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Abstract

Differentially rotating stars and planets transport angular momentum (AM) internally due to turbulence at rates that
have long been a challenge to predict reliably. We develop a self-consistent saturation theory, using a statistical
closure approximation, for hydrodynamic turbulence driven by the axisymmetric Goldreich–Schubert–Fricke
instability at the stellar equator with radial differential rotation. This instability arises when fast thermal diffusion
eliminates the stabilizing effects of buoyancy forces in a system where a stabilizing entropy gradient dominates
over the destabilizing AM gradient. Our turbulence closure invokes a dominant three-wave coupling between pairs
of linearly unstable eigenmodes and a near-zero frequency, viscously damped eigenmode that features latitudinal
jets. We derive turbulent transport rates of momentum and heat and provide them in analytic forms. Such formulae,
free of tunable model parameters, are tested against direct numerical simulations; the comparison shows good
agreement. They improve upon prior quasi-linear or “parasitic saturation” models containing a free parameter.
Given model correspondences, we also extend this theory to heat and compositional transport for axisymmetric
thermohaline-instability-driven turbulence in certain regimes.

Unified Astronomy Thesaurus concepts: Astrophysical fluid dynamics (101); Solar differential rotation (1996);
Stellar rotation (1629); Stellar interiors (1606); Hydrodynamics (1963); Extrasolar gaseous giant planets (509)

1. Introduction

Instability-driven turbulence is thought to play a major role
in the transport of angular momentum (AM), heat, and
composition in stellar and planetary interiors (see, e.g.,
Garaud 2018; Aerts et al. 2019; Fuller et al. 2019; Spruit 2002),
as well as in astrophysical disks (e.g., Balbus & Hawley 1998;
Lesur et al. 2023). Unfortunately, rates of turbulent transport
are very challenging to predict theoretically, and the lack of
reliable theories has hampered our understanding of the
evolution of stellar and planetary internal rotations and
structures. For example, the AM redistribution in red giant
stars is currently poorly understood, and their core–envelope
differential rotations inferred from asteroseismology have not
been adequately explained (e.g., Beck et al. 2012; Eggenberger
et al. 2012; Aerts et al. 2019). The nearly solid-body rotation
observed in the solar radiative interior also lacks a robust
explanation (e.g., Garaud & Garaud 2008; Wood &
McIntyre 2011).

Differential rotation is known to drive a variety of
hydrodynamic (and hydromagnetic) instabilities. In this paper,
we focus on modeling hydrodynamic instabilities of differential
rotation in stellar and planetary radiative zones, and in
particular on the Goldreich–Schubert–Fricke (GSF) instability7

(Goldreich & Schubert 1967; Fricke 1968). This is a double-
diffusive centrifugal instability, in which rapid thermal
diffusion (relative to viscous momentum diffusion) enables
instability by tempering the otherwise stabilizing effects of
buoyancy forces. Prior work has studied the linear and
nonlinear properties of the instability, and the turbulence it
drives (Knobloch 1982; Knobloch & Spruit 1982; Korycansky
1991; Rashid et al. 2008; Barker et al. 2019, 2020; Dymott
et al. 2023), but a reliable theory for the resulting turbulent
transport is lacking. This means that the effects of the GSF
instability on stellar rotational and chemical evolution have not
been modeled in a self-consistent manner. Instead, one
typically invokes unexplained “additional viscosities” or
models that contain free parameters. Such tunable parameters
are intended to describe the effects of turbulence on AM
transport for which adequate knowledge is lacking.
A fully analytic model containing no free parameters is

derived here for the GSF-instability-driven turbulence in
2.5 dimensions (2.5D), i.e., with all three components of
velocity but varying spatially only in two dimensions. The
predictions of our analytical model are in broad agreement with
detailed numerical simulations of turbulence, driven by the
axisymmetric (2.5D) GSF instability at the equator of a star
with radial differential rotation. Such a model of the instability
is, for certain diffusivity ratios and in 2.5D, formally and
nonlinearly equivalent to the thermohaline, or salt-finger,
instability that transports heat and chemical elements (Kno-
bloch 1982; Barker et al. 2019); thus, the turbulent transport
arising from axisymmetric fingering convection is also
described by our theory.
The structure of this paper is as follows. In Section 2, we

present our model and methods of analysis. Nonlinear mode
coupling and saturation diagnostics of the instability appear in
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7 It has also been referred to as the “vertical shear instability” in accretion
disks (e.g., Urpin & Brandenburg 1998; Nelson et al. 2013; Barker &
Latter 2015; Latter & Papaloizou 2018) and as “inertial instability” enabled by
thermal diffusion in stellar interiors (Park et al. 2020, 2021).
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Section 3. Informed by such diagnostics, we present analytical
formulae, without any free parameters, to model the turbulence
and its transport properties in Section 4. We discuss the
astrophysical implications and conclude in Section 5. Details of
the closure model are provided in Appendices A, B, and C.

2. The GSF Instability and Inertial Gravity Waves

To study a basic mechanism of AM transport in a
differentially rotating star, we consider a local region inside
the star near its equator, where the rotation can be split into a
uniform or mean part—W = Weẑ, aligning with the local
latitudinal axis z—and a nonuniform part due to the radial
differential rotation. The latter is represented by a background
linear shear flow = -U ex x y0 ( ) ˆ , where x is the
radial coordinate, y is the azimuthal coordinate, and
= - Wd x d xlnShell( ) is the local radial shear rate, with

ΩShell(x) representing the “Shellular” rotation of the simplified
star. A uniform gravity field with = -g eg x̂ is directed radially
inward (Figure 1). A background radial temperature gradient
∇T0 then stratifies the fluid density radially, with a thermal
expansion coefficient α. In such a background state, any
perturbations in velocity u and scaled temperature θ= αgT
evolve (Barker et al. 2019) as

q nW+  + ´ = - + + u u U u e uD p2 , 1ax0
2· ˆ ( )

q k q+ Q = uD , 1b0
2· ( )

 =u 0, 1c· ( )

º ¶ + + u UD , 1dt 0( ) · ( )

where the variables p, ν, and κ are the fluid pressure (per unit
density), the kinematic viscosity, and the thermal diffusivity,
respectively. We also define the Prandtl number Pr= ν/κ.
Because the GSF instability operates at length scales much
smaller than a pressure scale height in stars, the local
approximation is valid; in such a case, when the turbulence
drives subsonic flows, the Boussinesq approximation is also
appropriate (Spiegel & Veronis 1960). Assuming a uniform
temperature gradient, a fluid element perturbed radially
oscillates with a constant Brunt–Väisälä (buoyancy) frequency
 , where a= Q = e g Tx

2
0 0ˆ .

Henceforth, we nondimensionalize all variables using the
characteristic rotation timescale Ω−1 and length scale d, with

nk=d 2 1 4( ) , which is typically similar to the wavelengths of
the fastest-growing modes. Thus, = WN  is the dimensionless
buoyancy frequency and = WS  is the dimensionless shear rate
(Rossby number). The GSF instability occurs in low-Pr fluids
whenever rä (0, 1), where r= Pr k+ --N1 Pr 12

ep
2( ) ( ), with

k = - S2 2ep ( ) representing the dimensionless epicyclic
frequency (Barker et al. 2019).

2.1. Eigenmode Analysis

A linear analysis of Equations (1a)–(1b) for axisymmetric
(uniform-in-y) perturbations yields a simple matrix equation,
which upon Fourier-transforming becomes g=LX Xˆ ˆ , where

Figure 1. Left: a schematic diagram of a differentially rotating star with a radial shear, gravity, and stable stratification. Such a system subject to the GSF instability is
studied using a local Cartesian model. Right: snapshots of the velocity components u x z,x ( ), u x z,y ( ), and u x z,z ( ) from the axisymmetric GSF-instability-driven
turbulence; x, y, and z represent the local radial, azimuthal, and latitudinal directions, respectively. Though finger-like horizontal structures (as shown by, e.g., ux ) grow
the fastest in the linear phase (t = 100), strong latitudinal jets uz are generated nonlinearly (t = 6000). The color bar for t = 100 is shared by ux , uy , and u3 z ; the color
bar for t = 6000 is shared by u3 x , u3 y , and uz . The turbulent transport of AM, e.g., á ñu ux y  , is predicted in this paper using a jet-coupled turbulence closure.
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q=X u u u, , ,x y z
Tˆ [ ˆ ˆ ˆ ˆ] , with T as the transpose operation, is the

state vector of spatially Fourier-transformed components at
wavevector k= (kx, kz); the matrix L is a linear operator, whose
eigenvalues are the complex-valued growth rates γ. The size of
L demands four linearly independent eigenvectors. Because of
the additional constraint ∇ · u= 0, the system has only
3 degrees of freedom at any given wavenumber—q̂ and two
components of velocity. Hence, one eigenvector among the
four eigenvectors does not satisfy ∇ · u= 0 and is rejected. We
confirm that this eigenvector is not excited within our
incompressible Boussinesq simulations. One among the
remaining three eigenvectors at a given wavevector becomes
GSF-unstable g >Re 0( ( ) , where Re denotes the real part),
whenever r ä [0, 1). The remaining two eigenvectors are
always stable, and their eigenvalues are complex conjugates of
each other whenever they satisfy g ¹Im 0( ) , where Im
denotes the imaginary part; gIm ( ) corresponds to the
frequency of inertial gravity waves (IGWs; or gravito-inertial
waves), modified by the shear flow and damped by viscous and
thermal diffusion.

The GSF instability grows dominantly via axisymmetric
(∂y≡ 0) perturbations, therefore we focus upon the (x, z)-
variations of the three-component velocity and temperature
fields. The dispersion relation is then a simple cubic
polynomial in γ (Goldreich & Schubert 1967), as

g g
k

g g+ + =n k k n
k

k

N k

k
0, 2

z z2 ep
2 2

2

2 2

2
( )

where γν= γ+ νk2 and γκ= γ+ κk2. Equation (2) shows that
on the (kx, kz)-plane, the growth rate exhibits strong anisotropy:
fluctuations with kx= 0 (“elevator modes”) grow the fastest,
whereas those with kz= 0 are linearly stable. This observation
is critical for the nonlinear saturation of the GSF instability,
because the anisotropy of the linear physics, in particular the
kz= 0 fluctuation, can impose its anisotropy on the nonlinear
energy transfer, which is otherwise isotropic; such consequen-
tial effects have been found in various systems such as 3D
Kelvin–Helmholtz instability (Tripathi et al. 2023b), rotating
(Waleffe 1993; Smith & Waleffe 1999) and stably stratified
turbulence (Riley & Lelong 2000), and turbulence with an
external magnetic field in astrophysical (Ng & Bhattacharjee
1996; Du et al. 2023) and fusion plasmas (Biskamp &
Zeiler 1995; Terry 2004).

Using the complete basis provided by the eigenvectors of the
linear operator L, we can decompose the arbitrary incompres-
sible fluctuation Xarb

ˆ with kz≠ 0 as b= å =X Xj j jarb 1
3ˆ ˆ , where βj

is the amplitude of the jth eigenvector Xj
ˆ ; we reserve j= 1 for

the GSF-unstable modes and j= 2, 3 for the IGWs that are
always linearly stable in this study. More compactly,

b=X Earb
ˆ , where β is a (column) vector of mode amplitudes
and E is an eigenvector matrix, whose jth column is Xj

ˆ .
Thus, b = -E X1

arb
ˆ .

For the kz= 0 modes, E turns out to be an identity matrix,
meaning that the three components of velocity, and the
temperature, individually form eigenvectors. In what follows,
we therefore decompose an arbitrary fluctuation with kz= 0
into Xarb

Tˆ = 1, 0, 0, 0[ ] + 0, 1, 0, 0[ ] + 0, 0, 1, 0[ ] +Θ
[0, 0, 0, 1], where the amplitudes of the eigenvectors are
denoted by , ,   , and Θ. We reserve the β-notation above
for the amplitudes of eigenvectors with kz≠ 0.

2.2. Initial Value Problem

We perform an ensemble of direct numerical simulations of
Equations (1a) and (1b), by seeding a low-amplitude solenoidal
random noise to u, in a box of size (Lx, Lz)= (100, 100). To
obtain numerically converged results, a spatial resolution of up
to 5122 grid points is used in the pseudo-spectral solver
SNOOPY (Lesur & Longaretti 2005; Barker et al. 2019).
To determine the contribution of each eigenmode in, for

example, the turbulent momentum transport, we decompose the
turbulent stress as: * *b bá ñ = å åu u u u2 Rex y k k m n m x m n y n, , , ,x z

  [ ˆ ˆ ],
where 〈·〉 is an (x, z)-averaging operation; m and n are summed
from 1 to 3, corresponding to three excited eigenmodes at every
wavenumber k; the amplitude βm and the x-component of the
velocity ux m,ˆ correspond to the mth eigenvector at k, and
likewise for βn and uy n,ˆ ; and the operation * denotes complex
conjugation. Using such a decomposition, we obtain the
contribution of an unstable mode at k to the momentum
transport rate, which is *b u u2 Re x y1

2
,1 ,1∣ ∣ [ ˆ ˆ ]. This decomposition

is performed for every wavenumber, hence allowing us to trace
the evolution of transport contributions due to individual
unstable modes (see Figure 2(a)).
The summed contributions of all eigenvectors from all

wavenumbers reproduce, to machine precision, the total
transport rates found in the simulation before performing mode
decomposition, as we show in Figure 2(b). The contributions of
the unstable modes are also compared across different
wavenumber sums. Almost identical results are found for heat
transport (not shown). The unstable modes from the linearly
fastest-growing wavenumber branch kx= 0 transport signifi-
cantly less momentum than the other wavenumbers with kx≠ 0.
This is our first surprising result, and it challenges predictions
of turbulent transport that rely on an unstable mode at the
fastest-growing wavenumber alone (e.g., Radko & Smith 2012;
Brown et al. 2013; Barker et al. 2019). This finding also
instructs us to investigate nonlinear couplings between
eigenmodes to understand the instability saturation mechanism.

3. Nonlinear Saturation by Coupling to Latitudinal Flow

3.1. Mode Amplitude Evolution

To analyze nonlinear mode couplings, Equations (1a)–
(1b) are first spatially Fourier-transformed: ¶ = +X LXt

ˆ ˆ
å ¢ ¢  N X X,k k, ( ˆ ˆ ), where ¢X X,ˆ ˆ , and X̂ are state vectors at

¢k k, , and k″, respectively, satisfying = ¢ + k k k . Then,
following Section 2.1, we substitute b=X Eˆ , and likewise for
¢X̂ and X̂ . We multiply the obtained equation with E−1 and

take the jth row of the resulting equation. This process yields an
evolution equation for the jth eigenmode at k. Such an
evolution equation for mode amplitude βj for kz≠ 0 is different
from that of the mode amplitude Î QF , , ,{ }   for kz= 0,
although both are coupled and nonlinear:

å

å

b g b b b

b

¶ = + ¢ 

+ + ¢ 
¢

¢

¢ ¢=

¢ 

Î Q

C

C C F , 3a

k

k k

k

k k k k

t j j j
m n

jmn m n

F n k
jFn jnF n

, ,

,

, , : 0

, ,

z
F , , ,

[ ] ( )

( )

( ) ( )

{ }  

åg b b¶ = - + ¢ 
¢ =

¢F F C , 3b
k

k k
t F

m n k
Fmn m n

, , : 0

,

z

( )( )

where γj is the complex-valued growth rate for the jth
eigenmode with kz≠ 0; the real-valued damping rate γF is g
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when F is replaced with  in Equation (3b); likewise for the
replacement of F with , ,  and Θ; and we note that
g g g n= = = kx

2
   and g k=Q kx

2. The nonlinear coupling

coefficient, for example, ¢C k k
jmn

,( ), measures the overlap of
eigenmodes m with ¢k , n with k″, and j with k. Such a
mode-coupling coefficient is found by applying E−1 to the

(column) vector of ¢ N X X,m n( ˆ ˆ ), a process that incorporates all

the nonlinearities of the system, thus making ¢C k k
jmn

,( ) ideal for a
comprehensive instability saturation analysis.
On the right-hand side of Equation (3a), the second term is

the nonlinear coupling between eigenmodes with ¢ ¹k 0z and
 ¹k 0z (hence the two βs), and the third term, with an F and a

β, is the nonlinear coupling between eigenmodes with ¢ =k 0z

and  ¹k 0z (see the last paragraph of Section 2.1).
Equations (3a) and (3b) have the same number of degrees of
freedom as the original nonlinear equations in physical space,
Equations (1a)–(1b). These systems are completely equivalent,
but one represents dynamics in physical space and the other in
eigenmode space.

3.2. Mode Energy Evolution

The energy evolution equation for each eigenmode can now
be derived by multiplying Equation (3a) by *b j and adding the
complex conjugate of the resulting equation, to arrive at

b¶ = +Q T , 4t j j j
2

AA∣ ∣ ( )

where g b=Q 2 Rej j j
2∣ ∣ is the linear energy transfer rate to k

from the mean gradients, and TjAA is the total nonlinear energy
transfer to the jth eigenmode from all possible nonlinear
interactions; Equation (C3). We now show the spectrum of
time-averaged Q1, along with that of the growth rate and time-
averaged viscous dissipation rate òν, in Figure 3.
From TjAA in Equation (4), we separate out the nonlinear

transfer T1 1 in a triad that involves a latitudinal flow  at

Figure 2. (a) Comparison of momentum transport ( *b= u uReynolds Stress 2 Re x y1
2

,1 ,1∣ ∣ [ ˆ ˆ ]) driven by an unstable mode at the linearly fastest-growing wavenumber
k = (0, 0.63) and by an unstable mode at k = (0.31, −0.13), the wavenumber that has the largest contribution to the momentum transport in the nonlinear phase. (b)
Eigenmode decomposition of net Reynolds stress á ñu ux y  in a nonlinear simulation of the GSF-instability-driven turbulence, showing that the transport due to mode-
undecomposed fluctuations (red curve) and all mode-decomposed fluctuations (black curve) agree to machine precision. Transport is almost entirely (88%) due to the
unstable modes (green curve); the sum of the fastest-growing unstable modes at kx = 0, however, contributes negligibly (3%) to the transport (blue curve). The
simulation parameters used are S = 2.1, N2 = 10, and Pr = 0.01.

Figure 3. Spectra of linear and nonlinear saturation properties of the GSF
instability. In the negative-kx domain, the colored square boxes (yellow–green–
purple) display time-averaged energy extraction rates 〈Q1〉t by unstable modes
from the mean gradients in a nonlinear simulation. In the positive-kx domain,
the colored square boxes (black–red–yellow) show the time-averaged viscous
dissipation rates, which are pronounced at low kz. Over the entire (kx, kz)-plane,
the nonsquare filled and line contours show the growth rates γ of unstable
modes, with white dashed contour lines in the negative-kx domain and bluish
filled contours in the positive-kx domain. The fastest-growing mode resides at
around k = (0, 0.63). The simulation parameters are S = 2.1, N2 = 10, and
Pr = 0.01.
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¢ =k 0z and two GSF-unstable modes ( j= 1) at ¢ ¹k 0z :

*å b b= + ¢ 
¢ ¢=

¢ T C C2 Re . 5
k

k k k k

k
1 1

: 0
1 1

,
11

,
1 1

z

{[ ] } ( )( ) ( )   

We now compare T1 1 with T1AA in Figure 4, for a GSF-
unstable mode with a wavenumber that contributes the most to
the momentum transport. Repeating this transfer analysis at
different wavenumbers produces similar results. The two
transfers are nearly identical, which confirms the conjecture
(Barker et al. 2019) that, in the fully nonlinear phase, the GSF
instability saturates via the formation of strong latitudinal jets
or flows. Such flows are z-directed, although with no z-
variation, and primarily have a wavenumber kx= 2π/Lx; see
the right-column snapshot at t= 6000 in Figure 1. These flows
generalize to meridional circulation in stars and resemble zonal
jets in planetary atmospheres and fusion systems (Terry 2019).
Flows with kz= 0 are, however, linearly stable to the GSF
instability, and thus must necessarily be excited nonlinearly by
the interactions between the GSF-unstable modes. This energy
received is then viscously damped at kz= 0 and at low kz, as
seen in Figure 3. To sum up, the mean shear flow, destabilized
by the thermal diffusion, lends energy to the fluctuations via the
GSF-unstable modes, which saturate by exciting kz= 0
latitudinal flows to a significant level. Such flows then
viscously dissipate the turbulent energy. This is the saturation
mechanism of the axisymmetric GSF instability found here.

4. AM Transport Model

The findings shown so far are sufficient to build a statistical
closure model, with no free parameters, and thus with
predictive power.

Equation (3a) has a quadratic nonlinearity, hence the
evolutionary equations for mode energy contain triplet
interactions (e.g., Equation (5)). To determine the evolving
triplet interaction terms, one can derive an equation with
quadruplet interactions (Equation (C6)), and so on. To truncate
this never-ending hierarchy (the so-called “turbulence closure
problem”), we invoke a standard turbulence closure, the Eddy-
Damped Quasi-Normal Markovian (EDQNM) approximation

(see, e.g., Orszag 1970; Hegna et al. 2018; Terry et al.
2018, 2021; Li et al. 2021, 2023; Pueschel et al. 2021), which
truncates the hierarchy at fourth-order cumulants of the
fluctuations, thereby assuming that the statistics for the mode
amplitudes are close to Gaussian. The resulting equation,
however, is still nonlinear and daunting. But when a latitudinal
flow  , with kz= 0, dominates the nonlinear coupling, the
complexity of the equation is significantly reduced (Terry et al.
2018).

4.1. An Outline of the Closure Model

We illustrate here the key steps involved in explaining most
simply our closure model (by omitting details and treating all
variables as real). First, we observe that Equation (3a) has the
structure

b b bb b b b b¶ = + + + + + Q... ... ... ... ... ... , 6t ( )  

where the mode amplitudes are explicitly shown, and the dots
(...) represent terms such as the linear growth rate and the
nonlinear coupling coefficients. One can then obtain an
evolution equation for the second-order correlator as

bb bb b b¶ = +... ...t( )  , where the other nonlinear terms,
e.g., βββ and bb , have been dropped because the nonlinear
energy transfer is almost entirely dominated by b b —the
latitudinal flow coupling (Figure 4). Since b b also evolves,
one can similarly obtain an evolution equation for the third-
order correlator as b b b b bb¶ = +... ...t( )   . The
closure solution then yields a relation b b bb= ...  .
Although useful later, this relation does not predict the mode
amplitude β, needed for the turbulent transport prediction.
To predict the mode amplitude β, we consider the latitudinal

flow evolution equation, bb¶ = +... ...t  , and derive
b b¶ = +... ...t( )   . Then, b b can be replaced with a

product of four amplitudes, using the closure solution in the
previous paragraph. One thus obtains ¶ = +...t( ) 
bb...  . In quasi-stationary turbulence, ∂t∼ 0, and thus

bb = ...  . The EDQNM closure allows us to write of a
fourth-order correlator bb as a sum of the products of the

Figure 4. Time evolution of the total nonlinear energy transfer T1AA to an unstable eigenmode at a wavenumber where the spectrum of á ñu ux y˜ ˜ peaks. T1 1 is the energy
transfer to the same unstable mode via interactions between the z-component of velocity ( ) with wavenumbers kz = 0 and to the other unstable modes. Comparison
of the two transfer functions reveals that the dominant triad involves a latitudinal flow and two unstable modes. The simulation parameters are S = 2.1, N2 = 10, and
Pr = 0.01.
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second-order correlators, such as b 2 2∣ ∣ ∣ ∣ . Then, canceling 2∣ ∣
from both sides of bb = ...  , one predicts the saturated
mode amplitude (or energy): ββ= .... Using this, one can make
predictions for turbulent transport rates, as we shall show in the
next subsection.

4.2. Detailed Closure Model

To make quantitative predictions for transport, we take the
EDQNM-closed evolution equation for the latitudinal flow
energy (see Appendix B, Equation (C13)):

å

g

b t

¶ =-

+ ¢ -
¢

« ¢ « 
C C

2

Re , 7
k

k k k k

t
2 2

2
1

2
11 11

,

1 1

,

∣ ∣ ∣ ∣

∣ ∣ ∣ ∣ [ ] ( )
( ) ( )

 





  

where, on the right-hand side, the second term contains a
product of four amplitudes, but notably with 2∣ ∣ that also
appears in the first term of the right-hand side. In Equation (7),

*t g g g= ¢ +  - - , 811 1 1
1( ) ( ) 

is the three-wave interaction time found from the EDQNM

closure, and = +
«

-C C C
p q

p q p p q
lmn lmn lnm

,
, ,

( )
( ) ( ) is the symmetrized

coupling coefficient. In quasi-stationary turbulence, ∂t∼ 0, and
thus the linear and nonlinear terms must balance. First, for
simplicity, we consider a latitudinal flow at (kx, 0) that is driven
by two unstable modes at ¢ ¢k k,x z( ) and - ¢ - ¢k k k,x x z( ); then,

using Equation (7), b g t¢ = -
« ¢ « 

-C CRe
k k k k

1
2

11 11

,

1 1

,
1∣ ∣ ( [ ])

( ) ( )

    . A
more general expression for b¢1 2∣ ∣ is found by using a standard
Markovian assumption (Terry et al. 2021): b¢1 2∣ ∣ is more weakly
dependent on wavenumbers than the other factors in
Equation (7) arising from the coupling coefficients and t11 .
Such a consideration provides an expression for the nonlinearly
saturated squared mode amplitude:
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,
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where we note that the coupling coefficients scale linearly with
wavenumbers, and t11 is the inverse of the sum of three
growth rates of eigenmodes in a triad.

The growth rates in t11 should, in principle, also have
amplitude-dependent eddy-damping rates as they become non-
negligible, for example, in homogeneous isotropic fluid
turbulence; however, when waves or instabilities exist, and
when the turbulent transport spectrum is dominated by low
wavenumbers, as in this study, t11 is approximated by using
the linear growth rates (Terry et al. 2018, 2021). Using such,
one identifies that the triplet interaction time t11 is maximal
when the triad involves a latitudinal flow ( ) and two GSF-
unstable modes ( j= 1). Shorter triplet interaction times t12 are
expected for triads with, for example, the latitudinal flow, an
unstable mode, and a strongly damped IGW ( j= 2), as such an
interaction lowers t12 via both the frequency and damping rate

of the IGW. The largest interaction time τ11Z dominates
saturation.
The radial turbulent transport of AM is measured by

* bá ñ » å ¢¢¢ ¢¢¢ ¢¢¢¢¢¢u u u ukx y x y,1 ,1 1
2˜ ˜ ˆ ˆ ∣ ∣ , where b¢¢¢1 is the unstable mode

amplitude at k‴ over which the summation is applied. Then,
using b¢¢¢1

2∣ ∣ from the above paragraph,

⎛
⎝

⎞
⎠

*åg
gá ñ = ´ ¢¢¢ ¢¢¢

¢¢¢

u u
k

u u . 11
k

x y x yClosure 2
Closure

,1 ,1˜ ˜ ˆ ˆ ( )

The y-component ¢¢¢uy,1ˆ of the velocity of the unstable
eigenvector can be replaced with, e.g., its temperature

perturbation q ¢¢¢1
ˆ to predict the turbulent heat flux qá ñux˜ ˜ .

In our simulations with radial differential rotation, the
latitudinal momentum flux is much lower than the radial flux,
and, when time-averaged, it is nearly null.

4.3. Tests of Theoretical Predictions

A simple quasi-linear (QL) model of the GSF instability
saturation was recently proposed (Barker et al. 2019, 2020) by
assuming that a secondary “parasitic” instability feeds on the
primary GSF-unstable mode. Such an assumption, also called a
“parasitic saturation mechanism” (Goodman & Xu 1994;
Radko & Smith 2012; Brown et al. 2013; Harrington &
Garaud 2019; Fraser et al. 2024), is based on a single primary
mode at the fastest-growing wavenumber k‴, which predicts
the transport rate

*g
á ñ =

¢¢¢
¢¢¢

¢¢¢ ¢¢¢ ¢¢¢ku u
k

u u f , 12x y
z

x yQL
1

2

2 ,1 ,1
2  ˆ ˆ ( ) ( )

whose form is manifestly similar to Equation (11); the factor
f (k‴), which is evaluated at ¢¢¢ = ¢¢¢k k0, z( ), is the normalization
factor of eigenmodes. Here, g g n¢¢¢ = ¢¢¢ + ¢¢¢n k1

2. To find

qá ñux QL
 , one can replace ¢¢¢uy,1ˆ on the right-hand side of

Equation (12) with q¢¢¢1 .
Predictions of Equations (11) and (12) are compared against

the transport rates from direct numerical simulations in
Figure 5. Significant improvements in both the momentum
and heat transport predictions are observed with the statistical
closure model. The orders-of-magnitude variation in transport
rates is captured by the closure model.
In Figure 5, for smaller values of r, though the transport rates

of the closure and the QL models are similar, we emphasize
that this similarity is merely accidental: the two models
incorporate very different physics. The assumptions of the
closure model are supported by detailed numerical evidence
(Figures 2 and 3), including the dominant three-wave coupling
between two unstable modes and a latitudinal jet (Figure 4). No
jet physics is considered in the QL model. The QL model
predicts transport rates based on only one fastest-growing
wavenumber kz, with kx= 0, which Figure 2 shows is
inadequate. Hence, predictions of the QL model that tend to
reproduce the data-validated closure model predictions are at
best a fortuitous coincidence, occurring in a very limited
parameter regime.

4.4. Impact of the New Model in Astrophysics

Since stellar interiors typically have extreme parameters,
such as Pr 10−6, current and anticipated near-future compu-
tational resources are insufficient to permit direct numerical
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simulations of realistic turbulence in them. In the face of such a
challenge, progress can be made by developing analytical
theories, informed and tested by numerical simulations at more
accessible parameters. Thus, we now employ our analytical
theory to extrapolate and make predictions for realistic
astrophysical parameters. To achieve this, we derive fully
analytic expressions for all elements of the closure model,
assuming that the coupling of two GSF-unstable modes with
the latitudinal jet remains dominant; see Appendices A and B.

We then compare the predictions of the closure model with
those of the QL model, over a wide range of parameters
Pr≈ 10−7− 1 and r≈ 10−5− 1 in Figure 6. Noting that

= - + --N S r2 2 1 Pr 12 1( )[ ( )], these scans span N2
19× 106 (in terms of Ω2); this ratio is typically around
1 million for the Sun (Christensen-Dalsgaard et al. 1996). In
Figure 6, with S= 3 (in terms of Ω), the Richardson number is
as large as ≈2× 106. More extreme parameters can be easily
and quickly scanned with the analytic formula we have derived.

Now we predict the transport efficiency of the GSF
instability in stars. The Reynolds stress is of order
á ñ -u u Hx y

1˜ ˜ , where º ¶ -H U Ux0 0
1( ) is the scale height of the

mean flow = -U x0  . The timescale for modifying the flow is
t ~ á ñ ~ W á ñ- -U H u u Sx d u ux y x yturb 0

2 1 2
dimensionless˜ ˜ ˜ ˜ (see also

Barker et al. 2019).

Though Pr∼ 10−6, the typical values of r in the solar
tachocline and red giant stars are r∼ 10−3− 1 (varying with
radius). Then, using Figure 6, where á ñu ux y dimensionless˜ ˜ is on
average 0.5, we predict τturbΩ∼ 2S(x/d)2. This turbulent
transport timescale is sufficiently short to be astrophysically
important, depending on the relative length scale x/d of the
mean flow and shear strength S. For example, it can be as
short as 10( ) Myr using values of S and x/d for the solar
tachocline.
The turbulent transport rate also depends sensitively on the

shear parameter S (and latitude and orientation of the shear, i.e.,
radial or mixed radial–horizontal shear), and orders-of-
magnitude faster turbulent transport is possible. We highlight
that because the turbulent timescale for the GSF instability can
be shorter than 10( ) Myr, the incorporation of our transport
model for the GSF turbulence in stellar evolution codes is
warranted (particularly if extended to nonequatorial and 3D
GSF instabilities). Using such, the long-term impact on the
evolution of the rotation profile may be assessed, informing us
of the effects of the GSF instability in rapidly rotating young
stars. In this regard, the transport model built here for the 2.5D
equatorial GSF instability (and the thermohaline instability) is
significant, as a reliable and reduced numerical treatment of the
GSF-instability-driven turbulence is now available.

Figure 5. Tests of predictions of our closure model (red diamonds) and a QL-type, parasitic saturation model (blue inverted triangles) against direct numerical
simulations (DNS; black/gray circles). (a) Variations of momentum transport rates: the filled markers correspond to the cases where the shear parameter S is varied
(N2 = 10), while the unfilled markers correspond to the cases where the squared Brunt–Väisälä frequency N2 is varied (S = 2.1). Both S- and N2-scan results collapse
onto a single master curve when á ñu ux y˜ ˜ is scaled by a factor shown on the y-axis that transforms the governing equations of the GSF instability studied here to depend
on only two dimensionless parameters (r, Pr). The GSF instability operates when r ä [0, 1) and Pr < 1 (Pr = 0.01 is chosen). The y-axis shown is precisely an
expression for the chemical transport rate for the thermohaline instability (see Equation (15a)). (b) Heat transport rates, displaying nearly identical trends (see
Equation (15b) for the scaling factor). The closure prediction agrees with full DNS better than the QL prediction over the scanned range of parameters.
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4.5. Relation to the Thermohaline Instability

We emphasize that the equations describing the 2.5D
thermohaline and GSF instabilities at the equator are identical,
when the compositional diffusivity is equal to the kinematic
viscosity—a case often realized in stars. We first write
Equations (7)–(9) of Brown et al. (2013), where they measure
distance in units of the characteristic length scales d of the
fingers, time in units of the characteristic diffusion timescale
τ= d2/κ, and scaled temperature T in units of N2d (we label
their x-coordinate with our z-coordinate and vice versa):

m= -¶ + - + - Du p T uPr , 13ax x x
1 B B B B 2 B( ) ( )

= -¶ + - Du p uPr , 13bz z z
1 B B 2 B ( )

= - + DT u T , 13cx
B B 2 B ( )

m m= - + D
u

R
Pr , 13dxB

B

0

2 B ( )

where the state vector mu u T p, , , ,x z
B B B B B[ ] represents

Brown-normalized x- and z-velocities, scaled temperature,
chemical concentration, and fluid pressure, respectively. The
so-called density ratio k= -R N0

2
ep
2 may be recast as

R0= 1+ r(Pr−1− 1). The solutions of Equations (13a)–(13d)
critically depend only on two parameters: Pr and r.
Equations (13a)–(13d) for the thermohaline instability with

the state vector mu u T, , ,x z
B B B B[ ] are identical to Equations (1a)

and (1b) for the GSF instability with the state vector [ux, uz, θ,
uy], when we note

t
=u

u

d
, 14ax

xB ( )

t
=u

u

d
, 14bz

zB ( )

q
=T

N d
, 14cB

2
( )

m
t

t
= -

W u

d

2

Pr
. 14d

yB ( )

Hence, the transport rates with two kinds of nondimensiona-
lizations—one using τ and d as the characteristic timescale and
length scale, and another using Ω and d as the relevant scales—
are related in the manner

m-á ñ = á ñ ´ W - -u u u N d2 Pr , 15ax x y
B B 1 2 2 3 2 2   ( ) ( )

qá ñ = á ñ ´ - -u T u N dPr , 15bx x
B B 1 2 2 3 2 2  ( ) ( )

where the variables with the superscripted “B” are functions of
two essential parameters—r and Pr only, whereas the variables
without the superscript are functions defined by the parameters
Pr, S, and N2.

Figure 6. Predictions of (a) the closure model and (b) the QL model for turbulent momentum transport. The QL model, largely independent of Pr, fails to reproduce
the behavior of the closure model. For Pr closer to 1, the closure model predicts the transport rate to increase with decreasing r—until an asymptotically large transport
is attained. For Pr = r, the transport first increases and then decreases with r, in contrast to the QL prediction. The white dashed–dotted line, with a unit slope,
separates the distinct regimes of Pr < r and Pr > r found in (a).
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The expressions given in Equations (15a) and (15b) are
plotted in Figure 5. Thus, our Figure 5 also represents a
comparison of the chemical and heat transport between direct
numerical simulations and analytical models for the thermoha-
line-instability-driven turbulence.

The reduction of the governing equations of the GSF
instability to two parameters (r, Pr) is realized only in the 2.5D
equatorial case, which is where the analogy of the GSF
instability with the thermohaline instability becomes exact.

5. Discussion and Conclusions

Turbulent transport in stellar interiors is a phenomenon too
complex to be represented directly in stellar evolution models. It is
often parameterized using low-order models, such as mixing-
length theories, or models that predict transport rates based on the
fastest-growing unstable mode (e.g., Denissenkov 2010; Brown
et al. 2013; Barker et al. 2019). The reliability of such models can
be compromised by several factors. First, the instability dispersion
relation is often anisotropic, a property that affects the nonlinear
energy transfer, thereby driving low-frequency fluctuations
(Figure 3). Second, nonlinear mode coupling can strongly excite
more weakly growing unstable modes over a wide range of
wavenumbers, presenting difficulties to single-mode theory-based
predictions. To circumvent such challenges, we build a nonlinear
mode-coupling theory, informed by detailed analyses of direct
numerical simulations, to arrive at a reliable and analytic transport
model that is free of tunable parameters. We achieve this here for
axisymmetric low-Pr turbulence driven by centrifugally unstable
differential rotation (the GSF instability) at the equator in a stellar
radiative zone.

Although 2.5D turbulence driven by the GSF instability can
differ from fully 3D cases (Barker et al. 2019), strong
secondary flows or jets have also been found in 3D global
systems. For example, recent simulations of fully 3D spherical
shell nonrotating fingering convection have exhibited strong,
large-scale jets (Tassin et al. 2023). Such coherent jets are
ubiquitous in various settings, such as in geo- and astrophysical
observations, numerical simulations of 3D shear-flow-instabil-
ity-driven turbulence (Tripathi et al. 2023b), and in laboratory
fusion plasmas (Terry 2019). The examples show that large-
scale flows can emerge even in global geometry. Hence, the
success of our theory offers a future possibility for extending
the statistical closure framework presented here to the more
realistic 3D simulations of the GSF instability, ideally in a
sphere, at a general latitude and for a range of Pr (Garaud &
Brummell 2015; Barker et al. 2020; Dymott et al. 2023). It is
also possible that our closure model framework can be adapted
to magnetized turbulence driven by unstable differential
rotation.

Since our formulae are fully analytic, they are quick to
implement in stellar evolution codes such as MESA (Paxton
et al. 2011, 2019) to reliably predict axisymmetric GSF-
instability-driven turbulent transport rates that vary with Pr and
r at different spatial grid points in an evolving star. It is
straightforward to compute the values of r and Pr at a given
spatial grid point in a modeled star and to simply look up
transport rates by using our Figure 6(a) to prescribe the rates of
transport of AM and heat; to access the lookup table of
transport, see the Data Availability section. Since we have also
provided formulae and frameworks for the turbulent transport
of the axisymmetric GSF-analogous thermohaline instability,
there now exists a reliable chemical transport model that

employs DNS-confirmed key elements of nonlinear saturation
of the instability in stars.
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Appendix A
Nonlinear Mode-coupling Coefficients of the GSF

Instability

The jth eigenvector of the linear operator L of the GSF
instability satisfies

q
g g

= - = - = -
W -

k n
u
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u
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u u

S
u; ;

2
, A1z j

x

z
x j j

j
x j y j

j
x j, ,

2
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,
,ˆ ˆ ˆ ˆ ˆ ˆ ( )

using which the matrix E of eigenvectors can be created and
inverted, as mentioned in the penultimate paragraph of
Section 2.1. To expedite analytic calculations, one may solve
for the adjoint solutions Yj of L, which are the eigenvectors of
L†. Such adjoint solutions Yj form a biorthogonal basis with the
eigenvectors Xj of L (Fraser et al. 2021; Tripathi et al.
2022a, 2023a, 2023b). That is, * dá ñ = µY X Y X,m j m j j m

T
, , where

T* is the transpose conjugation operation; see Appendix A of
Tripathi et al. (2022b) for a general mathematical proof. It is
known that both L and L† have the same eigenvalues. The
expedient adjoint technique is equivalent to inverting the
matrix E of size 4× 4, and they deliver completely identical
results, which we have verified. The jth adjoint solution
satisfies

q
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Using such, we write the nonlinear mode-coupling coefficient
between the two eigenmodes m at wavenumber ¢k and n at k″,
impacting the eigenmode j at k, as

=
á ¢  ñ

á
¢ Y k N X X

Y k X k
C

, ,

,
, A3k k

jmn
j m n

j j

, ( ) ( )
( ) ( )

( )( )

where ¢ N X X,m n( ) is the nonlinearity vector; for example, its θ-
component is q- ¢  um n· .

Following this procedure, we have distilled the analytic
coupling coefficients for the GSF instability and provide below
their final expressions:

=
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x x
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where f is the eigenmode normalization factor. With inverse
dimensions of ux j,ˆ , suitable mode normalizations can be

g¢ = ¢ ¢f k or g g t¢ = ¢ ¢ ¢
nf k d2 ( ) or their variants, with

τ= d2/κ as the characteristic diffusion timescale. Equation (A4)
is simple, as it represents the coupling between two unstable
modes that drive the latitudinal flow  . The second coupling
coefficient required in the closure model is
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We note that the coupling coefficients depend only on
wavenumbers, the input parameters, such as N2, Pr, and

k= -R N0
2

ep
2 , and the growth rates; the growth rates in turn

depend only on wavenumbers and the input parameters
(Equation (2)). Asymptotic approximation to the growth rate
in the limit of, e.g., small Pr is possible (Brown et al. 2013).

Appendix B
Nonlinear Mode-coupling Coefficients of the Thermohaline

Instability

Here we provide the analytic expressions needed for the
closure model applicable to the thermohaline instability.

We find the jth eigenvector of the linear operator L found
from Equations (13a)–(13d) for the thermohaline instability
satisfies

g
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The jth adjoint solution for the thermohaline instability is
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The coupling coefficients for the thermohaline instability are
identically the same as those for the GSF instability;
Equations (A4) and (A5) require only a minute modification:
N2 appearing twice in Equation (A5) should be replaced with
Pr. We conclude that our closure model and predictions are
directly applicable to the thermohaline instability as well. This
is significant, because the turbulent transport efficiencies of
these two instabilities in stars are not known, but are generally

thought to be important. With the closure model at hand, we
can now make predictions reliably for both instabilities.

Appendix C
Details of Closure Model Calculations

To make the statistical closure model more accessible to a
wide range of readers, we provide below detailed, step-by-step
derivations.

C.1. Amplitude Evolution Equation

The mode amplitude βj evolution equation, given in
Equation (3a), for a wavenumber k= (kx, kz≠ 0), with j= 1,
2, or 3, is
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whereas, at k= (kx, kz= 0), one finds that the fluctuation
amplitude evolves according to Equation (3b), which is
expanded below:

åg b b¶ = - + ¢ 
¢ =

¢C , C2a
k

k k
t

m n k
mn m n

, , : 0

,

z

( )( )  

åg b b¶ = - + ¢ 
¢ =

¢C , C2b
k

k k
t

m n k
mn m n

, , : 0

,

z

( )( )  

åg b b¶ Q = - Q + ¢ Q
¢ =

Q
¢C , C2c

k

k k
t

m n k
mn m n

, , : 0

,

z

( )( )

where g g n= = k2
  and γΘ= κk2 are the damping rates.

C.2. Eigenmode Energy Evolution

To derive an evolution equation for energy in the jth
eigenmode at k= (kx, kz≠ 0), we multiply Equation (C1) with
*b j and add a complex conjugate of the resulting equation to

arrive at
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Similar equations can be derived for the fluctuation energy at
GSF-stable wavenumbers k= (kx, kz= 0) using Equations
(C2a)–(C2c):
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Since numerical simulations inform us that the triplets with a
latitudinal flow at (kx, 0), i.e.,  , dominate the nonlinear energy
transfer, we may drop nonlinear terms on the right-hand side of
Equation (C3) that do not involve  . In the resulting equation,
because  and Θ do not appear, Equations (C4a) and (C4c) can
also be removed, which allows us to write the following set of
equations:
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C.3. Triplet Correlation Evolution

To obtain evolution equations for the terms on the right-hand
side of Equations (C5a) and (C5b), we multiply Equation (3a)
with two amplitudes. For example, to determine the evolution of

*b bá ¢  ñj j , we first multiply Equation (C1) for βj with b¢ j ;
second, we multiply another equation, similar to Equation (C1),
but for bj with *b¢ j ; and finally, we multiply Equation (C2b), for
¢ , with *b bj j , and add them all together. Using this, we provide

below an example evolution equation for triplet correlations:
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Since the numerical simulations show dominant coupling
between the latitudinal flow  and two unstable modes in a
bath of turbulent interactions, the interactions involving
unstable modes only can be excluded. This immediately
implies that the first term on the right-hand side of
Equation (C6) can be dropped in the face of the remaining
dominant terms. Among the remaining terms, the fourth-order
correlations that have different components of velocity, e.g.,
the terms where  and appear together on the right-hand side
of Equation (C6), do not form terms that appear in the
definition of energy. Guided by numerical simulations where
nonlinear coupling to  and Θ are unimportant, only the
energy(-like) terms with  will be kept henceforth. The
resulting equation then reads
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The same procedure is then repeated to find evolution
equations for the other two triplet correlations that appear in
Equations (C5a) and (C5b).

C.4. Quadruplet Correlations and Statistical Closure
Approximation

Equation (C7) can be solved using the technique of Green’s
function inversion and Markovianization, a standard step in
EDQNM closure (although here we do not modify the growth
rate γs with the amplitude-dependent nonlinear frequency, an
approximation justifiable for the low-wavenumber regime; for
more details, see Terry et al. 2018). Such a solution yields
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Similarly, the other two triplet correlations that appear in
Equations (C5a) and (C5b) can also be solved to obtain
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C.5. A Set of EDQNM-closed Energy Evolution Equations

The solutions of the triplet correlations from Equations
(C8)–(C10) are now substituted into Equations (C5a) and
(C5b), which results in the following set of closed equations:
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,
, ,

( )
( ) ( ) is the symmetrized coupling

coefficient.
Equation (C12) can be simplified by considering that it is the

pairs of unstable modes ( j= 1) that excite the latitudinal flow :
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where the term inside the wavenumber summation in
Equation (C12) has been symmetrized.
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