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1  |  INTRODUCTION

Comparing biological patterns is one of the key ways to under-

stand mechanisms in evolutionary biology. This leads to the 

development of phylogenetic comparative methods as key meth-

odologically driven topic in ecology, evolution and palaeontology 

(Felsenstein, 1985; Pennell & Harmon, 2013). These methods rely 

on comparing patterns in a phylogenetic context to understand bio-

logical mechanisms or concepts (Harmon, 2019). These comparisons 

can be done between observed patterns under different conditions 

or against null, neutral or baseline models (see Bausman, 2018 for 

distinctions) suggesting different processes or mechanisms. For 

example different traits distribution for species with different diets 

(Deepak et al., 2023) or habitats (Pinto- Ledezma et al., 2017). Or by 

comparing some observed pattern to one simulated under null or 

base conditions (Miller et al., 2022). In theory, workers can use the 

following research pipeline: (1) thinking of a specific mechanism (e.g. 

mass extinction allowing the surviving species to acquire new mor-

phologies), (2) collecting some data to test this mechanism (e.g. some 

traits of species across and extinction event) and then (3) comparing 

these patterns to some simulated under no specific conditions (e.g. 

a null model where the traits evolve randomly regardless of an ex-

tinction event, Puttick et al., 2020). Workers might thus need to sim-

ulate a great diversity of evolutionary scenarios to test their specific 
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Abstract

1. Simulating biological realistic data is an important step to understand and investi-

gate biodiversity. Simulated data can be used to generate null, base line or neutral 

models. These can be used either in comparison to observed data to estimate the 

mechanisms that generated the data. Or they can be used to explore, understand 

and develop theoretical advances by proposing toy models.

2. In evolutionary biology, simulations often involve the need of an evolutionary 

process where descent with modification is at the core of how the simulated data 

are generated. These evolutionary processes can then be nearly infinitely modi-

fied to include complex processes that affect the simulations such as traits co- 

evolution, competition mechanisms or mass extinction events.

3. Here I present the treats package, a modular R package for trees and traits 

simulations. This package is based on a simple birth death algorithm from which 

all steps can easily be modified by users.

4. treats also provides a tidy interface through the treats object, allowing users 

to easily run reproducible simulations. It also comes with an extend manual regu-

larly updated following users' questions or suggestions.
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2  |    GUILLERME

question. To do so, we need statistical and software solutions to sim-

ulate trees and data to generate many specific null models.

In practice, these evolutionary simulations can be done 

relatively easily on computers using a birth- death process 

(Feller, 1939; FitzJohn, 2012; Stadler, 2010). A birth- death pro-

cess is a continuous time Markov process that had been routinely 

implemented in R (R Core Team, 2023) to simulate realistic phy-

logenies (e.g. FitzJohn, 2012; Paradis & Schliep, 2019). This gen-

eral algorithm to generate phylogenetic trees can be coupled with 

other Markov processes to also generate traits, for example using 

a Brownian Motion process (BM; Cavalli- Sforza & Edwards, 1967) 

or an Ornstein Uhlenbeck (OU; Lande, 1976; see Cooper, Thomas, 

Venditti, et al., 2016 for a distinction between both). In R, this can 

be done with several already well used and well documented pack-

ages. For example if you want to simulate diversity through time, 

you can use TreeSim (Stadler, 2011) to simulate diversity under 

a set of specific parameters (e.g. speciation and extinction) with 

some events disrupting the simulations (e.g. mass extinctions). You 

can even improve on generating these patterns using FossilSim 

(Barido- Sottani et al., 2019) to take into account fossilisation 

processes. You can also use paleobuddy (do Rosario Petrucci 

et al., 2022) or paleotree (Bapst, 2012) to generate palaeon-

tology specific data. On the other hand, if you need to simulate 

both diversity and traits through time, this can be done with spe-

cific parameters in RPANDA (Morlon et al., 2016), diversitree 

(FitzJohn, 2012) or PETER (Puttick et al., 2020) where the traits 

are generated stochasticaly through time (given some process) 

during the birth- death process.

Although the packages mentioned above are excellent and 
routinely used with fast and reliable algorithms and associated 

documentation, they are all designed for specific tasks and don't 

allow much modification beyond the input parameters designed 

by the authors. For example, TreeSim can simulate a birth- death 

tree with some extinction event but is not designed to simulated 

one with an extinction event that leads to the birth- death process 

to be not diversity dependent anymore, simulating a release in se-

lection pressure after the extinction event that leads to a different 

process dominating speciation. Or PETER is not designed to simu-

late a complex set of traits (say three correlated BM traits and two 

independent OU ones). This absence of modularity has hampered 

the use of complex and question- driven simulations, although I ac-

knowledge this was not the primary aim of the authors of the ex-

cellent packages mentioned above. This has led workers to often 

develop their own tools to answer specific questions (e.g. Puttick 

et al., 2020). Therefore, I propose treats a modular R package to 

simulate both trees and traits through time. Note that although 
treats is modular and thus allows to be used as go to tool for sim-

ulating and trees and traits, it lacks the ready- to- use implemented 

methods featured in other packages such as fossilisation and sam-

pling (Barido- Sottani et al., 2019; do Rosario Petrucci et al., 2022; 

Stadler, 2011) or specific macroevolutionary simulations (Morlon 

et al., 2016; Puttick et al., 2020).

2  | DESCRIPTION

treats is based on the eponymous treats function that allows to sim-

ulate a phylogeny and some trait(s) simultaneously. The base birth- 

death algorithm “grows” a phylogenetic tree and generates traits for 

each node and tips in the following manner:

1. Generating branch length;

2. Selecting a lineage among the currently living ones;

3. Choosing whether that lineage goes extinct (becomes a tip) or 

speciates (becomes a node).

These three steps are repeated until the tree reaches the desired 

age or number of species (the algorithm's implementation is heavily 

inspired and based on FitzJohn, 2012). If traits are simulated during 

the process, a fourth step is added:

4. Generating some trait(s) value(s) for the selected lineage (either 

a tip or a node—but see the “Simulating traits section” below 

to generate trait values along edges).

In treats, these three or four steps are implemented as modular 

functions that the user can easily change using an internal class of ob-

jects called “modifiers” or “traits” (Figure 1). The simulation then 

outputs a tree (of class “phylo” and a associated table of traits—“ma-

trix”) that can be visualised using the plot.treats function. A 
third class of object called “events” can be added to the simulations 

to modify the entire simulation under certain conditions (e.g. simulat-

ing a mass extinction). Each element in the algorithm can be modified 

by the user using the implemented functions make.bd.params to set 

the birth- death parameters, make.traits to set the trait(s), make.

modifiers to set the birth- death algorithm and make.events to 

eventually add one or more events. Users can replace any step in the 

algorithm by their own specific functions suiting their needs or, for less 

advanced users, by using already implemented functions.

2.1  | Major functionalities

The following sections provides an overview of the three main func-

tions displayed in Figure 1 (make.traits, make.modifiers and 

make.events).

2.1.1  |  Simulating traits

Traits are simulated via the make.traits function given one or 

more processes, the number of dimensions per process and some 

starting value(s). Essentially, the generation of new trait values is 

based on a process (a function) modifying a trait value (x0) relative 

to some branch length (edge.length). For example, a simple BM 

process could be generated by the function rnorm where it modifies 
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    | 3GUILLERME

the trait value x0 relative to the branch length (edge.length). The 

longer the branch length, the more likely the new trait value will be 

different from x0:

## Brownian Motion process  

my.bm.process <- function(x0, edge.length) {

 rnorm(n = 1, mean = x0, sd = edge.length)  

}  

## Creating the traits object  

my.trait <- make.traits(process = my.bm.process)

Of course biological data can be much more complex and often 

multivariate (Adams & Collyer, 2019) requiring the users to develop 

more complex function to cater their specific needs. The treats 

package contains a list of pre- built processes that are “ready- to- use”:

• BM.process and OU.process: generalised BM and Ornstein- 

Uhlenbeck processes in any number of dimensions (including pos-

sible correlation);

• multi.peak.process: a generalised Ornstein- Uhlenbeck pro-

cess (uni-  or multi- dimensional) which allows for multiple peaks;

• repulsion.process: a unidimensional process generating trait 

values that don't overlap with previously generated trait values;

• discrete.process: a process generating discrete trait values;

• no.process: ignores the branch length (i.e. a time independent 

process).

Traits are always generated (and stored) only for tips or nodes 

and not along edges. However, it is possible so generate trait 

values at specific or regular time intervals by using the option 

save.steps in the treats function. This will generate single-

ton nodes (i.e. nodes with only one descendant) with associated 

trait values.

Note that the treats package primary aim is to generate both 

a tree and some traits at the same time. However, it is possible to 

also just generate traits with a given topology. This is done through 

the function map.traits that intakes one or more trees and a 

“traits” object.

2.1.2  |  Modifying the birth- death process

Modifying the birth- death process can be done in several ways. Most 

easily it is done through changing the stopping rules through the 

stop.rule argument (number of total taxa or living ones, or time 

of the simulation). Equally straightforward, one can modify the pa-

rameters of the birth- death process through the make.bd.params 

function: the speciation (�) and the extinction (�) ones. These can be 

F IGURE  1 treats package workflow: 

the treats algorithm generates a 

tree and traits using inbuilt “traits” 

objects that contain the instructions 

on how to generate the trait data (e.g. 

which process? how many dimensions?); 

“modifiers” objects that contains 

instructions on how to “grow” the tree 

(e.g. by linking speciation to trait values 

or to the current number of species); 

and “events” objects that can modify 

the tree structure, “modifiers” 

or “traits” depending on specific 

conditions (e.g. 80% of species with 

positive trait values go extinct after 

reaching a specific time).
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4  |    GUILLERME

either fixed values (for constant speciation and extinction) or values 

drawn from distributions.

It is also possible to directly modify how the birth- death algo-

rithm works through make.modifiers by changing the three main 

components of the birth- death algorithm as described above. By de-

fault, the algorithm uses the following algorithms:

1. Generating branch length by drawing a value from an exponential 

distribution with the rate being function of the current number of 

lineages scaled by the speciation and extinction parameters

## The default branch length generation  

rexp(1, rate = number_of_lineages * (speciation + extinction))

2. Selecting  a  lineage among the currently living ones by simply 

sampling across the available (living) lineages:

## The default lineage selection  

sample(number_of_lineages, 1)

3. Choosing whether  that  lineage goes extinct  (becomes a  tip) or 
speciates  (becomes  a  node) by drawing a random number be-

tween 0 and 1 and comparing it to the ratio of speciation and 

turnover (speciation + extinction). If the random number is 

smaller than the ratio of speciation and turnover, the lineage spe-

ciates, else it goes extinct:

## The default speciation/extinction decider  

runif(1) <= (speciation / (speciation + extinction))

The function make.modifiers allows to specifically change any of 

these components by providing a different function for each part of 

the algorithm. For example, one can modify the three functions above 

so that the branch length is not dependent on the number of lineages, 

the sampling is always the first species available and the extinction is 

drawn from a normal distribution. Note that these function need a spe-

cific syntax that is detailed in the treats manual.

## Lineage independent waiting:  

lineage.independent <- function(bd.params,  

                                                         lineage = NULL,  

                                                         trait.values = NULL,  

                                                         modify.fun = NULL) {  

      my_rate <- bd.params$speciation + bd.params$extinction  

      return(rexp(1, rate = my_rate))  

}  

## Selecting always the first species  

select.first <- function(bd.params,  

                                        lineage = NULL,  

                                        trait.values = NULL,  

                                        modify.fun = NULL) {  

       return(as.integer(1))  

}  

## Random normal speciation  

normal.speciation <- function(bd.params,  

                                                    lineage = NULL,  

                                                    trait.values = NULL,  

                                                    modify.fun = NULL) {  

        my_turnover <- bd.params$speciation/  

                                   (bd.params$speciation + bd.params$extinction)  

        return(rnorm(1) <= my_turnover)  

}  

## Creating the modifier object  

modified.birth.death <- make.modifiers(branch.length = lineage.

independent,  

                                                                 selection = select.first,  

                                                                 speciation = normal.speciation)

2.1.3  |  Creating events

The final major argument to be passed to treats are the “events” 

objects generated through make. events where the following infor-

mation needs to be specified:

• The target designating what the event should be applied to (e.g. 

“taxa” for modifying the number of species, “traits” for mod-

ifying the traits, etc.).

• The condition which is a function returning a logical value of 

when to trigger the event (e.g. when reaching a certain number of 

taxa, after some specific time has ellapsed or if some specific trait 

value is reached, etc.).

• The modification which is a function that specifically modifies 

an internal object in the treats algorithm.

For a more exhaustive list of events so you can refer to the 

treats manual with many different detailed examples. Briefly 

though, this is how the mass extinction events are designed in the 

example above.

## Creating an extinction that removes species with positive trait values  

positive_extinction <- make.events(  

       target = "taxa",  

       condition = age.condition(15),  

       modification = trait.extinction(x = 0, condition = `>=`))

For this event, the target is the number of taxa in the simulations. 

This is indicated using the target = “taxa” argument. Then the 

event is triggered using the argument age.condition(15) and 

modifies the internal lineage object using the trait.extinc-

tion(x = 0, condition = ̀ > =`) function. age.condition and 

trait.extinction are both function factories that are not going to be 

detailed here (see Wickham, 2019). Effectively these arguments can 

be passed directly as standard functions. For example, to trigger the 

event when reaching time 15, we can use the following function:
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    | 5GUILLERME

## Returns TRUE when reaching time 15  

reaching.time15 <- function(bd.params, lineage, trait.values, time) {  

       return(time > 15)  

}

This will trigger the modification which is equivalent to the fol-

lowing function modifying the lineage internal list:

removing.75.taxa <- function(bd.params, lineage, trait.values) {  

         ## Select a portion of the living species to go extinct  

         extinct <- sample(lineage$n, round(lineage$n * 0.75))  

         ## Update the lineage object  

         lineage$livings <- lineage$livings[- extinct]  

         lineage$n <- lineage$n -  length(extinct)  

         return(lineage)  

}

Hence, the extinction event described above is equivalent to the 

following one:

## Creating an extinction that removes species with positive trait values  

positive_extinction <- make.events(  

        target = "taxa",  

        condition = reaching.time15,  

        modification = removing.75.taxa)

2.1.4  |  Visualising results

The treats package also comes with tools to visualise trees and 

traits together or separately. This can be done through the generic 

S3 plot function (calling plot.treats) and allows to display up to 

three traits or two traits and time (in 3D) as displayed in Figures 4 

and 5. These functions can also be used to visualise trees and traits 

together from non “treats” objects by using the make.treats 

function to transform them into “treats” objects.

2.2  |  Brief applied example

To illustrate this we will look whether it is possible to detect changes 

in disparity (i.e. diversity of traits) in a subset of the data published 

from Beck and Lee (2014) implemented in Guillerme (2018). This 

dataset contains the ordinated traits for 50 mammalian species 

across the Cretaceous- Palaeogene extinction event (K- Pg, 66 Mya; 
Figure 2).

## Loading the package and data  

library(treats)  

data(BeckLee_tree)  

data(BeckLee_mat99)  

  

## Creating the time slices  

time_slices <- chrono.subsets(BeckLee_mat99, BeckLee_tree,  

                                                method = "continuous",  

                                                model = "proximity",  

                                                time = seq(from = 96, to = 36, by = - 10))  

  

## Calculating disparity on the two first dimensions only  

observed_disparity <- dispRity(boot.matrix(time_slices),  

                                                     metric = c(sum, variances),  

                                                     dimensions = c(1,2))  

  

## Plotting the tree and the disparity through time  

par(mfrow = c(1,2), bty = "null")  

F IGURE  2 Observed phylogeny (a) and disparity through time (b) in the subset of Beck and Lee's (2014) dataset. The red line represents 

the K- Pg boundary. Is this change in disparity related to the K- Pg mass extinction? Or, more generally, is it even possible to detect potential 

changes of disparity due to a mass extinction event?
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6  |    GUILLERME

## Thre tree  

plot(ladderize(BeckLee_tree), show.tip.label = FALSE)  

axisPhylo()  

abline(v = BeckLee_tree$root.time -  66, col = "red")  

legend("topleft", pch = NULL, legend = "A", bty = "n", cex = 2)  

  

## The disparity  

plot(observed_disparity, ylab = "Sum of variances")  

abline(v = 4, col = "red")  

legend("topleft", pch = NULL, legend = "B", bty = "n", cex = 2)  

Using this example dataset, one might be interested in testing 

whether the K- Pg extinction had an effect on disparity through 

time. But can such effect be detected in the first place? We can 

test this by simulating some datasets with similar properties as the 

observed data and measure changes in disparity in these simulated 

datasets.

2.2.1  |  Simulating trees

The first and simplest way is to simulate tree topologies that have 

similar properties than the observed one. To do so, we need to 

use some speciation parameter indicating the rate at which lin-

eages speciate (aka “birth” or “�”) and an extinction parameter 

indicating the rate at which they go extinct (aka “death” or “�”). 

Here, we are using two relatively arbitrary (speciation = 0.035 
and extinction = 0.02) to get trees roughly matching the observed 
tree. Note that you might want to consider more appropriate 
ways to calculate these rates for research projects (e.g. Magallon 

& Sanderson, 2001). We also need a stopping rule for when to 

stop the simulations (in our case when reaching 140 time units). 

This will produce a single random tree using the input parameters 

(Figure 3). The number of time units in treats is arbitrary and 

is not equivalent to millions of years. Using 140 time units here 

allows to simulate number of tips in a similar order of magnitude 

as the ones in the observed data. Note that I will not discuss the 
options here in great details. Much more information can be found 

in the treats manual.

## Using the birth- death parameters from the observed tree  

my_bd_params <- make.bd.params(speciation = 0.035, extinction = 

0.02)  

## Setting the stopping rule (stop after 140 time units)  

stop_rule <- list(max.time = 140)  

  

## Simulate the tree  

set.seed(2)  

sim_tree <- treats(bd.params = my_bd_params,  

                               stop.rule = stop_rule,  

                               null.error = 100,  

                               verbose = FALSE)

2.2.2  |  Simulating trees and traits

For our specific question, we will also need to simulate some traits 

associated with each node and tip. For simplicity we will simulate a 

two dimensional BM trait. To do so, we can create a “traits” object 

with the function make.traits. This results in a two- dimensional 

trait space for all the simulated species and their nodes (Figure 4).

## Creating a trait in 2 dimensions.  

my_traits <- make.traits(process = BM.process, n = 2)  

  

## Simulate the tree and traits  

set.seed(123)  

sim_data <- treats(traits = my_traits,  

                                bd.params = my_bd_params,  

                                stop.rule = stop_rule,  

                                null.error = 100,  

                                verbose = FALSE)  

  

par(mfrow = c(1,2))  

## Plotting one trait through time  

plot(sim_data, ylab = "Trait 1", las = 1, main = "Trait 1 through time")  

  

## Plotting the two dimensions against each other  

plot(sim_data, trait = c(2,1), ylab = "Trait 1", xlab = "Trait 2", las = 1, 

main = "Traits 1 and 2")

2.2.3  |  Simulating a trees and traits with events

To answer our question, we also want to simulate an extinction event. To 

do so, we can create two different “events” object with the function 

F IGURE  3 A randomly simulated tree with similar properties as the 
observed one. Note that the time here is expressed in arbitrary units.
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make.events. The first one will simulate a random extinction after 

reaching 66 time units and then making three quarter (0.75) of the taxa 

go extinct. The second one will simulate a random extinction but based 

on trait values: after reaching time 66, all the species with positive trait 

values will go extinct. Both scenarios illustrate two different types of 

mass extinctions but they are not equivalent: because of the ancestral 

trait value starting at 0, we expect the second scenario to remove on 

average only 50% of the species (i.e. half the species are expected to 

evolve a trait value above 0). For more details on simulating the effect of 

mass extinction and the difficulties to simulate an unambiguous effect 

of a mass extinction, see Puttick et al. (2020). Because of this stochas-

ticity of the simulations, we will repeat them 50 times (using repli-

cates = 50) to generate a distribution of possible simulated scenarios 

as opposed to a random single one that could be idiosyncratic (Figure 5).

## Creating a random mass extinction  

random_extinction <- make.events(  

       target = "taxa",  

       condition = age.condition(140- 66),  

       modification = random.extinction(0.75))  

## Creating an extinction that removes species with positive trait values  

positive_extinction <- make.events(  

       target = "taxa",  

       condition = age.condition(140- 66),  

       modification = trait.extinction(x = 0, condition = `>=`))  

  

set.seed(123)  

## Simulate the tree and traits with a random extinction event  

sim_rand_extinction <- treats(  

                                   traits = my_traits,  

                                   bd.params = my_bd_params,  

                                   stop.rule = stop_rule,  

                                   events = random_extinction,  

                                   null.error = 100,  

                                   replicates = 50)  

## Simulate the tree and traits with a selective extinction event  

sim_trait_extinction <- treats(  

                                   traits = my_traits,  

                                   bd.params = my_bd_params,  

                                   stop.rule = stop_rule,  

                                   events = positive_extinction,  

                                   null.error = 100,  

                                   replicates = 50)

Once we have simulated a distribution of trees and traits with 

the two extinction scenarios, we can measure disparity as in Figure 2 

for all the simulated data and compare it to the observed disparity.

## Remove single nodes simulated at the extinction  

sim_rand_extinction <- drop.singles(sim_rand_extinction)  

sim_trait_extinction <- drop.singles(sim_trait_extinction)  

  

## Calculate the dispRity for all the simulations  

random_extinction_disparity <- dispRitreats(sim_rand_extinction,  

                                                method = "continuous",  

                                                model = "proximity",  

                                                time = seq(from = 96, to = 36, by = - 10),  

                                                metric = c(sum, variances),  

                                                scale.trees = FALSE)  

selective_extinction_disparity <- dispRitreats(sim_trait_extinction,  

                                                method = "continuous",  

                                                model = "proximity",  

F IGURE  4 A randomly simulated tree with a two- dimensional random Brownian Motion trait. Orange, light blue and dark blue dots 
respectively represent nodes, fossils and living species.
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8  |    GUILLERME

                                             time   = seq(from = 96, to = 36, by = - 10),  

                                             metric = c(sum, variances),  

                                             scale.trees = FALSE)  

  

## Scale the disparity results (to compare to the observed ones)  

random_extinction_disparity <- scale.dispRity(random_extinction_

disparity)  

selective_extinction_disparity <- scale.dispRity(selective_extinc-

tion_disparity)  

observed_disparity <- unlist(get.disparity(scale.dispRity(observed_

disparity)))  

  

## Plotting the results with the observed disparity  

par(mfrow = c(1,2))  

plot(random_extinction_disparity, main = "Random extinction",  

        ylab = "Scaled sum of variances", ylim = c(0, 1))  

abline(v = 4, col = "red")  

lines(x = 1:7, y = observed_disparity, lty = 2, lwd = 2)  

F IGURE  5 Two different mass extinction events: (a) 75% of species go extinct; (b) all species with positive trait values go extinct. The red 
line marks the extinction event.
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F IGURE  6 Comparison of the observed sum of variances (dashed line) to the simulated one (ligth and dark grey polygons and black line 
representing respectively the 95% and 50% confidence interval and the median value).
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plot(selective_extinction_disparity, main = "Selective extinction",  

        ylab = "", ylim = c(0, 1))  

abline(v = 4, col = "red")  

lines(x = 1:7, y = observed_disparity, lty = 2, lwd = 2)

From these results we can draw some preliminary conclusions: 

the observed change in disparity is more likely due to a selective 

mass extinction rather than a random one (Figure 6). This is of course 

a very crude way of testing this, a more rigorous approach is needed 

to answer the question: more and better quality data, and more 

thorough methods (e.g. using a rank envelope test Murrell, 2018).

3  | ADDITIONAL INFORMATION

3.1  | Manuals, vignette and templates

The treats package comes with internal documentation (e.g. 

?treats) but also with a thorough and extended vignette in a gitbook 

format: the treats manual. This manual is designed so that it can be 

regularly updated and enhanced through the lifetime of the package 

facilitating the interface between methods development and usage 

(Cooper, Thomas, & FitzJohn, 2016). Furthermore, a library of simu-

lation templates is maintained on the GitHub page. These templates 

are written and shared in the form of GitHub issues template and can 

be submitted and shared by any users. Either for them to have them 

stored somewhere curated, or better yet, so that other users can reuse, 

comment and mofidy them for their own projects.

3.2  |  Further directions

This paper describes the first version of the treats package. 

However, I intend to continuously develop this package. For example 

future planned versions will include abiotic events and a better integra-

tion with the dispRity package. This will be done while keeping track 

change (through NEWS file), continuous integration and unit testing.

3.3  |  Repeatability and reproducibility

This paper is entirely reproducible from an Rmarkdown document 

available on GitHub. The data used for the example above (Beck & 

Lee, 2014) is available from the dispRity package (Guillerme, 2018).

4  |  CONCLUSION

The treats package modular architecture allows workers to de-

velop their own specific biological simulation scenarios based on 

their own specific research question. The pipeline of the package 

through the different “treats” objects (“traits”, “modifi-

ers” and “events”) also allows workers to generate publication 

standard results through plotting but also with easily reproducible 

and reusable scripts.
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