
This is a repository copy of treats: a modular R package for simulating trees and traits.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/210154/

Version: Published Version

Article:

Guillerme, T. orcid.org/0000-0003-4325-1275 (2024) treats: a modular R package for
simulating trees and traits. Methods in Ecology and Evolution, 15 (4). pp. 647-656. ISSN
2041-210X

https://doi.org/10.1111/2041-210x.14306

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial (CC BY-NC)
licence. This licence allows you to remix, tweak, and build upon this work non-commercially, and any new
works must also acknowledge the authors and be non-commercial. You don’t have to license any derivative
works on the same terms. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Methods Ecol Evol. 2024;00:1–10.  | 1wileyonlinelibrary.com/journal/mee3

1  |  INTRODUCTION

Comparing biological patterns is one of the key ways to under-

stand mechanisms in evolutionary biology. This leads to the

development of phylogenetic comparative methods as key meth-

odologically driven topic in ecology, evolution and palaeontology

(Felsenstein, 1985; Pennell & Harmon, 2013). These methods rely

on comparing patterns in a phylogenetic context to understand bio-

logical mechanisms or concepts (Harmon, 2019). These comparisons

can be done between observed patterns under different conditions

or against null, neutral or baseline models (see Bausman, 2018 for

distinctions) suggesting different processes or mechanisms. For

example different traits distribution for species with different diets

(Deepak et al., 2023) or habitats (Pinto- Ledezma et al., 2017). Or by

comparing some observed pattern to one simulated under null or

base conditions (Miller et al., 2022). In theory, workers can use the

following research pipeline: (1) thinking of a specific mechanism (e.g.

mass extinction allowing the surviving species to acquire new mor-

phologies), (2) collecting some data to test this mechanism (e.g. some

traits of species across and extinction event) and then (3) comparing

these patterns to some simulated under no specific conditions (e.g.

a null model where the traits evolve randomly regardless of an ex-

tinction event, Puttick et al., 2020). Workers might thus need to sim-

ulate a great diversity of evolutionary scenarios to test their specific

Received: 9 June 2023  | Accepted: 1 February 2024

DOI: 10.1111/2041-210X.14306

A P P L I C AT I O N

treats: A modular R package for simulating trees and traits

Thomas Guillerme

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction

in any medium, provided the original work is properly cited and is not used for commercial purposes.

© 2024 The Authors. Methods in Ecology and Evolution published by John Wiley & Sons Ltd on behalf of British Ecological Society.

School of Biosciences, University of

Sheffield, Sheffield, UK

Correspondence
Thomas Guillerme

Email: guillert@tcd.ie

Funding information

UKRI- NERC Grant, Grant/Award Number:
NE/T000139/1

Handling Editor: Tiago Quental

Abstract

1. Simulating biological realistic data is an important step to understand and investi-

gate biodiversity. Simulated data can be used to generate null, base line or neutral

models. These can be used either in comparison to observed data to estimate the

mechanisms that generated the data. Or they can be used to explore, understand

and develop theoretical advances by proposing toy models.

2. In evolutionary biology, simulations often involve the need of an evolutionary

process where descent with modification is at the core of how the simulated data

are generated. These evolutionary processes can then be nearly infinitely modi-

fied to include complex processes that affect the simulations such as traits co-

evolution, competition mechanisms or mass extinction events.

3. Here I present the treats package, a modular R package for trees and traits

simulations. This package is based on a simple birth death algorithm from which

all steps can easily be modified by users.

4. treats also provides a tidy interface through the treats object, allowing users

to easily run reproducible simulations. It also comes with an extend manual regu-

larly updated following users' questions or suggestions.

K E Y WO RD S
birth- death, disparity, ecology, evolution, null- models, simulations, traits, trees

2  |    GUILLERME

question. To do so, we need statistical and software solutions to sim-

ulate trees and data to generate many specific null models.

In practice, these evolutionary simulations can be done

relatively easily on computers using a birth- death process

(Feller, 1939; FitzJohn, 2012; Stadler, 2010). A birth- death pro-

cess is a continuous time Markov process that had been routinely

implemented in R (R Core Team, 2023) to simulate realistic phy-

logenies (e.g. FitzJohn, 2012; Paradis & Schliep, 2019). This gen-

eral algorithm to generate phylogenetic trees can be coupled with

other Markov processes to also generate traits, for example using

a Brownian Motion process (BM; Cavalli- Sforza & Edwards, 1967)

or an Ornstein Uhlenbeck (OU; Lande, 1976; see Cooper, Thomas,

Venditti, et al., 2016 for a distinction between both). In R, this can

be done with several already well used and well documented pack-

ages. For example if you want to simulate diversity through time,

you can use TreeSim (Stadler, 2011) to simulate diversity under

a set of specific parameters (e.g. speciation and extinction) with

some events disrupting the simulations (e.g. mass extinctions). You

can even improve on generating these patterns using FossilSim

(Barido- Sottani et al., 2019) to take into account fossilisation

processes. You can also use paleobuddy (do Rosario Petrucci

et al., 2022) or paleotree (Bapst, 2012) to generate palaeon-

tology specific data. On the other hand, if you need to simulate

both diversity and traits through time, this can be done with spe-

cific parameters in RPANDA (Morlon et al., 2016), diversitree

(FitzJohn, 2012) or PETER (Puttick et al., 2020) where the traits

are generated stochasticaly through time (given some process)

during the birth- death process.

Although the packages mentioned above are excellent and
routinely used with fast and reliable algorithms and associated

documentation, they are all designed for specific tasks and don't

allow much modification beyond the input parameters designed

by the authors. For example, TreeSim can simulate a birth- death

tree with some extinction event but is not designed to simulated

one with an extinction event that leads to the birth- death process

to be not diversity dependent anymore, simulating a release in se-

lection pressure after the extinction event that leads to a different

process dominating speciation. Or PETER is not designed to simu-

late a complex set of traits (say three correlated BM traits and two

independent OU ones). This absence of modularity has hampered

the use of complex and question- driven simulations, although I ac-

knowledge this was not the primary aim of the authors of the ex-

cellent packages mentioned above. This has led workers to often

develop their own tools to answer specific questions (e.g. Puttick

et al., 2020). Therefore, I propose treats a modular R package to

simulate both trees and traits through time. Note that although
treats is modular and thus allows to be used as go to tool for sim-

ulating and trees and traits, it lacks the ready- to- use implemented

methods featured in other packages such as fossilisation and sam-

pling (Barido- Sottani et al., 2019; do Rosario Petrucci et al., 2022;

Stadler, 2011) or specific macroevolutionary simulations (Morlon

et al., 2016; Puttick et al., 2020).

2  | DESCRIPTION

treats is based on the eponymous treats function that allows to sim-

ulate a phylogeny and some trait(s) simultaneously. The base birth-

death algorithm “grows” a phylogenetic tree and generates traits for

each node and tips in the following manner:

1. Generating branch length;

2. Selecting a lineage among the currently living ones;

3. Choosing whether that lineage goes extinct (becomes a tip) or

speciates (becomes a node).

These three steps are repeated until the tree reaches the desired

age or number of species (the algorithm's implementation is heavily

inspired and based on FitzJohn, 2012). If traits are simulated during

the process, a fourth step is added:

4. Generating some trait(s) value(s) for the selected lineage (either

a tip or a node—but see the “Simulating traits section” below

to generate trait values along edges).

In treats, these three or four steps are implemented as modular

functions that the user can easily change using an internal class of ob-

jects called “modifiers” or “traits” (Figure 1). The simulation then

outputs a tree (of class “phylo” and a associated table of traits—“ma-

trix”) that can be visualised using the plot.treats function. A
third class of object called “events” can be added to the simulations

to modify the entire simulation under certain conditions (e.g. simulat-

ing a mass extinction). Each element in the algorithm can be modified

by the user using the implemented functions make.bd.params to set

the birth- death parameters, make.traits to set the trait(s), make.

modifiers to set the birth- death algorithm and make.events to

eventually add one or more events. Users can replace any step in the

algorithm by their own specific functions suiting their needs or, for less

advanced users, by using already implemented functions.

2.1  | Major functionalities

The following sections provides an overview of the three main func-

tions displayed in Figure 1 (make.traits, make.modifiers and

make.events).

2.1.1  |  Simulating traits

Traits are simulated via the make.traits function given one or

more processes, the number of dimensions per process and some

starting value(s). Essentially, the generation of new trait values is

based on a process (a function) modifying a trait value (x0) relative

to some branch length (edge.length). For example, a simple BM

process could be generated by the function rnorm where it modifies

 2
0
4
1
2
1
0
x
, 0

, D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://b
esjo

u
rn

als.o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

1
1
1
/2

0
4
1
-2

1
0
X

.1
4
3
0
6
 b

y
 U

n
iv

ersity
 O

f S
h
effield

, W
iley

 O
n
lin

e L
ib

rary
 o

n
 [1

2
/0

3
/2

0
2
4
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p
licab

le C
reativ

e C
o
m

m
o
n
s L

icen
se

    | 3GUILLERME

the trait value x0 relative to the branch length (edge.length). The

longer the branch length, the more likely the new trait value will be

different from x0:

Brownian Motion process

my.bm.process <- function(x0, edge.length) {

 rnorm(n = 1, mean = x0, sd = edge.length)

}

Creating the traits object

my.trait <- make.traits(process = my.bm.process)

Of course biological data can be much more complex and often

multivariate (Adams & Collyer, 2019) requiring the users to develop

more complex function to cater their specific needs. The treats

package contains a list of pre- built processes that are “ready- to- use”:

• BM.process and OU.process: generalised BM and Ornstein-

Uhlenbeck processes in any number of dimensions (including pos-

sible correlation);

• multi.peak.process: a generalised Ornstein- Uhlenbeck pro-

cess (uni- or multi- dimensional) which allows for multiple peaks;

• repulsion.process: a unidimensional process generating trait

values that don't overlap with previously generated trait values;

• discrete.process: a process generating discrete trait values;

• no.process: ignores the branch length (i.e. a time independent

process).

Traits are always generated (and stored) only for tips or nodes

and not along edges. However, it is possible so generate trait

values at specific or regular time intervals by using the option

save.steps in the treats function. This will generate single-

ton nodes (i.e. nodes with only one descendant) with associated

trait values.

Note that the treats package primary aim is to generate both

a tree and some traits at the same time. However, it is possible to

also just generate traits with a given topology. This is done through

the function map.traits that intakes one or more trees and a

“traits” object.

2.1.2  |  Modifying the birth- death process

Modifying the birth- death process can be done in several ways. Most

easily it is done through changing the stopping rules through the

stop.rule argument (number of total taxa or living ones, or time

of the simulation). Equally straightforward, one can modify the pa-

rameters of the birth- death process through the make.bd.params

function: the speciation (�) and the extinction (�) ones. These can be

F IGURE 1 treats package workflow:

the treats algorithm generates a

tree and traits using inbuilt “traits”

objects that contain the instructions

on how to generate the trait data (e.g.

which process? how many dimensions?);

“modifiers” objects that contains

instructions on how to “grow” the tree

(e.g. by linking speciation to trait values

or to the current number of species);

and “events” objects that can modify

the tree structure, “modifiers”

or “traits” depending on specific

conditions (e.g. 80% of species with

positive trait values go extinct after

reaching a specific time).

 2
0
4
1
2
1
0
x
, 0

, D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://b
esjo

u
rn

als.o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

1
1
1
/2

0
4
1
-2

1
0
X

.1
4
3
0
6
 b

y
 U

n
iv

ersity
 O

f S
h
effield

, W
iley

 O
n
lin

e L
ib

rary
 o

n
 [1

2
/0

3
/2

0
2
4
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p
licab

le C
reativ

e C
o
m

m
o
n
s L

icen
se

4  |    GUILLERME

either fixed values (for constant speciation and extinction) or values

drawn from distributions.

It is also possible to directly modify how the birth- death algo-

rithm works through make.modifiers by changing the three main

components of the birth- death algorithm as described above. By de-

fault, the algorithm uses the following algorithms:

1. Generating branch length by drawing a value from an exponential

distribution with the rate being function of the current number of

lineages scaled by the speciation and extinction parameters

The default branch length generation

rexp(1, rate = number_of_lineages * (speciation + extinction))

2. Selecting a lineage among the currently living ones by simply

sampling across the available (living) lineages:

The default lineage selection

sample(number_of_lineages, 1)

3. Choosing whether that lineage goes extinct (becomes a tip) or
speciates (becomes a node) by drawing a random number be-

tween 0 and 1 and comparing it to the ratio of speciation and

turnover (speciation + extinction). If the random number is

smaller than the ratio of speciation and turnover, the lineage spe-

ciates, else it goes extinct:

The default speciation/extinction decider

runif(1) <= (speciation / (speciation + extinction))

The function make.modifiers allows to specifically change any of

these components by providing a different function for each part of

the algorithm. For example, one can modify the three functions above

so that the branch length is not dependent on the number of lineages,

the sampling is always the first species available and the extinction is

drawn from a normal distribution. Note that these function need a spe-

cific syntax that is detailed in the treats manual.

Lineage independent waiting:

lineage.independent <- function(bd.params,

 lineage = NULL,

 trait.values = NULL,

 modify.fun = NULL) {

 my_rate <- bd.params$speciation + bd.params$extinction

 return(rexp(1, rate = my_rate))

}

Selecting always the first species

select.first <- function(bd.params,

 lineage = NULL,

 trait.values = NULL,

 modify.fun = NULL) {

 return(as.integer(1))

}

Random normal speciation

normal.speciation <- function(bd.params,

 lineage = NULL,

 trait.values = NULL,

 modify.fun = NULL) {

 my_turnover <- bd.params$speciation/

 (bd.params$speciation + bd.params$extinction)

 return(rnorm(1) <= my_turnover)

}

Creating the modifier object

modified.birth.death <- make.modifiers(branch.length = lineage.

independent,

 selection = select.first,

 speciation = normal.speciation)

2.1.3  |  Creating events

The final major argument to be passed to treats are the “events”

objects generated through make. events where the following infor-

mation needs to be specified:

• The target designating what the event should be applied to (e.g.

“taxa” for modifying the number of species, “traits” for mod-

ifying the traits, etc.).

• The condition which is a function returning a logical value of

when to trigger the event (e.g. when reaching a certain number of

taxa, after some specific time has ellapsed or if some specific trait

value is reached, etc.).

• The modification which is a function that specifically modifies

an internal object in the treats algorithm.

For a more exhaustive list of events so you can refer to the

treats manual with many different detailed examples. Briefly

though, this is how the mass extinction events are designed in the

example above.

Creating an extinction that removes species with positive trait values

positive_extinction <- make.events(

 target = "taxa",

 condition = age.condition(15),

 modification = trait.extinction(x = 0, condition = `>=`))

For this event, the target is the number of taxa in the simulations.

This is indicated using the target = “taxa” argument. Then the

event is triggered using the argument age.condition(15) and

modifies the internal lineage object using the trait.extinc-

tion(x = 0, condition = ̀ > =`) function. age.condition and

trait.extinction are both function factories that are not going to be

detailed here (see Wickham, 2019). Effectively these arguments can

be passed directly as standard functions. For example, to trigger the

event when reaching time 15, we can use the following function:

 2
0
4
1
2
1
0
x
, 0

, D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://b
esjo

u
rn

als.o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

1
1
1
/2

0
4
1
-2

1
0
X

.1
4
3
0
6
 b

y
 U

n
iv

ersity
 O

f S
h
effield

, W
iley

 O
n
lin

e L
ib

rary
 o

n
 [1

2
/0

3
/2

0
2
4
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p
licab

le C
reativ

e C
o
m

m
o
n
s L

icen
se

    | 5GUILLERME

Returns TRUE when reaching time 15

reaching.time15 <- function(bd.params, lineage, trait.values, time) {

 return(time > 15)

}

This will trigger the modification which is equivalent to the fol-

lowing function modifying the lineage internal list:

removing.75.taxa <- function(bd.params, lineage, trait.values) {

 ## Select a portion of the living species to go extinct

 extinct <- sample(lineage$n, round(lineage$n * 0.75))

 ## Update the lineage object

 lineage$livings <- lineage$livings[- extinct]

 lineage$n <- lineage$n - length(extinct)

 return(lineage)

}

Hence, the extinction event described above is equivalent to the

following one:

Creating an extinction that removes species with positive trait values

positive_extinction <- make.events(

 target = "taxa",

 condition = reaching.time15,

 modification = removing.75.taxa)

2.1.4  |  Visualising results

The treats package also comes with tools to visualise trees and

traits together or separately. This can be done through the generic

S3 plot function (calling plot.treats) and allows to display up to

three traits or two traits and time (in 3D) as displayed in Figures 4

and 5. These functions can also be used to visualise trees and traits

together from non “treats” objects by using the make.treats

function to transform them into “treats” objects.

2.2  |  Brief applied example

To illustrate this we will look whether it is possible to detect changes

in disparity (i.e. diversity of traits) in a subset of the data published

from Beck and Lee (2014) implemented in Guillerme (2018). This

dataset contains the ordinated traits for 50 mammalian species

across the Cretaceous- Palaeogene extinction event (K- Pg, 66 Mya;
Figure 2).

Loading the package and data

library(treats)

data(BeckLee_tree)

data(BeckLee_mat99)

Creating the time slices

time_slices <- chrono.subsets(BeckLee_mat99, BeckLee_tree,

 method = "continuous",

 model = "proximity",

 time = seq(from = 96, to = 36, by = - 10))

Calculating disparity on the two first dimensions only

observed_disparity <- dispRity(boot.matrix(time_slices),

 metric = c(sum, variances),

 dimensions = c(1,2))

Plotting the tree and the disparity through time

par(mfrow = c(1,2), bty = "null")

F IGURE 2 Observed phylogeny (a) and disparity through time (b) in the subset of Beck and Lee's (2014) dataset. The red line represents

the K- Pg boundary. Is this change in disparity related to the K- Pg mass extinction? Or, more generally, is it even possible to detect potential

changes of disparity due to a mass extinction event?

140 120 100 80 60 40 20 0

(a)

0
.0

5
0

.1
0

0
.1

5
0

.2
0

0
.2

5
0

.3
0

0
.3

5

Time (Mya)

S
u

m
 o

f
v
a

ri
a

n
c
e

s

96 86 76 66 56 46 36

(b)

 2
0
4
1
2
1
0
x
, 0

, D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://b
esjo

u
rn

als.o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

1
1
1
/2

0
4
1
-2

1
0
X

.1
4
3
0
6
 b

y
 U

n
iv

ersity
 O

f S
h
effield

, W
iley

 O
n
lin

e L
ib

rary
 o

n
 [1

2
/0

3
/2

0
2
4
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p
licab

le C
reativ

e C
o
m

m
o
n
s L

icen
se

6  |    GUILLERME

Thre tree

plot(ladderize(BeckLee_tree), show.tip.label = FALSE)

axisPhylo()

abline(v = BeckLee_tree$root.time - 66, col = "red")

legend("topleft", pch = NULL, legend = "A", bty = "n", cex = 2)

The disparity

plot(observed_disparity, ylab = "Sum of variances")

abline(v = 4, col = "red")

legend("topleft", pch = NULL, legend = "B", bty = "n", cex = 2)

Using this example dataset, one might be interested in testing

whether the K- Pg extinction had an effect on disparity through

time. But can such effect be detected in the first place? We can

test this by simulating some datasets with similar properties as the

observed data and measure changes in disparity in these simulated

datasets.

2.2.1  |  Simulating trees

The first and simplest way is to simulate tree topologies that have

similar properties than the observed one. To do so, we need to

use some speciation parameter indicating the rate at which lin-

eages speciate (aka “birth” or “�”) and an extinction parameter

indicating the rate at which they go extinct (aka “death” or “�”).

Here, we are using two relatively arbitrary (speciation = 0.035
and extinction = 0.02) to get trees roughly matching the observed
tree. Note that you might want to consider more appropriate
ways to calculate these rates for research projects (e.g. Magallon

& Sanderson, 2001). We also need a stopping rule for when to

stop the simulations (in our case when reaching 140 time units).

This will produce a single random tree using the input parameters

(Figure 3). The number of time units in treats is arbitrary and

is not equivalent to millions of years. Using 140 time units here

allows to simulate number of tips in a similar order of magnitude

as the ones in the observed data. Note that I will not discuss the
options here in great details. Much more information can be found

in the treats manual.

Using the birth- death parameters from the observed tree

my_bd_params <- make.bd.params(speciation = 0.035, extinction =

0.02)

Setting the stopping rule (stop after 140 time units)

stop_rule <- list(max.time = 140)

Simulate the tree

set.seed(2)

sim_tree <- treats(bd.params = my_bd_params,

 stop.rule = stop_rule,

 null.error = 100,

 verbose = FALSE)

2.2.2  |  Simulating trees and traits

For our specific question, we will also need to simulate some traits

associated with each node and tip. For simplicity we will simulate a

two dimensional BM trait. To do so, we can create a “traits” object

with the function make.traits. This results in a two- dimensional

trait space for all the simulated species and their nodes (Figure 4).

Creating a trait in 2 dimensions.

my_traits <- make.traits(process = BM.process, n = 2)

Simulate the tree and traits

set.seed(123)

sim_data <- treats(traits = my_traits,

 bd.params = my_bd_params,

 stop.rule = stop_rule,

 null.error = 100,

 verbose = FALSE)

par(mfrow = c(1,2))

Plotting one trait through time

plot(sim_data, ylab = "Trait 1", las = 1, main = "Trait 1 through time")

Plotting the two dimensions against each other

plot(sim_data, trait = c(2,1), ylab = "Trait 1", xlab = "Trait 2", las = 1,

main = "Traits 1 and 2")

2.2.3  |  Simulating a trees and traits with events

To answer our question, we also want to simulate an extinction event. To

do so, we can create two different “events” object with the function

F IGURE 3 A randomly simulated tree with similar properties as the
observed one. Note that the time here is expressed in arbitrary units.

30 25 20 15 10 5 0

 2
0
4
1
2
1
0
x
, 0

, D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://b
esjo

u
rn

als.o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

1
1
1
/2

0
4
1
-2

1
0
X

.1
4
3
0
6
 b

y
 U

n
iv

ersity
 O

f S
h
effield

, W
iley

 O
n
lin

e L
ib

rary
 o

n
 [1

2
/0

3
/2

0
2
4
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p
licab

le C
reativ

e C
o
m

m
o
n
s L

icen
se

    | 7GUILLERME

make.events. The first one will simulate a random extinction after

reaching 66 time units and then making three quarter (0.75) of the taxa

go extinct. The second one will simulate a random extinction but based

on trait values: after reaching time 66, all the species with positive trait

values will go extinct. Both scenarios illustrate two different types of

mass extinctions but they are not equivalent: because of the ancestral

trait value starting at 0, we expect the second scenario to remove on

average only 50% of the species (i.e. half the species are expected to

evolve a trait value above 0). For more details on simulating the effect of

mass extinction and the difficulties to simulate an unambiguous effect

of a mass extinction, see Puttick et al. (2020). Because of this stochas-

ticity of the simulations, we will repeat them 50 times (using repli-

cates = 50) to generate a distribution of possible simulated scenarios

as opposed to a random single one that could be idiosyncratic (Figure 5).

Creating a random mass extinction

random_extinction <- make.events(

 target = "taxa",

 condition = age.condition(140- 66),

 modification = random.extinction(0.75))

Creating an extinction that removes species with positive trait values

positive_extinction <- make.events(

 target = "taxa",

 condition = age.condition(140- 66),

 modification = trait.extinction(x = 0, condition = `>=`))

set.seed(123)

Simulate the tree and traits with a random extinction event

sim_rand_extinction <- treats(

 traits = my_traits,

 bd.params = my_bd_params,

 stop.rule = stop_rule,

 events = random_extinction,

 null.error = 100,

 replicates = 50)

Simulate the tree and traits with a selective extinction event

sim_trait_extinction <- treats(

 traits = my_traits,

 bd.params = my_bd_params,

 stop.rule = stop_rule,

 events = positive_extinction,

 null.error = 100,

 replicates = 50)

Once we have simulated a distribution of trees and traits with

the two extinction scenarios, we can measure disparity as in Figure 2

for all the simulated data and compare it to the observed disparity.

Remove single nodes simulated at the extinction

sim_rand_extinction <- drop.singles(sim_rand_extinction)

sim_trait_extinction <- drop.singles(sim_trait_extinction)

Calculate the dispRity for all the simulations

random_extinction_disparity <- dispRitreats(sim_rand_extinction,

 method = "continuous",

 model = "proximity",

 time = seq(from = 96, to = 36, by = - 10),

 metric = c(sum, variances),

 scale.trees = FALSE)

selective_extinction_disparity <- dispRitreats(sim_trait_extinction,

 method = "continuous",

 model = "proximity",

F IGURE 4 A randomly simulated tree with a two- dimensional random Brownian Motion trait. Orange, light blue and dark blue dots
respectively represent nodes, fossils and living species.

30 25 20 15 10 5 0

−10

−5

0

5

10

15

Trait 1 through time

Time

T
ra

it
 1

−10 −5 0 5 10

−10

−5

0

5

10

15

Traits 1 and 2

Trait 2

T
ra

it
 1

 2
0
4
1
2
1
0
x
, 0

, D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://b
esjo

u
rn

als.o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

1
1
1
/2

0
4
1
-2

1
0
X

.1
4
3
0
6
 b

y
 U

n
iv

ersity
 O

f S
h
effield

, W
iley

 O
n
lin

e L
ib

rary
 o

n
 [1

2
/0

3
/2

0
2
4
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p
licab

le C
reativ

e C
o
m

m
o
n
s L

icen
se

8  |    GUILLERME

 time = seq(from = 96, to = 36, by = - 10),

 metric = c(sum, variances),

 scale.trees = FALSE)

Scale the disparity results (to compare to the observed ones)

random_extinction_disparity <- scale.dispRity(random_extinction_

disparity)

selective_extinction_disparity <- scale.dispRity(selective_extinc-

tion_disparity)

observed_disparity <- unlist(get.disparity(scale.dispRity(observed_

disparity)))

Plotting the results with the observed disparity

par(mfrow = c(1,2))

plot(random_extinction_disparity, main = "Random extinction",

 ylab = "Scaled sum of variances", ylim = c(0, 1))

abline(v = 4, col = "red")

lines(x = 1:7, y = observed_disparity, lty = 2, lwd = 2)

F IGURE 5 Two different mass extinction events: (a) 75% of species go extinct; (b) all species with positive trait values go extinct. The red
line marks the extinction event.

30 25 20 15 10 5 0

−
1
5

−
1
0

−
5

0
5

Random extinction

Time

A
1

(a)

30 25 20 15 10 5 0

−
6

−
4

−
2

0
2

4
6

8

Positive extinction

Time

A
1

(b)

F IGURE 6 Comparison of the observed sum of variances (dashed line) to the simulated one (ligth and dark grey polygons and black line
representing respectively the 95% and 50% confidence interval and the median value).

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

Random extinction

Time (Mya)

S
c
a
le

d
 s

u
m

 o
f
v
a
ri

a
n
c
e
s

25 20 15 10 5 0

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

Selective extinction

Time (Mya)

25 20 15 10 5 0

 2
0
4
1
2
1
0
x
, 0

, D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://b
esjo

u
rn

als.o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

1
1
1
/2

0
4
1
-2

1
0
X

.1
4
3
0
6
 b

y
 U

n
iv

ersity
 O

f S
h
effield

, W
iley

 O
n
lin

e L
ib

rary
 o

n
 [1

2
/0

3
/2

0
2
4
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p
licab

le C
reativ

e C
o
m

m
o
n
s L

icen
se

    | 9GUILLERME

plot(selective_extinction_disparity, main = "Selective extinction",

 ylab = "", ylim = c(0, 1))

abline(v = 4, col = "red")

lines(x = 1:7, y = observed_disparity, lty = 2, lwd = 2)

From these results we can draw some preliminary conclusions:

the observed change in disparity is more likely due to a selective

mass extinction rather than a random one (Figure 6). This is of course

a very crude way of testing this, a more rigorous approach is needed

to answer the question: more and better quality data, and more

thorough methods (e.g. using a rank envelope test Murrell, 2018).

3  | ADDITIONAL INFORMATION

3.1  | Manuals, vignette and templates

The treats package comes with internal documentation (e.g.

?treats) but also with a thorough and extended vignette in a gitbook

format: the treats manual. This manual is designed so that it can be

regularly updated and enhanced through the lifetime of the package

facilitating the interface between methods development and usage

(Cooper, Thomas, & FitzJohn, 2016). Furthermore, a library of simu-

lation templates is maintained on the GitHub page. These templates

are written and shared in the form of GitHub issues template and can

be submitted and shared by any users. Either for them to have them

stored somewhere curated, or better yet, so that other users can reuse,

comment and mofidy them for their own projects.

3.2  |  Further directions

This paper describes the first version of the treats package.

However, I intend to continuously develop this package. For example

future planned versions will include abiotic events and a better integra-

tion with the dispRity package. This will be done while keeping track

change (through NEWS file), continuous integration and unit testing.

3.3  |  Repeatability and reproducibility

This paper is entirely reproducible from an Rmarkdown document

available on GitHub. The data used for the example above (Beck &

Lee, 2014) is available from the dispRity package (Guillerme, 2018).

4  |  CONCLUSION

The treats package modular architecture allows workers to de-

velop their own specific biological simulation scenarios based on

their own specific research question. The pipeline of the package

through the different “treats” objects (“traits”, “modifi-

ers” and “events”) also allows workers to generate publication

standard results through plotting but also with easily reproducible

and reusable scripts.

ACKNOWLEDGEMENTS
Many thanks to Mark Puttick for inspiring the development the pack-

age through previous collaborations. Thanks to Andrew Beckerman,
Ian Brennan, Gustavo Burin, Christopher Cooney, Natalie Cooper,
Alex Cranston, Jasmine Hardie, Tom Lansley, Clement Prieul, Joe Rees,
James Rule, Sophie Ryan and Gavin Thomas, for support and useful

comments on late stages of the development of this package. Thanks

to William Gearty, one anonymous reviewer and one anonymous as-

sociate editor for their very useful suggestions. This work was funded

by UKRI- NERC Grant NE/T000139/1 awarded to Gavin Thomas.

CONFLICT OF INTEREST STATEMENT
I declare no conflicts of interest.

PEER REVIEW
The peer review history for this article is available at https:// www.

webof scien ce. com/ api/ gatew ay/ wos/ peer- review/ 10. 1111/ 2041-

210X. 14306 .

DATA AVAILABILITY STATEMENT
The treats package is available on the CRAN (https:// cran.r- proje

ct. org/ web/ packa ges/ treats/) or on GitHub (https:// github. com/

TGuil lerme/ treats) with more associated information. All the ver-
sions of the package are archived on ZENODO with associated DOI:
10. 5281/ zenodo. 10207680.

ORCID
Thomas Guillerme https://orcid.org/0000-0003-4325-1275

REFERENCES
Adams, D. C., & Collyer, M. L. (2019). Phylogenetic comparative meth-

ods and the evolution of multivariate phenotypes. Annual Review of

Ecology, Evolution, and Systematics, 50, 405–425.

Bapst, D. W. (2012). Paleotree: An R package for paleontological and phy-

logenetic analyses of evolution. Methods in Ecology and Evolution,

3(5), 803–807.

Barido- Sottani, J., Pett, W., O'Reilly, J. E., & Warnock, R. C. M. (2019).

FossilSim: An R package for simulating fossil occurrence data under
mechanistic models of preservation and recovery. Methods in

Ecology and Evolution, 10(6), 835–840.

Bausman, W. C. (2018). Modeling: Neutral, null, and baseline. Philosophy

of Science, 85(4), 594–616. https:// doi. org/ 10. 1086/ 699021

Beck, R. M. D., & Lee, M. S. Y. (2014). Ancient dates or accelerated rates?
Morphological clocks and the antiquity of placental mammals.

Proceedings of the Royal Society B: Biological Sciences, 281(1793),

20141278.

Cavalli- Sforza, L. L., & Edwards, A. W. F. (1967). Phylogenetic analysis.
Models and estimation procedures. American Journal of Human

Genetics, 19(3 Pt 1), 233–257.

Cooper, N., Thomas, G. H., & FitzJohn, R. G. (2016). Shedding light on
the ‘dark Side’ of phylogenetic comparative methods. Methods in

Ecology and Evolution, 7(6), 693–699.

Cooper, N., Thomas, G. H., Venditti, C., Meade, A., & Freckleton, R.
P. (2016). A cautionary note on the use of Ornstein Uhlenbeck

 2
0
4
1
2
1
0
x
, 0

, D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://b
esjo

u
rn

als.o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

1
1
1
/2

0
4
1
-2

1
0
X

.1
4
3
0
6
 b

y
 U

n
iv

ersity
 O

f S
h
effield

, W
iley

 O
n
lin

e L
ib

rary
 o

n
 [1

2
/0

3
/2

0
2
4
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p
licab

le C
reativ

e C
o
m

m
o
n
s L

icen
se

10  |    GUILLERME

models in macroevolutionary studies. Biological Journal of the

Linnean Society, 118(1), 64–77.

Deepak, V., Gower, D. J., & Cooper, N. (2023). Diet and habit explain head-
shape convergences in natricine snakes. Journal of Evolutionary

Biology, 36(2), 399–411.

do Rosario Petrucci, B., Januario, M., & Quental, T. (2022). Paleobuddy:

An R package for flexible simulations of diversification and fossil
sampling. Methods in Ecology and Evolution, 13(12), 2692–2698.

Feller, W. (1939). Die grundlagen der volterraschen theorie des kampfes

ums dasein in wahrscheinlichkeitstheoretischer behandlung. Acta

Biotheoretica, 5(1), 11–40.

Felsenstein, J. (1985). Phylogenies and the comparative method. The

American Naturalist, 125(1), 1–15.

FitzJohn, R. G. (2012). Diversitree: Comparative phylogenetic analy-

ses of diversification in R. Methods in Ecology and Evolution, 3(6),

1084–1092.

Guillerme, T. (2018). dispRity: A modular R package for measuring dispar-
ity. Methods in Ecology and Evolution, 9(7), 1755–1763.

Harmon, L. (2019). Phylogenetic comparative methods: Learning from trees.

https:// ecoev orxiv. org/ repos itory/ view/ 4486/

Lande, R. (1976). Natural selection and random genetic drift in pheno-

typic evolution. Evolution, 30(2), 314–334.

Magallon, S., & Sanderson, M. J. (2001). Absolute diversification rates in
angiosperm clades. Evolution, 55(9), 1762–1780.

Miller, E. C., Martinez, C. M., Friedman, S. T., Wainwright, P. C., Price,

S. A., & Tornabene, L. (2022). Alternating regimes of shallow and
deep- sea diversification explain a species- richness paradox in ma-

rine fishes. Proceedings of the National Academy of Sciences of the

United States of America, 119(43), e2123544119.

Morlon, H., Lewitus, E., Condamine, F. L., Manceau, M., Clavel, J., &

Drury, J. (2016). RPANDA: An R package for macroevolutionary
analyses on phylogenetic trees. Methods in Ecology and Evolution,

7(5), 589–597.

Murrell, D. J. (2018). A global envelope test to detect non- random bursts
of trait evolution. Methods in Ecology and Evolution, 9(7), 1739–1748.

Paradis, E., & Schliep, K. (2019). Ape 5.0: An environment for modern
phylogenetics and evolutionary analyses in R. Bioinformatics, 35,

526–528. https:// doi. org/ 10. 1093/ bioin forma tics/ bty633

Pennell, M. W., & Harmon, L. J. (2013). An integrative view of phylo-

genetic comparative methods: Connections to population genet-

ics, community ecology, and paleobiology. Annals of the New York

Academy of Sciences, 1289(1), 90–105.

Pinto- Ledezma, J. N., Simon, L. M., Diniz- Filho, J. A., & Villalobos, F.
(2017). The geographical diversification of Furnariides: The role of

Forest versus open habitats in driving species richness gradients.

Journal of Biogeography, 44(8), 1683–1693.

Puttick, M. N., Guillerme, T., & Wills, M. A. (2020). The complex effects
of mass extinctions on morphological disparity. Evolution, 74(10),

2207–2220.

R Core Team. (2023). R: A language and environment for statistical comput-

ing. R Foundation for Statistical Computing. https:// www. R- proje

ct. org/

Stadler, T. (2010). Sampling- through- time in birth–death trees. Journal of

Theoretical Biology, 267(3), 396–404.

Stadler, T. (2011). Simulating trees with a fixed number of extant species.

Systematic Biology, 60(5), 676–684.

Wickham, H. (2019). Advanced R. CRC Press.

How to cite this article: Guillerme, T. (2024). treats: A
modular R package for simulating trees and traits. Methods in

Ecology and Evolution, 00, 1–10. https://doi.

org/10.1111/2041-210X.14306

 2
0
4
1
2
1
0
x
, 0

, D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://b
esjo

u
rn

als.o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

1
1
1
/2

0
4
1
-2

1
0
X

.1
4
3
0
6
 b

y
 U

n
iv

ersity
 O

f S
h
effield

, W
iley

 O
n
lin

e L
ib

rary
 o

n
 [1

2
/0

3
/2

0
2
4
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p
licab

le C
reativ

e C
o
m

m
o
n
s L

icen
se

	treats: A modular R package for simulating trees and traits
	Abstract
	1|INTRODUCTION
	2|DESCRIPTION
	2.1|Major functionalities
	2.1.1|Simulating traits
	2.1.2|Modifying the birth-­death process
	2.1.3|Creating events
	2.1.4|Visualising results

	2.2|Brief applied example
	2.2.1|Simulating trees
	2.2.2|Simulating trees and traits
	2.2.3|Simulating a trees and traits with events

	3|ADDITIONAL INFORMATION
	3.1|Manuals, vignette and templates
	3.2|Further directions
	3.3|Repeatability and reproducibility

	4|CONCLUSION
	ACKNOWLEDGEMENTS
	CONFLICT OF INTEREST STATEMENT
	PEER REVIEW
	DATA AVAILABILITY STATEMENT

	REFERENCES

