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Recognizing Geometric Intersection Graphs Stabbed by a Line

Dibyayan Chakraborty∗ Kshitij Gajjar† Irena Rusu‡

March 7, 2024

Abstract

In this paper, we determine the computational complexity of recognizing two graph classes,

grounded �-graphs and stabbable grid intersection graphs. An �-shape is made by joining the bot-

tom end-point of a vertical (|) segment to the left end-point of a horizontal (−) segment. The top

end-point of the vertical segment is known as the anchor of the �-shape. Grounded �-graphs are the

intersection graphs of �-shapes such that all the �-shapes’ anchors lie on the same horizontal line.

We show that recognizing grounded �-graphs is NP-complete. This answers an open question asked

by Jelínek & Töpfer (Electron. J. Comb., 2019).

Grid intersection graphs are the intersection graphs of axis-parallel line segments in which two

vertical (similarly, two horizontal) segments cannot intersect. We say that a (not necessarily axis-

parallel) straight line ℓ stabs a segment s, if s intersects ℓ. A graph G is a stabbable grid intersection

graph (StabGIG) if there is a grid intersection representation of G in which the same line stabs all

its segments. We show that recognizing StabGIG graphs is NP-complete, even on a restricted class

of graphs. This answers an open question asked by Chaplick et al. (Order, 2018).

1 Introduction

Recognizing a graph class means deciding whether a given graph is a member of the graph class. In this

paper, we deal with the computational complexity of recognizing intersection graphs of certain types of

geometric objects in the plane. These recognition problems stemmed from various őelds of active research,

like VLSI design [11, 12, 24], map labelling [1], wireless networks [20], computational biology [27], and

have now become an indelible part of computational geometry.

Perhaps the most extensively studied class of geometric intersection graphs is the class of interval

graphs (intersection graphs of intervals on the real line), introduced by Benzer [5] while studying the

őne structure of genes. In 1962, Lekkerkerker & Boland [21] proved that the class of interval graphs is

precisely the class of graphs without holes1 and asteroidal triples2. The above elegant result of Lekkerk-

erker & Boland [21] motivated researchers to study further generalizations of interval graphs and their

characterizations. One such generalization was considered by Gyárfás and Lehel [16] who considered the

class of �-intersection graphs. An �-shape [16] is a couple made of a vertical and horizontal segment,

whose bottom and left end-points coincide. �-intersection graphs are the intersection graphs of �-shapes.

Observe that interval graphs can be expressed as intersection graphs of �-shapes as follows: given an

interval representation of a graph, replace each interval with an �-shape whose horizontal segment is the

same as the interval on the horizontal line y = 0. The popularity of �-graphs among graph theorists

increased when Gonçalves et al. [15] proved that all planar graphs (graphs that can be drawn in the plane

in such a way that edges can intersect only at their end-points) are �-graphs. In contrast, recognizing

�-graphs is NP-complete [9].

∗School of Computing, University of Leeds, United Kingdom
†International Institute of Information Technology Hyderabad (IIIT-H), India – 500032
‡Nantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004, F-44000 Nantes, France
1A hole is an induced cycle with 4 or more vertices.
2Three vertices of a graph form an asteroidal triple if the removal of any one of the vertices (along with all its neighbouring

vertices) from the graph does not disconnect the other two.
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Figure 1: A graph (left) with its grounded �-shape representation (middle) and its stabbable grid inter-
section representation (right).

An interesting subclass of �-graphs called infinite-�-graphs was considered by McGuinness [22]. The

top end-point of the vertical segment of an �-shape is called the anchor of the �-shape. Infinite-�-graphs,

also known as grounded �-graphs are the intersection graphs of �-shapes whose anchors belong to the same

horizontal line, called the ground line. See Figure 1 for an example. Interval graphs are (also) grounded

�-graphs. (Indeed, given a set of intervals, replace each interval with an �-shape whose horizontal segment

is the same as the interval on the horizontal line y = 0 and whose anchor lies on the horizontal line y = 1).

Other well-studied subclasses of grounded �-graphs are (see [2]) outerplanar graphs, permutation graphs,

circle graphs etc. Researchers have studied different aspects (e.g. chromatic number [22, 13], dominating

set [8], independent set [7], forbidden patterns [18]) of grounded �-graphs. However, the complexity

of recognizing grounded �-graphs remained open. In this paper, we prove that recognizing grounded

�-graphs is NP-complete answering a question asked by Jelínek and Töpfer [18].

Theorem 1. Recognizing grounded �-graphs is NP-complete.

Rectangle intersection graphs are graphs with boxicity 2 i.e. intersection graphs of axis-parallel rect-

angles in the plane. This graph class was introduced by Asplund & Grünbaum [3] in 1960 (even before the

introduction of boxicity), who studied the chromatic number of such graphs. After almost three decades,

Kratochvíl [19] proved that recognizing rectangle intersection graphs is NP-complete, even if the input

graphs are restricted to bipartite graphs. Interestingly, bipartite rectangle intersection graphs are exactly

the class of grid intersection graphs (GIG), i.e., intersection graphs of axis-parallel line segments in the

plane where no two segments with the same orientation intersect [17]. This implies that the recognition of

GIG is NP-complete, and motivates the study of its subclasses. Chaplick et al. [10] introduced the class

of stabbable grid intersection graphs. A segment s in the plane is stabbed by a line ℓ if s and ℓ intersect.

A graph G is a stabbable grid intersection graph (StabGIG) if it has a grid intersection representation

such that there exists a straight line that stabs all the segments of the representation. See Figure 1 for

an example. All planar bipartite graphs are StabGIGs [14] and Chaplick et al. [10] left the problem of

recognizing stabbable grid intersection graphs as open. In this paper, we answer their question.

Theorem 2. Recognizing StabGIG is NP-complete.

We note that recently the computational complexities of several geometric intersection graph classes with

"stabbed" representations have been settled. Examples include stick graphs, bipartite hook graphs and

max point-tolerance graphs [23]. Grounded �-graphs and stabbable grid intersection graphs were the

largest classes for which the complexities were still unknown. The recognition problem is still open for

some smaller classes of graphs with "stabbed" representations (see Section 4).
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Organisation: In Sections 2 and 3, we prove Theorem 1 and Theorem 2, respectively. In Section 4, we

conclude.

Notations: For a positive integer n ≥ 1, [n] denotes the set {1, 2, . . . , n}. All graphs considered in this

paper are simple and undirected. For a graph G, the sets V (G) and E(G) denote the vertex set and edge

set of G, respectively.

Convention: Both for grounded �-graphs and StabGIGs, we assume without loss of generality that

any two segments in the representation intersect in at most one point. Otherwise, slight changes in the

position and length of the segments allow to transform a representation that does not have this property

into a representation that has this property.

2 Proof of Theorem 1

In our presentation, the geometrical representation of the grounded �-graphs uses

�

-shapes above the

horizontal ground line rather than �-shapes below it. For a grounded �-graph, this representation is its

grounded

�

-representation. Note that the convention above implies that all the anchors are distinct.

The

�

-shape representing a vertex x is denoted by

�

(x), and the anchor of

�

(x), now located at the

bottom of the vertical segment, is denoted by x too. The left to right order of the anchors along the

ground line is denoted by ≺. Note that for two intersecting

�

-shapes

�

(x) and

�

(y), we have x ≺ y if

and only if the vertical segment of

�

(x) intersects the horizontal segment of

�

(y). A

�

-shape that has

intersections only on its vertical (respectively horizontal) segment is called a

�v-shape (respectively a

�h-shape). Then the problem we are interested in may be restated as follows:

Grounded �-Graphs Recognition (Grounded �-Rec)

Input: A graph H.

Question: Is there a grounded
�

-representation for H?

Theorem 1 is equivalent to the statement that Grounded �-Rec is NP-complete. In order to show

it, we use another class of geometric intersection graphs, namely stick graphs. They have been deőned

by Chaplick et al. [10] as the intersection graphs of a set A of vertical segments in the plane and a

set B of horizontal segments in the plane, such that the bottom end-point of the segments in A and

the left end-point of the segments in B belong to a ground straight line with slope -1. Again, all the

endpoints may be considered as distinct. Stick graphs are bipartite graphs, and the aforementioned

geometrical representation is called their stick representation. We prove Theorem 1 using a reduction

from the problem below, which is NP-complete [23]:

Stick Graphs Recognition (StickRec)

Input: A bipartite graph G = (A ∪B,E).

Question: Is there a Stick representation of G with sets A and B?

Grounded �-graphs and stick graphs are related by the relationships given in Propositions 3 and

4 below, which are essential to our construction. A grounded

�

-representation of a bipartite graph

G = (A ∪ B,E) is called nice if the vertices in A are represented by

�h-shapes, and those in B by

�v-

shapes. We use the notations H(a) and V(c) for the horizontal and vertical segments of

�

(c) respectively,

where c ∈ A ∪B.

Proposition 3. All stick graphs are grounded �-graphs. Moreover, each stick graph has a nice grounded

�

-representation.

Proof. Let G be a stick graph. Figure 2 illustrates the steps of the proof. Consider a stick representation

of G, and replace őrst each vertical (respectively horizontal) segment with a �-shape having the same

anchor as the initial segment, whose horizontal (respectively vertical) segment is not used for intersections.

Then extend the horizontal segments of the �-shapes towards left so that to place all the anchors on the
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Figure 2: Transforming a stick representation into a grounded

�

-representation. Here, the stick graph is the
induced path a1b1a2b2a3.

same vertical line, that becomes the new ground line. Finally, perform a 90 degrees counterclockwise

rotation of the whole representation to obtain a grounded

�

-representation of G. In this representation,

the vertices in A are represented by

�h-shapes, and those in B by

�v-shapes.

Remark 1. Not all the bipartite grounded �-graphs are stick graphs. The bipartite graph in Figure 3 is

not a stick graph [10], but is a grounded �-graph as shown by the

�

-representation we provide.

Proposition 4. All bipartite grounded �-graphs which have a nice grounded

�

-representation are stick

graphs.

Proof. Let G be a bipartite graph with a nice grounded

�

-representation R. We transform this represen-

tation into a stick representation of G as follows. Draw a line ℓ with slope 1 that intersects the grounded

line to the left of all the anchors, and such that all the segments H(a), for a ∈ A, lie in the lower half-plane

deőned by ℓ. Such a line always exists, it is sufficient to consider the intersection point sufficiently far to

the left. Consider a Cartesian coordinate system whose origin is the intersection point of the two lines,

the x-axis is the grounded line and the y-axis is oriented upwards.

For each c ∈ A ∪ B, denote by l(c) and r(c) the x-coordinate of the left and right endpoint of H(c)

respectively, and by h(c) the common y-coordinate of these two endpoints. For c, c′ ∈ A∪B, we say that

H(c) is below H(c′) (equivalently, H(c′) is above H(c)) whenever h(c) < h(c′) and the projections of H(c)

and H(c′) on the x-axis intersect.

Since ℓ is above H(a), for a ∈ A, we deduce that h(a) < l(a) < r(a). We show that the heights of

the

�

-shapes can be modiőed so as to place the right endpoint of H(a) on the line ℓ, for each a ∈ A.

Equivalently, we show that:

(P ) There exists a grounded

�

-representation R′ of G such that h(a) = r(a) for each a ∈ A.

Let a1, a2, . . . , a|A| be the vertices in A, in decreasing order of their value r(a) in the grounded

�

-representation R. We use induction to show that, for each 1 ≤ i ≤ |A|, there exists a grounded

�

-representation Ri of G such that h(ak) = r(ak) for 1 ≤ k ≤ i. Note that for each u, v such that

l(au) < r(av) < r(au) we necessarily have h(au) > h(av). In the contrary case,

�

(au) and

�

(av) would

intersect, which is impossible since G is bipartite and A is one of its parts. Then, the order a1, a2, . . . , a|A|

of the vertices implies that, for u < v, either the projections H(av) and H(au) on the x-axis are disjoint

and in this order from left to right, or H(av) is below H(au).

Let i = 1. As noticed above, no H(aj) with j ̸= 1 is above H(a1). We then modify

�

(a1) so that h(a1)

becomes equal to r(a1), and appropriately lengthen the vertical segment of

�

(b) for each neighbor b of a1
so that

�

(b) intersects

�

(a1) (equivalently, such that H(b) is above H(a1)). Note that this transformation

does not modify the intersections between

�

(b) and the other

�

-shapes, since the segment V(b) ś which

realizes by hypothesis all the intersections of

�

(b) with other

�

-shapes ś is neither moved (to left or right)

nor shortened. Therefore, this is a new grounded

�

-representation of G, denoted R1.

Assume now, by inductive hypothesis, that the grounded

�

-representation Ri of G exists. In Ri,

the only segments H(aj) that are possibly placed above H(ai+1) satisfy j ≤ i, and by the inductive

hypothesis they also satisfy h(aj) = r(aj). The ordering of the vertices in A implies that r(aj) > r(ai+1).
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Figure 3: An example of a bipartite grounded �-graph, which is not a stick graph. The bipartition is indicated
by the two colours of the vertices, white and black. In the grounded

�

-representation presented here, the thick

�

-shapes correspond to the black vertices.

As above, we modify

�

(ai+1) so that h(ai+1) becomes equal to r(ai+1). Then h(ai+1) = r(ai+1) <

r(aj) = h(aj), meaning that every H(aj) which was previously above H(ai+1) is still above H(ai+1), so

that no wrong intersection is created between

�

(ai+1) and

�

(aj). Furthermore, for the neighbors b of

ai+1 whose horizontal segment is now below H(ai+1), the segment V(b) is appropriately lengthened such

that h(ai+1) < h(b) < h(ai) (equivalently, such that H(b) is above H(ai+1) and below H(ai)). Similarly

to the case i = 1, these modiőcations do not modify the existing intersections between

�

-shapes, so that

we obtain the sought grounded

�

-representation of G denoted Ri+1.

Then (P ) is proved, with R′ = R|A|. To obtain a stick representation of G, in R′ consider only the

line ℓ as well as the segments H(a) for a ∈ A and the sub-segment of V(b) that lies above ℓ, for b ∈ B. A

90 degrees clockwise rotation of this representation is a stick representation of G (with a ground line of

slope -1).

2.1 The reduction

Our reduction from StickRec to Grounded �-Rec transforms a given bipartite graph G = (A∪B,E)

into a (non-bipartite) graph H that is roughly a copy of G where each vertex x from B is placed inside a

gadget graph called Λ(x). The role of the gadgets is to force the grounded

�

-representation of G produced

inside any grounded

�

-representation of H (if any) to be nice, that is, to represent the vertices in A by

�h-shapes and the vertices in B by

�v-shapes. In this way, using Propositions 3 and 4, a grounded

�

-representation exists for H if and only if a stick representation exists for G.

More formally, let Λ(x) be the graph in Figure 4 (left). The vertex denoted x also has a second label,

namely 2, which is easier to use in the proof of Proposition 5, rather than x. The reduction is simple,

and is deőned below. Consider an instance G = (A ∪ B,E) of StickRec, and build an instance H of

Grounded �-Rec as follows (see Figure 4 (right) for an example):

1. for each a ∈ A, deőne a vertex a of H.

2. for each b ∈ B, include Λ(b) into H. For each pair b ̸= b′, the graphs Λ(b) and Λ(b′) are vertex-

disjoint.

3. for each edge ab ∈ E with a ∈ A and b ∈ B, add an edge from a to every vertex in Λ(b).

A vertex u that is adjacent to every vertex in Λ(x) is called universal with respect to Λ(x).

5
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Figure 4: The graph Λ(x) (left) and the construction of the graph H when G is the path a1b1a2b2a3 (right).

We show in the next section that this reduction proves the NP-completeness of Grounded �-Rec.

To this end, we follow the following steps:

(i) We show in Proposition 5 that Λ(x) accepts exactly two grounded

�

-representations, shown in

Figure 5(c) (details are given later) and roughly represented as in Figure 5(d).

(ii) We show in Proposition 6 that adding to Λ(x) a universal vertex u yields another grounded �-

graph, whose grounded

�

-representations always place the anchor of

�

(u) outside the representation

of Λ(x), to the right of it. Consequently, x (u respectively) is represented by a

�v-shape (

�h-shape

respectively). Recalling that in our construction of H each vertex a ∈ A is universal with respect

to Λ(b), for each of its neighbors b from G, this implies that the grounded

�

-representations of H

mimic those of G and vice-versa, as shown in Figure 6.

(iii) We show in Proposition 7 that G is a stick graph if and only if H is a grounded �-graph.

(iv) We conclude the proof of Theorem 1.

2.2 The proofs

The graph Λ(x) has been chosen so as to have very few and convenient grounded

�

-representations. In

any grounded

�

-representation of Λ(x), the left to right order of the anchors 1, 2, 3 deőnes a permutation

def on {1, 2, 3}. For i ∈ {1, 2, 3}, let v1i be the neighbor of i from {7, 8, 9} and v2i the neighbor of i from

{4, 5, 6}.

Proposition 5. The graph Λ(x) is a grounded �-graph. It admits exactly two grounded

�

-representations,

given in Figure 5(c), where we have either d = 1 and f = 3, or d = 3 and f = 1.

Proof. When

�

(d),

�

(e) and

�

(f) (only) are placed on the ground line such that d ≺ e ≺ f , the

�

-shapes

of the two neighbors v1e and v2e of e may be placed (independently of each other) in exactly two locations:

• either to the left of the anchor d,

• or to the right of the anchor f .

Indeed, we cannot have e ≺ vie ≺ f , for some i ∈ {1, 2}, as explained hereafter. If, for instance,

e ≺ v1e ≺ f , then we must have d ≺ v1d, v
1
f , 10 ≺ e in order to satisfy all the adjacencies and non-

adjacencies. Furthermore, d ≺ v2f ≺ e is not possible, since then

�

(v2f ) intersects either

�

(v1d) or

�

(v1e)

before it intersects

�

(f), a contradiction. We then have v2f ≺ d or e ≺ v2f , which implies that v2e is also

outside the interval deőned by d and e. But then 10 cannot have two neighbors among v2d, v
2
e and v2f ,

since

�

(10) intersects neither

�

(d) nor

�

(e), a contradiction.

Two cases appear, for which the proofs are similar. In each case, we őrst deduce the possible grounded

�

-representations of the subgraph Λ9 induced by the vertices 1 to 9, using the variables i, v1i , v
2
i for

1 ≤ i ≤ 3. For each of these representations, we then test the possibility to add

�

(10).

6
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Figure 5: Representations of Λ(x): (a) Case 1 for Λ9. (b) Case 2 for Λ9. (c) Possible grounded

�

-representations
for Λ(x). (d) The drawing replacing any representation, when only

�

(x) and the level of the lowest horizontal
segment are needed.

Case 1. v1e and v2e belong to different locations (see Figure 5(a)). Assume w.l.o.g. that v2e ≺ d

and f ≺ v1e . Then, there is exactly one possible position for v2f and two possible positions for v1f (the

anchors are denoted by v1f and v
′1
f ) so as to obtain the sought intersections with f and v2e , v

1
e respectively.

Similarly, only one position is possible for v1d and two positions for v2d (the anchors are denoted by v2d and

v
′2
d ). Figure 5(a) thus records all the possible representations of the graph induced by the vertices 1 to

9: any possible representation is obtained by choosing one of v1f , v
′1
f and one of v2d, v

′2
d .

The vertex 10 is adjacent to v1i , v
2
i , v

1
j , v

2
j , with i ̸= j and i, j ∈ {d, e, f}. As d separates v1e and v2e ,

and 10 is not adjacent to d, we deduce that i, j ̸= e. Moreover, {i, j} = {d, f} is possible, as shown in

Figure 5(c) where an appropriate position is proposed for

�

(10). This position is unique and implies that

the anchor v2d (and not v
′2
d ) has to be used, as well as the anchor v1f (and not v

′1
f ).

Since e is the unique vertex among {1, 2, 3} none of whose neighbors is adjacent to 10, we deduce

that e = 2, and thus {d, f} = {1, 3}. In conclusion, we have two possible
�

-representations for Λ(x), with

d = 1 and f = 3, and vice-versa.

Case 2. v1e and v2e belong to the same location. If they are both on the right side of f , with (for

instance) f ≺ v1e ≺ v2e , then there is no possible place for

�

(v1d) so as to intersect

�

(v1e) and

�

(d) but not

�

(v2e) nor e. Thus we may assume w.l.o.g that v1e ≺ v2e ≺ d. We cannot have v1d ≺ v1e , since then

�

(v1f )

is impossible to place so as to intersect

�

(f),

�

(v1d) and

�

(v1e), but no other

�

-shape. We deduce that

f ≺ v1d, and further that e ≺ v1f ≺ f , v2e ≺ v2f ≺ d and d ≺ v2d ≺ e. The resulting order of the anchors for

the vertices of Λ9 is given in Figure 5(b).

Looking for the neighbors v1i , v
2
i , v

1
j , v

2
j with i ̸= j and i, j ∈ {d, e, f} of the vertex 10, we notice that

e separates v1d and v2d, as well as v1f and v2f . None of these pairs of vertices can be adjacent to 10 (since

10 is not adjacent to e), and thus there is no possible way to place

�

(10) so as to intersect the vertices it

needs to intersect. No

�

-representation for Λ(x) can be found in this case.

Consequently, all the grounded

�

-representations of Λ(x) are obtained in Case 1, and are drawn in

Figure 5(c).

Convention. In the remainder of the paper, the grounded

�

-representation in Figure 5(a) is drawn

as a grey box around

�

(x), together with two lateral segments indicating the level of the lowest horizontal

segment in the representation. See Figure 5(d).

Let Λ(x) + u be the graph obtained by adding to Λ(x) an universal vertex u.

Proposition 6. The graph Λ(x)+u is a grounded �-graph. In its grounded

�

-representations, u is always

the rightmost anchor, and thus

�

(u) is a

�h-shape.

Proof. A grounded

�

-representation of Λ(x) + u is obtained by placing the anchor of u to the extreme

right of a grounded

�

-representation of Λ(x), and letting the horizontal segment of

�

(u) intersect the

7
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Figure 6: The grounded

�

-representation of G (left) and the grounded

�

-representation of H (right), when G is
the induced path a1b1a2b2a3.

vertical segments of all the other

�

-shapes at a very low height (lower than the horizontal segment of

�

(v2d)). Then

�

(u) is a

�h-shape. The conclusion of Proposition 6 is reached by noticing that no other

position is possible for u. Indeed, if u was to the left of v1e , then

�

(u) could intersect both

�

(v2d) and

�

(v1e)

only if d ≺ u ≺ v2d. But then the horizontal segment H(u) of

�

(u) should be both below H(v2f ) (in order

to intersect

�

(v2f )) and above H(v1f ) (in order to intersect

�

(v1f )) and this is not possible.

Proposition 7. The graph G is a yes-instance of StickRec if and only if the graph H is a yes-instance

of Grounded �-Rec.

Proof. For the forward direction, Proposition 3 implies that the stick graph G has a grounded

�

-represen-

tation. We transform this representation of G into a grounded

�

-representation of H as follows. For each

b ∈ B, build a grounded

�

-representation of Λ(b) (whose existence is ensured by Proposition 5) as a

block, in the immediate neighborhood of

�

(b). See Figure 6. The lowest horizontal segment of a

�

-shape

in this grounded
�

-representation of Λ(b), indicated in the őgure by the two grey lateral segments of the

grey box, must be placed above all the horizontal segments of

�

-shapes

�

(a) with a ∈ A and ab ∈ E.

This is always possible, by increasing the lengths of the vertical segments as needed. Furthermore, for

each a ∈ A with ab ∈ E, extend the horizontal segment of

�

(a) such that it intersects all the

�

-shapes

representing vertices in Λ(b). The resulting grounded

�

-representation is a grounded

�

-representation of

H.

We now consider the backward direction. Let a ∈ A, b ∈ B such that ab ∈ E. By the construction of

H, a is universal for Λ(b). By Proposition 6 for the subgraph Λ(b) + a of H, we deduce that the anchor

of

�

(a) is placed outside the representation of Λ(b), to the right, so that

�

(a) is a

�h-shape. It follows

that the intersection between

�

(b) and

�

(a) holds on V(b) and on H(a), for each pair a ∈ A, b ∈ B such

that ab ∈ E.

Then, when we focus only on the vertices in G, the resulting grounded

�

-representation of G is nice.

We deduce by Proposition 4 that G is a stick graph.

We are ready to prove that Grounded �-Rec is NP-complete.

Proof. (of Theorem 1). To show that Grounded �-Rec is in NP, we őrst note that a graph has a

grounded

�

-representation if and only if it has a grounded

�

-representation whose segments have integer

coordinates. For the forward direction, consider a graph that has a grounded

�

-representation with real

coordinates for the segments. Order the 2n endpoints of the horizontal segments in increasing order of

their x-coordinate (equal values may appear, that yield the same rank). Remember the rank of each point

(called x-rank). Do the same for the y-coordinate, and the y-rank. Then replace the initial coordinates of

each endpoint with its x-rank and its y-rank, and draw the

�

-shapes accordingly. The backward direction

is immediate.

In order to show that Grounded �-Rec is in NP, it is sufficient to test if a set of n given

�

-shapes

with integer coordinates deőnes a grounded

�

-representation for the input graph, and this is done in

8
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Figure 7: An edge e = xy (left) and a 7-subdivision of e (right).

polynomial time. Proposition 7 shows that our reduction is correct. Moreover, it takes linear time to

build H knowing G, so that the reduction is polynomial.

3 Proof of Theorem 2

In this section, we focus on the following problem:

Stabbable Grid Intersection Graphs Recognition (StabGIGRec)

Input: A bipartite graph G.

Question: Is there a grid intersection representation of G in which all segments are stabbed by the

same straight line?

We perform a reduction from the following problem. A Hamiltonian path in a graph is a path that

visits each vertex of the graph exactly once.

Planar Hamiltonian Path Completion Problem (PHPC)

Input: A planar graph G.

Question: Is G a subgraph of a planar graph with a Hamiltonian path?

3.1 The reduction

Convention. Throughout our proof, we will assume that G is a connected graph with at least őve

vertices, as every graph on four vertices is planar and the planarity of a non-connected graph is reduced

to that of its components.

Let k be a őxed positive odd number. Given a planar graph P on p ≥ 5 vertices, we construct a

bipartite apex graph P ∗
k -div in poly(p) time as follows.

Let Pk -div be the full k-subdivision of P , i.e., Pk -div is the graph obtained by replacing each edge

of P with an induced path of length k + 1. Formally, we replace each e = xy ∈ E(P ) with the path

(x, u1
e, u

2
e, . . . , u

k
e , y) (see Figure 7).

V (Pk -div) = V (P ) ∪ {u1
e, u

2
e, . . . , u

k
e | e ∈ E(P )};

E(Pk -div) = {xu1
e, u

1
eu

2
e, . . . , u

k
ey | e = xy ∈ E(P )}.

We call the vertices of V (P ) ⊆ V (Pk -div) as the original vertices of Pk -div and the remaining vertices

as the subdivision vertices of Pk -div. Finally, we construct P ∗
k -div by adding a new vertex a (called the

‘apex’) to Pk -div and making it adjacent to all the original vertices of Pk -div. Formally, P ∗
k -div is deőned

as follows.

V (P ∗
k -div) = V (Pk -div) ∪ {a};

E(P ∗
k -div) = E(Pk -div) ∪ {av | v ∈ V (P )}.

The reduction from PHPC to StabGIGRec associates to the planar graph G, the input of PHPC,

the graph G ∗
k -div built as above, with P = G and an arbitrary odd integer k such that k ≥ 7. See Figure 8

for an example of the reduction.

We need to prove that a planar graph G is a yes-instance of PHPC if and only if G ∗
k -div is a yes-

instance of StabGIGRec. The forward direction is Proposition 9 of the next section. For the backward

9



a

(a) (b) (c)

Figure 8: (a) An example graph G which is a yes-instance of PHPC. (b) Each edge of the graph is
replaced with a path with k+ 1 edges. (A dashed curve indicates a path of length k+ 1.) (c) The graph
G ∗

k -div, constructed by adding one extra vertex (the apex vertex a) in Gk -div which adjacent to all the
vertices of G.

direction, we will need the following result. A graph is a 1-string graph if it is the intersection graph

of simple curves in the plane, also called strings, such that any two strings intersect at most once, and

whenever they intersect they cross each other.

Proposition 8 ([9]). For a planar graph G, if k is odd and G ∗
k -div is a 1-string graph, then G is a

yes-instance of PHPC.

3.2 The proofs

We start by the forward direction:

Proposition 9. If G is a yes-instance of PHPC, then G ∗
k -div is a StabGIG.

The proof of this result is presented in Sections 3.2.1 to 3.2.3. Section 3.2.4 contains the proof of

Theorem 2.

We use the notation (x, y), where x and y are real values, for the Cartesian coordinates of a point,

and the notation [(x1, y1), (x2, y2)] for the segment whose endpoints are (x1, y1) and (x2, y2).

3.2.1 Overview of the construction

In view of proving Proposition 9, let G be a yes-instance of PHPC, and let V (G) = {v1, v2, . . . , vn}. We

start with a plane drawing of G, i.e., a drawing of G in the plane, in which the vertices are points and

the edges are strings (that is, simple curves). Then we modify the drawing in a step-by-step manner to

end with a StabGIG representation of G ∗
k -div. Let us now provide an overview of these steps.

(a) Consider a drawing of G in the plane in which the vertex vi (for every i ∈ [n]) has the Cartesian

coordinate (0, i− 1), each edge of G crosses the y-axis (the line x = 0) at most once, and no edge of

G crosses the y-axis between y = 0 and y = n− 1. (Auer & Gleißner [4] show that such a drawing

10



exists for every graph that is a yes-instance of PHPC.) See Figure 8(a) for an illustration, where

v1 is located at (0, 0) and v10 is located at (0, 9).

(b) In this drawing, though no edge of G crosses the y-axis between the points (0, 0) and (0, n − 1)),

there might be edges of G that cross the y-axis below y = 0 or above y = n − 1. We place new

vertices on the intersection points of those edges with the y-axis, to create a new graph H. Let nH

be the number of vertices in H. See Figure 9 for an illustration, where there are three such vertices,

indicated by square nodes.

(c) The graph H has some nice properties. Firstly, n ≤ nH ≤ 4n. Secondly, H is a subdivision of G.

As subdivision does not affect planarity, H is also planar. Thirdly, the drawing of H ensures that

no edge of H crosses the y-axis. We őx the line y = x as our stab line ℓ (recall that ℓ does not need

to be axis-parallel), and use the current plane drawing of H to devise a StabGIG representation of

the graph H ∗
3 -div. Recall that the graph H ∗

3 -div is obtained as described in Section 3.1, by considering

P = H and k = 3. Recall that the apex vertex is only adjacent to the original vertices of H and

not to the See Figure 9. Note that the graph G ∗
k -div is obtained from H ∗

3 -div by further subdividing

some of its edges.

(d) In the StabGIG representation of H ∗
3 -div, the apex segment of H ∗

3 -div is represented by a long

vertical segment coinciding with the y-axis. The nH original vertices of H ∗
3 -div are represented by

nH horizontal segments, each one crossing the y-axis at the point deőned by its corresponding

vertex in the plane representation of H. Each edge e = xy of H (which is a string in the plane

drawing of H) becomes a path with three intermediate vertices u1
e, u

2
e, u

3
e in H ∗

3 -div. These three

vertices are represented as three segments that form a ⊔-shape or a ⊓-shape, whose two vertical

segments appropriately intersect the horizontal segments representing respectively x and y. See

Figure 10 for an illustration (formal details are given below).

(e) For each edge e of H, we need to very precisely and carefully describe the positions of the three

segments corresponding to its three subdivision vertices (which will form a ⊔-shape or a ⊓-shape)

u1
e, u

2
e, u

3
e in H ∗

3 -div, in such a way that all the three segments intersect the stab line ℓ. This is the

most non-trivial part of our proof. See Figure 10 for an illustration.

(f) Lastly, we need to convert H ∗
3 -div to G ∗

k -div. Note that H ∗
3 -div \ {a} is a subdivision of G in which

each edge of G is subdivided either 3 or 7 times. An overview of this construction is illustrated by

Figure 11. Finally, with the apex segment [(0, 0), (0, n− 1)], we have a StabGIG representation of

G ∗
k -div.

3.2.2 Construction of H ∗
3 -div and its StabGIG representation

Now we commence with the formal proof of Proposition 9. Let us start with item (a). Since G is a

yes-instance of PHPC, according to Auer & Gleißner [4], the edge set E(G) can be partitioned into

three sets Eleft(G), Eright(G), and Ecross(G), such that G admits a plane drawing satisfying the following

properties.

• For every i ∈ [n], the vertex vi has the Cartesian coordinate (0, i− 1).

• Every edge e ∈ Eleft(G) lies in the half-plane x ≤ 0.

• Every edge e ∈ Eright(G) lies in the half-plane x ≥ 0.

• Every edge e ∈ Ecross(G) crosses the line x = 0 exactly once, at (0, Ye), where Ye < 0 or Ye > n− 1.

Figure 8(a) presents an example of a graph, and of a plane drawing of it which satisőes the above

properties. Note that the above plane drawing crucially uses the fact that the line x = 0 partitions the

plane into two half-planes (x ≤ 0 and x ≥ 0). Now, let us move on to item (b).
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a

Figure 9: The graph H ∗
3 -div, constructed from the the graph G shown in Figure 8(a) using the intermediate

graph H. Note that H is obtained from G by introducing three new vertices (indicated by square nodes)
that perform a őrst subdivision of the three edges that cross the y-axis, namely v2v4, v5v7 and v5v9.
The graph G ∗

k -div is then obtained from H ∗
3 -div by introducing an even number of additional subdivision

vertices for all edges vivj of G that are insufficiently subdivided.

The construction of H from G is done as follows. For each edge e = vivj ∈ Ecross(G), we add a new

vertex newe to the graph, represented by the point (0, Ye). Consequently, the edge e = vivj is replaced by

two edges vinewe and newe, vj . One of those edges is in Eleft(H) and the other is in Eright(H). Therefore,

the vertex newe is a subdivision vertex of the edge e. More formally,

V (H) = V (G) ∪ {newe | e ∈ Ecross(G)};

E(H) = Eleft(G) ∪ Eright(G) ∪ {xnewe, newey | e = xy ∈ Ecross(G)}.

What did this achieve for us? The graph H has some nice properties, which we mentioned in item (c),

and will elaborate now.

• H is a subdivision of G. Edges of Eleft(G) and Eright(G) are retained as-is in H, and edges of

Ecross(G) are subdivided once.

• H is a planar graph. This is because G is a planar graph, and subdivision does not affect planarity.

• No edge of H crosses the y-axis (Ecross(H) = ∅). This is a straightforward feature of our construction.

• n ≤ nH ≤ 4n, where nH = |V (H)|. This is because G has at most 3n edges (as G is planar), and

each edge of G is subdivided at most once in H. Since H also retains the vertices of G, nH ≤ n+3n.

From H, we construct H ∗
3 -div, as described in Section 3.1. Then we progressively build its StabGIG

representation (item (d)). We őrst deőne the positions of the segments corresponding to the apex vertex

of H ∗
3 -div and the original vertices of H in our StabGIG representation of H ∗

3 -div. Note that the apex

12



ϵdI

−i + 0.01

c(u1e)

x-axis

wi(0, i− 1)

wj(0, j − 1) (2nH − j + 0.1, j − 1)

y-axis

ϵdI

c(u2e)

−j − 0.01

(−j − 0.1, j − 1) (−j, j − 1)

(−i− 0.1, i− 1) (−i, i− 1)

c(wj)

(2nH − i + 0.1, i− 1)c(wi)

(je, je) (ie, je)

c(u3e)

c(a)

ℓ

−j + 0.01

−i− 0.01

Figure 10: StabGIG representation of the path (wi, u
1
e, u

2
e, u

3
e, wj) of H ∗

3 -div corresponding to the edge
e = wiwj of H, with i < j.

vertex in H ∗
3 -div is called a, just as the apex vertex in G ∗

k -div, since these vertices őnally coincide in our

construction.

The vertices with the minimum and maximum y-coordinates in H are at (0, Ymin) and (0, Ymax), where

Ymin = min ({0} ∪ {Ye | e ∈ Ecross(G)}) ;

Ymax = max ({n− 1} ∪ {Ye | e ∈ Ecross(G)}) .

We may assume that Ymin = 0 and Ymax = nH − 1, and that the other vertices of H can be shifted

accordingly so that their coordinates are (0, 0), (0, 1), (0, 2), . . . , (0, nH − 1).3 Furthermore, the vertices

are suitably renamed as w1, w2, w3, . . . , wnH
so that each wi has the coordinate (0, i−1). For each vertex

x ∈ V (H ∗
3 -div), let c(x) be its corresponding segment. See Figure 10.

The apex vertex a of H ∗
3 -div: c(a) = [(0, 0), (0, nH − 1)]

The original vertices of H: c(wi) = [(−i− 0.1, i− 1), (2nH − i+ 0.1, i− 1)] ∀ i ∈ [nH ].

We őx the line y = x as our stab line ℓ (recall that ℓ does not need to be axis-parallel). It is easy to

see that all the segments described so far intersect the stab line. This brings us to item (e), where we

need to place the segments corresponding to the three subdivision vertices of e for each edge e of H.

Let us consider edges of Eleft(H). Later, we will deal with edges of Eright(H). We construct a set of

intervals Ileft from Eleft(H) as follows. For each edge e = wiwj ∈ Eleft(H) (where i < j), the set Ileft

contains an open interval (i − 1, j − 1). Thus, the number of intervals in Ileft is the number of edges in

3This can be done, for example, by shifting the x-axis downwards and making the gap between consecutive points as 1.
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Eleft(H). Now, note that Ileft has the following interesting property.

Observation 10. If two intervals of Ileft have an overlap (i.e., the intervals are not disjoint), then one

of them must be contained in the other.

Observation 10 is well known and easy to see; it is the basic underlying principle of book thickness or

book embeddings of graphs (for a proof, see [6]). We will use this observation crucially in our construction

of the three subdivision segments for each edge e of Eleft(H).

Given an interval I ∈ Ileft, let its depth, denoted by dI , be the number of intervals I ′ ∈ Eleft(H) such

that I ⊆ I ′. In other words, dI is the number of intervals that contain I (including I itself). Thus,

1 ≤ dI ≤ nH − 1. Now we are ready to describe our construction.

Fix ε = 0.01/nH . Let e = wiwj ∈ Eleft(H) such that i < j. Let I = (i − 1, j − 1) be the interval

corresponding to e in Ileft. After the 3-subdivision, the edge e becomes the path (wi, u
1
e, u

2
e, u

2
e, wj) in

H ∗
3 -div. We already know the coordinates of the segments for wi and wj . As for the other three segments,

we deőne je and ie as follows.

je = −j + εdI ;

ie = −i− εdI .

Now, we are set to deőne the coordinates of the other three subdivision segments of e, which draw a

⊔-shape. See Figure 10.

c(u3
e) = [(je, j − 1), (je, je)] ;

c(u2
e) = [(je, je), (ie, je)] ;

c(u1
e) = [(ie, je), (ie, i− 1)] .

Before proving that the 3 segments do not intersect any segments apart from wi, wj , and each other, let

us prove that all 3 segments intersect the stab line. Consider the point of intersection of c(u3
e) and c(u2

e),

namely (je, je). This point has the same x- and y-coordinate, and so it lies on the stab line y = x. Thus,

all that remains to be shown is that c(u1
e) also intersects the stab line. Since i ≤ j − 1 and εdI < 0.01,

je ≤ ie ≤ i− 1.

Hence, the point (ie, ie) lies on the segment c(u1
e) = ((ie, je), (ie, i− 1)), and on the stab line y = x also.

Now, we will show that for two edges e = wiwj (where i < j) and e′ = wi′wj′ (where i′ < j′) of

Eleft(H), the segments corresponding to the three subdivision vertices of e do not intersect the segments

corresponding to the three subdivision vertices of e′. Let their corresponding intervals in Ileft be I and

I ′, respectively. Due to Observation 10, we have only two cases.

1. Case 1: I and I ′ are disjoint. Suppose that i < j ≤ i′ < j′ (the other sub-case, i′ < j′ ≤ i < j, is

similar). We have the following.

i < j ≤ i′ < j′

−j′ < −i′ ≤ −j < −i

−j′ + εdI′ < −i′ − εdI′ < −j + εdI < −i− εdI (since 2εdI′ < 1 ≤ j′ − i′ and 2εdI < 1 ≤ j − i)

je′ < ie′ < je < ie

Thus, the x-coordinate of each of the 3 subdivision segments of e′ is at most ie′ , and the x-coordinate

of each of the 3 subdivision segments of e is at least je. This completes the proof of Case 1.
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2. Case 2: One of I or I ′ contains the other. Suppose that I ⊆ I ′ (the other sub-case, I ′ ⊆ I, is

similar). Then, note that dI′ < dI . We have the following.

i′ ≤ i < j ≤ j′ (since I ⊆ I ′)

−j′ ≤ −j < −i ≤ −i′

−j′ + εdI′ < −j + εdI < −i− εdI < −i′ − εdI′ (since dI′ < dI and 2εdI < 1 ≤ j − i)

je′ < je < ie < ie′

Thus, the x-coordinate of c(u3
e′) (namely je′) is less than the x-coordinate of each of the 3 subdivision

segments of e, and the x-coordinate of c(u1
e′) (namely ie′) is greater than the x-coordinate of each

of the 3 subdivision segments of e. Finally, the y-coordinate of c(u2
e′) (namely je′) is less than the

y-coordinate of each of the 3 subdivision segments of e. This completes the proof of Case 2.

This completes the construction of the StabGIG representation for the subgraph of H ∗
3 -div induced

by the original vertices of H, the apex vertex a and the subdivision vertices located in the left half-plane.

For the vertices and edges located in the right half-plane, the construction is similar but replaces the

⊔-shapes by ⊓-shapes. The correctness of our construction follows from Cases 1 and 2 above.

3.2.3 StabGIG representation of G ∗
k -div

In order to conclude our proof of Proposition 9, we need ś according to item (f) ś to convert the

StabGIG representation of H ∗
3 -div into a StabGIG representation of G ∗

k -div. This operation reduces to

further subdividing one edge of H ∗
3 -div, that may be appropriately chosen, by transforming it into a path

of odd length 2h + 1, for an appropriate integer h ≥ 1. We always choose an edge represented by a

horizontal segment, and subdivide it (that is, we replace it with a sequence of segments), as illustrated

in Figure 11.

Consider the StabGIG representation of H ∗
3 -div. For each edge e ∈ Ecross(G), a 7-subdivision is

performed in H ∗
3 -div. But for each edge e ∈ Eleft(G) ∪ Eright(G), only a 3-subdivision is performed in

H ∗
3 -div. When k = 7, the latter edges are insufficiently subdivided in H ∗

3 -div with respect to G ∗
k -div.

Moreover, when k > 7 all the original edges in G are insufficiently subdivided. In all cases, let e ∈ E(G)

be one of the edges that are insufficiently subdivided, and assume that e ∈ Eleft(H). (Otherwise, when

e ∈ Eright(H) the approach is similar, whereas when e ∈ Ecross(G) we have to perform the same approach

on the ’half-edge’ of e that belongs to Eleft(H).) In H ∗
3 -div, e is 3-subdivided. Assume we need a k-

subdivision of e, with odd k ≥ 7, and let h = (k − 3)/2. Then we perform a 2h-subdivision of the

edge u1
eu

2
e of H ∗

3 -div, and describe below the new segments representing u1
e, u

2
e and the 2h supplementary

vertices.

In H ∗
3 -div, the intersection point between the segments c(u3

e) and c(u2
e) is (je, je). The closest possible

similar point located on the stab line towards right is the point (je+ε, je+ε). We then replace the segment

c(u2
e) with a succession of 2h+ 1 alternating horizontal and vertical segments whose intersections deőne

the path required by the 2h-subdivision of (u1
e, u

2
e). See Figure 11.

Formally, let ε2 = ε/(h+ 1), and deőne the following segments. The horizontal segment obtained for

t = 0 is the new segment c(u2
e).

For 0 ≤ t ≤ h− 1:

[(je + tε2, je + tε2), (je + (t+ 1)ε2, je + tε2)]

[(je + (t+ 1)ε2, je + tε2), (je + (t+ 1)ε2, je + (t+ 1)ε2)]
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ℓ

c(u3
e
)

c(u2
e
)

c(u1
e
)

ℓ

c(u3
e
)

c(u2
e
)

c(u1
e
)

(je, je) (ie, je)

(je + ǫ, je + ǫ)

Figure 11: Replacement of c(u2
e) (left), for some edge e which is not sufficiently subdivided in H ∗

3 -div,
with a sequence of segments. The dotted ⊔-shape indicates the closest possible location of an ⊔-shape
located above the one we deőned for e.

Complete this set of segments with:

[(je + hε2, je + hε2), (ie, je + hε2)]

c(u1
e) = [(ie, je + hε2), (ie, i− 1)]

All the segments corresponding to the 2h new subdivision vertices lie strictly below the closest upper

segment not involved in the subdivision of e (whose y-coordinate is at least je + ε), and (not strictly)

above the former segment c(u2
e). They also lie between the x-coordinates of c(u3

e) and c(u1
e). Thus they

cannot intersect other segments. So we have a representation of the path with (2h+1) edges required by

the subdivision.

This ends the proof of Proposition 9.

3.2.4 Proof of Theorem 2

We argue that recognizing StabGIG is in NP. Note that a graph is a StabGIG if and only if it has

a stabbable grid intersection representation where the stab line has slope 1, and the intersection points

of the segments with the stab line as well as with the other segments have integer coordinates. Such

a representation is called good. The backward direction is immediate. The forward direction is proved

as follows. Let G be a StabGIG, and consider an arbitrary stabbed grid intersection representation

of it. First, appropriately rotate and then scale the representation in the horizontal direction, in order

to obtain a grounded line with slope 1. Second, order the segments according to the bottom to top

order of their intersection points with the stab line. Given a segment s, let r(s) be its rank in this

order. Third, build a new stabbed representation, as follows. For each horizontal segment s of the initial

representation, its new y-coordinate is r(s), and the new x-coordinates of its left and right endpoints are

min{r(s′) | s′ intersects s}∪{r(s)} and max{r(s′) | s′ intersects s}∪{r(s)} respectively. For each vertical

segment s of the initial representation, its new x-coordinate is r(s) and the new y-coordinates of its

bottom and top endpoints are min{r(s′) | s′ intersects s}∪{r(s)} and max{r(s′) | s′ intersects s}∪{r(s)}

respectively. Then, the segment s intersects the stab line at (r(s), r(s)) and any other segment s′ it must

intersect at (r(s), r(s′)) when s is vertical, respectively at (r(s′), r(s)) when s is horizontal.

Therefore, it is sufficient to prove that the problem of deciding whether an input graph has a good

representation is in NP. Due to the integer coordinates, the task of checking whether a given set of

segments, one for each vertex, is a good representation of the input graph is polynomial. Furthermore,

G ∗
k -div is obtained in polynomial time from G. It remains to show that G is a yes-instance of PHPC if

and only if G ∗
k -div is a yes-instance of StabGIGRec. Proposition 9 shows the forward direction. For

16



the backward direction, we remark ś seeking to use Proposition 8 ś that if G ∗
k -div is a StabGIG, then

G ∗
k -div is a 1-string graph. To this end, it is sufficient to note that each segment in a grid representation

of G ∗
k -div is a 1-string, and that two segments that intersect without crossing (because an endpoint of one

segment lies on the second segment) may be easily transformed into two crossing segments. Now, using

Proposition 8, we deduce that G is a yes-instance of PHPC. This completes the proof of Theorem 2.

Observe that the graph G ∗
k -div used in our proof is ’almost’ planar, in the sense that G ∗

k -div \ {a} is

planar. A graph that can be made planar by removing one of its vertices is called an apex graph [26, 25].

Moreover, G ∗
k -div has girth g = k + 3 ≥ 10 so that we may deduce the following result.

Corollary 11. For each integer g ≥ 10, StabGIGRec remains NP-complete even if the inputs are

restricted to apex graphs of girth exactly g.

4 Conclusion and Open problems

In this paper, we proved that recognizing grounded �-graphs is NP-complete. One direction of research

would be to consider natural super classes of grounded L-graphs and study the computational complexity

of recognizing those classes.

Assume as before that the ground line is horizontal. A skew �-shape is an �-like shape where the

angle α between the two segments satisőes 0 < α < π. Thus an �-shape is a skew �-shape with α = π/2.

Similarly to grounded �-shapes, grounded skew �-shapes are placed above the ground line, and thus

become grounded skew

�

-shapes. The segment of a skew

�

-shape containing the anchor is the anchored

segment (or A-segment), whereas its other segment is the bent segment (or B-segment). The angle between

the A-segment of a grounded skew

�

-shape and the negative x-axis (that we imagine along the ground

line) is denoted β, and satisőes 0 < β < π. A skew

�

-shape with angle α that is anchored to the ground

line using an angle β is said to be of (α, β)-type.

Let S be a set of pairs (α, β) with 0 < α, β < π. The class of intersection graphs of grounded skew
�

-

shapes whose types belong to S is denoted SkewS . Then Skew{(π/2 ,π/2)} is the class of grounded �-graphs.

Moreover, Skew{(π/2 ,π/2)} = Skew{(π/2 ,β}), for each 0 < β < π. To see this, consider the representation

of a graph belonging to Skew({π/2 ,β}), and readjust it by performing a rotation of the ground line (alone)

with an appropriate angle until this line becomes orthogonal to the A-segments of the

�

-shapes, and then

another rotation of the entire representation (as a block) so as to get an horizontal ground line.

We focus now on SkewS with S = {(π/2, β1), (α2, β2)}, where 0 < β1, α2, β2 < π. The following

classes are deőned as immediate generalizations of grounded �-graphs, and we provide examples showing

that they are indeed strictly larger than grounded �-graphs.

I. S = {(π/2, β1), (π/2, β2)} (same shape, different ground angles)

II. S = {(π/2, β1), (α2, β1)} (different shapes, same ground angles)

Lemma 12. The graph shown in Figure 12(a) is not a grounded �-graph.

Proof. Let G denote the graph shown in Figure 12(a) and let G′ be the subgraph induced by V (G)\{11}.

Observe that G′ is exactly the gadget we used in the NP-completeness proof for grounded �-graphs. See

Figure 4(left).

Assume by contradiction that G has a

�

-representation R. Consider the

�

-representation of G′ in R and

let def be the permutation of {1, 2, 3} in a left to right ordering of the anchors in R. Due to Proposition 5,

G′ admits exactly two grounded

�

-representations (given in Figure 5(c)), where we have either d = 1

and f = 3, or d = 3 and f = 1. When (d, f) = (1, 3) the set {8, 9, 6, 4}, containing the neighbors of

11, satisőes {8, 9, 6, 4} = {v1e , v
1
f , v

2
f , v

2
d}, and it is easy to check from Figure 5(c) that there cannot be a

�

-shape which only intersects {8, 9, 6, 4}. When (d, f) = (3, 1) we have {8, 9, 6, 4} = {v1e , v
1
d, v

2
d, v

2
f} and

again it is easy to check that there cannot be a

�

-shape which only intersects {8, 9, 6, 4}. Hence there is

no possible place for

�

(11) and G is not a grounded �-graph.
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Figure 12: (a) A graph G that is not a grounded �-graph but lies in both class I and class II with
α2 < π/2. (b) shows a SkewS representation of G with S = {(π/2, β1), (π/2, β2)} assuming w.l.o.g. that
β1 > β2 (the representation is readjusted such that β1 becomes π/2, and thus β2 becomes β′

2 < π/2).
(c) shows a SkewS representation of G with S = {(π/2, β1), (α2, β1)} and α2 < π/2 (the representation
is readjusted such that β1 becomes π/2).

Figure 12(b) and Figure 12(c) imply that Figure 12(a) lies in both class I and class II with α2 < π/2.

Indeed, assume without loss of generality that β1 > β2 (in class I), and β1 is arbitrary (in class II).

Consider one of the classes, and readjust the representation such that the angle β1 becomes an angle of

π/2, similarly to the readjustment we performed above for Skew{(π/2 ,β)}. Then in class I the new angle

β′
2 satisőes β′

2 = β2 + π/2 − β1 and, except in the particular case where β1 = β2 + π/2, we have that

0 < β2 < π/2. Thus Figure 12(b) is a representation of G with respect to class I. (Note that different

angles β′
2 are obtained by scaling the őgure.) In class II, Figure 12(c) shows a representation of the graph

G when α2 < π/2. (Similarly, different angles α2 are obtained by scaling the őgure.) When α2 > π/2, a

similar example may be found, where the vertex 11 is adjacent with the set {1, 3, 5, 7, 8, 9} of vertices in

the gadget (see Figure 13(a)), that is, with {d, f, v1e , v
2
e , v

1
d, v

1
f} (see Figure 5(c)). The new graph has no

grounded

�

-representation, but has a representation as in class II with a grounded skew

�

-shape anchored

between v1f and f (see Figure 13(b)).

We deduce that class I and class II are strict super-classes of grounded �-graphs. The following

question is open:

Question 1. What are the computational complexities of recognizing classes I and II?

Since grounded �-graphs, and thus stick graphs, belong to both classes I and II, a reduction similar to

that in Section 2 could be attempted to prove the NP-hardness of recognizing classes I and II. However,

the gadget Λ(x) is not efficient for either of these classes, as its representations in classes I and II are

not sufficiently restricted to deduce a result similar to Proposition 6. Figure 14 shows counterexamples.

More sophisticated gadgets, that have more restricted representations in classes I or II, are needed to
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Figure 13: A graph G that is not a grounded �-graph but lies in class II with α2 > π/2. (b) shows a
SkewS representation of G with S = {(π/2, β1), (α2, β1)} and α2 > π/2.

10 v2e v2
f

d v2
d

e v1
f

f

(e = 2 = x)

v1
d v1e10 v2e v2

f
d v2

d
e v1

f
f

(e = 2 = x)

v1
d v1e

Figure 14: Representations of Λ(x) + u in classes I and II respectively, where u is not the rightmost anchor. For
Λ(x), the notations are those in Figure 5(c). The shape

�

(u) is the one with α ̸= π/2 and β ̸= π/2 respectively.

prove that recognizing these classes are NP-hard.

Another direction of research would be to őnd interesting subclasses of grounded �-graphs with poly-

nomial time recognition algorithms. One such candidate class could be the grounded unit �-graphs. An

unit �-shape is made by joining the bottom end-point of a vertical (|) segment (of arbitrary length) to the

left end-point of a horizontal (−) segment of unit length. Grounded unit �-graphs are the intersection

graphs of unit �-shapes such that all the �-shapes’ anchors lie on the same horizontal line. Grounded

unit �-graphs is a subclass of cocomparability graphs and contains unit interval graphs and permutation

graphs as its subclasses. The above discussion motivates the following question.

Question 2. What is the computational complexity of recognizing grounded unit �-graphs?

Another open question concerns grounded square �-graphs i.e. intersection graphs of grounded �-

shapes whose horizontal and vertical segments have the same length [7].

Question 3. What is the computational complexity of recognizing grounded square �-graphs?

As noticed in Corollary 11, recognizing StabGIG remains NP-complete even if the inputs are restricted

to apex graphs. Apex graphs do not contain K6 as a minor. In contrast, recognizing K4-minor free

stabbable grid intersection graphs is trivial (since K4-minor free graphs are planar and all planar bipartite

graphs are stabbable grid intersection graphs). This motivates the following question.

Question 4. What is the computational complexity of recognizing K5-minor free stabbable grid intersec-

tion graphs?
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