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Abstract

3D imaging via X-ray microscopy (XRM), a form of tomography, is revolu-

tionising materials characterisation. Nondestructive imaging to classify grains,

particles, interfaces and pores at various scales is imperative for our under-

standing of the composition, structure, and failure of buildingmaterials. Various

workflows now exist to maximise data collection and to push the boundaries of

what has been achieved before, either from singular instruments, software or

combinations through multimodal correlative microscopy. An evolving area on

interest is the XRM data acquisition and data processing workflow; of partic-

ular importance is the improvement of the data acquisition process of samples

that are challenging to image, usually because of their size, density (atomic num-

ber) and/or the resolution they need to be imaged at. Modern advances include

deep/machine learning and AI resolutions for this problem, which address arte-

fact detection during data reconstruction, provide advanced denoising, improved

quantification of features, upscaling of data/images, and increased throughput,

with the goal to enhance segmentation and visualisation during postprocess-

ing leading to better characterisation of samples. Here, we apply three AI and

machine-learning-based reconstruction approaches to cements and concretes to

assist with image improvement, faster throughput of samples, upscaling of data,

and quantitative phase identification in 3D. We show that by applying advanced

machine learning reconstruction approaches, it is possible to (i) vastly improve

the scan quality and increase throughput of ‘thick’ cores of cements/concretes

through enhanced contrast and denoising usingDeepRecon Pro, (ii) upscale data

to larger fields of view using DeepScout and (iii) use quantitative automated

mineralogy to spatially characterise and quantify the mineralogical/phase com-

ponents in 3D usingMineralogic 3D. These approaches significantly improve the

quality of collected XRM data, resolve features not previously accessible, and

streamline scanning and reconstruction processes for greater throughput.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the

original work is properly cited.
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1 INTRODUCTION

3D imaging via X-ray microscopy (XRM) is revolution-

ising materials characterisation and the understanding

of grains, particles, interfaces and pores. Detailed and

high-quality imaging and analyses are imperative for

our understanding of the composition, structure, lifetime

transformation and failure of a variety ofmaterials, includ-

ing building materials such as cements and concretes.1

Imaging via XRM has an advantage over more traditional

2D methods because it enables the full analyses in all

axes, it is nondestructive and it allows imaging at the

multiscale, allowing for a more holistic interpretation of

samples. Therefore, it is an obvious choice for cements and

concretes.

However, there is necessitated improvement of the data

acquisition process of samples that are fundamentally

challenging to image, usually because of their large size,

density (high atomic number) and/or the resolution they

need to be imaged at. This is a particular challenge for

cements and concretes because the samples are usually

heterogeneous and diverse cores varying greatly in their

size/diameter (resulting in long scan times because of the

need to increase the number of projections collected, or

long exposure times), chemical composition, and size of

features (e.g., grains, pores, cracks), where observations of

small regions of interest alone are not suitable for com-

plete characterisation. There is a need to acquire XRMdata

at the multiscale, where higher resolution scans comple-

ment the lower resolution scans (and vice versa), which

is often constrained by high-resolution interior tomogra-

phies having a much smaller field of view and a lack

of X-ray penetration, appearing noisy and suffering from

artefacts, making many small features unobservable. Fur-

ther, there is generally a contrast overlap between different

components of interest that have a similar chemical com-

position and structure (i.e., cements and concretes being

dominated by calcium-based phases) which are difficult to

differentiate from one another via standard reconstruction

or segmentation techniques. Ideally, improved quantifica-

tion of features, upscaling of data/images, and increased

throughput for repeat samples is required, with the goal to

enhance reconstructed data for more authentic segmenta-

tions, leading to a better andmore holistic characterisation

of samples, whatever the problem and application.

Here, we apply various aspects of the ZEISS Advanced

Reconstruction Toolbox (ART) to address these issues:

DeepRecon Pro, a machine-learning-based reconstruction

approach,2,3 to show that it is possible to vastly improve

scan quality through enhanced contrast and denoising,

with the additional advantage of increasing throughput

of ‘thick’ cores through shorter scan times. Additionally,

we ‘upscale’ higher resolution targeted regions of interest

scans to larger fields of view using DeepScout,4,5 result-

ing in resolution recovery. Finally, we apply Mineralogic

3D, a quantitative machine learning approach to spatially

characterise and quantify the mineralogical/phase com-

ponents in 3D. These approaches significantly improve

the quality of collected XRM data, resolve features and

compositional data not previously accessible, and stream-

line the scanning and reconstruction process for greater

throughput.

2 SAMPLES ANDMETHODS

Cements and concretes are versatile materials used for a

variety of applications, ranging from civil building materi-

als to the nuclear industry. Of the former, there is a drive to

produce cements that are more environmentally friendly,

reducing the need for raw materials extraction by using

waste materials (e.g., fly ash, blast furnace steel industry

and iron-making slag) and that have a lower carbon foot-

print during their production (e.g., those that cure faster

at room temperature). Of the latter, the drive is to produce

cements that aid in potential nuclear waste containment

(i.e., do not contain pathways for leakage), and concretes

that attenuate gamma radiation and can cope with ele-

vated temperatures (i.e., when used in nuclear reactors).6,7

Therefore, enhanced characterisation of these materials

from advanced imaging and reconstruction are vital for

their characterisation (Table 1).

The samples studied here were cores of variable thick-

ness ranging from 5 to 30 mm diameter. The thicker cores

were particularly challenging to image because of limited

X-ray penetration. First, the samples were scanned non-

destructively in 3D using a ZEISS Xradia 620 Versa X-ray

Microscope (XRM). Two types of scans were collected:

lower magnification, larger field of view scans to image

as much of the sample as possible; and region of interest

(ROI) interior tomography scans at higher magnification

(and resolution), using the Versa’s bespoke proprietary

optics to target specific internal regions to image via the

Scout and Zoom approach (Figure 1).

Finally, the resulting scan data were run through

a variety of ART software options: DeepRecon Pro,
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TABLE 1 Sample information for cements and concretes used in this publication.

Sample

number Sample type Special features Used for Processes

1 Blended Portland

cement

Contains recycled materials (slag from the

iron-making process)

5 mm thick core

General construction DeepRecon Pro;

Mineralogic 3D

2 Geopolymer

cement

Cure at room temperature, low CO2 process;

contains aluminosilicate precursor

(metakaolin) geopolymer and Fe agglomerates

for simulated nuclear waste

10 mm thick core

Potential nuclear waste

containment and

immobilisation

DeepRecon Pro

3 Dolerite

‘high-density’

concrete

Dolerite aids in attenuation of gamma radiation,

also contains recycled materials (fly ash)

15 mm thick core

Nuclear industry

vessels for AGR

reactors

DeepRecon Pro;

DeepScout

4 Standard building

concrete

‘Normal’ cement minerals (Ca silicates,

hydroxides) and aggregates

30 mm thick core

General construction DeepRecon Pro;

Mineralogic 3D

F IGURE 1 Schematic illustrating the workflows used in this publication.

a machine-learning-based reconstruction approach for

advanced denoising, enhanced contrast, improved iden-

tification of small features and increased throughput;

DeepScout, which provides the ability to ‘upscale’ lower

resolution data over a larger field of view; andMineralogic

3D, which allows us to spatially characterise and quan-

tify mineralogy/phases in 3D. A summary of the workflow

used here can be seen in Figure 1.

3 RESULTS

3.1 Improving data quality during
reconstruction (DeepRecon Pro)

DeepRecon Pro advanced reconstruction provides an alter-

native to the more traditional (and most common) filtered

back-projection or FDK reconstruction technique. In FDK,

the entire volume is reconstructed in one single step but

has sensitivity to both noise and artefacts, often needing

a large number of projections, or long scan times through

long exposure times, to overcome these issues. Following

this, the FDK reconstructed data is usually run through a

series of filters in postprocessing software to try and reduce

the noise (e.g., nonlocal means, Gaussian, deconvolution),

improve image quality, and deal with artefacts. This can

be a long process and does not always result in the desired

outputs, sometimes over-smoothing and digitally ‘erasing’

features of interest.

DeepRecon Pro offers an alternative. It is a deep-

learning-based artificial intelligence technique which

reconstructs raw projection data as soon as it is generated

from the XRM. A trained neural network is generated for

image improvement, interpretation and retrieval, allowing
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F IGURE 2 2D slice comparison of a zoomed section of a sample 3 concrete core reconstructed using standard methods (FDK) and

DeepRecon Pro.

for high-quality reconstructed data even when performing

rapid acquisitions using a small number of projections or

short exposures (Figure 2). Once a model has been gen-

erated, it can be applied to as many similar samples in

repetitive experiments as required, further streamlining

and speeding up the scanning process. For cements and

concretes, these factors are particularly useful because (a)

it reduces scan times, (b) it allows for greater through-

put, and (c) it does not compromise scan time for scan

quality, resulting in true, useable data that can then be

utilised for more accurate segmentation, analysis, and

modelling. Moreover, the DeepRecon Pro approach is uni-

versally valuable for all cement and concrete types and

applications, rather than one alone (Table 1).

Examples presented here (Figure 2) shows that scan

times can be 3× faster using DeepRecon Pro over stan-

dard FDK reconstructions with improved image qual-

ity and superior identification of phases and features

(Figures 2–4). Figure 4 shows the advantage of usingDeep-

Recon Pro to identify aggregates that make up the ‘grains’

of the concrete and separate them from the lower con-

trast cement matrix. Further, the unique ability to use

multiple objectives in the Versa XRMs to target internal

tomographies of high-resolution regions have tradition-

ally been problematic for large, dense samples, often

being noisy and lacking in contrast; results presented here

(Figure 4C andD) show that DeepRecon Pro assists greatly

with improved contrast, denoising, and general image

enhancement, offering a unique insight into the microme-

tre and nanometre scale relationships in cements and

concretes.

3.2 Resolution recovery: upscaling of
high-resolution interior tomographies to
larger fields of view (DeepScout)

Like most other methods of microscopy, whether in 2D

or 3D, XRM has field of view (FOV) limitations for high-

resolution imaging. In most situations, multiple scans on

the XRM are collected at the multiscale, often using suc-

cessively higher objectives (0.4× > 4× > 20× > 40×) to

improve the voxel size and spatial resolution, with the field

of view decreasing with each scan (Figure 5A). Smaller

FOV interior tomographies also often suffer with limited

X-ray penetration resulting in noise and artefacts, and

consequently require long scan times.

DeepScout is a novel deep learning reconstruction

method to address the challenge of achieving high-

resolution at larger FOVs. This AI powered technique and

workflow can be used to restore the high-resolution scan

data to a large FOV scan, or, resolution recovery of that

data. It works by replacing the traditional deconvolution

step with a convolutional neural network trained specif-

ically on a spatially registered low- to high-resolution

feature map. The workflow then performs a spatial
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F IGURE 3 2D slice comparison of standard FDK reconstruction and DeepRecon Pro results for Blended Portland cement (sample 1; A

and B) and a geopolymer (sample 2; C and D). Denoising and general image improvement observed in DeepRecon Pro data. A and B show

porous residual blast furnace slag particles in a blended Portland Cement. Insert in C and D shows an encapsulated particle of Fe-rich sludge

waste embedded in an otherwise fairly featureless geopolymer matrix; however, these grains were difficult to identify and determine a robust

shape analysis using FDK reconstruction alone, and we are able to identify much smaller Fe-rich grains, otherwise obscured by noise, within

the ‘featureless’ geopolymer matrix.

registration of the multiscale datasets, and generates a

model based on the high-resolution data.5

This applies to cements and concretes by upscaling

high-resolution data to larger fields of view to provide

more information over a larger area, more accurate seg-

mentations, and results that are more meaningful and

representative of the whole samples rather than studying

one small FOV alone. In Figure 5, we have applied this to

nuclear reactor concrete; we have upscaled a 4× objective

5 µm high-resolution scan collected at 5.9 mm3, to 27 mm3

of the original 0.4× objective low-resolution scan. This

is an almost 5× increase in FOV. This approach provides

more information about the sample and scan over a larger

area:we have improved the contrast between different con-

stituents, the visibility and identification of small grains

within the matrix, and the outline and features within

high-density grains, whichwill lead to amore accurate seg-

mentation and analyses of the sample and the ability to

spot areas of weakness (Figure 5C and D).

3.3 3D distribution and quantitative
phase analysis of components with similar
contrasts (Mineralogic 3D)

Mineralogic 3D uses XRM data and deep learning algo-

rithms to execute automated mineralogy analyses in

three dimensions that provide particle identification,

mineral/phase classification and data outputs including

segmentation and quantified component analyses. Col-

lecting mineralogical/phase data in 3D has benefits over

more traditional 2D chemical acquisition methods (e.g.,

SEM-EDS); there is no complicated sample preparation,

every grain/particle is viewed fully in 3D so there are

no stereological assumptions and the time taken to gen-

erate useable data is greatly reduced.8 Mineralogic 3D

works by first using DeepRecon Pro to enhance the data

through advanced reconstruction, and subsequently takes

into account the scanning conditions (kV), X-ray attenua-

tion, the ‘real life’ density and the chemical composition
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F IGURE 4 2D slice comparison of standard FDK reconstruction and DeepRecon Pro results for 0.4× (A and B) and 4× (C and D) Scout

and Zoom interior tomography scans of a 20 mm diameter standard building concrete (sample 4) core. Improvement of the data is observed in

both examples. 0.4× scans collected at 27.21 µm voxel size, while 4× ROI scan was collected at 5 µm voxel size. Spatial resolution

improvements exemplified from 0.4× to 4× scans, highlighting the need to scan at the multiscale to obtain the required details.

of minerals/phases to apply deep learning algorithms for

accurately segmented and quantified data. Moreover, use

of a ‘mineral library’ ensures repeat or batch samples can

be run accurately, repetitively and quickly.

Applying this approach to cements and concretes has

multiple benefits. First, it allows us to ascertain what

minerals/phases are in the samples and to segment them

accordingly at multiple scales for a variety of sample sizes.

Second, DeepRecon Pro allows us to enhance the contrast,

allowing minerals/phases of similar attenuation values to

be segmented. Figure 6 shows the plot of four groups of

phases that we have successfully segmented in Figure 7,

which includes the separation of calcium silicates, the

main constituents of the cement powder, which also con-

tains some calcium carbonate. When these are mixed

with water, undergoing hydration, they form calcium sil-

icate hydrate and calcium hydroxides, with the calcium

carbonate being slightly reactive. This process is essen-

tial for the hardening and setting of the cements, and is

incredibly dependent on the quantities and proportions

of each added component. Here, we can differentiate the

lime – an expanding agent which is added and impor-

tant for overcoming contraction during hydration – from

the Ca silicates, which tells us how much ‘free lime’ has

survived reaction/the curing process. Moreover, we can

segment and quantify recycled waste materials which are

commonly added, such as the aforementioned fly ash and

steel/iron industry blast furnace slag. Using these mate-

rials not only provides an alternative calcium source and

lowers the carbon footprint between industries, but imag-

ing and analysing in this manner allows users to quantify

specific constituents, such as the amount of silica and

aluminium that is added for more resistance to chemical

attack.

Third, we can improve the segmentation of differ-

ent components through this advanced analysis method.

Figure 7 shows the difficulty in seeing the difference

between the green and yellow groups in regularly FDK
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F IGURE 5 Upscaling of internal 4× ROI 5 µm voxel size scan data to larger field of view 0.4 × 28 µm voxel size scan in dolerite concrete

(sample 3). Internal tomography of targeted ROI scan shown in bright colours in A and B. Using DeepScout improves the contrast between

different constituents, the visibility and identification of small grains within the matrix, and the outline and features within high-density

grains (C and D).

F IGURE 6 Mineralogic 3D histogram of sample 4 (standard construction concrete). Attenuation histogram is smoothed in the first step

of Mineralogic using DeepRecon Pro; following look up using the mineral library, phases and minerals are automatically plotted to histogram

peaks. We are able to divide the phases/minerals into groups, and are able to tell the difference between Ca phases.
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8 MITCHELL et al.

F IGURE 7 Comparison of standard FDK reconstruction (A), standard thresholding (B), DeepRecon Pro (C), Mineralogic 3D phase

segmentation (D) and coloured Multi ROI segmentation (E) for standard building concrete (sample 4). Four phases are segmented (not

including air), including phases with very similar contrasts that would be difficult to segment with conventional thresholding techniques as

in B (yellow phase in E).

reconstructed greyscale images of the data; however,

Mineralogic 3D can spot the differences. This is in com-

parison to attempting a manual threshold of the yellow

group using the regularly reconstructed FDK data, which

does not segment the data correctly and selects areas

of other groups that have fluctuating greyscales/noise

(Figure 7B).

4 CONCLUSIONS

Traditional methods of tomographic reconstruction,

including filtered back projection (FDK), are prone

to noise and aliasing artefacts and require many

projections to be collected, which can lead to long

scan times and sample drift. By applying aspects of the

Advanced Reconstruction Toolbox (ART), in conjunction

with nondestructive X-ray microscopy (XRM), we can

improve the quality of cement and/or concrete scans. In

this study, we have shown that we are able to improve

the image quality of large samples, reduce scan times and

increase sample throughput, improve contrast between

similar phases of similar chemistry and resolve features

and compositional data not previously accessible for a vari-

ety of cements and concretes. This has allowed for a quan-

tified and automated mineralogical (phase) analysis of

cements and concretes in 3D using Mineralogic 3D. These

results provide us with segmentation results that lead to

better and a more holistic characterisation of samples,

whatever the problem and application of various building

materials.
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