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Abstract

Urban power systems rely on intricate wire networks, known as the power grid, which form

the essential electric infrastructure in cities. While these networks transmit electricity from

power plants to consumers, they are vulnerable to faults caused by manufacturing errors

and improper installation, posing risks to system integrity. Thus, accurate identification

and assessment of these faults are crucial to prevent damage and maintain system reliabil-

ity. The objective of this research is to present an innovative and efficient methodology for

diagnosing complex wire networks through the application of time domain reflectometry

(TDR) combined with the particle swarm optimization (PSO) and least squares support

vector machine (LSSVM) algorithm. This research addresses the imperative need to accu-

rately locate and assess breakage faults within wire networks, emphasizing their role in

both power transmission and communication infrastructure. To model the TDR answer of

a specific complex wire network, a forward model is established utilizing resistance, induc-

tance, capacitance and conductance (RLCG) parameters and the finite difference time

domain (FDTD) method. Subsequently, the PSO-LSSVM approach is used to solve the

inverse problem of localizing faults in complex wire networks. The experimental results

validate the practicality of this approach in real-world systems.

1 INTRODUCTION

Ensuring safety is paramount for the dependable operation of

modern systems reliant on electric wire networks. These net-

works work as the main method of transporting energy and

information in an extensive range of applications, including

transportation, industrial machinery, power distribution, and

building systems. Various types of cables are used for different

purposes, with their applications varying depending on factors,

such as the type of signal being transmitted, voltage levels,

and environmental conditions. Cables selected for energy net-

works differ from those used in data networks due to their

particular design, specifically tailored for efficient power dis-

tribution. This work focuses on the diagnostic assessment of

complex wire networks, which are vital components of the

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is

properly cited.
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power grid serving both power and communication purposes.

Coaxial cables, characterized by a central conductor, insulating

layer, and metallic shield, excel in diverse transmission line appli-

cations such as data transfer, telecommunications, and cable

television (TV). With their capacity for high-frequency trans-

mission over extended distances, broad frequency support, and

effective shielding against interference, coaxial cables play a

pivotal role in ensuring dependable signal integrity. From tele-

vision distribution and internet connectivity to closed-circuit

TV (CCTV) systems, their versatile applications underscore

their significance in maintaining stable and interference-free sig-

nal transmission across various industries. Coaxial cables can

experience various degradation mechanisms, such as chemical,

electrical, mechanical, or aging processes, resulting in faults and

failures within different systems. There are two categories in
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2 LAIB ET AL.

which these faults appear: when confronted with simple and

limited degradation, it leads to a minor change in impedance,

often known as a “soft fault.” As a soft fault gets worse, it may

finally escalate into a hard fault, either an open circuit or a short

circuit. Both types of faults can have severe costs, especially

when wires play a vital role in the security of critical systems. As

an example, studies conducted on the crashes of trans world air-

lines (TWA) Flight 800 in 1996 and Swiss Air Flight 111 in 1998

showed that the root cause was related to faulty wiring networks

within the aircraft [1]. Safety is a critical factor in guaranteeing

the optimal performance and functionality of these compli-

cated systems. Reflectometry, a widely recognized technique

for assessing the performance of wired networks, is commonly

employed [1]. Time domain reflectometry (TDR) is a procedure

that involves sending a specific signal into a complex electri-

cal network at an injection point and subsequently analysing

the signal’s reflections. This process provides crucial informa-

tion about the state of the electrical wiring network under test,

allowing us to identify whether it is affected by faults or not.

The diagnosis of wiring networks has been achieved using a vari-

ety of reflectometry techniques, including TDR, spectrum TDR

(STDR), time frequency domain reflectometry (TFDR), and

multicarrier TDR (MCTDR) [2–4]. The TDR methods alone

cannot provide complete information about a complex wiring

network. For detecting and locating faults, authors in [5, 6] com-

pare the reflected signal of a healthy network with the reflected

signal of a faulty network. As electrical networks increase in

complexity, analysing the reflected signal in reflectometry can

pose challenges. Consequently, many intelligent techniques have

been combined with TDR to efficiently localize and identify

faults. In this domain, numerous solutions have been pro-

posed and can be broadly categorized into two types. The initial

category includes methods that utilize the forward model in

iterative optimization techniques to decrease the discrepancy

between the measured response and the simulated response.

This is achieved by employing optimization algorithms such

as iterative-based optimization methods like genetic algorithm

(GA) [7, 8], Electromagnetism-like mechanism (EM) [9], parti-

cle swarm optimization (PSO) [8, 10], teaching–learning-based

optimization (TLBO) [11], backtracking search algorithm (BSA)

[12], and black hole (BH) [13]. However, these methods suf-

fer from a significant computation burden, that is, it takes a

considerable amount of time for it to converge. The second

category involves creating an adjusted model offline, incorpo-

rating data on the wiring network stored in a database. This

model is then used online to facilitate fault detection and local-

ization processes. The second type is more frequently exploited

for complex wiring networks. In [14], the authors suggested

using artificial neural networks (ANNs) for the inversion pro-

cess, falling under the second category of techniques used

in conjunction with TDR. However, as the responses of the

wiring network can be conceptualized as high-dimensional data,

employing this technique requires the development of a com-

plex ANN with numerous internal parameters that necessitate

regulation. To address this challenge, the authors in [15, 16] uti-

lized the adaptive neuro-fuzzy inference system (ANFIS) as a

solution. Support vector machine (SVM) has been employed

in previous studies for diagnosing faults in power transmission

lines [17–19], especially in cases where the wiring structure is

straightforward with no complex branching. In a separate inves-

tigation [20], researchers addressed the challenge of branched

wiring in their approach by utilizing the state transition matrix

as the direct model for training the SVM. However, their

proposed methodology had certain limitations. One of these

limitations was associated with the forward model, which could

only provide network’s response at the injection point without

capturing the impedance variations along the branches. This

constraint might impede the generalization of the approach

to other types of faults. Another limitation was the lack of

fault characterization capability. Furthermore, in another study

[21], SVM was effectively combined with principal compo-

nent analysis (PCA) to identify faults in the wiring using TDR

response. However, the proposed approach still faces challenges

in terms of fault location accuracy, particularly when applied to

complex networks. It proves to be particularly efficient in diag-

nosing straightforward yet intricate networks, especially those

with three branches. In [22], the authors combined TDR with

wavelet analysis and neural networks to locate faults in excep-

tionally long cables. In a previous investigation [23], the authors

introduced a new method for detecting soft faults in wiring

networks, combining reflectometry with principal component

analysis. Moreover, in a related study [24], the authors pre-

sented an advanced technique for diagnosing soft faults in

complex aircraft wiring networks, accommodating both noisy

and noise-free scenarios. This method integrates reflectome-

try, subtractive correlation, and neural networks, significantly

improving diagnostic accuracy.

This paper introduces an innovative wire network diagno-

sis method designed to effectively localize faults in complex

wire networks. The proposed method comprises two main com-

ponents. Firstly, a direct model based on the finite difference

time domain (FDTD) method is established to emulate the

TDR of the affected wire network. This step generates an

offline dataset necessary for training the proposed model, which

combines least-square SVM (LSSVM) and particle swarm opti-

mization (PSO), referred to as PSO-LSSVM. In the second step,

the PSO-LSSVM model is employed in real-time to accurately

pinpoint the locations of faults in the measured reflectometry

response.

This novel approach leverages the PSO algorithm in con-

junction with the LSSVM method to achieve improved fault

localization results. When compared to the existing litera-

ture, the proposed methodology proves to be well-suited for

enhancing real-time diagnosis in complex wiring networks,

emphasizing simplicity, speed, and accuracy as its distinguishing

features.

To offer a comprehensive understanding of the methodology,

the remainder of this paper is organized as follows. Section 2

elaborates on the construction of the forward model using

the FDTD method. In Section 3, detailed information about

the PSO-LSSVM technique is presented. Section 4 showcases

the validation of the developed forward model, comparing it

against measured data. The inversion results are demonstrated

and discussed in Section 5. Finally, Section 6 concludes the
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LAIB ET AL. 3

FIGURE 1 Healthy network.

study, summarizing the key findings and contributions of this

research.

2 THE FORWARD MODEL

A resistance, inductance, capacitance and conductance (RLCG)

circuit model is employed to characterize the propagation in

multiconductor transmission lines (MTLs) [25]:

𝜕

𝜕z
u
(
z, t
)
= −R.i

(
z, t
)
− L.

𝜕

𝜕t
i
(
z, t
)

(1)

𝜕

𝜕z
i
(
z, t
)
= −Gu

(
z, t
)
−C .

𝜕

𝜕t
u
(
z, t
)

(2)

R, L, C, and G represent the series resistance, series induc-

tance, shunt capacitance, and shunt conductance per unit

length, respectively. Here, “i” and “u” denote the vectors of

line currents and line voltages, respectively. Moreover, “z”

and “t” symbolize the spatial and time variables. The time

domain analysis of MTL is conducted through FDTD meth-

ods, wherein differential equations are converted into recursive

finite difference equations. A finite difference method is used

to approximate the derivatives in MTL equations. The sam-

pling interval Δt and spatial cell size can be determined by

checking the stability condition Δt = Δz∕v. A wave propagates

through transmission lines at a constant velocity or speed called

v. For the case of a complex electrical network (as illustrated in

Figure 1), the equations at the ends of each line (for z = 0 and

z = l, respectively) are defined as follows:

Applying Equations (1) and (2), the FDTD method yields

Equations (3) and (4) after a few calculations:

(
[C ]

Δt
+

[G ]

2

)(
[u (0)]n

)
−

[i (0)]n

Δz
=

(
[C ]

Δt
−

[G ]

2

)

[u (0)]n−1
−

[i
n−1∕2

1
]

Δz∕2
+

[i (0)]
n−1

Δz
(3)

(
[C ]

Δt
+

[G ]

2

)
[u (𝓁)]

n
+

[i (𝓁)]
n

Δz
=

(
[C ]

Δt
−

[G ]

2

)

[u (𝓁)]
n−1

+
[i

n−1∕2

kmax
]

Δz∕2
−

[i (𝓁)]
n−1

Δz
(4)

Equation (3) specifies the voltages and currents at the line’s

source end (located at z = 0), while Equation (4) specifies

the voltages and currents at the line’s load end (located at

z = 𝓁). Based on Equations (3) and (4), we define the matrix

Equation (5) for the entire network:

f ([x]) = [A] [X] − [B] = [0] (5)

Each multiconductor line of index "i" is represented by volt-

ages and currents at both ends, and the vector [X] contains the

unknown currents and voltages at all network nodes. Within this

context, there are two ends of a line indicated as 0 and 𝓁 at time

t = n∆t. The variables, un
i
(0) and in

i
(0) correspond to the first

end, while un
i
() and in

i
() pertain to the second end. By consider-

ing these factors, it is possible to define the X vector for a given

line index i using Equation (6) as follows:

[X] =
[
…
[
uk(0)n] [

ik(0)n] [
uk(𝓁)

n] [
ik(𝓁)

n]
… .
]T

(6)

In the network, unspecified currents and voltages are present

at all nodes. The vector [X] comprises the voltages and currents

at both ends of each multiconductor line with an assigned index

i. The sub-matrices [A1] and [A2] constitute the matrix [A], with

[A1 derived from the terminal conditions of the transmission

line and specified by Equation (7):

[A1] =

⎡⎢⎢⎢⎣

[AL1] [0] …

[0] [AL2] …

⋮ ⋮ ⋱

⎤⎥⎥⎥⎦
(7)

[AL] is defined by Equation (8) for each branch L as:

[AL] =
⎡
⎢⎢⎣

(
[c]

Δt
+

[G ]

2

)
−

1

Δz

[
1Ni ] [0] [0]

[0] [0]
(

[c]

Δt
+

[G ]

2

)
+

1

Δz

[
1Ni ]

⎤
⎥⎥⎦
(8)

Ni: Takes a value of 1 for the case of lines with a single

conductor or a matrix with diagonal containing 1 for multiline.

The sub-matrix [A2] is derived from the application of

Kirchhoff ’s laws (KCL and KVL) to the endpoints and

interconnections of the network using Equation (9).

n∑
k=1

(
[
Y m

k

] [
vm
k

]
+
[
Z m

k

] [
im
k

]
) = [Pm] (9)

The principles of Kirchhoff ’s laws, namely Kirchhoff ’s cur-

rent law (KCL) and Kirchhoff ’s voltage law (KVL), are applied

at the junctions of the network, including extremities and inter-

connections. Additionally, these laws are used to analyse the

impedances or admittances of the network’s node with index

m, leading to the formation of matrices [Z m
k

] and [Y m
k

].

[Pm] ∶ Represent the vector of localized sources of current

or voltage.

An equivalent source is represented by [B] as illustrated using

Equation (10), which consists of two sub-vectors [B1] and [B2],
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4 LAIB ET AL.

where:

[B1] =
⎡⎢⎢⎣

[BL1]

[BL2]

⋮

⎤⎥⎥⎦
(10)

For each line, [BL] contains the second term of Equations (3)

and (4) and defined by Equation (11):

[BL] =

⎡
⎢⎢⎢⎣

(
[C ]

Δt
−

[G ]

2

)
[u (0)]n−1

−
[i

n−1∕2

1
]

Δz∕2
+

[i (0)]
n−1

Δz(
[C ]

Δt
−

[G ]

2

)
[u (𝓁)]

n−1
+

[
i
n−1∕2

kmax

]

Δz∕2
−

[i (𝓁)]n−1

Δz

⎤
⎥⎥⎥⎦

(11)

[B2] is represented by Equation (12):

[B2] =
⎡
⎢⎢⎣

⋮
[Pm]

⋮

⎤
⎥⎥⎦

(12)

At every time step, the solution of matrix Equation (5) gives

the currents and voltages in every node of the network. Recur-

rence Equations (13) and (14) are then used to give the currents

and voltages in each space increment.

[
un

k

]
=
(

[C ]
Δz

Δt
+ [G ]

Δz

2

)−1 [(
[C ]

Δz

Δt
− [G ]

Δz

2

)
[un−1

k
]

−
(

[i
n−1∕2

k
] − [i

n−1∕2

k−1
]
)]

K = 2, 3, …………… kmax

(13)

[
i
n+1∕2

k

]
=

(
[L]

Δz

Δt
+ [R]

Δz

2

)−1 [(
[L]

Δz

Δt
− [R]

Δz

2

)

([
i
n−1∕2

k

])
−
(
[un

k+1

]
−[un

k

])]

K = 1, 2, …………… kmax (14)

Where: kmax yield the number max of line space step Δz .

A soft fault has been modelled as a transmission line with

parameters per unit-length Rdef , Cdef, Ldef,Gdef, as presented

in Figure 2. Taking all tube terminal conditions into account, the

submatrix [A1] is defined by (15)

[A1] =

⎡
⎢⎢⎢⎢⎣

[AL1] ⋯ [0] …

⋮ ⋱ ⋮

[0] … [ALdef] …

[0] [0] …

⎤
⎥⎥⎥⎥⎦

(15)

where [ALdef] represents [AL] of soft fault and is given by

Equation (16):

[ALdef] =
⎡⎢⎢⎣

(
[Cdef ]

Δt
+

[Gdef ]

2

)
−

1

Δz
[1Ni ] [0] [0]

[0] [0]
(

[Cdef ]

Δt
+

[Gdef ]

2

)
+

1

Δz
[1Ni ]

⎤⎥⎥⎦
(16)

FIGURE 2 Faulty network.

While [B1] is defined by Equation (17):

[B1] =

⎡⎢⎢⎢⎢⎣

[BL1]

⋮
[BLdef]

∶
⋮

⎤⎥⎥⎥⎥⎦
(17)

where [BLdef] is represented by Equation (18):

[BLdef] =

⎡
⎢⎢⎢⎢⎣

(
[Cdef]

Δt
−

[Gdef]

2

)
[u (0)]n−1

−
[i

n−1∕2

1
]

Δz∕2
+

[i (0)]
n−1

Δz

(
[Cdef]

Δt
−

[Gdef]

2

)
[u (𝓁)]

n−1
+

[
i
n−1∕2

kmax

]

Δz∕2
−

[i (𝓁)]
n−1

Δz

⎤
⎥⎥⎥⎥⎦

(18)

In order to calculate the spaced current and voltage distribu-

tion of the soft fault, the so-called recurrence of (19) and (20)

has been used.

[un
k
] =

(
[Cdef

]
Δz

Δt
+ [Gdef

]
Δz

2

)−1

[(
[Cdef

]
Δz

Δt
− [Gdef

]
Δz

2

)

[un−1
k

] −
(

[i
n−1∕2

k

]
−[i

n−1∕2

k−1

])]

K = 2, 3, …………… kmax (19)

[
i
n+1∕2

k

]
=

(
[Ldef

]
Δz

Δt
+ [Rdef

]
Δz

2

)−1

[(
[Ldef

]
Δz

Δt
− [Rdef

]
Δz

2

)[
i
n−1∕2

k

]

−
(
[un

k+1

]
−[un

k

])]

K = 1, 2, …………… kmax (20)
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3 PSO-LSSVM FOR FUNCTION
ESTIMATION

Support vector machine (SVM) is a powerful and widely used

supervised machine learning algorithm used for classification

and regression tasks. It is based on statistical learning theory;

Vapnik introduced SVM [26], a relatively new and effective

machine learning method. Solving the non-linear equations

required for an SVM model can be challenging. LSSVM, on the

other hand, formulates the SVM as a regularized least squares

regression problem Unlike directly optimizing for the margin,

LSSVM minimizes the error between predicted outputs and

target outputs using a squared loss function, as proposed by

Suykens et al [27]. LSSVM is defined as follows.

Assume a training set (xk, yk )N
k = 1

with input data xk ∈ Rn

and output data yk ∈ R, the LSSVM model for function approx-

imation has the following representation using Equation (21) in

the feature space:

y (x ) = wT 𝜑 (x ) + b (21)

Here the non-linear function 𝜑 (.): Rn → Rnk maps the input

space to a higher dimension feature space. b is a bias term and

w ∈ Rn is a weight vector. The optimization problem is defined

using Equation (22) as:

min J (w, e) =
1

2
wT w + 𝛾

1

2

N∑
i = 1

e2
i

(22)

Subject to the equality constraints illustrated in Equation (23):

yi = wT 𝜑 (xi ) + b + ei i = 1, … ,N (23)

In this case, ei represents the fitting error. The smoothness

of the function y and fitting precision are traded off according

to the hyper-parameter 𝛾 . It is possible to create a Lagrangian

equation illustrated in (24):

L
(
w, b, 𝜉, 𝛼

)
= J
(
w, b, 𝜉

)
−

N∑
i = 1

𝛼i

{
wT ⋅ 𝜑 (xi ) + b − yi + 𝜉i

}

(24)

In this case, ai and R are called a support vector and rep-

resents the Lagrange multiplier. The following equations must

be satisfied based on the optimization conditions illustrated in

Equation (25):

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝜕L

𝜕w
= 0 → w =

N∑
i=1

𝛼i𝜑 (xi )

𝜕L

𝜕b
= 0 →

N∑
i = 1

𝛼i = 0

𝜕L

𝜕ei
= 0 → 𝛼i = 𝛾ei i = 1, … ,N

𝜕L

𝜕𝛼i

= 0 → yi = wT 𝜑 (xi ) + b + ei i = 1, … ,N

(25)

Eliminating w and e will result in a linear system instead of a

quadratic programming issue as illustrated in Equation (26).

[
0 I T

N
IN Ω+ 𝛾−1 ⋅ IN

] [
b

𝛼

]
=

[
0

Y

]
(26)

where

Y =
[
y1, … , yN ]

T
, IN = [1, … , 1]T , 𝛼 =

[
𝛼1, … , 𝛼N ]

T

In accordance with the Mercer conditions [26], SVM main-

tains its choice of kernel function K(.,.) from a range of linear,

polynomial, radial basis, and multilayer perceptron functions. In

LSSVM as well as this work, the RBF kernel is illustrated in

Equation (27) often used.

K (x, xk ) = exp
(
−

x − xk

𝜎2

)
(27)

where 𝜎 is kernel width.

The final LSSVM model for function estimation is trans-

formed into Equation (28):

y (x ) =

N∑
i=1

𝛼iK (x, xi ) + b N (28)

where 𝛼i and b are the solution to (26).

3.1 LSSVM regularization

The idea of combining PSO with LSSVM is to use the PSO

algorithm to search for the optimal parameters of the LSSVM

model. The parameters to be optimized typically include the reg-

ularization parameter (γ and 𝜎2) and the kernel parameters (if

a kernel function is used). An LSSVM’s performance depends

on its hyper-parameters which are with the radial basis function

(RBF) kernel, 𝛾 and 𝜎2. There are several methods for finding

these parameters, each with its own advantages and disadvan-

tages. This paper utilizes an optimization technique known as

particle swarm optimization.

3.2 Particle swarm optimization

To optimize objective functions, the PSO method employs a

population-based search [28]. In this metaphorical representa-

tion, particles are likened to birds in a flock, symbolizing various

solutions to the given situation. These particles, generated ran-

domly, move freely within the multidimensional search space.

The particle search optimization technique aims to progres-

sively approach the global optimal point by considering the best

position obtained by an individual particle pbest and the best

position acquired by the group gbest , both originating from

various starting locations.
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6 LAIB ET AL.

FIGURE 3 Particle swarm optimization (PSO)-based hyper-parameter

selection process for least square support vector machine (LSSVM) parameter

optimization.

The LSSVM hyper parameters, γ and 𝜎2, are optimized

by taking advantage of the various directions offered by the

pbest and gbest particles. The Figure 3 depicts the proposed

approach, which tackles the LSSVM parameter optimiza-

tion problem by using an optimization-based hyper-parameter

selection technique (Equations 29–30).

min f
(
𝛾, 𝜎2
)
= min (RMSE) (29)

subject to

{
𝛾lower ⩽ 𝛾 ⩽ 𝛾upper

𝜎2
lower

⩽ 𝜎2 ⩽ 𝜎2
upper

(30)

With the root mean square error (RMSE) defined using

Equation (31):

RMSE =

√√√√ 1

N

N∑
i=1

(
yi − ŷ (𝛾, 𝜎2 )

yi

)2

× 100% (31)

Here, the value of the fault parameter is denoted by yi ,

while the LSSVM produces a predicted value denoted by ŷi . The

validation data set contains N samples.

4 VALIDATION OF THE DEVELOPED
FORWARD MODEL

As mentioned earlier, TDR serves as a valuable technique for

measuring impedance values alongside the line and identifying

disturbances in distance or time. The fundamental approach for

TDR measurements involves injecting a signal into the coaxial

cable’s inner conductor. As the signal travels along the cable,

encountering a disruption causes a portion of its energy to

reflect back to the injection point, where it is subsequently col-

lected. In this study, TDR responses were measured using an

experimental setup that employed a vector network analyser

(VNA), as illustrated in Figure 4. The network under test (NUT)

FIGURE 4 Experimental setup.

is connected to the testing port of the VNA using a suitable

connector wire (the blue wire with a length of 50 cm) to carry

out the measurements. For accurate results, it is important to

calibrate the VNA before performing any measurements. This

calibration compensates for the presence of the connector cable

between the measuring port (on the VNA side) and the desired

testing port on the NUT side.

The VNA measures the NUT response in the frequency

domain, represented by the S11 parameter. This frequency-

domain response is mathematically converted into the time

domain using an inverse fast fourier transform (IFFT) [29].

4.1 Case of Y shaped network

A Y-shaped network is employed to test the forward model

using measured data. The RG58 CU coaxial cable utilized in

this network is illustrated in Figure 5. The determined and com-

puted values of the distributed parameters (L, C, R, and G) are

provided below in accordance with [30]. The radii of the inner,

outer, and external conductors are represented by the values

of A, Ri, and R0, respectively. The terms µ and ε, respectively,

describe the material’s dielectric permittivity and magnetic per-

meability, between the conductors. Additionally, tg(δ) stands for

the tangent of the dielectric loss. To assess the performance of

the proposed model, a raised cosine pulse was used as a source

signal. The raised cosine pulse with a rising time of 4 ns and

amplitude of 1 V is employed as input for the FDTD algorithm,

as shown in (32):

e (t ) =

{
0.5 (1 − cos (2�Ft )) 0 < t <

1

F
0 otherwise

(32)

The Figure 6 shows a schematic of the Y-shaped network that

was adopted in this case. Three branches make up this network:

L1 = 1 m, L2 = 4 m, and L3 = 1 m. The type of load at the end

of each branch is an open circuit, as illustrated.
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LAIB ET AL. 7

FIGURE 5 The used cable cross section of.

FIGURE 6 The Y-shaped network utilized to verify the forward model.

FIGURE 7 Measuring and simulating the TDR responses of the healthy

Y-shaped network.

FIGURE 8 Measuring and simulating the TDR responses of the faulty

Y-shaped network.

A comparison of the TDR response of a healthy wire network

produced by the provided forward model and the response

established through measurement is shown in Figure 7. The

figure clearly illustrates how closely the measured and simu-

lated TDR responses correspond. Variations in the cable’s ideal

and actual characteristic impedance may cause slight differences

between the measured and simulated responses.

Another scenario involving a Y-shaped network with a hard

fault (short circuit) occurring in the second branch (L2), is inves-

tigated in this paper. The fault is precisely 3 m away from the

input position. The measured and modelled TDR responses for

this specific situation are contrasted in Figure 8. The remark-

able resemblance between the measured and generated TDR

responses is clearly shown in the figure.

4.2 Case of YY shaped network

The study also addresses a faulty YY-shaped wire network,

as seen in Figure 9. The network comprises five branches
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8 LAIB ET AL.

FIGURE 9 The YY-shaped network utilized to verify the forward model.

FIGURE 10 YY-shaped network TDR measured and simulated

responses.

with lengths as follows: L1 = 1 m, L2 = 4 m, L3 = 1 m,

L4 = 0.5 m, and L5 = 1.5 m. The type of load at the end

of each branch is an open circuit, as illustrated in Figure 9.

Branch L4 experiences a short circuit 0.4 m from the second

junction, while branch L2 is affected by an open circuit fault

occurring 2 m from the first junction. The measured and mod-

elled TDR responses for the YY-shaped network are shown in

Figure 10. Figure 11 on the other hand, displays the simulated

and measured TDR responses for the faulty YY-shaped net-

work. Figure 12 shows the TDR measurement results for both

the healthy and faulty YY-shaped networks. The small variation

between the results obtained from measurements and simula-

tions is attributed to differences between a cable’s theoretical

characteristic impedance and its practical impedance.

FIGURE 11 Faulty YY-shaped network TDR measured and simulated

responses.

FIGURE 12 Comparison between the measured TDR responses of the

healthy and the faulty YY-shaped networks.

5 INVERSION RESULTS

5.1 Case of the Y-shaped network
configuration

The new method, called PSO-LSSVM, is employed to anal-

yse the faulty Y-shaped network presented earlier. With this

method, the inverse problem is solved by leveraging the voltage

signal differences between the healthy and damaged networks.

The maximum value and the corresponding appearance time (t)

are obtained by calculating this difference. The use of this time

parameter facilitates the localization of the fault. The Figure 13

provides an overview of the suggested approach’s technique and

a clear graphic representation of it.
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LAIB ET AL. 9

TABLE 1 Parameters of the PSO-LSSVM model with RBF kernel (case of Y shaped network).

Training Validation Test γ σ2 RMSE%

Particle swarm optimization -

least square support vector

machine (PSO-LSSVM)

1000 400 460 2.2758 × 109 51.7947 0.034

FIGURE 13 Diagram of proposed approach based on particle swam

optimization - least square support vector machine (PSO-LSSVM).

TABLE 2 . Estimated and obtained values of fault locations case of Y

shaped network.

Actual fault

position

Estimated fault using

particle swarm optimization -

least square support vector

machine (PSO-LSSVM) The relative error

0.7920 0.7941 2.65 × 10−3

1.8672 1.8668 0. 21 × 10−3

2.0952 2.0948 0. 19 × 10−3

3.5760 3.5758 0. 05 × 10−3

4.8096 4.8100 0. 08 × 10−3

The training database for the PSO-LSSVM model is cre-

ated using the forward model, which is based on the FDTD

approach. Input data, specifically the appearance time (t), and

related output data, indicating the fault location, are both

included in this database. A total of 1860 random and normal-

ized samples were generated across three sets of data for training

and testing the PSO-LSSVM model. The first 1000 samples

of these were used for model training, the next 400 samples

for parameter validation, and the remaining 460 examples for

model testing. With the RBF kernel chosen, the PSO-LSSVM

technique was employed to complete the inversion process. The

estimated real value of the fault location was represented using

a single-output PSO-LSSVM model. In this study, the perfor-

mance of the PSO-LSSVM model was assessed using the root

mean square error (RMSE) as the performance parameter. The

parameters of the PSO-LSSVM model with the RBF kernel are

summarized in Table 1.

The fault given by the PSO-LSSVM model and the fault

present in the testing database are compared in Figure 14.

The PSO-LSSVM model can effectively estimate the values

of faults, as illustrated by these results, demonstrating its gen-

eralization capability. Table 2 represents some estimated and

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5
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FIGURE 14 Comparison between the faults locations estimated by the

particle swarm optimization - least square support vector machine

(PSO-LSSVM) and the faults included in the testing data sets.

obtained values of faults in the case of the Y-shaped net-

work. The results displayed in Table 2 improve the efficiency

of PSO-LSSVM in fault location for the case of Y-shaped

network.

Relative error =
||||
Approximate value−Exact value

Exact value

||||

5.2 Case of the YY-shaped network
configuration

The YY-shaped network, depicted in Figure 9, is observed as

a more complicated network in this research than the initial

one. L1 = 1 m, L2 = 4 m, L3 = 1 m, L4 = 0.5 m, and

L5 = 1.5 m are the lengths of the network’s branches. The for-

ward model is used to produce the requisite database for training

the PSO-LSSVM model. For training and testing the PSO-

LSSVM model, three data sets were prepared, totalling 2080,

random and normalized samples. The first 1000 data points

were used for model training, the next 400 for parameter val-

idation, and the last 680 for model testing. The PSO-LSSVM

approach with the RBF kernel was used to perform the inver-

sion. To represent the estimated real value of the fault location,

a single-output PSO-LSSVM model was used. The RMSE was

used as a performance factor to assess the accuracy of the

PSO-LSSVM model. Figure 15 also shows a significant agree-

ment between the estimated fault locations obtained using
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10 LAIB ET AL.

TABLE 3 Parameters of the PSO-LSSVM model with RBF kernel case of YY shaped network.

Training Validation Test γ σ2 RMSE%

Particle swarm

optimization - least

square support

vector machine

(PSO-LSSVM)

1000 400 680 1.0000 × 1010 7.1968 × 104 0.040

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
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0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Actual fault location[m]
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FIGURE 15 Comparison between the faults locations estimated by the

particle swarm optimization - least square support vector machine

(PSO-LSSVM) and the faults included in the testing data sets.

TABLE 4 Estimated and obtained values of fault locations case of YY

shaped network.

Actual fault

position

Estimated fault using

PSO-LSSVM The relative error

4.9320 4.9323 0.06 × 10−3

3.6168 3.6167 0.02 × 10−3

2.4480 2.4477 0.12 × 10−3

1.7592 1.7589 0.17 × 10−3

0.5760 0.5758 0.34 × 10−3

PSO-LSSVM and those in the database. Table 3 shows the

parameters of the PSO-LSSVM model using the RBF kernel.

The PSO-LSSVM model can effectively estimate the values

of faults, as illustrated by these results, which demonstrate its

generalization capability. Table 4 represents some estimated and

obtained values of faults in the case of the YY-shaped net-

work. The results displayed in Table 4 further improve the

efficiency of PSO-LSSVM in fault location for the YY-shaped

network.

5.3 Comparison with the existing literature

As stated in Table 5, the proposed algorithm has been com-

pared with other algorithm results in order to determine its

TABLE 5 Comparison with published work.

Error

Computational

time

Particle swarm optimization - least

square support vector machine

(PSO-LSSVM)

3.7 × 10−4 m 1 s

Support vector machine (SVM) [20] 1 cm 1s

Genetic algorithm (GA) [10] 7.48 cm 94.60 min

Particle swarm optimisation (PSO)

[10]

4.68 cm 26.36 min

Electromagnetism-like mechanism

(EM) [9]

6.5 cm –

Improved black hole (IBH)

algorithm [13]

1.93 cm 20.00 min

effectiveness and accuracy. We list the errors in the lengths of

the impacted branches in this table along with the total amount

of computation time and inaccuracy. The suggested approach is

extremely effective and faster than those realized in the litera-

ture, as shown by Table 5. LSSVM typically outperforms SVM

quadratic programming in terms of speed, as it involves solving

a linear system of equations, while SVM quadratic programming

tackles a more complex quadratic programming problem. Our

proposed approach leverages PSO in a two-phase optimization

for training the LSSVM model, offering distinct advantages.

Firstly, by employing PSO for training, our method effectively

optimizes the hyper parameters of the LSSVM model, lead-

ing to enhanced prediction accuracy. Secondly, the inherent

computational efficiency of the LSSVM model, attributable to

its linear system of equations, contributes to an overall expe-

dited training process. The training time for the PSO-LSSVM

is approximately 15 min for the Y-shaped network and around

16 min for the YY network. The PSO-LSSVM training can be

conducted offline. The inversion process using this method is

exceptionally rapid, taking less than 1 s, with minimal error,

making it suitable for online applications. The cumulative error

using PSO-LSSVM is 3.7 × 10−4 m, which is significantly less

than the errors observed in IBH (1.93 cm), PSO (4.68 cm), EM

(6.5 cm), and GA (7.48 cm), respectively. Even the SVM men-

tioned in [21] exhibited a runtime of less than 1 s, but with an

error of more than 1 cm.

6 CONCLUSION

In conclusion, this research introduces a novel and effec-

tive methodology for diagnosing complex wire networks by
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LAIB ET AL. 11

employing TDR in combination with the PSO and least squares

support vector machine LSSVM algorithm. The establishment

of a forward model using RLCG parameters and the FDTD

method permits the modelling of the TDR response for a

specific complex wire network. The application of the PSO-

LSSVM approach effectively addresses the inverse problem,

allowing for the localization of faults within these networks. The

experimental results validate the practicality and effectiveness of

this integrated approach in real-world systems. Clearly, the pro-

posed technique, combining TDR and PSO-LSSVM, emerges

as a robust and reliable diagnostic tool for complex wire net-

works, offering promising implications for fault localization

in practical applications. The results prove that the proposed

methodology outperforms various iterative methods in the lit-

erature, including GA, PSO, IBH, and EM. Furthermore, this

research has the potential to be expanded to address soft faults,

thereby improving the accuracy and reliability of wire network

diagnosis.
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