent errors are being 
caused by substitutions, the only way to mitigate this type of potential 
error without training a new model is to provide additional dictionary 
entries. This entails either adding a direct phone match to account for 
common substitutions or replacing with a phone of the same category of 
the substitution if there is no equivalent phone in the phone set. Bailey 
(2016) provides a method for adjusting a large number of dictionary 
items. 

To check for errors post hoc, more familiarity with the variety being 
studied is required. Potentially problematic sound clusters can be 
identified based on expected substitutions and their context in the 
transcript then manually corrected as necessary. 

5.2.3. Phonetic epenthesis and deletion. While phonetic epenthesis pre-
sents similarly to additional speech (Section 4.4.1), duration will not 
provide an effective error check. Adjustments for both epenthesis and 
deletion would be better made at the dictionary stage, or with manual 
correction following alignment. 

5.2.4. Summary. While the overall magnitude of the displacement er-
rors in this study are not large, we would agree with Babinski et al. 
(2019) and DiCanio et al. (2013) among others, that manual corrections 
should be made if the required measures need very accurate alignment, 
such as for duration or stop VOT. Foulkes et al. (2018) further emphasize 
this message and advise caution when making theoretical claims based 
on small effects in corpus-based studies. They specifically point to forced 
alignment as introducing uncertainty into the reliability of acoustic and 
duration measurements taken from corpora. 

It is recommended to have a verbatim transcript prior to phone-level 
alignment if possible, either manual orthographic transcription or with 
the help of automatic speech recognition software, as it could resolve 
many of the errors related to repeated or deleted words/phrases and 
incorrect order of words, especially if trying to automate analysis as 
much as possible. However, as Markl (2022) shows, similar issues with 
L2 speech are also present in the output of automatic speech recognition 
systems. To account for consistent variation in the speech, a focus on 
adding dictionary transcriptions would be beneficial, and if there is no 
matched phone label in the acoustic model, manner of articulation 
category will likely be sufficient to mitigate many of the expected errors 
described in Section 4.4. 

Knowledge of how the variety under investigation differs from the 
standard model will help determine which boundary contexts may prove 
to be particularly difficult for the aligner. This could of course be chal-
lenging if there is no existing literature available. 

If the alignment is so unreliable that making the above adjustments 
would not help, adapting the acoustic model to new data or training a 
new model may be the only solution (McAuliffe et al., 2017). 

5.3. Caveats 
Our results are based on a small subset of speakers that were selected 

for each variety, and therefore performance may vary due to additional 
factors not explored in this study. These include regional accent (many 
large urban cities were selected; see Table A.4), general articulatory 
fluency, fluency in English as an L2, and technical quality of the 
recording. Therefore, the exact ordering or average OBD/TOR should 
not be taken as a reflection of absolute performance on these varieties. 
However, given that the averages were either not significantly different, 
or were very close to the matched training and testing condition, the 
General American model can reasonably be assumed to perform well on 
L2 English speech. Controlling for any of the other sociophonetic / de-
mographic factors or determining scores for fluency and strength of 
accent could provide potential avenues of further study to identify key 
issues of using a standard acoustic model on L2 speech. 

Additionally, we suspect the generalisability of our findings to other 
forced alignment systems will depend crucially on the phone models 
(training data) and grapheme-to-phoneme dictionary used. 

6. Conclusion 

The findings of this study support the conclusion that while the 
performance of the Montreal Forced Aligner (GMM-HMM architecture) 
is impacted by variety mismatch, it does not differ drastically from use 
on a mismatched style (such as conversational speech) or other variety 
mismatches. The accuracy, while comparable to testing with the stan-
dard variety, is less consistent across L2 varieties. However, the majority 
of systematic errors encountered that led to large boundary displace-
ments were the result of issues not exclusive to variety mismatch such as 
inaccurate orthographic transcriptions, hesitations, specific voice qual-
ities, and background noise. Whether the specific errors that arise from 
using a mismatched model are insignificant enough to warrant the use of 
the standard model depends on the research question being asked and 
the specific measurements that will be taken. For most, a pretrained, or 
‘off-the-shelf,’ model will work sufficiently with L2 speech, especially if 
combined with targeted manual corrections. 
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Appendix A 

Passage participants were asked to read for the Speech Accent Archive (Weinberger, 2015): 
Please call Stella. Ask her to bring these things with her from the 
store: Six spoons of fresh snow peas, five thick slabs of blue cheese, 
and maybe a snack for her brother Bob. We also need a small plastic 
snake and a big toy frog for the kids. She can scoop these things into 
three red bags, and we will go meet her Wednesday at the train 
station. 
Additional questions speakers were asked to self-report in the Speech Accent Archive:  

1. Where were you born?  
2. What is your native language?  
3. What other languages besides English and your native language do you know?  
4. How old are you?  
5. How old were you when you first began to study English?  
6. How did you learn English? (academically or naturalistically)  
7. How long have you lived in an English-speaking country? Which country?  
Table A.1 
Categorization of ARPABET symbols separated by manner of articulation. The table contains only the sounds that were present in the recordings (according to the 
‘english_us_arpa’ dictionary (Jurafsky and Martin, 2009:251)).  

Category Symbol Segment Labels (In ARPABET) IPA Symbol 
Plosive s P, B, T, D, K, G /p, b, t, d, k, g/ 

Fricative / Affricate f F, V, TH, DH, CH, S, Z, SH, HH / f, v, θ, ð, tʃ, s, z, ʃ, h / 
Nasal n M, N, NG /m, n, ŋ / 

Approximant (Liquids and Glides) a W, L, R /w, l, ɹ / 
Vowel (Unstressed) v (0) IY, IH, AH, OW, UW, ER See Table A.2 
Vowel (Stressed) v (1) IY, IH, EY, EH, AE, AA, AO, AH, OW, UW, AY, OY, ER, (EY2) See Table A.2 

Pause p sp, sil –   

Table A.3 
Average duration in milliseconds for each segment category for each language. From left to right: Approximant, Fricative, Nasal, 
Stop, Vowel.   

a f n s v 
Arabic 78.0 121.3 84.2 88.7 129.7 
Dutch 63.4 116.7 81.8 85.0 91.0 
French 70.0 101.3 70.3 76.9 102.8 
German 64.4 102.9 74.3 79.3 94.1 
Italian 67.0 110.4 70.9 83.6 102.4 

(continued on next page) 

Table A.2 
ARPABET symbols for vowels with primary stress along 
with their approximate IPA equivalent (Jurafsky and 
Martin, 2009:252).  

ARPABET Approximate IPA Equivalent 
IY /i/ 
IH /ɪ/ 
EY /eɪ/ 
EH /ε/ 
AE /æ/ 
AA /ɑ/ 
AO /ɔ/ 
AH /ʌ/ 
OW /oʊ/ 
UH /ʊ/ 
UW /u/ 
AY /aɪ/ 
AW /aʊ/ 
OY /ɔɪ/ 
ER /ɝ/   
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Table A.3 (continued )  
a f n s v 

Korean 79.2 117.7 81.9 88.6 131.5 
Mandarin 73.9 120.7 79.7 90.6 113.0 

Portuguese 63.0 96.0 70.8 75.3 100.7 
Russian 78.1 120.8 90.3 92.0 112.4   

Table A.4 
Speaker demographic information from Speech Accent Archive (Weinberger, 2015).  

L1 Birth City, Country Speaker ID Age Sex 

Arabic Jiddah, Saudi Arabia 

40 19 M 
44 29 F 
46 28 M 
50 36 M 
52 21 F 

Dutch Antwerp, Belgium 

16 23 F 
18 23 M 
23 23 M 
31 23 F 
37 21 F 

French Montreal, Canada 

12 19 F 
16 19 F 
26 27 F 
33 62 M 
38 22 M 

German 

Meissen, Germany 3 19 F 
Halle, Germany 5 47 M 
Berlin, Germany 7 20 M 

Bernburg, Germany 8 25 M 
Elsterwerda, Germany 22 21 F 

Italian Naples, Italy 

6 32 F 
7 24 M 
20 32 M 
31 59 F 
36 61 F 

Korean Seoul, South Korea 

4 29 F 
7 32 M 
19 21 F 
23 49 F 
24 42 M 

Mandarin Shanghai, China 

4 24 F 
9 38 M 
24 21 F 
28 45 M 
66 22 F 

Portuguese Sao Paulo, Brazil 

6 44 M 
9 18 M 
28 36 F 
35 22 F 
37 43 F 

Russian Moscow, Russia 

6 26 F 
8 66 M 
13 26 M 
21 46 F 
27 21 M  
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